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Abstract: In a ground-breaking paper solving a conjecture of Erdés on the number of n-vertex
graphs not containing a given even cycle, Morris and Saxton [45] made a broad conjecture
on so-called balanced supersaturation property of a bipartite graph H. Ferber, McKinley, and
Samotij [29] established a weaker version of this conjecture and applied it to derive far-reaching
results on the enumeration problem of H-free graphs.

In this paper, we show that Morris and Saxton’s conjecture holds under a very mild assumption
about H, which is widely believed to hold whenever H contains a cycle. We then use our theorem
to obtain enumeration results and general upper bounds on the Turdn number of a bipartite H in

the random graph G(n, p), the latter being the first of its kind.
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1 Introduction

Given a graph H, we say that a graph G is H-free if it doesn’t contain H as a subgraph. For a family J
of graphs, we say G is F-free if it doesn’t contain any member of F as a subgraph. For a given positive
integer n and a graph H, the extremal number ex(n,H) denotes the maximum number of edges in an H-free
n-vertex graph. (For a family &, ex(n,J) is analogously defined for F-free graphs.) A central problem in
extremal graph theory is to determine the extremal number ex(n, H) and the typical structure of H-free graphs.

Such a study was initiated by Turdn [53] in the 1940s, who determined precisely the extremal number of the
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complete graph. The problem of studying ex(n, H) is therefore also referred to as the Turdn problem. ErdGs
and Stone [28] (see also [24]) determined asymptotically the extremal number ex(n, H) for any non-bipartite
graph H, thus leaving estimating ex(n, H) for a bipartite graph H the main remaining challenge in the field.
K&vari, S6s and Turan [43] showed that ex(n,K ;) = O(nz_l/ %), where K, denotes the complete bipartite
graph with part sizes s and ¢. This was later shown to be asymptotically tight when ¢ > s! by Kollar, Rényai,
and Szabé [44] and when 7 > (s — 1)! by Alon, Rényai, and Szabé [2]. Both of these were obtained via
algebraic constructions. More recently, an innovative random algebraic approach had led to many new tight
lower bound constructions, see [12, 13, 14] for instance. In particular, Bukh and Conlon [14] applied the
method to settle a long-standing conjecture that asserts that for every rational number « in [1,2) there is
a family J of bipartite graphs for which ex(n,F) = @(n*). A series of recent progresses have also been
made on the related exponent conjecture for single bipartite graphs H (rather than forbidding a family JF),
resulting in many rationals o € [1,2] and bipartite graphs H for which ex(n,H) = ®(n*), see for instance
[18, 19, 34, 35, 37, 38]. Another general result is due to Fiiredi [30], and independently to Alon, Krivelevich,
and Sudakov [1] that asserts that ex(n, H) = O(n?~'/%) for every bipartite graph H where vertices in one part
have degree at most s (see [32, 36] for recent generalizations of this result). Alon, Krivelevich, Sudakov
[1], in addition, showed that ex(n,H) = O(n?>~'/*) for every s-degenerate bipartite graph H. Despite these
substantial progresses on the bipartite Turdn problem, it remains to be the case that for most bipartite graphs
H there exist substantial gaps between best known lower and upper bounds on ex(n,H ), even for even cycles
Cyy, where £ # 2,3,5. For more background, the reader is referred to the excellent survey by Fiiredi and

Simonovits [31].

Erdés, Kleitman and Rothschild [22] introduced the problem of counting H-free graphs on n vertices. They
showed that there are 20 +t0(0)ex(nKr) g _free graphs, and furthermore that almost all triangle-free graphs are
bipartite. Erdds, Frankl and Rodl [21] generalized the former result, showing that for any non-bipartite H

there are 2(1+o(1))ex(n.H)

H-free graphs. Kolaitis, Promel and Rothschild [42] generalized the latter result,
showing that almost all K,-free graphs are (r — 1)-partite. This was further extended by Promel and Steger
[49] to all r-critical graphs. Using hypergraph regularity method, Nagle, Rodl and Schacht [48] showed
that there are 2(!*0(1))ex(nH) H_free k-uniform hypergraphs for any non-k-partite k-uniform hypergraph H.
Balogh, Morris and Samotij [7] and Saxton and Thomason [51] reproved this result using the hypergraph
container method. Balogh, Bollobas and Simonovits [3, 4, 5] proved more precise counting and structural

results for graphs.

For bipartite H, Kleitman and Winston [40] made the first breakthrough by showing that there are at most
p(1+en’? Cy-free graphs on n vertices, where ¢ ~ 0.0819 and resolving a long-standing question of Erdds. No

further progress was made until the recent significant work of Balogh and Samotij [8, 9], who showed for

(062> 1)

every 2 < s <t that there are at most 2 K, ;-free graphs on n vertices. The next major breakthrough

was made by Morris and Saxton [45], who showed that the number of C,/-free graphs on n vertices is at most
20(”]““), confirming a conjecture of Erd6s. There are two key ingredients in Morris and Saxton’s work. One
is the framework of the container method and the other is the so-called balanced supersaturation property of

Cyy, stated in one of their main theorems as below.

Theorem 1.1 (Morris-Saxton [45]). For every £ > 2, there exist constants C > 0,0 > 0 and ko € N such that

1+1/¢

the following holds for every k > ko and every n € N. Given a graph G with n vertices and kn edges,
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there exist a collection I of copies of Cyy in G, satisfying:

(@) |H|> 8k*n?, and

lof-1

(b) doc(0) < C-K10=TT 0=V for every 6 C E(G) with 1 < |o| < 20— 1, where dy¢(c) = |{A € H :
O C A}| denotes the ‘degree’ of the set & in H.

Using their container method framework and Theorem 1.1, Morris and Saxton [45] were able to not only
obtain the enumeration result on the number of Cyy-free graphs on n vertices, but also make further progress
on the Turdn number of Cyy in the ErdGs-Rényi random graph G(n, p), where as usual G(n, p) denotes the
random graph on [n] where each pair ij is included as an edge independently with probability p. Given a
graph H, let

ex(G(n,p),H) := max{e(G) : G C G(n,p) and G is H-free}.

Note that both G(n, p) and ex(G(n, p),H) are random variables.

The problem of determining the threshold function for the maximum number of edges in an H-free sub-
graph of G(n, p) has received much attention. For more thorough discussion, the reader is referred to the
excellent survey by Rodl and Schacht [50]. The most significant work was the following breakthrough, first
independently obtained by Conlon and Gowers [17] (under the assumption that H is strictly 2-balanced, see
Definition 1.6) and by Schacht [52], then reproved using the container method by Balogh, Morris and Samotij
[7] and independently by Saxton and Thomason [51].

Theorem 1.2 (Conlon-Gowers [17], Schacht [52]). Let H be a graph with A(H) > 2 and chromatic number
X(H). Let my(H) = max{(e(F)—1)/(v(F)—2): F CH,v(F) > 3}. For every € > 0 there exists a constant
C > 0 such that if p > Cnfl/"”(H), then

1
ex(Glnp).H) < (1= o) ()
with high probability, as n — oo,

While Theorem 1.2 gives a satisfactory answer for non-bipartite H, much less is known for bipartite H. For Cy,
Haxell, Kohayakawa and Fuczak [33] showed that if p > n~'*1/2=1) then ex(G(n, p),Ca) < e(G(n, p)),
whereas if p = o(n~'*1/C=1) then ex(G(n, p),Cy) = (14 0(1))e(G(n, p)). For p = an~'+1/=1) and
2<a<n' (M_])z, Kohayakawa, Kreuter and Steger [41] obtained the tight result that with high probability,

ex(G(n,p),Car) = © <n1“/(2“)(10g a)l/(%l)> _

For recent work on the analogous problem for linear cycles in random r-uniform hypergraphs, see Mubayi

and Yepremyan [47].

Applying the container method to Theorem 1.1, Morris and Saxton obtained the following.

Theorem 1.3 (Morris-Saxton [45]). For every { > 2, there exists a constant C = C({) > 0 such that
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Cnl =1/ (loem?  if p < n—E=D/2=1) _ (1ogm)2t
x(Glnp),Co) < 4 " o p s {oe)
Cp'/tnt+1/t otherwise

with high probability as n — oo.

A well-known conjecture of Erdés and Simonovits (see [31]) states that ex(n, {C3,Cy, ...,Car}) = O(n'+1/%).
Morris and Saxton [45] further showed that with high probability as n — oo, ex(n, G(n, p)) = Q(p"/‘n'+1/¢)
for each ¢ for which the Erd6s-Simonovits conjecture is true. The successful applications of Theorem 1.1 to
both the enumeration problem and the random Turédn problem on C,, motivated Morris and Saxton [45] to

make a general conjecture about all bipartite graphs.

Conjecture 1.4 (Morris-Saxton [45]). Given a bipartite graph H containing a cycle,' there exist constants
C > 0,e > 0and ko € N such that the following holds. Let k > ko, and suppose that G is a graph on n vertices
with k -ex(n, H) edges. Then there exists a (non-empty) collection®> H of copies of H in G, satisfying

C-|H|
dy (o) < k(+e)lel=De(G)

for every o C E(G) with 1 <|o| <e(H).
An important aspect of this conjecture is that its truth would immediately yield desired enumeration results on

H-free graphs, in the following sense.

Proposition 1.5 (Morris-Saxton [45]). Let H be a bipartite graph. If Conjecture 1.4 holds for H, then there

(ex(n,H

are at most 29 ) H -free graphs on n vertices.

The work of Morris and Saxton and Conjecture 1.4 generated a lot of interest in the field. In a recent
breakthrough, Ferber, McKinley and Samotij [29] were able to establish a weaker version of Conjecture 1.4
and applied it to obtain very general enumeration results on H-free hypergraphs for all r-partite r-uniform
hypergraphs (r-graphs in short) H that satisfy a very mild assumption which is widely believed to hold for all
r-partite r-graphs. The weaker version of Conjecture 1.4 that Ferber, McKinley and Samotij [29] proved is a
bit technical to state here and does not seem to immediately apply to the random Turén problem. However,

the enumeration results it yields are very general and significant.

Definition 1.6 (r-density and proper r-density). Let r > 2 be an integer. Given an r-graph H with v(H) > r+1,

we define its r-density to be

)=l i) > 1),

m,(H) = maX{W

We define its proper r-density to be

elF) -1 :F CHv(F)>r}.

my(H) = maX{W :F C

'While the phrase "containing a cycle" does not appear in Morris-Saxton’s conjecture, context makes it clear that it was intended.
It is easy to see the conjecture is false for forests.
ZFor such a collection to exist, it is neccessary that |J| > C~1k(1+&)((H)=1)¢(G), as can be seen by letting & be a member of .
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If m(H) > m}(H), we say that H is strictly r-balanced.
For instance, for the even cycle Cyy, we have my(Cy) = %ﬁ—j and m}(Cy¢) = 1. Throughout the paper, we will

tacitly assume that H has at least two edges. The main results of Ferber, McKinley and Samotij are

Theorem 1.7 (Ferber-McKinley-Samotij [29]). Let H be an r-uniform hypergraph and let a and A be positive

constants. Suppose that o¢ > r — ﬁ and that ex(n,H) < An® for all n. Then there exists a constant C
depending only on o, A, and H such that for all n, there are at most 20" g -free r-uniform hypergraphs on n

vertices.

Theorem 1.8 (Ferber-McKinley-Samotij [29]). Let H be an r-uniform hypergraph and assume that ex(n,H) >
1
en’ mm tE for some € > 0 and all n. Then there exists a constant C depending only on € and H such that for

all n, there are at most 2€*H) g -free r-uniform hypergraphs on n vertices.

To get a sense of where the condition on H in Theorem 1.8 came from, observe that a simple first moment
argument shows that for any r-uniform hypergraph H, ex(n, H) > Q(n’~!/"(H)) holds. In the 2-uniform case,
it is widely believed that this simple probabilistic lower bound is not asymptotically tight for any H that
contains a cycle. The r > 3 case is expected to be similar. Ferber, McKinley and Samotij made the following

conjecture.

Conjecture 1.9 (Ferber-McKinley-Samotij [29]). Let H be an arbitrary graph that is not a forest. There
exists an € > 0 such that ex(n,H) > gn*~1/mH)+e,

Conjecture 1.9 is known to hold for quite a few families of bipartite graphs, including complete bipartite
graphs, even cycles, the cube graph, and etc (see [31] and [29] for some discussions). In particular, the work
of Bukh and Conlon [14] on the Turdn exponent of a bipartite family provides a large family of bipartite
graphs H for which Conjecture 1.9 holds, namely graphs H that are obtained by gluing enough copies
of a so-called balanced tree at the leaves. There is also other strong evidence that Conjecture 1.9 should
be true. Bohman and Keevash [11] showed that if H is a bipartite graph that is strictly 2-balanced (see
Defintion 1.6) then ex(n,H) > Q(nz_ﬁ (logn)'/(«(H)=1)) Bennett and Bohman [10] later generalized this
result for hypergraphs (See also [29] for another generalization). On the other hand, a well-known conjecture
of Erdgs and Simonovits [20] says that for any bipartite graph H, there exist constants o € [1,2),c¢j,¢ > 0
such that ¢;n* < ex(n,H) < con®*. Hence, if the ErdGs-Simonovits conjecture were true, then the result of

Bohman and Keevash would imply Conjecture 1.9.

2 Main results
As our main result of the paper, we prove Conjecture 1.4 of Morris and Saxton in a more explicit form under
the same mild condition about H assumed by Ferber, McKinley and Samotij [29].

Theorem 2.1 (Balanced Supersaturation). Let r be an integer with r > 2. Let H be an r-partite r-graph

with h vertices and { edges. Let o and A be positive reals satisfying that A > r¥, o > r — m and that
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ex(n,H) < An® for all n, There exist constants ko,C > 0 such that the following holds. Let G be an n-vertex
r-graph with m = kn® edges where k > ky. Then G contains a non-empty family H of copies of H such that,

dre(S) < Ck“am(“)e'(?g), for every S C E(G),1 < [S| < e(H),

where A(a,H) = m

Since A(a,H) > 1, Theorem 2.1 resolves Conjecture 1.4 in a more explicit form under the mild assumption
that o« > r— 1/m,(H). Our general approach for establishing Theorem 2.1 is inspired by the approach used by
Ferber, McKinley and Samotij [29]. However, we also added some crucial new twists, in particular establishing
a stronger supersaturation theorem for general bipartite graphs then was currently known. Theorem 2.1 allows

one to retrieve Theorem 1.7 and Theorem 1.8.

Theorem 2.1 does not explicitly describe how dense the family J{ is. Futhermore, we generalized the balanced
supersaturation result in Ferber, McKinley, Samotij [29] to turn any dense family of copies of H in G into a
balanced one that is almost as dense. In view of that, we can obtain an even stronger version of Theorem 2.1
for those H that satisfy the following well-known conjecture of Erd6s and Simonovits, which roughly says
that one can expect to find asymptotically as many copies of H in G as one would expect in a random graph

with the same edge-density as G.

Conjecture 2.2 (Erdés-Simonovits). Let H be a bipartite graph with h vertices and ¢ edges. Let A, & be
positive reals satisfying that ex(n,H) < An* for all n € N. There exists constant C,c, depending on H such
that for all sufficiently large n if G is an n-vertex graph with e(G) > Cn% edges then G contains at least
cle(G)]/n*'~" copies of H.

Given a bipartite graph H, we say that H is Erdds-Simonovits good if it satisfies Conjecture 2.2. There are
quite a few known Erdds-Simonovits good graphs for appropriate values of ¢, for instance, even cycles
[27] (see also [45]), complete bipartite graphs [25], bipartite graphs that have a vertex complete to the other
part [16], tree blowups [32], tree degenerate graphs [36], etc. For Erd6s-Simonovits good H, we obtain the

following stronger theorem.

Theorem 2.3 (Balanced supersaturation for Erd&s-Simonovits good graphs). Let H be a bipartite graph with
h vertices and { edges. Suppose that H is Erdds-Simonovits good. Let o and A be positive reals satisfying
thatA > 16, a > 2 — W and that ex(n,H) < An® for all n. There exist constants 6y ,ko,C > 0 such that
the following holds. Let G be an n-vertex graph with kn® edges where k > ko. Then G contains a family H of

copies of H satisfying that

1. |3 = 8ue(G)) /m* 1,

2. VSCE(G),1<|8| <,
|H|

(S <GB

where
B = max{(l/k);fq)(‘)‘ﬂ)7,1(7L*(<>5,H)}7
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0 (0 H) = #2270 H) = ey

Equipped with Theorem 2.1 and Theorem 2.3, we then apply them under the framework of Morris and
Saxton [45] to obtain general bounds on ex(G(n, p),H) as follows.

Theorem 2.4. Let H be a bipartite graph with h vertices and ¢ edges. Let A, Q. be positive reals such that
ex(n,H) < An® for every n € N. There exists a constant C = C(H) such that

an_m if p <n_ﬁ7
ex(G(n,p),H) < B

Cpl el n®  otherwise
with high probability as n — .

Theorem 2.5. Let H be a bipartite graph with h vertices and £ edges such that H is Erdds-Simonovits good.
Let A, o be positive reals such that ex(n,H) < An® for every n € N. There exists a constant C = C(H) such
that

(o, H)A* (o, H) 22%* (o, H)

ex(Gln.p).) < 4 C1 2 ogn)? i p < T logn) e

- .
Cp "aHp% otherwise

with high probability as n — oo, where ¢ (0, H) = W, A(a,H) = m.

Theorem 2.5 implies Morris and Saxton’s result on ex(G(n, p),Cyy) (see Corollary 4.11). To the best of our
knowledge, Theorem 2.4 and Theorem 2.5 appear to be the first general results on ex(G(n, p), H) for bipartite
H.

The rest of the paper is organized as follows. In Section 3, we derive our results on balanced supersaturation.

In Section 4, we apply our supersaturation results to derive general bounds on the random Turdn problem.

3 Balanced supersaturation

We start with a standard estimation lemma.

Lemma 3.1. Let n > w > h be positive integers. Then ("_h)/(fv) < (w/n)". Furthermore, if w > h* then

w—h
20/ () = (1/2)(w/n)".

Proof. We have ,
(") ww—=1)...(w—h+1)

(") n—=1)--(n—h+1)"

w

Hence, ("_h)/(”) < (w/n)". If w > h?, then

w—h w

(h)  wlr =1 (o) w' = )W W= G)(/w)] 1w

(::) - nh nh nh 2 nh’
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The following simple lemma is folklore. We include a proof for completeness.

Lemma 3.2. Let r > 2. Let H be an r-graph. Let G be an n-vertex r-graph with e(G) > ex(n,H). Then G
contains at least e(G) —ex(n, H) different copies of H.

Proof. Let m be the number of copies of H in G. Then we can find a set S of at most m edges whose removal
destroys all the copies of H in G. Hence e¢(G) —m < ex(n,H) and thus m > e¢(G) — ex(n,H). O

We next give a nontrivial lower bound on the number of copies of any given r-partite r-graph in a dense

enough r-graph. This lower bound may be of independent interest.

Lemma 3.3. Let r be an integer with r > 2. Let H be an r-partite r-graph with h vertices. Let o and A be
positive reals satisfying that A > r*" and that ex(n,H) < An® for all n. There exists a constant cgy > 0 such
that the following holds. Let G be an n-vertex graph with kn® edges where k > 2%"A. Then G contains at least
cule(G)] 7 /"

h—a o .
= cgk—an® copies of H.

Proof. Let p be a real such that

(84/k)7a < p<2(84/k)7@ and npeZ".

Such p exists since

}’2

(84/k)75 > (8A/' @) e > —,
n

by our condition on A. Since k > 23"A, p € (0,1). Let W be a uniform random subset of V(G) of size w = np.
By our choice of p, we have w > r2. By Lemma 3.1,

w—r w

i) =e(@) (" "7}/ (1) = SelG)iny = Jeter' G.1)

Lets = (") and Wy, Ws,..., W, be all the (") subsets of V(G) of size w. For each i € [1], let G; = G[Wj]. Let
Jgo00a be the set of i € [] such that e(G;) > ymp” and Jpag = [t] \ Igo0a. Then Yicq, ,e(Gi) < () 4e(G)p" and
hence by (3.1)

1
Y eG)> (n) Ze(G)p’. (3.2)

iejgood

For each i € Jgp04, we have

1

1 1 1
e(Gi) > Ze(G)P’ = —kn%p" = —kp""*(np)* = ka”“w“ > 2AwY,

4 4
where the last inequality holds since p > (BTA)%. Hence ¢(G;) > 2Aw®* > 2ex(w,H). By Lemma 3.2, G;
contains at least e(G;) —ex(n,H) > 1e(G;) copies of H. Let A denote the number of copies of H in G. Then,
using (3.2), we have

1
Az oon ) 5elG)z o ot
(W—}]’Il) iejgood 2 8 (W—};l)

1

(/)" e(G)pf = el G)p ™" = £e(G)(1/p) .

0| M

e(G)p" >
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Since k = e(G)/n* and p < 2(8A/k)ﬁ, we have

o(h—r)
nr-a

h—r h—
r

1> ~e(G)(1/2)" " (k/8A) S > cule(G)] e

0| —

for some constant cg > 0. ]

While Lemma 3.3 gives a reasonably dense family of copies of H in a dense enough host graph G, it is
generally not as dense as what is conjectured in Conjecture 2.2. Next, we present our key lemma, which is the

basis of our main results in this paper.

Lemma 3.4 (Key Lemma). Let r,h,{ be positive integers, where h > r > 2. Let H be an r-partite r-graph with
h vertices and £ edges. Let o, A be positive reals such that for each n every n-vertex graph G with m > An*

edges contains at least f(n,m) copies of H, where f is a function satisfying the following.

1. There is a constant 6 > 0 such that for all p € (0,1] and all positive reals n,m

h—

f(n,m) > 8mre /n

oh—r)

Z and  flap,mp’) > 8f(nm)p".
2. For fixed n, f(n,m) is increasing and convex in m.

Then there exist constants ko = ko(H) and C = C(H) > 1 such that if G is an n-vertex r-graph with kn® edges,
where k > kg, then G contains a family F of copies of H satisfying that

1. |F| > 8f(n, ze(G)).

2. VSCE(G),1<|S|<t—1,

< cp—r (e si-1 I
ds(S) < Ck (G)

A(a,H) = m and m:(H) is the proper r-density of H.

Proof. First we define some constants. Let ky be a sufficiently large constant, depending on H and A, &, such
that the statement after (3.9) holds. Let N = & f(n, ge(G)). By our assumption about f and that n* = ¢(G) /k,

1 - a(h—r 1 —o _ h—r —r
N>§- 5(§e(c;))i7/nf’iffﬁ - 52(§)ffak»l-fae(G) = 8'krae(G), (3.3)
where 8’ = 52(%)2:5. Let
4
C = max {2221 (8A) ar, 5 (3.4)
Trivially, C > 1. For convenience, let
B — (et (3.5)

where A*(at, H) is as defined in condition 2.
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To prove Lemma 3.4, it suffices to find a family F with |F| = N such that the following condition holds

s-1_ N

¥S CE(G).1 <[8] < £ Lds(8) < B! 5.

(3.6)

To build such a family, let F = 0. We show that as long as |F| < N, we can find a new copy of H in G to add
to & so that (3.6) holds.

Clearly, initially JF satisfies (3.6). Given a set S C E(G), where 1 < |S| < ¢ — 1, we call S saturated if
ds($) = CBI1 5.

Recall that m; (H) = maxpcy{ iggj} > % Hence, we have that 1* (o, H) < %. Combining this
with (3.3), we have
N . S'ki-ae(G) _ C8'
ofiial > k@R 22 S > 22 >0, 3.7
P e 2 2G) = 2 = S

Foreachi=1,...,¢ —1, let B; denote the family of saturated i-subsets of E(G). We will call a copy of H in
G a good copy of H if it does not contain any member of Uf;ll B;.

Claim 1. Foreachi=1,..../— 1, |B;]| < (2//C)(1/B)'e(G).

Proof of Claim 1. Let p denote the number of pairs (H',S) where H' is a member of F and S € B; and
S C E(H'). If we count u by S, then by definition,

; N
> |Bi|lCB T

On the other hand, if we count u by H’, then

l
u<|J| (> <2 IN.
l
The claim follows by combining the last two inequalities and solving for |B;|. O
Let g = (8A)ﬁr2ﬁ’"t<m. Since B =k~ (®H) we have

q > (SA)ﬁer*l*((X,H)mﬁ(H) — (8A) r_la erfr_la > r2(nr7(x)fr_la

(3.8)

Let p be a positive real such that
g<p<2q and npcZ". (3.9)

Since g > r?/n, it is easy to see such a p exists. Because k > ko, by choosing k to be large enough constant
depending on H and A, we can ensure that 2¢ < 1 and hence p € (0,1).
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BALANCED SUPERSATURATION

Let W be a uniform random subset of V(G) of size w = np. By (3.8), w > . By Lemma 3.1,

nfr)
np—r

(o)

o

> —e(G)p". (3.10)

| —

For each i = 1,...,¢/ — 1, let Y;(W) denote the set of members of B; that are contained in W. Fix any
i=1,...,0— 1. Consider any member S of B;. Suppose S spans vg vertices. Then by the definition of m}(H),

we have ==L <m*(H) and hence vs > r+ m’f;” Hence,

v§—r —
P[SC W] = (n_vs>/(n) <p’s < p A,

np—vs np
This, along with Claim 1, implies that foreachi=1,...,/—1,

i—1

E[Y,(W)| < |Bp" # < (2'/C)(1/B)~ p" 5 e(G) = (21/C)(1/B) " p -e(G)p".  (B.1D)
Hence, by (3.9) and (3.11), foreachi=1,...,£— 1, we have
E[[Y,(W)|] < (2/C)[2(84) 7 2] -e(G)p” < (2 /C)[2(84) 7 )" - e(G)p'.

By our choice of C, given in (3.4), we have

-1
Bl U W)l < (- 1)@ /OR(8) 7] -e(G)p" < 1e(G)p" (.12
j=1
By (3.10) and (3.12),
- 1 o1 L1 .
Ele(GW]) [ JY;(W)I) = 5¢(G)p" = 7¢(G)p" = 1¢(G)p", (3.13)

Lett = (n';) and Wy, ..., W, be all the np-subsets of V(G). Let Jgy,4 be the set of i € [t] such that e(G[W;]) —
|USZ1Y;(Wi)| > §e(G)p". Let Jpaq = [t] \ Tgo0a- Then

-1 2\ 1
¥ o) - Unon < 1) ge(@)r"
=1

i€Jpad
Hence, by (3.13),

/—1
IECRIVIOE (p) LG (3.14)

iejguod
For each i € J,004, let G} be a subgraph of G[W;] obtained by deleting an edge from each member of U?;} Y;[W].
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By (3.14),
1
L e () e (315
iEjg(md np 8
By the definition of J,404, for each i € Jg404, We have
/ 1 r 1 o_r 1 r—o a 1 r—o. o
e(G;) > ge(G)p = gkn p= gkp (np)* = gkp w?. (3.16)

By (3.8) and (3.9),

Hence, by (3.16), for each i € J4404,

1
e(G)) > gk(SA)r2<’*°‘>k*1w°‘ > Aw®,
Hence, by our assumption about H, for each i € J00q, G} contains at least f(w,e(G})) = f(np,e(G})) copies
of H in G. Now, the crucial observation is that any copy H' of H in G}, where i € Jg04, is a good copy of H in
G. Indeed, suppose H' contains a member S of B; for some j=1,...,£—1, then S C E(G}) C E(G[W}]). So
S € Y;[Wj]. But in forming G/ from G[W;| we have removed an edge from each member of ¥;[W;| and hence

S ¢ E(G)), a contradiction.

Let Hgpoq denote the family of good copies of H in G. By our discussions above, (3.15) and our assumptions
about the function f, we have

1
‘j{good‘ Z

L pelGh) > s (1) 70m. ge( G

(nr;)_—hh) iejg(md (}’lp—h)

> (1/p)'8f(n, 5e(G)p" = 5£(n, 5e(G).

Hence, |Hgp0q| > N > |F|. So, there must exist a member H' of Hy,,4 that is not in F. Let us add H' to F.
Consider any subset S C E(G), where 1 < |S| < £—1. If § is not contained in H’ then d(S) is unchanged.
If S C E(H'), then since H' is good, S is unsaturated prior to the addition of H’ and hence now satisfies
dy(S) < CBPI™! i +1 < CcpIsi-1 #(G)» by (3.7). Hence (3.6) still holds for the new family . Thus, we can
iterate the process to find a family JF that satisfies (3.6) and such that |F| > N. O

For convenience, we will refer to the § associated with the family F as the codegree ratio of F.

By Lemma 3.3 and Lemma 3.4, we obtain the following general balanced supersaturation theorem, which

implies our first main theorem, Theorem 2.1.

Theorem 3.5. Let r be an integer with r > 2. Let H be an r-partite r-graph with h vertices and ¢ edges. Let o,
and A be positive reals satisfying that A > r*", o0 > r — ﬁ and that ex(n,H) < An®* for all n, There exist
constants Oy, ko = ko(H),C = C(H) > 0 such that the following holds. Let G be an n-vertex graph with kn®
edges where k > ko. Then G contains a family F of copies of H satisfying that
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h—o a(h—r)

1. 19] 2 8yle(G)) 6 /e

2. VS CE(G),1< S| <¢
) 151

< Cl—MaH)(S|-1
ds(S) <Ck o(G)’

where A(o,H) = m and m,(H) is the r-density of H.

Proof. By choosing kg to be at least 2%, by Lemma 3.3, H has the property that every n-vertex graph with
h—a a(h—r)
It

. h—a , a(h=r) .
kn“ edges, where k > k¢ contains at least cy[e(G)] = /n = copies of H. Let f(n,m) = cymro /nr=
is straightforward to see that f(np,mp”) = f(n,m)p", for any p. Furthermore, for fixed n, f(n,m) is clearly

increasing and convex in m. By Lemma 3.4, there exist constants ko and C’ such that for every n if G is an

n-vertex r-graph with kn® edges, where k > kg, then G contain a family F of copies of H satisfying

@ |F|>cuf(n,ze(G)).

(b) VSCE(G),1<S| <,

|
ds(s) < C'pIs-1-
5(8) <C'B o(G)’
where 1
G\ _ran
B — max <> ’k ((X, ) ,
Ei
AMa,H) = m. Note that here we used the fact that A(o,H) < A*(a,H), as to make the
conclusion work for sets of size ¢, we switch to A.
Since e(G) = kn®, by condition (a) above,
h—a a(h—r) h—r
|F| > cule(G)] o /n o =cykrae(G). (3.17)

For convenience, we may further assume that cy < 1. By definition of r-density, % < m,(H). Hence, by
(3.17),

= :
<e|<3(5’)>1, S () < ()P, (3.18)

By the definition of  in condition (b) and (3.18),
1
B < ey kM@,
Let C = C'(cy)~". By condition (b) above, we have VS C E(G),1 < |S| < ¥,
_1 |9 o —ypy 191 - _n| 1]
ants) < gls-119L < 2 e aamns-on I o q-acemnasi-n 191
?( )— ﬁ e(G) = (CH >€(G) = e(G)

So, the theorem holds with 6y = cp. O
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If one applies Theorem 3.5 to an adaption of Proposition 1.5, one can retrieve one of the enumeration results
of Ferber, McKinley and Samotij [29] as below. The difference is that Ferber, McKinley and Samotij used a

weaker version of balanced supersaturation.

Corollary 3.6. Let H be an r-uniform hypergraph and let o and A be positive constants. Suppose that

o>r— ﬁ and that ex(n,H) < An® for all n. Then there exists a constant C depending only on o, A, and

H such that for all n, there are at most 2Cn*

H-free r-uniform hypergraphs on n vertices.

Next, we give a stronger balanced supersaturation theorem for Erdds-Simonovits good bipartite graphs. This

implies our second main result, Theorem 2.3.

Theorem 3.7. Let H be a bipartite graph with h vertices and { edges. Suppose that H is Erdds-Simonovits

good. Let o and A be positive reals satisfying that A > 16, o0 > 2 — m and that ex(n,H) < An® for all
n. There exist constants 8y, ko = ko(H),C = C(H) > 0 such that the following holds. Let G be an n-vertex

graph with kn® edges where k > ky. Then G contains a family F of copies of H satisfying that

1. |F] = &ule(G)) /n* ",

2. VSCE(G),1<|S| <,

d5(S) < Cﬁ5—16|(9;‘),
where
[3 = max{k_ln—(l)(aﬂ)’k—/l*(aﬁ)}’
¢(a,H) = W, A*(a,H) = m and m3(H) is the proper 2-density of H.

Proof. Since H is Erdds-Simonovits good, there exist constants cp,k; > 0 such that n-vertex graph with
m = kn® edges, where k > k; contains at least chZ/n%*h copies of H. Let f(n,m) = chZ/nM*h. Using
the facts o0 > 2 — mi, >2— 222 and k <2 — a, one can show that f(n,m) > ch’;i—Z/n%' Also, it is
straightforward to see that f(np,mp?) = f(n,m)p", for any p. Furthermore, for fixed n, f(n,m) is clearly
increasing and convex in m. By Lemma 3.4, there exist constants ky and C’ such that if G is an n-vertex
r-graph with kn® edges, where k > ko, then G contain a family F of copies of H satisfying

@) |F| > cuf(n,te(G)).

(b) VSCE(G),1<S|<¢,

where

A(a,H) = m and m;(H) is the proper 2-density of H.
2
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For convenience, we may further assume that cy < 1. Hence,
F|/e(G) > cule(G)] /n " = cyk!~ 1 pl-oth=2¢ _ ekl Ipd (@ H)(E=1).
Hence, by the definition of ﬁ given in condition (b) above,
B < max{c, Tk~ n 0@ AN @)

Let
B = max{k~'n0®H) =A@ and  c=C-cp'

It is straightforward to verify that condition 2 holds for these choices of  and C. So the theorem holds with
5[-] =CH. O

The advantage of Theorem 3.7 over Theorem 3.5 is that for Erdés-Simonovits good H, the former produces a
B value that is no larger than the former and in many cases produces a smaller 8, at least for a suitable range
of k. Next, we show that the method developed in this section allows us to give a short proof of Theorem 1.1
of Morris and Saxton [45].

Theorem 3.8 (Restatement of Theorem 1.1). For every £ > 2, there exist constants C > 0,6 > 0 and kg € N

141/¢

such that for each n € N if G is an n-vertex graph with kn edges, where ko < k, then there exists a

collection F of copies of Cyy in G such that

(@) |F| > 6k*n?,

8|1

(b) VSCE(G),1<|S|<20—1,ds(S) < CK*BI=T7 p1=1/L,

Proof. It is well known that Cy is ErdGs-Simonovits good for @ = 1+ 1/¢ and some A > 0, so we can apply
Lemma 3.4 with f(n,m) =c (%) * with ¢ some positive constant depending only on Cy¢. Let G be an n-vertex
graph with kn® edges, with ko < k. Let J be the family of copies of H in G guaranteed by Lemma 3.4. One
can check that m5(Cy¢) = 1 and hence 1*(¢t,Cyy) = 1‘(21_06)
conditions (1),(2) of F guaranteed in Lemma 3.4. L]

= ;4. Condition (a), (b) readily follow from

4 Applications to the Turan problem in random graphs

In this section, we apply our balanced supersaturation results to obtain some general bounds on the Turdn
number of a bipartite graph H in the ErdGs-Rényi random graph G(n, p). In fact, once we have Theorem 3.5
and Theorem 3.7, the corresponding random Turén results will readily follow using the framework set up
by Morris and Saxton [45]. Nevertheless, for completeness, we will include all the technical details. The
framework is based on the container method pioneered by Balogh, Morris, and Samotij [7] and independently
by Saxton and Thomason [51].
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Definition 4.1. Given an r-graph J, define the co-degree function of &

where
dY) (v) = max{ds(S) : v e S C v(F) and |S| = j}.

We need the following theorem from Morris and Saxton [45], which is a quick consequence of analogous
theorems of Balogh, Morris and Samotij [51] Theorem 6.2 and of Saxton and Thomason [7] Proposition 3.1.

Theorem 4.2. Let r > 2 be an integer. Let 0 < 8 < & (r) be a sufficiently small real. Let F be an r-graph
with N vertices. Suppose that §(F, 1) < & for some T > 0. Then there exists a collection C of subsets of V (F)
and a function f : V(F)EN/8) 5 @ such that

(a) For every independent set I in JF there exists T C I with |[T| < tN/6 and I C f(T).
(b) e(F[C]) < (1 —0)e(TF) for every C € C.

Proposition 4.3. Let H be a bipartite graph with h vertices and f edges. Let o, A be positive reals satisfying
that for each n € N every n-vertex graph G with m > An® edges contains at least f(n,m) copies of H, where
f is a function satisfying the following.

1. There is a constant 8 > 0 such that for all p € (0,1] and all positive reals n,m

he /n

o(h—=2)
=

f(n,m) > &m @ and  f(np,mp®) > f(n,m)p".

2. Forfixed n, f(n,m) is increasing and convex in m.

Let ko, C, F and B be as guaranteed by Lemma 3.4. There exist ki € N and a real € > 0 such that the following

holds for every k > ki and every n € N. Set
kp
H=—
£
Given a graph G with n vertices and kn® edges, there exists a function fg that maps subgraphs of G to

subgraphs of G such that for every H-free subgraph I C G,
(a) There exists a subgraph T =T (I) C I withe(T) < un® and1 C f(T), and

(b) e(fo(T(1))) < (1=£)e(G).

Proof. Note that condition 1 in the proposition still holds if we replace  with an even smaller positive
real. Hence in the our proof, we may assume 6 to be sufficiently small. Let F be the family guaranteed by
Lemma 3.4 with codegree ratio . Let N = v(F) = ¢(G) = kn®. Since we will view JF as a hypergraph, we

will write e(F) for |F|. Set
1 82 3
—=— and &=20".

T B
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Since VS C E(G),1 < |S| < £ —1,d5(S) < CBISI=1e(F) /N holds, we have

Lgi 1 Z d(j)(v) < Léi‘j(iz)jfl N (Cﬁjl(?)> < Cgil 8§22 <2082 4.1)
e(d) = 71 N ~ e(9) = B N ~ < . )

Also, since Yv € V(F), d¥) (v) < 1 and CB*"'e(F)/N > 1, we have

LL Z d(f)(v) < L.(iz)é—l <C52€—2 <&
e(F) -l vV EF) “e(F) P - - ’
By our discussion above, we get
5(F,1) = ! f L dV)(v) <2C8%+C8* < 6. (4.2)
’ e(F) =T s B B

By Theorem 4.2, there exist a collection € of subsets of V(F) and a function fg : V(F)(S™/8) — @ such that
for every H-free subgraph I C G,

(@) there exists T =T (I) C I withe(T) <tN/6 and I C f(T), and

(b)) e(FITT))) < (1—9)e(F).
In condition (a’) we have
o(T) < TN/S = (B/5°)e(G) = (B/€)kn® = un®,

condition (a’) is equivalent to condition (a). To complete the proof, it suffices to show that if / is an independent
set in F (i.e. if I is an H-free subgraph of G) we have e(f(T(I))) < (1 —¢€)e(G). Let D = fg(T(I)). By
condition ('), e(F[D]) < (1 —8)e(F). Hence, if we delete v(F) \ D from F we lose at least de(F) edges of
F. On the other hand, by our assumption about &, each vertex of F lies in at most Ce(F)/e(G) edges of .
Hence if we delete V(F) \ C from F, we lose at most (v(F) — |D|)Ce(F)/e(G) edges of F. Hence, we have

8e(F) < (v(F) — |D)Ce(F)/e(G).
Solving for |D| and using v(J) = e(G), we have
D[ 2 v(F) = (8/C)e(G) = [1-(8/C)]e(G) = (1 - €)e(G).

In other words, we have e(fg(T (1)) > (1 —€)e(G), as desired. O

Remark 4.4. When we apply Proposition 4.3, we can take = k~*(®H) as in Theorem 3.5 and for Erdés-

(@H) f=A"(@H)1 a5 in Theorem 3.7.

Simonovits good H, we can take § = max{k~'n~?¢
We need an estimation lemma from [45].
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Lemma 4.5 ([45]). Let M > 0,5 >0 and 0 < 6 < 1. If a,...,ay are reals that satisfy s =Y. ;a; and
1 <a; <(1—8)/M for each j € [m), then

m
slogs < Z ajloga;j+O(M).
j=1

In what follows, by a colored graph, we mean a graph together with a labelled partition of its edge set. Next,
we prove two similar theorems, by adapting the arguments given in Section 6 of Morris-Saxton [45] to fit our
general balanced supersaturation results. The former applies to all bipartite graphs that contain a cycle and the

latter applies to ErdGs-Simonovits good bipartite graphs that contain a cycle.

Theorem 4.6. Let H be a bipartite graph with h vertices and { edges that contains a cycle. Let A, o be positive
reals such that ex(n,H) < An® holds for every n € N. There exists a constant C such that the following
holds for all sufficiently large n € N and k € R*. Let J(n) denote all the H-free graphs on [n] and G(n,k) the
collection of all graphs on [n] with at most kn® edges. There exists a collection 8 of colored graphs with n

vertices and at most Ck'~"M%H)n® edees and functions
g:3—8 and h:8— G(nk)
with the following properties

(a) Vs > 1 the number of colored graphs in 8 with s edges is at most

o AMO;}H)l s
<Cn> - -exp (Ckl—k(a,H)n(X) )
N

(b) VI €3(n) g(1) C1C h(g(1)) Ugl)

Proof. Note that since H contains a cycle, my(H) > 1. Let I € J(n). We will apply Proposition 4.3 repeatedly
(with B = k=*@H) y = kB /e = (1/e)k'~*@H)) Let Gy = K,. For sufficiently large n, Gy clearly satisfies
the condition on G in Proposition 4.3. Apply Proposition 4.3, with Gy playing the role of G to obtain the
function fg, and a subset T; of I with T} C I C f,(T1) where Ty and fg,(T1) satisfy the additional properties
described in Proposition 4.3. Now, let G1 = fg,(T1) \ 71 and I, =ING; =1\ Ti. Apply Proposition 4.3 again,
with G playing the role of G and I; playing the role of I to obtain the function fg, and a subset 75 of I; with
T C 11 C fg,(T2). We continue like this until we arrive at a graph G,,,(;) with at most kn® edges.

Let g(I) =Ty UT,U---UT,,;), where elements of 7; are colored with color i. Let 8(s) = {g(1) : [g(I)| = s}.
Let h(g(I)) = G,()- Note that & is well-defined (see [7, 45, 51] for detailed discussion). Furthermore, as
g(I) CIC h(g(I))Ug(I), conditions (b) is fulfilled. It remains to show (a). We begin by partitioning S(s)
into sets S, (s) where 8,,(s) = {S € 8(s) : the edges of S are colored with m colors}.

For each m € N, let

K(m) = {k= (ki kn) : kj ER, (1 — )/ ™k <k; < (1 —&)/n* % and k;n* € N}
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And for each k € K(m), let
1 -
Ak) ={a=(ai,...an):ajeN,a; < Ek; M) and Zaj =s}
J

By definition each sequence in k € X(m) corresponds to a potential sequence (Gy, - - - G»,) where e(G;) = kjn®,
as the edges of (1 —&)/~"kn® < ¢(G,) < (1 — €)/n? and by Proposition 4.3, we have e(T;) < k1 Me, H) n“.
Note further that our algorithm returns pairs (G;,T;), such that each sequence of (71, T, ) is uniquely
identified with a sequence (Gy,---G,,). Thus it suffices to only count the choices of 7;. The sequence

a € A(k) corresponds to a sequence of sizes for 7;. Thus, we have that for a fixed m

Sus)< ¥ Y ﬁ("f’?“)

keX (m)acA(k) j=1 \ i

Since for each j € [m]
a; ( /8) 1 Al ,H) (1/8)[( ) j+1k]1 Ao ,H) ( /8)( ) ((x,H)fl)(jfl)klfﬂ,(a,H)_

SO
I £ 7}1 (o H)—1
k] <— ( / ) (o H)-1 I’l/a;( ! .

Hence

A(ot,H)
kin% ekin®\ % n® \ AeH) 1%
Tl <(—
Clj Clj Saj

Applying Lemma 4.5 with M = (1/&)k'"*(@H)p® 1 — § = (1 — e)M*H)~1 the product over j = 1,...,m s

at most )L( )
e s
(C ) AlecH)-T -exp (Clkl—l((x,H)ntx) 7
N

for some C' = C'(H).
Thus,

- O\, Tt
=L L B (T)T enewen)

Note that |K ()| = 0 for values of m > logn as (1 — €)"n* < k. For any fixed m = O(logn), | X (m)| = n®Uoen),
as when picking any k, we have O(n?) choices for each coordinate and O(logn) coordinates to choose for.

O(logn)

For any fixed Kk, similarly, |A(k)| =n . Hence,

i Y JA(K)| =n1e" = exp(O(log®n)).

m=1keX(m)

Since my(H) > 1, A(ot,H) < 1/(2 — ). This imples (2—a)(1 —A) > 1 — a. Since k < n>~%, we have
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k' =A0H) 1@ > s log? n. Hence, the theorem holds by choosing an appropriate C > C'. O

Remark 4.7. The proof of Theorem 4.6 can be adapted for r-partite r-graphs as well. However, as the random

Turdn problem in hypergraphs is not a focus of this paper, we opt to state Theorem 4.6 just for bipartite graphs.

Theorem 4.8. Let H be a bipartite graph with h vertices and £ edges that contain a cycle. Let A, Q. be positive
reals such that ex(n,H) < An® holds for every n € N. Suppose that H is Erdds-Simonovits good. There exists
a constant C such that the following holds for all sufficiently large n € N and k € R™ with

¢(a.H) 2
k < pA (@m)-T /(logn) T (aH)-T |

Let I(n) denote all the H-free graphs on [n] and G(n,k) the collection of all graphs on [n] with at most kn®

edges. There exists a collection 8 of colored graphs with n vertices and at most Ck'~* H)n® edges and

functions
g:3—8 and h:8— G(nk)

with the following properties

(a) Vs > 1 the number of colored graphs in 8 with s edges is at most

A*(a,H)

TFlaH)-17°
(Cn06> T (o, )T exp <Cklfk*(a=H)na) '
s

(b) VI€I(n)g(l) CIChig(l)Ugl).

Proof. Note that since H contains a cycle, m3(H) > 1. Let I € J(n). As in the proof of Theorem 4.6 we will

apply Proposition 4.6 repeatedly. Since H is Erd6s-Simonovits good, we can use

B = max{k~'n0®H) } A (RN and = kB /e = (1/&) max{n~9(%H) 1A (@H)

let Go = K,,. We apply Proposition 4.3, with Gy playing the role of G to obtain the function f¢, and a subset T}
of I with Ty C I C fg,(Th) where Ty and fg,(7T;) satisfy the additional properties described in Proposition 4.3.
Now, let G; = f,(T1) \Ti and I, = ING; =1\ Ti. Apply Proposition 4.3 again, with G; playing the role
of G and I; playing the role of  to obtain the function f, and a subset 75 of I} with T» C I; C fg,(T2). We
continue like this until we arrive at a graph G,,(;) with at most kn* edges.

Letg(l) =TiUT,U---UT,,) , where elements of 7; are colored with color i. Let 8(s) = {g(I) : |g(I)| = s}. Let
h(g(I)) = Gypy- As in the proof of Theorem 4.6, & is well defined. Furthermore, as g(1) C I C h(g(I))Ug(1),
conditions (b) is fulfilled. It remains to show (a). We begin by partitioning S(s) into sets S,,(s) where
Sm(s) ={S € 8(s) : the edges of S are colored with m colors}.

Foreachm € N,

K(m) = {k= (ki kn) : kj ER, (1 — )/ ™k < k; < (1 —&)/n* % and k;n* € N}

ADVANCES IN COMBINATORICS, 2024:3, 26 pp. 20



BALANCED SUPERSATURATION

And for each k € K(m),
1 g
Ak) ={a=(ai,...an):ajeN,a; < Emax{k} A (a,H)’n_q;(a.,H)}na and Zaj =s}
J

So each sequence in k € X (m) corresponds to a potential sequence (G1,---Gy) where e(G;) = kjn*

the edges of (1 —€)/™kn* < e(G;) < (1 — €)/n* and by Proposition 4.3 and Remark 4.4, we have e(TJ) <
% max{k}%*(a’m ,n~0(@H) }n®. Note further that our algorithm returns pairs (G;, T;), such that each sequence
of (Ti,--- T,,) is uniquely identified with a sequence (G1, - - G,,). Thus it suffices to only count the choices of

T;. The sequence a € A(Kk) corresponds to a sequence of sizes for 7;. Thus, we have that for a fixed m

< ¥ ZH(I)

keX(m)acA(k)j
Now, given a k € K(m) and a € A(K), let us partition the product over j according to whether k1 A eH)
n9(%H) (call this type 1) or not (call this type 2). Because |K(m)| = 0 for values of m > log(n) as

(1 —¢&)™n? < k, and some absolute constant C; the product over type 1 j’s is at most

(n?)Xi% < exp (Cl p—0(aH) (logn)Z) <exp (Cl .kl—l*(a,H)na> ’

o(H) 2
where in the last step, we used the fact that k < n*(@H)-T(logn) =% (@ . For each type 2 j, we have

klia’*(a',H) > n—q)(a,H) ((X.,H)

; and thus a; < k n®. From this we get

1
ki < (I/S)Wn/a;*(aﬂm

Hence

A*(a,H)
kin® ekin®\“ n® "\ TaH-14
aj aj; &a;

Applying Lemma 4.5 with M = k! =4 (@H) @ ] _ § — (1 — &)} (@H)=1 the product over type 2 j’s is at most

A*(aH)

T T
(Czn )l -1 exp(Cgk]_’l*(a’mn“),
S

for some C; = C(H).

Thus, letting C' = 2max{C;,C,},

e
‘ < Z Z (C’ OC> H)-1 exp <C/k172’*((x7H)na>

keX(m)acA(k
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And thus,

A*(a.H

COTED VD VD vl ) B (D
m=1keX(m)acA(k)

eA( s

As in the proof of Theorem 4.6, we have Y. Ykex(m) [A(K)| = nOUogn) The theorem thus follows. O

Theorem 4.9 (Restatement of Theorem 2.4). Let H be a bipartite graph with h vertices and { edges that
contain a cycle. Let A, & be positive reals such that ex(n,H) < An® for every n € N. There exists a constant
C =C(a,H) such that

Cn® i ifp<n m,

ex(Gmp)H) <" 7
Cp *eBp®*  otherwise

with high probability as n — oo.

Proof. Since ex(G(n,p),H) is an increasing function of e(G), it suffices to prove the claimed bound in the
case p > nfm. Given such a function p = p(n), define k = piﬁ. Note that k < n?>~%*. Suppose that
there exists an H-free subgraph I C G(n, p) with m edges. Then by Theorem 4.6 with our choice of k there
exist functions g, & on the set of independent sets, with the property g(I) C I C h(g(I)) Ug(I). Therefore, we
know that g(I) C G(n, p) and G(n, p) has at least m — e(g(I)) edges of h(g()). The probability of this event

s at most

) ( " ) P < C”“%”W C'p e ne M‘S.exp (C’k“’l(a?H)na) : (3Pk”a)ms
ss \m—e(S) 5=0 s m—s
<exp <0(1) . (p%na +k1_’l(o"H)na)> . (41)’];”&)”1/2 —0,
as n — oo, as long as
m> C-max{p%n“,klf’l(a’H)n“,pkn“} = Cp%n“,
for some sufficiently large constant C = C(o, H), where we used the definition of k = p_m. O

Theorem 4.10 (Restatement of Theorem 2.5). Let H be a bipartite graph with h vertices and ¢ edges such
that H contains a cycle and is Erdds-Simonovits good. Let A, o be positive reals such that ex(n,H) < An“*
for every n € N. There exists a constant C = C(o.,H) such that

¢(a,H)A* (o,H) 20* (o, H)

Cno—9(a.H) (] 2 prp<np Pam-T .(] @ -1
ex(Gnp). H) < 4" (log(n))* ifp<n (logn)

R .
Cp *laHp% otherwise

with high probability as n — .

Proof. Since ex(G(n,p),H) is an increasing function of e(G), it suffices to prove the claimed bound in the

ADVANCES IN COMBINATORICS, 2024:3, 26 pp. 22



BALANCED SUPERSATURATION

_ $(H)A (a, ) 20" (a,H)

case p >n A@H-T . (logn)¥@h-T Letk=p %@ , Note that by our choice of p,

0(a.H) 2
k < pA a1 /(logn) (o, H)—T |

Suppose that there exists an H-free subgraph I C G(n, p) with m edges. Then by Theorem 4.8 with our choice

of k there exist functions g,/ such that g(I) C G(n,p) and G(n, p) has at least m — e(g(I)) edges of h(g(I)).

The probability of this event is at most

A*(a,H) s

o C'k\ A (o) o / S‘a) 1 2*(a,H)—1 o mes
Z( kn ) ey (Cp et exp (C,kl_mﬂ)na)(spkn )
ios \m—e(S) 5=0 § m—s

A*(aH) 1 4pkn® m/2
<exp (001): (o FH e - Fanye ) ()T,

as n — oo, as long as

A (a,H)— A (a,H)—1
m > C-max{p “ran @ = aH) o pep®} = Cp A p®

1
for some sufficiently large C(ea, H), where we used the definition of k = p~ &),
As mentioned earlier, Theorem 4.10 implies Morris and Saxton’s result on Cyy.
Corollary 4.11 ([45]). For every { > 2, there exists a constant C = C({) > 0 such that

CnlJrl/(ZEfl)(]Og(n))Z if p< n*(f*l)/(%*l) . (10gl’l>2€

CX(G(}L p)a CZZ) <
Cp'/tpt+1/t otherwise

with high probability as n — oo.

Proof. It is known that Cy is ErdGs- Simonovits good with oc =1+ 1/¢. Apply Theorem 4.10 with H = Gy

and o = 1+ 1/¢, noting that 1*(&,Cy) = 7 L (o, H) = (2/ 1) The corollary then follows directly.
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