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ABSTRACT: Characteristic properties of secondary electrons emitted
from irradiated two-dimensional materials arise from multi-length and
multi-time-scale relaxation processes that connect the initial non-
equilibrium excited electron distribution with their eventual emission.
To understand these processes, which are critical for using secondary
electrons as high-resolution thermalization probes, we combine first-
principles real-time electron dynamics with irradiation experiments. Our
data for cold and hot proton-irradiated graphene show signatures of
kinetic and potential emission and generally good agreement for
electron yields between experiment and theory. The duration of the
emission pulse is about 1.5 fs, which indicates high time resolution when
used as a probe. Our newly developed method to predict kinetic energy
spectra shows good agreement with electron and ion irradiation
experiments and prior models. We find that the lattice temperature
significantly increases secondary electron emission, whereas electron temperature has a negligible effect.
KEYWORDS: secondary electron emission, monolayer graphene, finite temperature, first-principles simulation, kinetic energy spectrum

Secondary electrons can be emitted from a target material
upon the impact of ions or electrons. Their spectral and

spatial distribution play a crucial role in modern light-ion
microscopy to provide high-resolution surface morphology
images with minimal collateral damage.1−3 Emitted secondary
electrons can provide important insight into the electron and
ion response of the target material.3−5 However, the emerging
electron and ion dynamics within the target and its impact on
the intensity and kinetic energy distribution of emitted
secondary electrons remain elusive in experiments.
Achieving such insight requires a deep understanding of

secondary electron emission as a complex multi-length and
multi-time-scale process that emerges from the interaction
between the incident projectile ion and the target material. It
includes the dynamics of the projectile charge state, the
secondary electron emission probability, and the thermal-
ization of the radiation-induced excited electrons toward a
Fermi−Dirac distribution through electron−electron scattering
on the order of tens of femtoseconds. This is followed by the
emergence of thermal equilibrium between nuclei and
electrons through electron−phonon scattering on the order
of picoseconds. These processes also involve multiple length
scales: the initial interaction is localized near the impact point
of the proton trajectory, while heat is subsequently transported
mainly through electron diffusion with a diffusion length on
the order of μm.6 An analytical model of the secondary

electron kinetic energy spectra by Chung et al.7 is based on the
work function as a barrier against emission and the electron−
electron scattering mean free path governing the probability for
excited electrons to diffuse to the surface. This model has
successfully described the kinetic energy distribution of
secondary electrons from metals under electron irradiation,
and a modified version was introduced to describe secondary
electrons in helium ion microscopy.8 These rely on the static
work function of the target material as a single empirical
parameter, but for a highly excited surface,5 the surface
potential and, thus, the work function is strongly perturbed.
For bulk targets, electronic stopping has been extensively

investigated,9−14 and for self-irradiated silicon, first-principles
simulations have shown that a highly charged ion equilibrates
its charge state within a few nanometers.15 First-principles
theoretical efforts also describe the relaxation dynamics in the
target.16−18 Nonequilibrium dynamics is more complicated for
two-dimensional (2D) systems where the impacting ion does
not equilibrate its charge state before leaving the target,
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thereby leading to a response different from that of the bulk.
For single- or few-layer materials, energy deposition rates,19

charge excitation,19,20 and charge capture processes19,21 deviate
from bulk behavior. Theoretical models for the escape
probability of excited electrons for bulk7 rely on the
electron−electron mean free path. However, this quantity is
highly anisotropic in 2D systems, and the electron mean free
path transverse to the graphene layer is comparable with the
layer thickness.22 Besides, secondary electrons in bulk undergo
scattering and can reverse their momentum, which may not
occur in thin targets.23

Experimentally, ion−surface or ion−solid interactions have
been studied for decades, but direct experimental inves-
tigations of the dynamics induced by ion impact remain
unfeasible. This dynamics includes thermalization within
picoseconds or less through electron−electron scattering and
lattice heating through electron−phonon scattering. Pump−
probe experiments can examine such subfemtosecond
processes24,25 by interrogating the induced dynamics in the
sample using lasers with attosecond pulse durations.26−28 For
ion pulses, their charge and mass constrain the reduction of
monoenergetic pulse durations, and typically, only the initial
state before and the final state several nanoseconds after
impact are directly measurable. In addition to two-photon
photoelectron emission pump−probe experiments,29−31 recent
developments toward ion pump optical probe experiments32

promise sufficient temporal resolution. These allow experi-
ments with few-picosecond ion pulses,33−37 thereby making
electronic relaxation time scales in 2D materials, such as
graphene, experimentally accessible, which motivates the
present work. In such modern ion beam experiments,33−37

the time between successive ion impacts on a sample surface
reaches the few-picosecond regime. On that time scale,
graphene has not yet relaxed back to its ground state and is
pre-excited, that is, thermalized to a finite, nonzero temper-
ature. Ion impact on pre-excited material can influence the
secondary electron emission, but a real-time electron
dynamical simulation of secondary electron emission with
finite temperature is still missing.
Here, we develop a computational first-principles description

of the secondary electron emission dynamics, including
duration and kinetic energy spectra, for proton-irradiated
graphene as a prototypical 2D material and connect with
experiments. We use real-time time-dependent density func-
tional theory (RT-TDDFT), which has successfully simulated
femtosecond electron dynamics under external irradia-
tion.12,19,21,38−41 We explicitly consider the effects of non-
vanishing electron and lattice temperatures of pre-excited
graphene, thereby advancing understanding of secondary
electrons as a probe for thermalization processes.
Our simulations show that the peak intensity of the

secondary electron current in Figure 1 follows the same
trend with proton kinetic energy as the secondary electron
yield:20 the overall peak intensity is higher at the exit side than
the entrance side with a maximum around 10 keV for the
entrance and 80 keV for the exit side [see Section C in the
Supporting Information (SI)]. Asymmetric ratios of exit- and
entrance-side yields range from 1 to 1.5 in a comparable
velocity range for hydrogen-irradiated thin carbon foils,42

which is slightly below our computed ratios of 1−2.75. Higher
exit-side emission has yet to be experimentally confirmed for
monolayer 2D materials.

The difference in peak intensity (see Figure 1) and
secondary electron yield (see Figure S4) near entrance and
exit sides suggests that multiple emission mechanisms
contribute. Potential emission of secondary electrons occurs
because of potential energy released as the projectile
neutralizes its charge state in the target. The magnitude of
potential emission near the exit and entrance sides depends on
the projectile’s ionization energy and the target material’s work
function and Fermi velocity.43,44 Although potential emission
is more commonly discussed for highly charged ions,5,45 the
potential energy stored in the proton (13.6 eV) is almost three
times the work function of graphene (4.56 eV),46,47 which
exceeds the minimum required for Auger−Meitner neutraliza-
tion.43,44 The local density approximation used in RT-TDDFT
simulations (see Methods) is not expected to fully describe the
Auger−Meitner process quantitatively, thereby suggesting
hybrid exchange−correlation functional studies in the future.
Secondary electrons due to kinetic emission are preferentially
emitted at the exit side because of momentum conservation.
Longer time-scale emission mechanisms involving decaying
excitations within the material are expected to be symmetric
with respect to the emission side.
To explore potential emission, we study a proton velocity of

0.1 at. u. (atomic units), corresponding to 0.2 keV, which is
below the kinetic emission threshold estimated at 0.13 − 0.19
at. u. (0.42 − 0.9 keV).20 Figure 1a shows preimpact emission

Figure 1. Simulated secondary electron current on the (a) entrance
and (b) exit sides for proton-irradiated monolayer graphene (see
Methods and the SI for computational details). The proton is in the
graphene plane at “impact.”
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for this proton kinetic energy where potential emission is
expected to be the primary contribution, and the secondary
electron yield for the entrance and exit sides is around 12% of
the maximum yield (see Figure S4). The expression derived in
ref 43, which shows fair agreement with experiment,44,48

predicts a potential emission yield around 0.018 (see Section D
in the SI), which is a value comparable with our predictions of
around 0.027 (0.065) on the entrance (exit) side. The yield
ratio of about 2.5 in our simulations indicates asymmetric
secondary electron emission also in the potential emission
regime, albeit with a small secondary electron current (Figure
1). Additionally, electron capture is most prominent for slow
protons,20,49 which suggests that potential emission plays a role
in this regime. However, the relatively small potential energy
stored in the proton leads to a small secondary electron yield
compared with slow, highly charged ions.5,45

We also investigate secondary electron emission exper-
imentally (see Methods and the SI for experimental details) for
two-to four-layer graphene samples since the preparation of a
suitable single layer of graphene for measuring the yield is
difficult. Figure 2 shows the dependence of the measured

electron yield on the number of graphene layers for Ar+ ions
with different kinetic energies. We find that there is no strong
dependence on the kinetic energy of the projectile. The
observed yield varies with the number of graphene layers, from
0.4, 1.8, to 0.7 electrons per ion for two-, three-, and four-layer
graphene, respectively. However, this variation most likely
arises from sample-to-sample variations, and we do not
attribute it to a systematic thickness dependence.
The velocity of the 12.5 keV Ar+ ion is about 0.1 at. u., which

is comparable with the velocity of the 0.2 keV proton
simulation, i.e., the potential emission regime. The larger
experimental yields (see Figure 2) compared with our
simulations (see Figure S4) can be understood using the
model of ref 43 and the ionization energy of Ar of 15.8 eV.50

The predicted potential emission yield43 (see Section D in the
SI) of around 0.18 is on the same order as most of our
experimental results for two-layer graphene. The factor of ∼2

discrepancy between the experimental yields and model
prediction may be attributable to the different graphene
thicknesses.
Furthermore, our results in Figure 1 show that for protons

with kinetic energies above the kinetic emission threshold,
secondary electron emission ends after only about 1−1.5 fs. A
comparable electron emission duration was reported for
graphene irradiated by highly charged ions.5 This short time
scale indicates that delayed secondary electron emission
resulting from the relaxation of the energy deposited during
ion impact is not observed in our simulations.
After being excited by the fast-moving proton, the emitted

electrons have a range of kinetic energy depending on their
initial energy state, the work function of the target, and any
intermediate energy transfer processes between excitation and
emission. Our simulation results in Figure 3 show a

characteristic peak around 3 eV for the entrance side and
around 5 eV for the exit side. Since the peak positions do not
strongly depend on impact point and proton kinetic energy
(see details in Section F of the SI), we conclude that this peak
is predominantly governed by intrinsic graphene material
properties, such as the mean free path of excited electrons and
work function. The shape of our kinetic energy spectra in
Figure 3 agrees well with experimental data and the model by
Chung et al.,7 which relates the position of the secondary
electron peak to 1/3 of the work function of the target. For
graphene with a work function of approximately 4.56 eV,46,47 it
predicts a peak of position of 4.56/3 = 1.52 eV, which is about
2 eV below our simulation results. The scanning electron
microscopy data51 is obtained in reflection geometry and
comparable with our entrance side simulation data. For these
data, the Chung model captures peak position and shape
accurately.
In Figure 3 we also include data from highly charged Xe40+

irradiation,5,45 which is measured in the forward direction and
should be compared with our exit-side simulation data. For ion
irradiation experiments, as well as our proton simulation, the
kinetic energy peak appears shifted to higher kinetic energies

Figure 2. Experimental electron yield γ from graphene with different
layer numbers as a function of projectile (Ar+) energy. The yield was
calculated from the electron spectrum measured with the passivated
implanted planar silicon (PIPS) detector by fitting a Furry
distribution. Lines are a guide for the eye.

Figure 3. Comparison of our simulated kinetic energy spectra
(centroid trajectory, kinetic energy of 80 keV in Figure S6) with a
measured spectrum for Xe40+ ions impacting graphene,45 a measured
spectrum under electron irradiation in scanning electron microscopy
(SEM) experiments,51 and an analytical expression derived by Chung
et al.7 (see details in the text). The y axis is normalized to the same
peak intensity.
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by about 2 eV relative to Chung’s model. Although there is a
modified version of this model8,51 that extends it to helium
irradiation, these modifications rely on fitting the energy
distribution of excited electrons to experimental data. In
addition, the constant value of the work function used in
Chung’s model will be modified by the radiation-induced
electron dynamics.5 Other processes, such as attraction from
the positively charged incident ion before impacting the target,
might lead to further deviations for ion-induced emission since
Chung’s model is derived for electron irradiation.
Finally, we investigate pre-excited graphene, for example,

due to previous ion impact. Our simulations (see Figure 1)
reveal that the duration of the secondary electron pulse is only
around 1.5 fs, that is, fast compared with thermalization, which
indicates that the intensity of secondary electron emission can
be a probe of thermalization in the target. To separate the
effects of elevated electron and lattice temperatures, we
investigate the proton irradiation of a cold lattice with an
elevated electronic temperature and an elevated lattice
temperature with cold electrons. We use electron and lattice
temperatures from previous works based on two temperature
models.52−54

First, we compute the secondary electron yield for an
electronic temperature of 10 000 K (see Figure 4), which is

achievable within the first 100 fs after the initial impact.52,53

Our simulations show that the secondary electron yield is very
similar to that from ground-state graphene (see Figure 4), and
the effect of a high electron temperature is minor. On the
contrary, Figure 4 shows that a lattice temperature of 1000 K
increases the secondary electron yield by 10−13% (3−5%) on
the entrance (exit) side and also for the channeling trajectory
(see Figure S15). Such a lattice temperature was reported after
about 400 fs from molecular dynamics simulations of ion-
irradiated Fe.53 Besides secondary electron yield, we simulate
the kinetic energy spectrum at elevated lattice temperature (see
Figure S16). The peak position and shape of the spectrum
resemble those of the ground state, thereby implying that only
the enhanced secondary electron yield is an indicator of lattice
temperature.
To explain the modified secondary electron yield, we analyze

the electron density distribution in Figure 5. We note that the

enhanced electron emission does not just depend on the
charge density difference exactly at the impact point since the
long-range Coulomb interaction decays as 1/r. The electron
density difference at high electronic temperature is small;
conversely, the difference at an elevated lattice temperature is
about 2 orders of magnitude higher, which significantly
modifies the interaction between projectile and target material.
The electronic density of states for a hot graphene lattice

Figure 4. Number of secondary electrons computed at elevated
electron temperature of Te = 10 000 K or elevated lattice temperature
of Ti = 1000 K compared with electron emission from ground-state
graphene at Te = Ti = 0 K. The proton is in the graphene plane at
“impact.”

Figure 5. Comparison of the planar integrated charge density
difference between elevated (a) electron (Te = 10 000 K) or (b)
lattice (Ti = 1000 K) temperature and ground-state graphene for the
initial state before real-time propagation. Black circles denote atomic
positions of the 112 carbon atoms. The black diamond (×) denotes
the proton impact point of the channeling (centroid) trajectory.
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indicates a redistribution of electrons to near the Fermi energy
from around −6.5 eV below it, thereby possibly facilitating
their emission upon proton impact (see details in the SI).
In conclusion, we quantitatively investigate the non-

equilibrium dynamics of secondary electron emission in hot
and cold proton-irradiated graphene. Our simulations dis-
tinguish kinetic and potential emission in the intensity of the
secondary electron yield and current for single-layer graphene.
We show that the secondary electron pulse lasts about 1.5 fs,
which is much faster than the subpicosecond thermalization
processes of nonequilibrium electrons. The shape of the
secondary electron pulse and the kinetic energy spectra agree
well among the different impact parameters. Our newly derived
method for calculating kinetic energy spectra agrees well with
literature reports with peak positions varying by about 1−2 eV.
Additionally, pre-excited graphene shows enhanced electron
emission due to electron density perturbations at high lattice
temperatures. Further experimental work is needed to verify
predicted electron yields at nonvanishing lattice or electron
temperatures. Nevertheless, we propose the characteristics of
the secondary electron yield as a probe for lattice thermal-
ization.

■ METHODS
We perform real-time time-dependent density functional
theory simulations starting from converged ground-state
single-particle Kohn−Sham (KS) states computed by using
density functional theory. These are propagated in real time
through the time-dependent KS equations

i
t

t V t tr r r( , )
2

( , ) ( , )j j

2

KS

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

= +
(1)

using the enforced time-reversal symmetry (ETRS) meth-
od55,56 with a time step of one attosecond. ϕj are single-particle
KS orbitals evolving in a time-dependent effective potential
VKS, which is a functional of the electron density n(r,t). Kohn−
Sham states are represented using a plane-wave basis with a
cutoff kinetic energy of 50 hartree. Exchange and correlation
effects are treated using the adiabatic local density approx-
imation.57,58 The electron−ion interaction is described by
norm-conserving Hamann−Schlüter−Chiang−Vanderbilt
pseudopotentials.59 The large simulation cell with 112 carbon
atoms and 100 a0 of vacuum [see Figure S2 for channeling (A)
and centroid (O) proton trajectories] allows using only the Γ
point for Brillouin zone sampling. All these parameters are
consistent with previous work.20,23,60 We use absorbing
boundary conditions,60 as implemented in the Qb@ll
code,61−63 to avoid unphysical re-entering of emitted electrons
into a periodic image of the simulation cell (see details in the
SI). We represent an elevated electronic temperature using a
Fermi−Dirac distribution of KS occupation numbers within
Mermin DFT.64 An elevated lattice temperature is represented
using atomic displacements from the approach in ref 65 and
the SI.
Experimentally we investigate the number of electrons

emitted from a free-standing graphene target under singly
charged ion bombardment. The experimental setup (see Figure
S1 of the SI) is based on a design developed by the Aumayr
group.66,67 The experiment operates in transmission geometry
with free-standing graphene targets consisting of multiple
layers (see sample preparation details in ref 32). A singly
charged argon ion produced by a rare gas ion source (Atomica

Duoplasmatron) impacts the graphene target with kinetic
energies of 2.5−12.5 keV, thereby leading to electron emission.
Notably, no stripping effects are expected as the rather slow
singly charged argon ions traverse the target, and thus, the
experiments are comparable with our proton-irradiation
simulations. A proton with the same velocity as an argon ion
has a 40 times smaller kinetic energy. Hence, we expect that
irradiation with ∼6.2 keV protons, which is simulated in this
work, should produce comparable charge and velocity
conditions for secondary electron emission as in ref 68. The
emitted electrons are accelerated with a high voltage of 25 kV
toward a passivated implanted planar silicon (PIPS, Mirion
Technologies) detector. The resulting spectra are fit with a
Furry distribution,69,70 which is a Polya distribution where b =
1, to evaluate the electron yield.
Simulation input and output are available at the Materials

Data Facility.71,72
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