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Dense matrix multiply (MM) serves as one of the most heavily used kernels in deep learning applications. To cope with the high
computation demands of these applications, heterogeneous architectures featuring both FPGA and dedicated ASIC accelerators have
emerged as promising platforms. For example, the AMD/Xilinx Versal ACAP architecture combines general-purpose CPU cores and
programmable logic with AI Engine processors optimized for AI/ML. An array of 400 AI Engine processors executing at 1 GHz can
provide up to 6.4 TFLOPS performance for 32-bit floating-point (FP32) data. However, machine learning models often contain both
large and small MM operations. While large MM operations can be parallelized efficiently across many cores, small MM operations
typically cannot. We observe that executing some small MM layers from the BERT natural language processing model on a large,
monolithic MM accelerator in Versal ACAP achieved less than 5% of the theoretical peak performance. Therefore, one key question
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2 Jinming Zhuang et al.

arises: How can we design accelerators to fully use the abundant computation resources under limited communication bandwidth for

end-to-end applications with multiple MM layers of diverse sizes?

We identify the biggest system throughput bottleneck resulting from the mismatch between massive computation resources of one
monolithic accelerator and the various MM layers of small sizes in the application. To resolve this problem, we propose the CHARM
framework to compose multiple diverse MM accelerator architectures working concurrently on different layers within one
application. CHARM includes analytical models which guide design space exploration to determine accelerator partitions and layer
scheduling. To facilitate system designs, CHARM automatically generates code, enabling thorough onboard design verification. We
deploy the CHARM framework on four different deep learning applications in FP32, INT16, and INT8 data types, including BERT, ViT,
NCF, and MLP, on the AMD/Xilinx Versal ACAP VCK190 evaluation board. Our experiments show that we achieve 1.46 TFLOPS, 1.61
TFLOPS, 1.74 TFLOPS, and 2.94 TFLOPS inference throughput for BERT, ViT, NCF, andMLP in FP32 data type, respectively, which obtain
5.29×, 32.51×, 1.00×, and 1.00× throughput gains compared to one monolithic accelerator. CHARM achieves the maximum throughput
of 1.91 TOPS, 1.18 TOPS, 4.06 TOPS, and 5.81 TOPS in the INT16 data type for the four applications. The maximum throughput
achieved by CHARM in the INT8 data type is 3.65 TOPS, 1.28 TOPS, 10.19 TOPS, and 21.58 TOPS, respectively. We have open-sourced
our tools, including detailed step-by-step guides to reproduce all the results presented in this paper and to enable other users to learn
and leverage CHARM framework and tools in their end-to-end systems: https://github.com/arc-research-lab/CHARM .

CCS Concepts: • Computer systems organization→ Heterogeneous (hybrid) systems; • Hardware→ Hardware-software
codesign.

Additional Key Words and Phrases: Heterogeneous Architecture, Domain-Specific Accelerator, Versal ACAP, Mapping Framework,
Matrix-Multiply, Deep Learning

ACM Reference Format:
Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Shixin Ji, Jack Lo, Kristof Denolf, Stephen Neuendorffer, Alex Jones,
Jingtong Hu, Yiyu Shi, Deming Chen, Jason Cong, and Peipei Zhou. xxxx. CHARM 2.0: Composing Heterogeneous Accelerators
for Deep Learning on Versal ACAP Architecture. ACM Trans. Reconfig. Technol. Syst. xx, x, Article xxx (x xxxx), 31 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Dense matrix multiplication (MM) serves as one of the most heavily used kernels in many deep learning workloads,
including BERT [1] for natural language processing, NCF [2] for recommendations, ViT [3] for vision classification, and
MLP [4] for multilayer perceptron classification or regression. According to profiling results from Google [5], dense
matrix multiplication tasks occupied 90% of the Neural Network (NN) inference workload in Google’s data center in
2017. The increasing complexity of these applications leads to extreme demands for computation and data movement.

According to [6–9], the off-chip bandwidth has been a bottleneck for both the performance and energy efficiency
of a system, and a common trend on current platforms is that the off-chip bandwidth does not scale as fast as the
computational resources. Therefore, the first research question arises: How to sustain the faster scaling computation with

the slower scaling off-chip bandwidth?

A common solution is to increase data reuse by allocating more on-chip storage within an accelerator (acc). As
shown in the asymptotic analysis in [9], the total off-chip communication volume in MM scales as O( 1√

𝑀
), where M is

the on-chip tile size. If we increase the tile size, we can reduce the total communication volume, thereby reducing the
pressure on the off-chip bandwidth.

In this work, we target the AMD/Xilinx Versal ACAP architecture [10], which combines general-purpose CPU cores
and programmable logic (PL) with AI Engine processors (AIE) optimized for AI/ML computation. For example, we
implemented an MM accelerator on an AMD/Xilinx VCK190 board using 384 AIEs and over 80% on-chip URAM and
Manuscript submitted to ACM
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computation and bandwidth

Compared to B, less waste as 
the size of Accs decreases

Fig. 1. Throughput of square MM under different sizes.

BRAM resources. The red line in Figure 1 illustrates the performance of this accelerator. This design operates on a
native tile size of 1536 × 128 × 1024 and achieves 3.7 TFLOPS throughput when carrying out a tiled execution of a
large square MM (point A). However, when simply mapping different sizes of MM to such a design, the performance
decreases significantly as the square MM size drops below 512, since each tile is padded to the native tile size of the
accelerator. For instance, at point B, the performance of such a monolithic design drops to 0.65 GFLOPS, which is 5760×
lower than at point A. Although padding is a common and simple approach to implementing small MM operations
on a large accelerator, it can waste both computation and bandwidth. More specifically, in point B, when using an
accelerator that computes with a tile size of 1536×128×1024, padding the matrix from 64×64×64 to 1536×128×1024
leads to a 768× inefficiency due to excessive invalid computation. Additionally, in point B, since there is only one tile,
there is no overlap between communication and computation, which leads to another 7.5× gap. Together, this explains
the inefficiency caused by the mismatch between the original kernel shape and the monolithic accelerator’s shape size.

An alternative to padding is to implement multiple accelerators with smaller native tile sizes, potentially executing
different tasks on each accelerator in parallel [11]. We apply this approach using eight independent accelerators with a
native tile size of 256×128×256, as illustrated by the blue dashed line in Figure 1. For small square MM operations with
size 64, this approach achieves 7.2 GFLOPS at point C, approximately an 11× speedup compared to point B.

However, the smaller accelerator size also means less data reuse for large MM, with total throughput nearly saturating
when the operation size is larger than 256. When the MM size is 3072 (point D), the total throughput from eight duplicate
accs is 5.4× smaller than that at point A in one monolithic design.

These experiments expose two conflicting design goals. Firstly, we want to implement large MM operations with
sufficient data reuse to achieve the highest possible performance on the devices. Secondly, we want to implement small
MM operations while minimizing computation and communication overheads. Neither of these simple designs seems
able to achieve these design goals simultaneously. Therefore, the second research question arises: How does one trade off

between the two design goals for real-world, end-to-end applications where MM layers of large and small sizes coexist?

Manuscript submitted to ACM
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One Monolithic Acc 0123 54 6 7

Two Diverse Accs 
6 7

0 41 2 3 5 Acc0

Acc1

Region B

Region better than C

Region A

Region A

Fig. 2. Execution timeline of one monolithic MM design vs. two diverse MM accs design for BERT on VCK190.

To illustrate how these conflicting design goals can affect the performance of practical machine learning models, we
consider BERT [1] as a representative workload containing MM layers of both large and small sizes. In a transformer
layer of BERT, there are a total of 8 types of MM kernels, where Kernels 0-5 are large MMs, and Kernels 6 and 7 are
batch dots, i.e., small MMs. The detailed shapes can be referred to in Table 6. Take Kernel 5 and Kernel 6 as examples:
Kernel 5 is an MM with the shape 3072×1024×4096; Kernel 6 is a batch dot with the shape 96×512×512×64, which
means there are 96 small independent MMs sized at 512×512×64.

As shown in Figure 2, when using a single monolithic MM accelerator, Kernels 0-5 consume 92% of the total BERTMM
computation operations and 12% of the total MM acc time. In contrast, Kernels 6-7 consume 8% of the total operations
but take 88% of the total MM acc time. For Kernels 0-5, they lie in Region A (a region that performs similarly to Point
A in Figure 1), where the throughput of acc is more than 2082 GFLOPS. For Kernels 6-7, they lie in Region B, where
the throughput of acc is only 23.6 GFLOPS. Given that there is a large portion of acc execution underutilized in the
timeline, the overall MM acc throughput is only 276 GFLOPS. Can we achieve a design for BERT that lies in region
A, i.e., good for large MMs, and also in a region better than point C, i.e., good for small MMs with less or no wasted
computation/bandwidth?

Our answer is “Yes". The key idea is to allocate a larger portion of the resources to accs dedicated to computing
larger MMs and a smaller portion of the resources to other accs for computing smaller MMs simultaneously, as shown
in Figure 2, where a two-diverse accs system is illustrated. To achieve our design goals, we need to solve these new
challenges. First, we need to achieve high computation utilization for every single acc, i.e., use the smaller acc(s) to
reduce the waste for small MMs and use the larger acc(s) to maximize the data reuse for large MMs. Second, to maximize
overall utilization while maintaining high throughput and low latency, we need to carefully overlap the execution times
for these accs by co-optimizing workload and resource partitioning. Third, to facilitate the design space exploration
(DSE), we need analytical models to optimize the overall throughput under resource and bandwidth constraints. Fourth,
to reduce the programming effort for system implementation, we need automatic code generation. Fifth, to resolve the
dependency of the kernels within the application graph when running multiple accs, we need an accelerator runtime to
schedule kernels from different tasks onto the accs.

To answer the research questions, we propose the CHARM architecture and its corresponding automation framework,
the CHARM framework. Our contributions are summarized below:

• CHARM Systematical Design Methodology on Versal: To achieve high computation and communication
efficiency for each acc, in Section 4, we propose a thorough design methodology on the Versal heterogeneous
platform. We further provide an automatic CHARM DSE (CDSE) to find the optimized single acc configuration.
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• CHARM Architecture and Framework: To achieve the design goals of good performance for MMs with
both small and large sizes in an application, in Section 5 we propose the CHARM architecture and the CHARM
framework to find the optimized design. In the CHARM framework, there are several modules. First, on top of
CDSE, we propose the CHARM Diverse Accelerator Composer (CDAC), which features a sort-based two-step
search algorithm to find an optimized CHARM design in polynomial time complexity instead of exponential time
complexity. Furthermore, to automate the system implementation, CHARMAutomatic Code Generation (CACG)
is proposed to generate source code files for AIEs, PL, and the host CPU. Lastly, the greedy-algorithm-based
CHARM Runtime Scheduler (CRTS) is launched in the host CPU that schedules different kernels to the accs for
optimizing both task latency and overall system throughput. A mixed-integer-programming (MIP) mathematical
formulation is proposed to prove the optimality and search time efficiency of the greedy-algorithm-based CRTS.

• We deploy the CHARM framework to accelerate four applications with multiple data types on the VCK190
in Section 6. Our on-board experiments demonstrate that CHARM achieves 1.46 TFLOPS, 1.61 TFLOPS, 1.74
TFLOPS, and 2.94 TFLOPS FP32 inference throughput for BERT, ViT, NCF, and MLP applications, which obtain
5.29×, 32.51×, 1.00×, and 1.00× throughput gains compared to one monolithic accelerator. CHARM achieves
the maximum throughput of 1.91 TOPS, 1.18 TOPS, 4.06 TOPS, and 5.81 TOPS in the INT16 data type for the
four applications. The maximum throughput achieved by CHARM in the INT8 data type is 3.65 TOPS, 1.28
TOPS, 10.19 TOPS, and 21.58 TOPS respectively.
• White-Box Open-Source Tools for Versal.While AMD provides users with a black-box IP for NN applications

called DPU [11], we have open-sourced our tools completely as a white-box, including a detailed step-by-step
guide to reproduce all the results presented in this paper and to enable other users to learn and leverage them
in their end-to-end systems. (https://github.com/arc-research-lab/CHARM)

2 PRIORWORK

To achieve high throughput and energy efficiency, NN accelerators usually employ a large number of processing
elements (PEs) and share a similar memory hierarchy. That is, while the bulk of data is stored in the off-chip memory,
there are multiple levels of on-chip buffers, including the local memory attached to each PE and global shared memory,
to further reduce the costly data movement from/to off-chip memory. Several works contribute to NN accelerators by
discussing the data reuse opportunities, computation parallelism, and the choice of dataflow.

However, many of the prior works apply a one-size-fits-all monolithic design that cannot efficiently handle layers with
huge differences in shapes and sizes (Eyeriss [12, 13], ShiDiannao [14], NPU [15–17] and others [18–21]). AutoSA [22] is
a polyhedral-based compilation framework that generates monolithic systolic array designs for dense matrices. Sextans
and Serpens [23, 24] are general-purpose monolithic accelerators for sparse matrices. [25, 26] analyze layout and pipeline
efficiency. Other works like AMD DPU [11], Mocha [27] explore task-level parallelism by allocating multiple duplicate
accs on the device without specializing each acc. DNNBuilder [28] designs a dedicated acc for each layer according to
the number of operations within the layer. DNNExplorer [29] enhances DNNBuilder by combining dedicated accs for
the first several layers and a monolithic acc for the rest of the layers. While it employs multiple accelerators, it lacks
a comprehensive exploration of workload assignments. TETRIS [30] and TANGRAM [31] propose multiple dataflow
optimizations within and across the NN layers to improve performance and energy efficiency. Although they offer diverse
accelerator designs, they lack the DSE and workload assignment for high overall throughput. Herald [32] proposes an
architecture with multiple diverse accelerators and explores the workload assignment and resource partition. Still, they
choose several existing acc designs from their candidate pool, e.g., ShiDiannao [14], NVDLA [33] without doing DSE
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Prior
Works

One
Mono

Multi
Duplicate

Multi
Diverse

Workload
Assignment

Specialization
for Acc

Eyeriss etc. [12]-[26] ✓ × × × ×
DPU etc. [11, 27] ✓ ✓ × × ×

DNN Expl. etc. [28, 29] ✓ ✓ ✓ × ×
Herald [32] ✓ ✓ ✓ ✓ ×

CHARM (Ours) ✓ ✓ ✓ ✓ ✓

Table 1. Comparison with prior works.

for each acc. FPCA [34] and CHARM'12 [35] propose a fully pipelined and dynamically composable coarse-grained
reconfigurable architecture and compose loosely coupled accelerators for different kernels within an application via
permutation network, which costs high in chip area.

In conclusion, we summarize the differences between our work and prior works in Table 1. Our work is capable
of choosing the design from one of three options: monolithic, multiple duplicates, and multiple diverse accelerators.
Each accelerator is a specialized design that considers different workload assignments, dataflow, and data parallelism
strategies covered by our DSE.

3 VERSAL ACAP ARCHITECTURE OVERVIEW

In this section, we first use VCK190 as a representative example to illustrate the system architecture of AMD/Xilinx
Versal ACAP architecture in Section 3.1. We then elaborate on the tile structure of a single AIE, the connections between
AIEs↔AIEs and PL↔AIEs in Sections 3.2, 3.3 and 4.2, respectively.

3.1 Versal ACAP Architecture

Figure 3 illustrates the overall architecture of the VCK190 [36] and highlights the AIE array at the top. The VCK190
board features (1) the first-generation AIE architecture, which has 8 × 50 1 GHz 7-way VLIW processors supporting
vector operations up to 1024 bits [37], (2) ARM processors for running Linux and general-purpose applications, and
(3) PL for designing application-specific hardware with Digital Signal Processors (DSP) available for integration. The AI
engine cores and ARM CPUs can be programmed with C/C++ code, while the PL can be programmed using both RTL
and C/C++ code with High-Level Synthesis (HLS) [38–43]. These three components are integrated with I/O peripherals,
such as PCIe and DRAM controllers, into a heterogeneous SoC with a Network-on-Chip (NoC). The VCK190 board is
equipped with one DDR4-DIMM off-chip memory module with a peak bandwidth of 25.6 GB/s.

3.2 The Tile Architecture of a Single AIE

Figure 4 illustrates the tile architecture of the AIE, which mainly consists of the AIE core, AIE local memory, and wire
connections. Each AIE core is a vector processor that supports up to 7-way VLIW instructions, including one vector, one
scalar, two load, one store, and two move instructions. The vector instruction supports up to 8, 32, and 128 MACs/cycle
in FP32, INT16, and INT8 data types, respectively. The scalar instruction supports general-purpose data processing, e.g.,
non-linear functions. While the load and store instructions are responsible for transferring data between local memory
and vector registers, the move instruction handles data movement between the 2048-bit vector registers and 3072-bit
Manuscript submitted to ACM
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Fig. 3. Versal ACAP architecture.
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Fig. 4. Versal ACAP tile structure of AIE.

accumulation registers within each AIE core. Additionally, an AIE processor core owns a 32 KB local memory, which
consists of eight memory banks. The AIE core can access multiple banks from four ports at the same time if there are
no bank conflicts.

3.3 Data Transmission within AIE Array (AIEs↔AIEs)

In terms of data communication between AIEs, there are mainly three kinds of connections: the shared memory,
the cascade stream, and the AXI Stream. A tile of data can be transferred between neighboring AIEs through the
shared memory in a ping-pong buffer manner with two 256-bit load and one 256-bit store instructions, as mentioned
above. On the other hand, the cascade connection provides a 384-bit fine-grained stream access that can transfer
data between accumulator registers in neighboring AIEs. Unlike the shared memory, the cascade stream is a single-
direction connection alternating between rows. In addition to the neighboring transfer, the data movement between
non-neighboring AIEs is through the AXIS stream network, connected by the switch boxes with a 32-bit width per
wire. Each AIE core has two input and two output connections from/to the switch. Each switch has six output ports to
its north neighbor, thus six input ports from its south neighbor. For the rest of the directions, the switch has four I/O
ports with its neighbor.

3.4 Data Transmission between AIE and PL (PL↔AIEs)

Communication between AIE and PL is through the PLIOs in the 39 interface tiles. On the PL domain, each interface tile
has eight 64-bit input channels and six 64-bit output channels running at the PL clock frequency. The connections can

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Jinming Zhuang et al.

also be configured as 128-bit to catch up with the speed of the AIE side, with the number of channels being halved. On
the AIE domain, there are eight 32-bit input channels and six 32-bit output channels running at 1 GHz. Inside the AIE
array, the ports from the PLIO are also connected throughout the AXI stream mesh through the AXI switches. The AXIS
switches can be reconfigured in two ways, i.e., circuit-switched and packet-switched. Circuit-switched connections
provide dedicated, deterministic communication and support broadcast, where data from a single input channel is
transmitted to multiple output channels simultaneously. Packet-switched connections allow data from an input channel
to be dynamically routed to different destinations based on a destination header at the start of each packet. This
enables data flows to be time-multiplexed on a single routing path. One situation in which we can use packet-switched
connections happens when the computation-to-communication (CTC) ratio of an AIE is more than one. During the
computation of AIE 0, the port assigned to this AIE is idle and thus can be used to transfer data to another AIE, say AIE
1, by assigning a different header that matches the destination ID of AIE 1.

3.5 Unveil the Optimization Design Space for Versal Architecture

The heterogeneity of the Versal architecture provides abundant potential optimizations to achieve high performance for
deep learning applications. In this section, we will unveil the optimization design space, which motivates the creation
of the CHARM framework for automatic mapping. (1) The AIEs in Versal are different from the traditional MAC array
composed of DSPs because of their VLIW characteristics. Simply abstracting them by the number of maximum MACs
each core could do is no longer enough. Rather, the data locality of local memory as well as the data reuse in the
register are of great significance to AIE performance. (2) The high-speed AXIS network is flexible so that more choices
of parallelism and dataflow can be explored in the AIE array. For example, many previous works [22, 44, 45] explore the
2D-array parallelism with 1D-SIMD capability, whereas 3D-array parallelism with 3D-SIMD instruction is covered in
the CHARM framework. (3) Good orchestration between AIE and PL is required in Versal to sustain the high throughput
of the AIE array, which hasn’t been systematically explored by other works. Thus, we propose the CHARM framework,
which takes an in-depth analysis of the Versal architecture, abstracts an accurate architecture modeling, and designs an
automatic framework for deep learning mapping.

4 CHARM SINGLE ACCELERATOR DESIGN

High-throughput and low-latency are two significant evaluation criteria for deploying deep learning models on
computing platforms. Many previous solutions including Eyeriss [12, 13], ShiDiannao [14], NPU [15–17] allocated
hundreds of MAC arrays to a monolithic design which achieves good efficiency for applications with uniform large
layers. In order to achieve high performance for those applications, we describe the dataflow and mapping strategy to
sustain the throughput of a single MM acc with hundreds of AIEs in Section 4.1. In Section 4.2, we present our proposed
optimization techniques to achieve high single AIE efficiency. Then in Section 4.2 and 4.2, we demonstrate the IO and
data reuse to balance the massive computation parallelism and communication among AIEs, between PL↔AIEs and
PL↔DDR.

4.1 Dataflow and Mapping Strategy of a Single Matrix Multiply Accelerator

Listing 1 depicts the overall four-level tiling and mapping strategy for basic dense matrix-matrix multiplication. The
innermost loop tiling (Lines 16-20) implements MM on a single AIE core and exploits instruction-level parallelism
and data-level parallelism by issuing fully pipelined 3D-SIMD (vector-matrix multiplication) instructions. Each AIE
stores a (TI×TK) LHS and a (TK×TJ) RHS matrix and computes a (TI×TJ) output matrix in its local memory. The
Manuscript submitted to ACM
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1 // Off-Chip <-> On-Chip Time Loop
2 for (int i.0=0; i.0<TX; i.0++) // TX=M/(TI*A*X)
3 for (int j.0=0; j.0<TZ; j.0++) // TZ=N/(TJ*C*Z)
4 for (int k.0=0; k.0<TY; k.0++) // TY=K/(TK*B*Y)
5 copyDataFromOffChipOnChip(...)
6 // PL On-chip Buffer Reuse Time Loop: Determine On-Chip SRAM Allocation
7 for (int i.1=0; i.1<X; i.1++) // X
8 for (int j.1=0; j.1<Z; j.1++) // Z
9 for (int k.1=0; k.1<Y; k.1++) // Y
10 copyDataFromOnChiptoAIE(...)
11 // AIE Array Spatial Loop: Determine AIE and PLIO Utilization
12 for (int i.2=0; i.2<A; i.2++) // A
13 for (int j.2=0; j.2<C; j.2++) // C
14 for (int k.2=0; k.2<B; k.2++) // B
15 // Single AIE 2D-SIMD Vectorization Loop:
16 // Determine AIE Local Mem and VLIW Scheduling
17 for (int i.3=0; i.3<TI; i.3++)
18 for (int j.3=0; j.3<TJ; j.3++)
19 for (int k.3=0; k.3<TK; k.3++)
20 ...
21 2D-SIMD(i.3, j.3, k.3);

Listing 1. Pseudocode for MM Loop Tiling and Dataflow.
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Fig. 5. Single AIE VLIW scheduling.

second-innermost loop tile (Lines 12-14) represents the spatial distribution of execution across different AIE cores in
the AIE array. These loops are fully unrolled and computed on (A×B×C) AIE cores in a parallel fashion. The spatial
distribution also corresponds to the number of required I/Os, which will be discussed in Section 4.2. The third-innermost
time loop tile (Lines 7-9) represents the sequential processing of data stored in PL on-chip memories. The data from
on-chip PL buffers is fed into the AIE array (X×Y×Z) times, and the intermediate partial sum from the AIE array is
accumulated on the PL. The outermost loop (Lines 2-4) represents the temporal processing of data stored in off-chip
memory, enabling the processing of large matrices that do not fit in on-chip memory. The loop boundary can be
determined by the overall input matrix size (M, K, N).
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Fig. 6. Data transfer between AIEs: shared memory VS. cascade stream.

4.2 Level 0: Efficient VLIW Scheduling in A Single AIE

Firstly, at the single AIE level, in order to sustain the high throughput of a single AIE, the data orchestration between
the AIE local memory and AIE registers under the bandwidth constraints serves as the key point. More specifically,
we optimize the single AIE kernel by applying the following techniques: 1○ We separate the workload of a single AIE
(𝑇 𝐼 ×𝑇𝐾 ×𝑇 𝐽 ) into small partitions by Unrolling Multiple VLIW Instructions in the innermost loop. 2○ The Double
Register technique is utilized to overlap the time spent on register loading with the MAC operations. 3○ To balance the
computation and communication, Register Reuse is mathematically analyzed. 4○ We apply the Output Stationary
Dataflow, meaning that we set k.3 as the innermost loop in the AIE design.
Among the data types supported in the current AIE, due to the high parallelism (128 MACs/Cycle/AIE), the INT8 data
type is the most difficult one to balance in terms of computation and communication. Thus, we illustrate the designed
VLIW scheduling for INT8 in Figure 5. Note that other data types share a similar methodology but are more prone
to design. In this example, we pack 16 8 × 8 × 2 INT8 MAC operations together to form a small partition with size
8× 64× 4. This provides the AIE compiler more opportunities to launch software pipelining and thus is prone to get the
back-to-back issued MAC instructions ( 1○). Two 512-bit vector registers 𝐴0 and 𝐴1 are allocated as double registers for
the LHS matrix. Each of them is capable of holding 8×8 8-bit LHS operands. 𝐵0 and 𝐵1 represent two 256-bit registers,
with each one consisting of two 8×2 8-bit sub-registers denoted by 𝐵𝑥,0 and 𝐵𝑥,1 ( 2○). By doing so, at Cycles 2-3 while
the MAC operation depends on the data stored in registers A0 and B0, it can pre-load the data to registers A1 and B1
simultaneously for MAC operations that will execute in Cycles 4-5. This register overlapping process comes along with
careful consideration for the size of registers and local memory access bandwidth ( 3○). 8 × 8 × 2 MAC operation is
manually constructed instead of the original 16× 8× 1 one to guarantee that the size of registers is under 2048 bits after
double buffering. Registers 𝐴0 and 𝐴1 are both reused twice, which allows their ping or pong buffer to be filled by two
Manuscript submitted to ACM
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Fig. 7. Combining broadcast circuit-switched and packet-switched connections to reduce required I/O for AIE array.

256-bit load instructions in two cycles. Finally, to avoid frequent register eviction, we only store data from 2 768-bit
accumulation registers (𝐶0 and 𝐶1) back to local memory every 16 cycles, as shown in Cycles 18-19 ( 4○). This hugely
reduces the temporary results eviction and reloading between the local memory and registers, thus saving precious
load/store bandwidth. During VLIW scheduling, we also explore other dataflows, e.g., LHS/RHS-stationary, by changing
the loop permutation. However, because of intermediate results access, these dataflows incur three simultaneous read
operations from local memory to the registers, whereas the VLIW is capable of packing only two read operations at the
same time, leading to less efficient VLIW packing.

4.3 Level 1: IO Connections Within the AIE Array and Between AIE and PL

Secondly, at the AIE array level, we evenly partition the workloads among 𝐴 × 𝐵 ×𝐶 AIEs, which form a rectangular
physical layout in the 8×50 AIE array. Shared memory or cascade streams are applied to transmit the output matrices
between neighboring AIEs, while the packet-switch and broadcast mechanisms are utilized to transfer the LHS and
RHS matrices. Data Transfer Between AIEs: Shared Memory VS. Cascade Stream (AIE↔AIE). To leverage the
high bandwidth of intra-AIE communications, we explore the data forwarding for the output temporary data in two
granularities, i.e., the tile-level shared memory and register-level cascade stream. The graph-level execution models of
these two granularities are shown in Figure 6(a) and (b). The AIEs connected by the shared memory apply a ping-pong
buffer manner. During processing, while AIE 1 is calculating the data in the ping buffer of AIE 0, AIE 0 is storing
the result in its pong buffer. The access pattern alternates during each time step. Because of the mechanism of the
ping-pong buffer, the dependency between the adjacent AIEs leads to the tile-level overhead as shown in Figure 6(c).
More specifically, AIE 1 can start computing Tile 0 (T0) only after AIE 0 stores all the data of T0 in the local buffer. On
the other hand, the cascade stream provides a dedicated 384-bit connection with a four-depth 384-bit FIFO between
the neighboring AIEs. In this situation, the first result of the previous AIE triggers the execution of the latter one. By
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applying the same execution pattern for adjacent AIEs, we create a fine-grained pipeline without cascade stall and thus
lead to negligible overhead as shown in Figure 6(d).

Data Transfer Between AIEs and PL: Packet-Switched & Broadcast (AIE↔PL). At the AIE↔PL level, when
feeding data to tens or hundreds of AIEs, since the number of PLIOs connecting the AIE array and PL is much smaller
than the total number of AIE cores, we reduce the number of required PLIOs by exploring the data broadcast and
packet-switch mechanisms (described in Section 3.3). Figure 7 shows how we reuse a single PLIO port by combining
broadcast with packet switching. Assume that we have a 4×4 AIE array that calculates anMM of size 1×4×4 (1 MAC/AIE).
It takes one cycle for one AIE to get the left-hand-side (LHS) and the right-hand-side (RHS) operands, and four cycles to
finish one multiplication, which makes the CTC ratio equal to 4. By leveraging the data reuse opportunity in MM (e.g.,
the row of LHS can be reused by different columns of RHS), we can broadcast the first data from LHS to the first row of
AIE arrays at Time 0 utilizing one PLIO port as shown in solid lines. At Time 1, by specifying a different destination
header, we can transfer the second data of LHS to the second row of the AIE array by reusing the same PLIO port. At
Times 2 and 3, the third and fourth data of LHS are sent to the third and fourth rows of AIEs. At Time 4, the first row of
AIEs finishes the computation, and the PLIO completes the data transfer to the fourth row of AIEs. Therefore, in this
case, we can use one PLIO port to send LHS data to 16 AIEs without any performance degradation.

4.4 Levels 2 & 3: On-Chip Data Reuse and Off-Chip DDR Access (PL↔DDR)

Thirdly, at the PL↔DDR level, we further allocate three sets of on-chip buffers for each acc to store the LHS, the RHS,
and the output matrices, so that a tile of LHS with size (X×A×TI) × (Y×B×TK) can be reused on-chip for (Z×C×TJ)
times. The buffer size and reuse rate for RHS and output matrices can be calculated in the same way. Besides, the
double-buffering technique is applied to three buffers to overlap the off-chip data movement with the computation.
By greatly exploring data reuse opportunities at multiple levels, our system can sustain high computational efficiency
under limited off-chip bandwidth, i.e., 25.6 GB/s of DIMM-DDR4 on VCK190.
5 CHARM ARCHITECTURE AND CHARM FRAMEWORK TO COMPOSE MULTIPLE DIVERSE

ACCELERATORS

In this section, we introduce the CHARM architecture in Section 5.1 and provide an overview of the CHARM framework
in Section 5.2. We then discuss each module within the framework from Section 5.3 to Section 5.5.

5.1 CHARM Architecture

Figure 8 illustrates the CHARM architecture with one or more diverse MM accs in the system and other kernel accs
for non-MM kernels within an end-to-end deep learning application. We partition the AIE array for multiple MM
accs (two in this example). For each MM acc, we design a specialized DMA module that contains the data transferring
control logic and an on-chip buffer according to the tiling strategy. The different AIE partitions communicate with their
corresponding DMA modules through the PLIO interface and the NOC. We refer to the AIE array, its corresponding
PLIO, and the DMA module collectively as one MM acc design. For each non-MM kernel, e.g., transpose, softmax, and
layer normalization in BERT and ViT models, we design one acc for each type of kernel on the PL side. Each non-MM
acc contains DMA, computation logic, and local buffers. For these communication-bound kernels, the design goal is to
achieve near-peak off-chip bandwidth. When running these kernels, since they consume all the off-chip bandwidth, we
choose to sequentially launch these non-MM and communication-bound kernels before or after MM acc(s).
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Fig. 9. CHARM framework overview.

5.2 Python-based CHARM Automatic Framework Overview

In order to ease the programming effort, we propose a Python-based automatic CHARM framework shown in Figure 9.
The CHARM framework takes the application models, platform off-chip bandwidth profiling, and platform hardware
resource constraints as input, performs automated optimization and code generation, and launches backend compilers
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to generate the ready-to-run binaries as output. There are several modules in the CHARM framework: (1) On top of
CDSE, CDAC finds the optimal design with the highest throughput and outputs the workload assignment strategy as
well as the configurable design parameters of each acc. During this process, CDSE optimizes the placement of the local
memory, AIE core, and PLIO ports. It also covers the AIE array tiling and PLIO optimization on the AIE side. On the
PL side, it determines the tiling, buffer allocation, and DMA optimization. (2) CRTS takes the layer dependency graph
and the workload assignment strategy from CDAC as inputs. It provides the scheduling strategy of the layers in the
application onto the available accs. (3) CACG takes the configurable parameters generated from CDAC and the runtime
scheduling from CRTS as input. Based on the CDAC and CRTS, it generates all the needed source code files for AIEs,
PL, and host CPUs. CHARM calls the corresponding backend tools to generate both the hardware bitstream and host
binaries. All the components of the CHARM framework are abstracted into Python APIs as shown in the Python user
interface, which greatly reduces the time for on-board deployment on Versal ACAP.

5.3 CHARM Design Space Exploration (CDSE) for a Single Acc

DSE Configurable parameters: A, B, C, X, Y, Z in Listing 1. In order to attain optimized throughput for each diverse
accelerator, we design CDSE, which takes matrix sizes (M, K, and N), optional user-specified hardware constraints, and a
hardware platform off-chip characterization database as inputs and performs an analytical model-based search. During
CDSE, we set the single AIE workloads to 32×32×32, 48×48×48, and 64×64×64 for FP32, INT16, and INT8 respectively,
i.e., TI=TK=TJ=32, 48, or 64. We achieve over 90% of kernel efficiency for MM, utilize over 75% of the AIE local memory
in this design point, and obtain the CTC ratios of 4, 3, and 2 in FP32, INT16, and INT8 data types, respectively. The
outputs of CDSE are the configurable parameters, including A, B, C, X, Y, Z, that meet all the hardware constraints. The
parameters A, B, C determine the numbers of AIE and PLIO used in the AIE array. X, Y, Z, A, B, C together with pre-fixed
parameters TX, TY, TZ decide the number of utilized on-chip buffers. This optimization problem can be formulated as
an integer programming (IP) optimization problem as shown below. AIEnum, PLIOin, PLIOout and On_chipRAM represent
the user-specified hardware constraints:

maxThroughput = M · K · N · 2/TIME (1)

s.t.𝐴 × 𝐵 ×𝐶 ≤ AIEnum (2)

Portin ≤ PLIOin,

Portout ≤ PLIOout
(3)

Buff ≤ On_chipRAM (4)

AIE-Array Tiling Selection. Since {A, B, C} are fully unrolled and mapped to the AIE Array, the multiplication of
the unroll factors A, B, and C should be less than or equal to the total number of AIEs in Equation 2. The number of
packet-switch ports is determined by {𝐴, 𝐵,𝐶}, and the I/O reuse mechanism is described in Section 4.2. They should
meet the input and output PLIO resource constraints. The input and output PLIO numbers can be obtained as follows:

Port𝑖𝑛 = ⌈𝐴 · 𝐵/CTC⌉ + ⌈𝐶 · 𝐵/CTC⌉

Port𝑜𝑢𝑡 = ⌈𝐴 ·𝐶/CTC⌉
(5)

PL Tiling Selection. On-chip PL buffers are allocated to amortize the 46× bandwidth gap from off-chip to PL and from
PL to AIE-Array by increasing the data reuse rate. Equation 6 shows the sizes of the LHS, RHS, and output buffers,
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as well as their off-chip to on-chip communication times. BPD refers to bytes per data, and BW_L,R,O represents the
off-chip bandwidths measured from bandwidth profiling.

BuffL = (𝑋 · 𝐴 ·𝑇 𝐼 ) · (𝑌 · B · TK) · BPD

BuffR = 𝑌 · 𝑍 · 𝐵 ·𝐶 · TK · TJ · BPD

BuffO = 𝑋 · 𝑍 · 𝐴 ·𝐶 · TI · TJ · BPD

Buff = 2 · (Buff 𝐿 + Buff 𝑅 + Buff𝑂 )

TimeL,R,O = Buff 𝐿,𝑅,𝑂/BW𝐿,𝑅,𝑂

(6)

Performance Modeling. To calculate the overall execution time, the scheduling of data communication from off-chip
to on-chip and the AIE array computation should be considered. The computation time for all the on-chip time loops,
i.e., Line 6 in Listing 1, can be defined by Equation 7, in which MAC represents the theoretical MAC operation that
one AIE engine can perform in one cycle, and Eff refers to the actual efficiency that the computation kernel achieves.
We consider both single AIE and AIE array pipeline efficiency (PL↔AIE) here and assign the overall efficiency as 80%.
For the off-chip to on-chip scheduling, as described in Listing 1, the loop order of the outermost loop is TY→TZ→TX.
Thus, the memory access time for LHS and RHS will happen TX×TX×TZ times in total. The overall execution Time

can be calculated by Equation 8. This is an equation for illustration purposes where we leave out the details on the
formulation of time spent storing the output and prologue and epilogue time in the pipeline.

Time_comp = (𝑋 · 𝑌 · 𝑍 ·𝑇 𝐼 ·𝑇𝐾 ·𝑇 𝐽/MAC)/Eff (7)

TIME =𝑚𝑎𝑥 ( [TimeL, TimeR, Time_comp]) · (𝑇𝑋 ·𝑇𝑌 ·𝑇𝑍 ) (8)

For any specific shape(s), all the possible configurable parameters will be evaluated in an exhaustive fashion. After
CDSE, top-ranked optimized design points will be reported.

5.4 CHARM Diverse Acc. Composer (CDAC)

Two-Step Search Algorithm in CDAC. To achieve optimized overall throughput when mapping diverse sizes of MM
kernels onto multiple accs, we propose a sort-based, two-step algorithm in CDAC. In the first step of CDAC, we partition
the MM kernels of different workloads within an input model into multiple groups. The number of groups equals the
number of diverse accs, which is a hyperparameter in CDAC. After the workload partitioning, in the second step, we
generate a resource partition candidate that specifies the resource budget for each accelerator to be proportional to the
total number of operations from the assigned MM kernel(s). Under the assigned workload and assigned resources, we
search for all valid candidates of configurable parameters (A, B, C, X, Y, Z) for each accelerator. We then fine-tune the
memory resource partition to generate more resource partition candidates. After the memory fine-tuning, we generate
a new workload partition, redo the resource partition, and perform a configurable parameter search, which further
optimizes the system throughput for all the accs. We discuss the details of each step as follows.
1st Step: Workload Assignment. To improve the overall throughput of the diverse acc architecture, we need to
properly assign the MM kernels to the accs and ensure they work concurrently with similar execution times. However,
mapping an application with n kernels to num accs suffers from exponential time complexity as the total mapping
search space scales as O(𝑛𝑢𝑚𝑛). To better scale larger models that contain more kernels, i.e., a larger 𝑛, we propose a
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Algorithm 1 Diverse Accelerator Composing Algorithm

Input: layer[n], bw, hw_sr, num, ubound
⊲ layer[n] represents n layers in an application. bw refers to bandwidth, hw_sr includes the AIE, PLIO,

RAM resources, num refers to the number of accs, ubound is the hyperparameter for memory tuning
Output: Workload[num], final_Acc[num]
⊲ Workload and final_Acc contain the workload assignment and the hardware configuration for each acc,
respectively.

1: BW ← bw/num_acc
2: HW .RAM [:] ← hw_sr .ram/num_acc
3: final_cycle← inf
4: layer_sort [:] ← sort(layer)
5: for sche in range(𝐶

( n−1
num−1

)
) do

6: partition[:] ← partition(layer_sort [:], num, sche) ⊲ 1st step
7: op_portion[:] ← cnt(partition[:]) ⊲ 2nd step
8: update(HW .AIE[:],HW .PLIO[:], op_portion[:])
9: Acc[:], cycle[:] ← Acc_search(HW , BW , partition[:])
10: ⊲ Sequentially launch CDSE
11: while tune_cnt ≠ ubound do ⊲ Memory tuning
12: index ← max(cycle[:])
13: update(HW .RAM [:], index) ⊲ Increase the memory of the slowest acc
14: Acc[:], cycle[:] ← Acc_search(HW , BW , partition[:])
15: if max(cycle[:]) < final_cycle then ⊲ Update optimal point
16: final_cycle← max(cycle[:])
17: final_Acc[:] ← Acc[:]
18: Workload [:] ← partition[:]
19: tune_cnt++
20: Define Acc_search(HW , BW , partition[:]) :
21: for acc in range(num) do
22: CDSE(partition[acc],HW [acc], BW [acc])
23: return Acc[:],Cycle[:]

sort-based algorithm to partition the workload with reduced time complexity as O(
( 𝑛−1
num−1

)
) = 𝐶𝑛−1num−1. As shown in

Algorithm 1, CDAC first sorts the different shapes of the MM kernels by their number of operations (Line 4) so that
MMs with larger and smaller sizes can be properly divided. Then we divide the sorted MM kernels into n groups (Lines
5-6). For example, if there are eight different shapes of kernels that need to be mapped to num=2 accs, after sorting
the kernels, we put one separator between any two kernels to separate all kernels into two groups. In total, it gives us
𝐶
(8−1
2−1

)
= 7 grouping design choices.

2nd Step: Hardware Resource Partitioning. For each workload assignment, we perform DSE to find the optimized
configurable acc parameters under the partitioned hardware resource constraints, including the number of AIEs, PLIO,
on-chip RAM, and off-chip bandwidth. To minimize the maximum execution time of all the accs, CDAC assigns the
number of AIEs and PLIO constraints proportional to the total number of operations assigned to each acc (Lines 7-8).
For the number of on-chip RAMs, we first evenly distribute it (Line 2). After sequentially launching CDSE to find the
configuration of every acc once (Lines 9-10), we apply a memory fine-tuning step to optimize the memory allocation. It
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finds the index of the acc that consumes the most time (Line 12) and then tries to explore a better configuration by
increasing the memory allocation of this acc while decreasing the memory allocations of others (Lines 13-14). If a better
result is found, we update the global optimal execution cycles and the corresponding acc configuration settings (Lines
15-18). Note that, in the current model, we assume each acc evenly occupies the off-chip bandwidth (Line 1) and leave
the discussion of off-chip bandwidth partitioning for future work.

5.5 CHARM Runtime Scheduler (CRTS)

While the two-step CDAC algorithm provides the solution for workload assignment and hardware partitioning, the
CHARM runtime scheduler (CDAC) is proposed to resolve the dependencies among the layers in the application graphs.
By exploring the task-level parallelism, the accelerators are able to achieve high throughput simultaneously. In this
section, we first mathematically formulate the mixed-integer-programming (MIP) based problem, which provides the
optimal solutions. Then, to improve the search efficiency, we explain a scalable greedy scheduling algorithm.
Mixed-Integer-Programming Formulation. Based on the workload assignment and hardware partitioning strategy,
CDAC provides the design with maximum throughput, considering there is no dependency in the application graph.
Thus, batch-level pipelining and the runtime scheduler are proposed to achieve optimized throughput and resolve the
dependency. We mathematically formulate the problem by MIP, as shown in Equations 9–13, which serves as the oracle
solution. In the MIP formulation, we consider the following factors and variables:

• 𝑛𝑢𝑚_𝑏𝑎𝑡 refers to the number of batches needed to sustain the pipeline, which will be exhaustively searched
from 1 to the user-specified upper bound.

• 𝐺 refers to the application graph, which consists of all the layers.
• 𝐷𝑛,𝑚 is the binary dependency matrix where 𝐷𝑛,𝑚 = 1 means that layer𝑚 depends on layer 𝑛.
• 𝐴𝐶𝐶 refers to all the accelerators in the system.
• 𝐴𝑛,𝑎𝑐𝑐 is the assignment strategy of each layer on every accelerator.
• 𝑇𝑛,𝑎𝑐𝑐 is the execution time matrix of each layer on every accelerator.
• 𝑆𝑇𝑛 denotes the start time of each layer.
• 𝐸𝑇𝑛 denotes the end time of each layer.

We maximize the throughput of the system under a certain batch by calculating the maximum end time (𝑇𝑚𝑎𝑥 ) of all
the layers, as illustrated in Equations 9 and 11. 𝐸𝑇𝑛 can be formulated by adding the start time 𝑆𝑇𝑛 to the corresponding
execution time 𝑇𝑛,𝑎𝑐𝑐 × 𝐴𝑛,𝑎𝑐𝑐 , as shown in Equation 10. The dependency among the layers in the graph is maintained
during execution by Equation 12. Equation 13 guarantees that at each time, one accelerator will only process one layer
in the graph.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑛𝑢𝑚_𝑏𝑎𝑡/𝑇𝑚𝑎𝑥 (9)

𝑠 .𝑡 . 𝐸𝑇𝑛 = 𝑆𝑇𝑛 +𝑇𝑛,𝑎𝑐𝑐 ×𝐴𝑛,𝑎𝑐𝑐 , ∀𝑛 ∈ (𝐺),∀𝑎𝑐𝑐 ∈ (𝐴𝐶𝐶) (10)

𝑇𝑚𝑎𝑥 = max(𝐸𝑇𝑛), ∀𝑛 ∈ (𝐺) (11)

𝐸𝑇𝑚 ≥ 𝑆𝑇𝑛, 𝐷𝑛,𝑚 = 1,∀(𝑛) ∈ 𝐺,∀(𝑚) ∈ 𝐺 (12)
𝐸𝑇𝑚 ≥ 𝑆𝑇𝑛 𝑜𝑟 𝐸𝑇𝑛 ≥ 𝑆𝑇𝑚

𝐷𝑛,𝑚 = 0, 𝐴𝑚,𝑎𝑐𝑐 = 𝐴𝑛,𝑎𝑐𝑐 , ∀(𝑛) ∈ 𝐺,∀(𝑚) ∈ 𝐺,∀𝑎𝑐𝑐 ∈ 𝐴𝐶𝐶
(13)
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Scalable Greedy Algorithm. The proposed MIP-based formulation provides the optimal scheduling solution under the
workload assignment strategy and the dependency constraints. However, the large design space also leads to a very long
search time. We then propose a greedy-algorithm-based fast runtime scheduler that can resolve the dependencies while
achieving high throughput under a different number of batches. Algorithm 2 lists the proposed scheduling algorithm.
It takes the dependency graph, the number of accelerators, and the layer assignment configuration file generated by
CDAC as input. There are two parallel processes in the greedy CRTS.

The first process continuously tracks to check if there are any idle acc to which we can assign tasks (Lines 2-3).
CRTS traverses the layers assigned to this acc following a first-in-first-out principle (Lines 5-6). If the layer is still in
the task pool, it means that it has not been issued. Suppose all the preceding layers of the current layer have been
executed, i.e., dependency resolved. In that case, CRTS assigns this valid layer to the corresponding acc (Lines 7-8) and
continues to track other accs (Line 9). The second process keeps track of the status of every acc to see if it has finished
the workload (Lines 12-13) and updates the task pool according to the dependency graph, as well as changes the status
of the acc (Line 14) to idle.

Algorithm 2 Runtime Scheduling Algorithm

Input: Graph, num, task_pool[task][layer]
Output: Runtime scheduling for each accelerator

1: while (1) do ⊲ Assign ready tasks to corresponding accs
2: for acc in range(num) do
3: if ¬𝐴𝑐𝑐 [𝑎𝑐𝑐] .idle() then
4: Continue
5: for 𝑡 in range(tasks) do
6: for 𝑙 in range(layer) do
7: if task_pool [𝑡] [𝑙] ≠ ∅ ∧ task_pool [𝑡] [𝑙] .valid() then
8: Acc[acc] .assign(task_pool [𝑡] [𝑙])
9: Continue line 2
10: while (1) do ⊲ Update the task_pool according to the dependency graph
11: for acc in range(num) do
12: if Acc[acc] .finish() then
13: task_pool.update(Graph)
14: Acc[acc] .update(idle)

5.6 CHARM Auto. Code Generation (CACG)

After finding the hardware design parameters of optimized designs from CDAC, we implement CACG, including
AIEGen, PLGen, and HostGen, to generate the corresponding source code for AIEs, PL, and host CPU. AIEGen takes the
tiling factors of a single AIE (TI, TK, TJ) and an AIE Array (A, B, C) as inputs and instantiates the corresponding number
of AIE cores. It leverages the C++-based Adaptive Data Flow (ADF) Graph API [46] to build connections among AIE
cores through the AXI network and connections between the AIE Array and PL through PLIOs. Using the PL level (X, Y,
Z) design parameters, PLGen generates HLS C/C++ code that allocates on-chip buffers on the PL side and implements
the data transfer modules for sending/receiving data to/from the AIE array. HostGen emits host code based on the
Xilinx Runtime Library (XRT) API.
Manuscript submitted to ACM
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After code generation, CHARM launches the vendor tools, including the AIE compiler and the v++ compiler, to
generate the output object files libadf.a and kernel.xo, which are linked into one xclbin, i.e., the hardware bitstream
of the design. The GCC compiler compiles XRT-API-based host code into a host program that runs on the ARM CPU for
kernel scheduling and system controls. In terms of usability, the hardware configurations can be automatically handled
by code generation and compilation. We also provide separate Python APIs as shown in Figure 9 for (1) launching DSE,
(2) Jinja2-template-based code generation, and (3) backend compilation, so that users have more flexibility in applying
our frameworks.

6 EXPERIMENT RESULTS

In this section, we first analyze the single AIE efficiency and the single MM acc throughput from Section 6.1 to Section 6.3.
In Section 6.5, we implement different CHARM designs, including one monolithic MM acc, one specialized MM acc, two
diverse MM accs, and eight duplicate MM accs for four applications: BERT, ViT, NCF, and MLP. All the experiments
were conducted on the VCK190 with 230 MHz on the PL and 1 GHz on the AIE. AMD/Xilinx Vitis version 2021.1 is used
as the compilation backend tool. When measuring the power consumption, we iterate each application for more than
60s and report the average value by employing the board evaluation and management tool, AMD/Xilinx BEAM [47],
and the AMD/Xilinx Board Utility tool, Xbutil [48].

6.1 Single AIE Kernel Efficiency Comparison

In this section, we showcase the efficiency of our single AIE MM computation in different matrix sizes for FP32, INT16,
and INT8. We leverage the AIE intrinsics [49] to program the single kernel design and obtain the execution cycle of our
single AIE design by simulating it on the Versal ACAP AI Engine System C simulator [50], a cycle-accurate architecture
simulator. As shown in Table 2, our single AIE can achieve up to 7.57 MACs/cycle and 94.70% peak performance when
the MM size equals 32×32×32. Compared to the AIE dense MM kernel efficiency reported in H-GCN [51], our single
kernel achieves a 2.26× average efficiency gain for FP32.

We test multiple combinations of matrix sizes for INT16 and INT8 and list three that balance each dimension well in
Figure 10 and Figure 11. In INT8 and INT16 data types, CHARM achieves up to 92.62% and 98.04% single AIE efficiency.
For the whole system design, we choose 32×32×32, 48×48×48, 64×64×64 as our single kernel design for FP32, INT16,
and INT8 data types respectively, as these shapes achieve high computation efficiency and the total size of LHS, RHS,
and output matrices are within 16 KB so that they fit in the AIE local memory and can be double buffered. CHARM
achieves high single AIE efficiency in all the presented data types by applying the optimization techniques described in
Section 4.2. More specifically, CHARM takes into consideration, (1) the different ways of constructing the 3D-SIMD
MAC instructions, (2) the data in AIE core reuse with a limited number of vector registers, (3) the data reuse and layout
of the AIE local memory. Finally, for the example in Section 4.2, according to the profiling results from the AIE compiler,
the manually unrolled 16 8×8×2 INT8 MAC operations in the innermost loop can be done in 16 cycles, which means
it’s perfectly pipelined.

6.2 Performance of Square MMs on One Monolithic Accelerator

We evaluate the throughput of onemonolithic acc design and compare the performance between the modeling estimation
from CDSE and the on-board measurement. We build the monolithic design by using 384 AIEs and over 83% of on-chip
RAM utilization, with the AIE running at 1 GHz and the PL side at 230 MHz. As shown in Figure 12, the throughput of
the one-acc monolithic design increases as the square MM size increases. While it achieves 4.2 TFLOPS at size 6144, the
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Table 2. Single AIE MM comparison under FP32 data type.

H-GCN[51] CHARM (this work)
Size: M x K x N MACs/Cyc Eff MACs/Cyc Eff Eff gain

16 × 16 × 16 2.34 29.30% 6.18 77.22% 2.64x
32 × 32 × 32 3.64 45.50% 7.57 94.70% 2.08x
64 × 64 × 8 3.64 45.50% 7.54 94.29% 2.07x
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Fig. 10. Single AIE MM efficiency on INT8 data type.
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Fig. 11. Single AIE MM efficiency on INT16 data type.
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Fig. 12. Performance comparison in GFLOPS between on-board measurements and CDSE analytical modeling estimations for
different matrix sizes. The error rates, shown in percentages, indicate that CDSE achieves high prediction accuracy.

throughput at size 64 is only 0.65 GFLOPS. CHARM CDSE is capable of precisely estimating the on-board execution
time with an average estimation error rate of only 2.6%.

We compare the throughput of the MM application implemented on AMD U250 FPGA using the state-of-the-art
systolic-array-based framework AutoSA [22] for FP32, INT16, and INT8 data types. We reimplement the design with
the best configurations reported in the paper and measure the corresponding power through the AMD/Xilinx Xbutil
tool. While AutoSA runs at 300 MHz, 250 MHz, and 300 MHz for FP32, INT16, and INT8 data types, the PL and AIE of
CHARM run at 230 MHz and 1 GHz in all data types. As shown in Table 3, the proposed CHARM on Versal VCK190
Manuscript submitted to ACM
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MM0
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Fig. 13. System implementation layout of the two-diverse MM accs and four non-MM accs for BERT.

Table 3. MM performance and energy efficiency comparison between AutoSA and CHARM.

AutoSA [22] CHARM(Ours)
Data Type Float32 INT16 INT8 Float32 INT16 INT8

Frequency(Hz) 300M 300M 300M PL:230M/AIE:1G PL:230M/AIE:1G PL:230M/AIE:1G
DSP/AIE DSP:8333 DSP:8205 DSP:6157 AIE:384 AIE:288 AIE:192
GOPS 930 3410 6950 4179 (4.5x) 10034 (2.9x) 31307 (4.5x)

Power(W) 96.8 84.9 91.2 61.9 64.8 62.7
Eng.Eff(GOPS/W) 9.6 40.2 76.2 67.9 (7.1x) 154.3 (3.8x) 499.2 (6.6x)

Table 4. Performance comparison between shared memory and cascade stream connections in AIE array under FP32, INT16, and
INT8 data types.

Data Type # of AIEs Matrix Size Shared Memory Cascade Stream Performance Gain

FP32 384 6k*6k*6k 3.4 TFLOPS 4.2 TFLOPS 1.23x
INT16 288 6.75k*9k*9k 7.5 TOPS 10.0 TOPS 1.33x
INT8 192 12k*12k*12k 28.2 TOPS 31.3 TOPS 1.11x

single MM acc achieves 4179 GFLOPS, 10034 GOPS, and 31307 GOPS for FP32, INT16 and INT8, which is 4.5×, 2.9×, and
4.5× faster than AutoSA on U250. In terms of energy efficiency, CHARM achieves 7.1×, 3.8×, and 6.6× gains respectively.

6.3 Performance Comparison Between Shared Memory and Cascade Stream Connections Within an AIE
Array

We compare the shared memory with the cascade stream connections when forwarding the output matrix within the
AIE array in different data types including FP32, INT16, and INT8. The number of AIEs and size of the matrices are set to

Manuscript submitted to ACM



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Jinming Zhuang et al.

Table 5. Lines of code comparison for a matrix-multiple example between using CHARM framework and expert manual design.

CHARM APIs ADF Graph AIE Intrinsic PL HLS XRT Host

16 LoC 800+ 600+ 1000+ 350+

the same configuration in each data type as shown in Table 4. As analyzed in Section 4.2, by applying the register-level
fine-grained data transmission manner, i.e., cascade stream, it achieves higher throughput due to the smaller overhead.
The designs with cascade stream achieve 1.23×, 1.33×, and 1.11× gains on throughput over the one utilizing shared
memory as the intra-AIE connection. Note that the listed results don’t indicate that the cascade stream will always
outperform the shared memory connection for any applications. It is because of our careful design on a single AIE for
MM that makes the behavior of different AIEs remain almost the same. Thus, our design avoids the cascade FIFO stall
and achieves high efficiency.

6.4 Programming Abstraction Analysis of the CHARM Framework

As described in Section 5.6, deploying matrix-multiply based applications on Versal Architecture involves abundant
programming effort to optimize C++-based intrinsics and ADF graph APIs for AIEs, HLS C/C++ code for PL, and
XRT API-based host code for ARM CPU. The CHARM framework provides architecture abstraction for accurately
modeling Versal, automatic DSE for application mapping, and Jinja2-template-based code generation. CHARM helps to
relieve the burden on domain-specific experts in other areas for accelerating their problems on Versal. Take a simple
matrix-multiply in FP32 as an example. As shown in Table 5, by using the APIs for CDAC, CDSE, CRTS, and CACG,
users only need to write 16 lines of code (LoC), so that the CHARM framework can automatically generate an overall
170× optimized source code for the ARM host, PL and AIEs.

6.5 End-to-End Applications

We apply the CHARM framework to four applications: BERT, ViT, NCF, and MLP. All the shapes of the MM kernels in
these models are listed in Table 6. We explore the number of accs from 1 to 8 and showcase the representative CHARM
designs, including one monolithic MM acc, one specialized MM acc, two-diverse MM accs, and eight-duplicate MM
accs, for each application. The one monolithic MM design is described in Section 6.2, which remains the same for
all four applications. It is set as the baseline design for comparisons. All the other MM acc designs are customized
for each application and are designed and implemented using the CHARM framework. All the designs of the same
application use the same non-MM kernels. Table 8 reports the on-board throughput and power consumption in different
acc configurations for all the four applications.

CHARM achieves 1.46 TFLOPS, 1.61 TFLOPS, 1.74 TFLOPS, and 2.94 TFLOPS maximum throughput for the MMs in
BERT, ViT, NCF, and MLP in the FP32 data type. Table 7 shows the time breakdown for MM, layernorm, softmax, and
transpose in the FP32 data type for each end-to-end application. We highlight the best design(s) for each application in
Table 8. For BERT and ViT, the two-diverse MM accs designs are the best, whereas for NCF and MLP, one-acc designs
are the best. This is because both BERT and ViT have both large and small MMs, whereas MLP has only large MMs.
NCF also has both large and small MMs. However, small MMs with size less than 3072 × 256 × 128 consume less than
0.4% of the total computation, and designs favoring the large MMs stand out as the best. The eight-duplicate designs
are inferior for all the applications due to insufficient data reuse for each acc. For BERT and ViT, when compared to one
Manuscript submitted to ACM
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Table 6. MM sizes in BERT, ViT, NCF, MLP.

Model # of layer M K N batch dot size

BERT

4 3072 1024 1024 N/A
1 3072 4096 1024 N/A
1 3072 1024 4096 N/A
1 512 64 512 96
1 512 512 64 96

ViT

1 3072 3024 1024 N/A
1 3072 1024 3072 N/A
1 3072 1024 1024 N/A
1 3072 1024 4096 N/A
1 3072 4096 1024 N/A
2 64 64 64 768

NCF

1 3072 4096 2048 N/A
1 3072 2048 1024 N/A
1 3072 1024 512 N/A
1 3072 512 256 N/A
1 3072 256 128 N/A
1 3072 128 64 N/A
1 3072 64 32 N/A
1 3072 32 16 N/A
1 3072 32 1 N/A

MLP
1 3072 2048 4096 N/A
2 3072 4096 4096 N/A
1 3072 4096 1024 N/A

Table 7. Time breakdown for different types of kernels in the end-to-end solutions that achieves the highest throughput for BERT,
ViT, NCF and MLP.

Kernel BERT ViT NCF MLP

MM 57.2ms 57.7ms 40.4ms 119ms
Layernorm 4.5ms 4.5ms 0 0
Softmax 18.7ms 2.3ms 0 0
Transpose 5.2ms 5.2ms 0 0

monolithic design, the customization of using one specialized acc design for a specific application provided by CHARM
gives 2.13× and 5.08× gains in energy efficiency (GFLOPS/W), respectively. The additional design spaces explored by
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Table 8. On-board throughput and power comparisons of different MM accs configurations for BERT, ViT, NCF, MLP under FP32
data type.

App CHARM cfg LUT BRAM URAM DSP AIE GFLOPS Power(W) GFLOPS/W (Ratio)

BERT

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 276.8 37.0 7.48 (1x)
One_spe 90351(10.04%) 515 (53.26%) 64 (13.82%) 117 (5.95%) 256 (64%) 515.4 32.4 15.91 (2.13x)

Two_diverse 343774(38.20%) 534 (55.22%) 272 (58.75%) 442 (22.46%) 288 (72%) 1464.2 40.7 35.98 (4.81x)
8_duplicate 222956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 534.2 34.2 15.62 (2.09x)

ViT

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 49.5 32.4 1.53 (1x)
One_spe 76661(8.52%) 275 (28.44%) 64 (13.82%) 187 (9.50%) 256 (66%) 217.1 28.0 7.75 (5.08x)

Two_diverse 240563(26.73%) 590 (61.01%) 320 (69.11%) 299 (15.19%) 264 (72%) 1609.0 39.6 40.63 (26.60x)
8_duplicate 222956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 382.2 32.8 11.65 (7.63x)

NCF

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 1736.0 45.2 38.41 (1x)
One_spe 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 1736.0 45.2 38.41 (1.00x)

Two_diverse 161597(17.96%) 790 (81.70%) 352 (76.03%) 326 (16.57%) 384 (96%) 1730.9 45.1 38.38 (0.99x)
8_duplicate 222956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 671.0 35.0 19.17 (0.50x)

MLP

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 2936.7 51.4 57.13 (1x)
One_spe 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 2936.7 51.4 57.13 (1.00x)

Two_diverse 148158(16.46%) 919 (95.04%) 448 (96.76%) 344 (17.48%) 384 (96%) 2386.1 48.8 48.90 (0.86x)
8_duplicate 222956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 696.0 35.2 19.77 (0.35x)

Table 9. Resource utilization for each acc in the design for BERT with two MM diverse accs, four non-MM accs.

Type REG LUTLogic LUTMem BRAM URAM DSP AIE

MM0+DMA0+buffer 96790 (5.55%) 91034 (10.41%) 835 (0.19%) 515 (53.26%) 256(55.29%) 246(12.50%) 256(64%)
MM1+DMA1+buffer 62415 (3.58%) 94739 (10.83%) 37668 (8.48%) 19 (1.96%) 16 (3.46%) 196( 9.96%) 32 (8%)

Layernorm 45101 (2.58%) 33939 (3.88%) 4234 (0.95%) 15 (1.55%) 90 (19.44%) 129( 6.55%) 0 (0%)
Softmax 34270 (1.96%) 33623 (3.84%) 2854 (0.64%) 243 (25.13%) 0 (0%) 151( 7.67%) 0 (0%)

Transpose0 14217 (0.81%) 6926 (0.79%) 1097 (0.25%) 15 (1.55%) 0 (0%) 94 ( 4.78%) 0 (0%)
Transpose1 33967 (1.95%) 58510 (6.69%) 32512 (7.32%) 15 (1.55%) 0 (0%) 19 ( 0.97%) 0 (0%)

Table 10. On-board throughput and power comparisons of different MM accs configurations for BERT, ViT, NCF, MLP under INT16
data type.

App CHARM Cfg LUT BRAM URAM DSP AIE GOPS Power(W) GOPS/W (Ratio)

BERT

One_mono 111626(12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 288 (72%) 215.0 31.4 6.9 (1x)
One_spe 98694(10.97%) 237 (24.51%) 336 (72.57%) 101 (5.13%) 216 (54%) 883.7 30.7 28.8 (4.2x)

Two_diverse 75451(8.38%) 602 (62.25%) 448 (96.76%) 160 (8.13%) 120 (30%) 1913.1 32.0 59.8 (8.7x)
8_duplicate 198572(22.07%) 872 (90.18%) 384 (82.94%) 744 (37.80%) 192 (48%) 1371.6 35.1 39.1 (5.7x)

ViT

One_mono 111626(12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 288 (72%) 34.2 29.3 1.2 (1x)
One_spe 43928(4.88%) 429 (44.36%) 0 (00.00%) 77 (3.91%) 120 (30%) 461.0 22.5 20.5 (17.6x)

Two_diverse 72205(8.02%) 602 (62.25%) 416 (89.85%) 160 (8.13%) 108 (27%) 1180.1 26.6 44.4 (38.0x)
8_duplicate 198572(22.07%) 872 (90.18%) 384 (82.94%) 744 (37.80%) 192 (48%) 747.6 32.8 22.8 (19.6x)

NCF

One_mono 111626(12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 288 (72%) 1638.3 40.4 40.5 (1x)
One_spe 125337(13.93%) 481 (49.74%) 384 (82.94%) 85 (4.32%) 288 (72%) 2775.4 34.7 80.0 (2.0x)

Two_diverse 126478(14.06%) 826 (85.42%) 384 (82.94%) 162 (8.23%) 288 (72%) 4056.9 47.1 86.2 (2.1x)
8_duplicate 198572(22.07%) 872 (90.18%) 384 (82.94%) 744 (37.80%) 192 (48%) 2432.9 38.4 63.4 (1.6x)

MLP

One_mono 111626(12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 288 (72%) 4855.5 53.0 91.6 (1x)
One_spe 127847(14.21%) 481 (49.74%) 384 (82.94%) 85 (4.32%) 288 (72%) 5807.6 52.0 111.7 (1.2x)

Two_diverse 126478(14.06%) 826 (85.42%) 384 (82.94%) 162 (8.23%) 288 (72%) 5159.1 50.8 101.5 (1.1x)
8_duplicate 198572(22.07%) 872 (90.18%) 384 (82.94%) 744 (37.80%) 192 (48%) 2738.3 35.2 69.8 (0.8x)

using more than one-acc, with heterogeneous and diverse-shaped accs provided by the CHARM framework, give us
2.25× and 5.24× extra energy efficiency gains for BERT and ViT, respectively.

The resource utilization, performance, and energy efficiency results for INT16 and INT8 data types are demonstrated
in Tables 10 and 11. CHARM achieves maximum throughputs of 1.91 TOPS, 1.18 TOPS, 4.06 TOPS, and 5.81 TOPS in
Manuscript submitted to ACM
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Table 11. On-board throughput and power comparisons of different MM accs configurations for BERT, ViT, NCF, MLP under INT8
data type.

App CHARM Cfg LUT BRAM URAM DSP AIE GOPS Power(W) GOPS/W (Ratio)

BERT

One_mono 115628(12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 192 (48%) 480.3 33.3 14.4 (1x)
One_spe 80277(8.92%) 813 (84.07%) 64 (13.82%) 55 (2.79%) 128 (32%) 2369.2 26.0 91.1 (6.3x)

Two_diverse 104609(11.63%) 730 (75.49%) 240 (51.84%) 160 (8.13%) 120 (30%) 3649.2 28.0 130.2 (9.0x)
8_duplicate 161336(17.93%) 952 (98.45%) 320 (69.11%) 536 (27.24%) 96 (24%) 2292.2 29.0 79.0 (5.5x)

ViT

One_mono 115628(12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 192 (48%) 75.8 30.3 2.5 (1x)
One_spe 51685(5.74%) 557 (57.60%) 0 (00.00%) 55 (2.79%) 64 (16%) 696.0 20.3 34.2 (13.7x)

Two_diverse 95326(10.59%) 634 (65.56%) 216 (46.65%) 100 (5.08%) 108 (27%) 1278.8 22.5 56.9 (22.8x)
8_duplicate 161336(17.93%) 952 (98.45%) 320 (69.11%) 536 (27.24%) 96 (24%) 942.7 27.0 22.8 (34.9x)

NCF

One_mono 115628(12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 192 (48%) 4062.7 41.0 99.1 (1x)
One_spe 108102(12.01%) 813 (84.07%) 256 (55.29%) 67 (3.40%) 192 (48%) 4392.3 32.4 135.5 (1.4x)

Two_diverse 120120(13.35%) 858 (88.73%) 384 (82.94%) 122 (6.20%) 160 (40%) 10187.9 39.9 255.1 (2.6x)
8_duplicate 161336(17.93%) 952 (98.45%) 320 (69.11%) 536 (27.24%) 96 (24%) 4203.9 30.7 136.8 (1.4x)

MLP

One_mono 115628(12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 192 (48%) 11283.4 54.7 206.1 (1x)
One_spe 116320(12.93%) 669 (69.18%) 384 (82.94%) 67 (3.40%) 192 (48%) 21579.1 53.9 400.5 (1.9x)

Two_diverse 119449(13.27%) 826 (85.42%) 416 (89.85%) 134 (6.81%) 176 (44%) 19319.0 48.5 398.4 (1.9x)
8_duplicate 161336(17.93%) 952 (98.45%) 320 (69.11%) 536 (27.24%) 96 (24%) 4799.5 31.0 154.7 (0.8x)

the INT16 data type for the four applications. The maximum throughput achieved by CHARM in the INT8 data type
is 3.65 TOPS, 1.28 TOPS, 10.19 TOPS, and 21.58 TOPS, respectively. In these data types, the two diverse MM ACCs
designs are the best for BERT, ViT, and NCF applications. The one specialized design is the best configuration for the
MLP application. Take the INT8 data type as an example. Compared with the monolithic design, our two-diverse acc
designs provided by CHARM have 7.6× and 16.9× improvements in throughput and 9.0× and 22.8× improvements in
energy efficiency for BERT and ViT applications, respectively, because of the dedicated optimization for small and
large layers. The specialized accelerator works best for the MLP application, providing 1.9× gains in both throughput
and energy efficiency. The results of these three applications share the same trend as the FP32 data type. For the NCF
application, the higher parallelism of INT8 data types requires a much larger tile size, e.g., 3072×256×2048, to sustain
the throughput of the system under the same off-chip bandwidth. Thus, it adds padding to all layers except the first
layer, which has a size of 3072×4096×2048. By designing two customized accs for the first layer and the other layers,
and by carefully overlapping the execution of these two groups, the diverse acc design outperforms the monolithic
design by 2.7x and 2.6x in throughput and energy efficiency, respectively. The experiments with the INT16 data type
show similar trends. The two diverse design is the best configuration among all the configurations for BERT, ViT, and
NCF applications for the INT16 data type, which achieves 8.7×, 38.0×, and 2.1× energy efficiency gain compared with
the one monolithic design. The one specialized acc design stands out for the MLP application, which has a 1.2× gain
in energy efficiency. These gains demonstrate the generality of CHARM in applying to different data types
when composing heterogeneous accelerators.

We show the implementation layout of the two-diverse MM acc design in the FP32 data type, i.e., the best design for
BERT, in Figure 13. This is also the layout corresponding to Figure 8, which contains two MM accs and four non-MM
communication-bound accs. The hardware resource utilization for each acc is reported in Table 9. The MM acc 0 provides
high data reuse and computation efficiency when calculating large MMs by utilizing 256 AIEs, 53.26% BRAM, and
55.29% URAM. The MM acc 1 utilizes 32 AIEs, 1.96% BRAM, and 3.46% URAM which provides the needed computation
and communication without resource over-provisioning for small MMs in BERT.
CHARM DSE Efficiency.We use CHARM to perform a sort-based two-step search algorithm in CDAC and depict
design throughput compared to the exhaustive search over the search iteration number in Figure 14. For BERT, compared
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Fig. 15. Timeline of four tasks scheduled on 2 accs for BERT.

to the exhaustive search, CDAC finds the optimal solution in 170 seconds, whereas the exhaustive search takes 33 mins
(#search iterations: 2M vs. 58M) with MATLAB R2021b on an Intel Core i9-10900X CPU.
Explore the Latency-Throughput Tradeoff in CHARM. As shown in Figure 15, we map four concurrent tasks onto
the BERT design with two diverse accs. Each task has eight MM kernels, and there are dependency edges, including
0→6, 1→6, 6→7, 2→7, 7→3→4→5, where x→y means y depends on x. The other non-MM communication-bound
kernels are not shown in the figure for illustrative simplicity. It takes 110 ms to finish the 1st task and 234 ms to finish
the 4th task. For a one-acc specialized design, the latency of each task is 162.6 ms. Therefore, we have a design tradeoff,
i.e., one specialized acc design can process fine-grained tasks, whereas a two-diverse accs design requires coarse-grained
tasks to fill the pipeline of the two accs. Compared to the specialized acc design, with 0.67×, 0.92×, 1.18×, and 1.43×
latency for different tasks, we gain 2.8× overall throughput in return. This illustrates that the CHARM framework
allows explorations of the latency-throughput tradeoff, and users can specify targets to let CHARM generate designs
that optimize throughput while meeting the latency requirement, or vice versa. One thing to mention is that the CRTS
phase can also be combined with the CDAC phase for better latency but similar throughput at the cost of more search
time. In this framework, we propose a solution that targets throughput-oriented scenarios first, assuming an infinite
number of tasks to be processed. Therefore, in the CDAC phase, we optimize the maximum total execution time of
multiple layers assigned to the corresponding accelerator, leading to nearly the same execution time on each accelerator.
In the CRTS phase, with enough tasks, the pipeline in Figure 15 can be fully filled. The throughput under different
numbers of tasks are shown in Table 12.
CHARM RTS Efficiency. We compare the optimized results and search time of two proposed runtime scheduling
algorithms, including the MIP and greedy algorithms, under different tasks shown in Table 12. We implement the two
scheduling algorithms on an Intel Xeon Gold 6244 CPU using Gurobi 10.0 [52] and Python 3.7. In this experiment,
Manuscript submitted to ACM
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Table 12. Runtime scheduling search time comparison between MIP and greedy algorithm.

# of Tasks 1 2 3 4 5 6 7 8

MIP 0.32s 0.81s 1.85s 3.72s 24.35s 638.97s >1000s >1000s
Greedy 0.31ms 0.39ms 0.49ms 0.64ms 0.82ms 0.95ms 1.10ms 1.26ms
GFLOPS 790.2 1039.9 1162.4 1235.1 1283.2 1317.5 1343.1 1362.9

the number of tasks is explored from 1 to 8. The greedy-algorithm-based scheduler finds the solution with the same
optimal value provided by MIP formulation under all these eight cases. However, because of the design space pruning,
the proposed greedy-algorithm-based scheduler requires much less search time. For example, when the task size equals
eight, we reduce the search time from >1000 s to 1.26 ms, which has a 7.9×105× reduction. The gain in search time will
be more obvious as the search space grows.

7 DISCUSSION OF ARCHITECTURE INSIGHT AND MAPPING INSIGHT
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Fig. 16. Throughput comparison under different off-chip band-
width configurations from CHARM for BERT.
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Fig. 17. Throughput comparison under different AIE, local stor-
age, and off-chip configurations from CHARM for BERT.

By leveraging the strong modeling capabilities provided by the CHARM framework, we explore performance under
different hardware architecture changes (number of AIEs, on-chip storage size, off-chip bandwidth) to conduct pre-
silicon architecture explorations and provide architectural design insights that could be helpful for future generation
devices. Here, we leverage the CHARM modeling to report throughput for different acc configurations including 1-, 2-,
4-, and 8-accs in the system. For each design (except one-acc), we have two variants, duplicate accs or diverse accs. The
explorations help us understand the following research questions:
Q1: Can we benefit from higher off-chip bandwidth?
A1: Yes. Versal would benefit from a higher off-chip bandwidth.
We first explore the performance, assuming the platform has more off-chip bandwidth. We increase the DDR bandwidth
by 4× to simulate multiple DDR banks and by 16× to simulate the case when we have a high bandwidth memory (HBM).
As shown in Figure 16, the throughput from the best design for BERT in each bandwidth configuration rises from
1.48 TFLOPS to 3.34 TFLOPS with 4× bandwidth and to 4.80 TFLOPS with 16× bandwidth. The improvement from
1× to 4× DDR is within expectation and implies that the designs for BERT are bounded by off-chip bandwidth. The
maximum throughput for 16× is bounded by the system computation throughput at 4.8 TFLOPS, which is constrained
by single kernel computation efficiency (95%) and PL↔AIE efficiency (85%). Another observation from Figure 16 is
that the throughput improvement of multiple accs is larger than that of the single acc since when the number of accs
increases, each acc has less data reuse and tends to be more bounded by the off-chip bandwidth.
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Q2: Can we leverage CHARM in future architectures?
A2: Yes. The last group in Figure 17 implies that as computation and communication parallelism increase
further in the future, there will be a need for more heterogeneous accelerator architectures, and CHARM
can serve as one of the most promising solutions.
We explore the performance by varying the number of AIEs, the on-chip RAM, and the off-chip bandwidth. We reduce
the number of AIEs to 1/8 of the current AIE array size to simulate the computation capacity of the previous generation
FPGA, where only the PL is equipped with DSPs and has about 1/8 of the theoretical FP32 peak performance of the
Versal ACAP. As shown in the first group in Figure 17, the performance difference between the minimum and the
maximum under different acc configurations is less than 40%. As the computation parallelism is reduced to 1/8, the
waste resulting from the inconsistency between massive parallelism and the small MM size is mitigated. On the other
hand, as shown in the last group in Figure 17, 4-diverse acc stands out as the best when we increase AIE, on-chip
storage, and off-chip bandwidth all by 4×. Simply increasing AIEs does not yield significant improvement, whereas
increasing all the resources as a whole does.
Q3: Can CHARM be ported to other architectures?
A3: We can port this to other similar architectures that have a large number of tensor cores (hundreds),
where each tensor core requires high parallelism (matrix-matrix computation) to sustain the throughput.
The GPU V100 has 640 tensor cores, operating at 1.245 GHz. Each tensor core can achieve high efficiency only when
the matrix size exceeds 32×32×32. When the matrix size is 128×128×128, using 4×4×4 tensor cores (#tensor cores
utilization = 10%), each computes 32×32×32 (each core utilization = 100%), or using 8×8×8 tensor cores (# tensor cores
utilization = 80%), each computing 16×16×16 (each core utilization = 12.5%), when the matrix size is small, the overall
utilization is 10%, which is less than 100%. Only when the matrix is 256× 256× 256, the overall utilization (# tensor cores
utilization × each tensor core utilization) is near 100%. However, the shape of multi-head attention in the transformer
model is far less than 256 × 256 × 256. When mapping such models onto a similar architecture, we can use the CHARM
methodology to create diverse accelerators; that is, map multiple MMs and use partial resources for each MM, thereby
increasing the overall utilization. When mapping the Transformers onto a GPU V100, if we have a micro-architecture
feature that allows us to partition the GPU tensor cores into groups, we can potentially achieve a 1.5×–2× throughput
gain when using 4 diverse accelerators compared to 1 accelerator, which is now what the GPU programming model is.
Q4: Is it possible to implement Softmax in the AIE array? Can FlashAttention [53, 54] be enabled to reduce
data movement?
A4: The optimization in FlashAttention fuses Softmax with consecutive matrix multiplies to reduce off-chip access and
thus is capable of improving our overall latency. We have two ways to enable fused MM+softmax: (1) Fuse Softmax in
AIE with MM; (2) Fuse Softmax in FPGA using fine-grained with AIE. When using (1), it incurs 30% extra cycles. When
using (2), by using some LUTs in the PL part, there are no extra cycles.

8 CONCLUSION

In this paper, we propose the CHARM architecture and the CHARM framework to provide a novel system-level design
methodology for composing heterogeneous accelerators for different MM-based applications including BERT, ViT, NCF,
and MLP in FP32, INT16, and INT8 data types. CHARM is capable of automatically generating high-throughput and
energy-efficient end-to-end application solutions. Our experiments show that CHARM achieves 1.46 TFLOPS, 1.61
TFLOPS, 1.74 TFLOPS, and 2.94 TFLOPS inference throughput for BERT, ViT, NCF, and MLP in FP32 data type. in INT16
data type, CHARM has the maximum throughput of 1.91 TOPS, 1.18 TOPS, 4.06 TOPS, and 5.81 TOPS for the four
Manuscript submitted to ACM



1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

CHARM 2.0 29

applications. The maximum throughput achieved by CHARM in the INT8 data type is 3.65 TOPS, 1.28 TOPS, 10.19
TOPS, and 21.58 TOPS respectively.
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