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ARTICLE INFO ABSTRACT

Keywords: This paper investigates an interference-aware joint path planning and power allocation mechanism for a
Apprenticeship learning cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment. The UAV’s goal is to fly
Cellular-connected drones from an initial point and reach a destination point by moving along the cells to guarantee the required quality

Inverse reinforcement learning
Path planning
UAV communication

of service (QoS). In particular, the UAV aims to maximize its uplink throughput and minimize interference
to the ground user equipment (UEs) connected to neighboring cellular base stations (BSs), considering both
the shortest path and limitations on flight resources. Expert knowledge is used to experience the scenario
and define the desired behavior for the sake of the agent (i.e., UAV) training. To solve the problem, an
apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning
and deep reinforcement learning (DRL). The performance of this method is compared to learning from a
demonstration technique called behavioral cloning (BC) using a supervised learning approach. Simulation and
numerical results show that the proposed approach can achieve expert-level performance. We also demonstrate
that, unlike the BC technique, the performance of our proposed approach does not degrade in unseen situations.

1. Introduction secure, and reliable communication [15-23]. Traditional cellular in-
frastructures, designed primarily for terrestrial UEs, need significant
The rapid advancement of unmanned aerial vehicles (UAVs) has modifications to serve aerial UEs effectively [24-27]. Advanced tech-
spurred extensive research in both academia and industry. UAVs are niques such as massive multiple-input multiple-output (mMIMO) tech-
being deployed in a variety of applications, including cargo delivery, nology and beamforming algorithms have been proposed to enhance
search and rescue (SAR), aerial imaging, disaster monitoring, surveil- interference management and improve signal targeting. These methods
lance, and public safety [1-8]. These versatile applications leverage aim to direct the signal towards the intended receiver and minimize
unique UAV capabilities such as a wide ground field of view (FoV), interference with other users, thereby ensuring reliable communication
3-dimensional movement, fast deployment, and agile response. One sig- for aerial UEs [28-30].

nificant area of interest is drone-assisted communication, where UAVs
act as aerial base stations (BSs) or flying access points (APs) to support
terrestrial user equipment (UE) connectivity, particularly in disaster
relief scenarios. UAVs can extend cellular coverage and improve con-
nectivity, and they can relay information between UEs and neighboring
BSs, enhancing the overall communication infrastructure [9-14].

As UAV technology evolves, their integration into cellular networks,
including 5G and beyond, presents several challenges. These challenges
include interference management, spectrum management, quality-of-
service (QoS) management, frequent handovers, and ensuring robust,

Most existing research employs model-free reinforcement learn-
ing (RL) methods, such as temporal difference learning, to address
complex issues like interference and path planning [31-46]. These
methods, while powerful, often struggle with dynamic and complex
environments where problems are non-convex and computationally
intensive. The effectiveness of RL methods depends heavily on the
definition of the reward function, which establishes the relationship
between the Markov Decision Process (MDP) environment, Q-action
values, and optimal policy learning. As the complexity of the problem
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increases, defining a comprehensive reward function becomes chal-
lenging, leading to suboptimal policies. Furthermore, in real-world
scenarios, defining a reward function that captures all aspects of the
problem is not always feasible, resulting in less meaningful comparisons
with other methods.

1.1. Motivation

Traditional RL approaches face significant hurdles in dynamic and
complex environments due to the difficulty of formulating comprehen-
sive reward functions. This often results in suboptimal policy outcomes,
especially when dealing with non-convex problems. Moreover, most ex-
isting methods do not effectively leverage expert knowledge, which can
be crucial for developing more robust and adaptive UAV path planning
and power allocation strategies. With the rise of open-source software,
simulators, and emulators such as Network Simulator-3 (NS3) [47],
srsLTE [48], OpenAirlnterface [49], and others, it is now possible to
generate optimal behavior for an agent in a simulated environment
with expert assistance. This data can be used for the agent to learn
optimal behavior through imitation learning (IL), learning from demon-
stration (LfD), or apprenticeship learning (AL). In [50], the authors
examined a disaster relief scenario where a UAV assists terrestrial UEs
in scheduling packet deliveries to neighboring BSs using an IL solution.
The authors implemented a supervised learning solution in the form of
a behavioral cloning (BC) approach to mimic the expert’s behavior in a
similar situation. BC typically does not consider any reward functions
and relies solely on visited states and actions, with the agent mindlessly
following the expert. If the expert makes incorrect decisions, the agent
may replicate those errors. Moreover, suppose the state visited by the
agent has never been experienced by the expert. In that case, the agent
cannot take appropriate action since that state was not considered in
the optimal learned policy.

1.2. Novelty and contribution

To overcome these limitations, we propose a novel approach based
on apprenticeship learning via inverse reinforcement learning
(IRL) [51,52]. This method leverages expert-generated data to recon-
struct optimal reward functions, enabling the UAV to learn effective
policies without needing a meticulously defined reward function. By
employing deep Q-networks (DQN), our approach demonstrates supe-
rior performance in various scenarios, including those not encountered
during training. Our significant contributions are:

» Novel Problem Formulation: We present a comprehensive formu-
lation of the joint path planning and power allocation problem
for a cellular-connected UAV. The objective is to minimize uplink
(UL) transmission interference to terrestrial UEs while maximiz-
ing the UAV’s UL throughput and signal-to-noise ratio (SNR). This
formulation considers multiple factors such as UAV transmission
power, path planning, and the density of terrestrial UEs, ensuring
a holistic approach to the problem.

Open-Source Simulator: We develop an open-source simulator to
generate expert trajectories and behaviors in a controlled envi-
ronment. This simulator is fully object-oriented and customizable,
allowing users to adjust parameters such as the number of cells
and UE density. A graphical user interface (GUI) visually repre-
sents the UAV’s interaction with the simulation environment. This
tool not only aids in training but also serves as a valuable resource
for future research.

Apprenticeship Learning Framework: We design an apprentice-
ship learning framework using IRL and deep IRL. This approach
analyzes expert behaviors to derive an optimal reward function,
which is then used to generate effective policies for the UAV. The
framework utilizes the strengths of Q-learning and DQN to handle
both simple and complex scenarios effectively.
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+ Comprehensive Performance Evaluation: We conduct a thorough
evaluation of our apprenticeship learning approach, comparing
it with alternative methods such as behavioral cloning, shortest
path, and random path strategies. Our results demonstrate the
robustness and effectiveness of our approach in both familiar and
unseen scenarios. We show that our method can achieve expert-
level performance and maintain its robustness in dynamic and
unpredictable environments.

Furthermore, our method enhances the decision-making capabilities
of UAVs in urban air mobility applications, where safety and adapt-
ability are critical. By balancing multiple factors, such as throughput,
coverage, energy consumption, and interference, our approach ensures
reliable and efficient UAV operations. This has significant implications
for real-world applications, particularly in densely populated urban
areas where UAVs must navigate complex environments.

1.3. Organization

The rest of this paper is organized as follows. Section 2 reviews the
related works regarding the cellular-connected UAV for similar prob-
lems and approaches. The problem definition and the system model are
discussed in Section 3 with all related assumptions. Section 4 provides
background information on inverse RL approach. Section 5 introduces
the apprenticeship learning via IRL using both Q-learning with linear
function approximation and Deep Q-Network. Section 6 evaluates the
convergence and other metrics and parameters using our designed
simulator. Conclusions and discussions are summarized in Section 7.

1.4. Table of notations

Table 2 shows all the parameters and notations used in this study
in both the system model and methodology.

2. Related works

Investigating cellular-connected UAVs, we delve into prior research
tackling various challenges such as interference management, power
allocation, task allocation, path planning, etc. These problems were
tackled using both centralized and distributed approaches [30,35-44,
50,53-60]. In the context of UAV operations, autonomous navigation
in unfamiliar environments stands out as a crucial task. A vital aspect
of this is path planning, which essentially means figuring out the best
route from the starting point to the desired destination while avoiding
collisions. These path planning methods can be broadly categorized into
two groups: those that rely on conventional optimization techniques
and those that leverage artificial intelligence (AI) and machine learning
(ML) to identify optimal routes.

2.1. Conventional optimization solutions

Conventional methods have primarily focused on optimization tech-
niques to address UAV-related challenges:

2.1.1. Interference and power coordination

In [56], the focus was on addressing the complexities of inter-cell in-
terference and power coordination in the context of cellular-connected
UAVs. The authors tried to solve the problem of inter-interference
minimization using a centralized approach. The authors assumed a
central point exists to collect global information for the optimization
problem. The challenge is defined as a non-convex optimization prob-
lem. Hence, the authors used a successive convex approximation (SCA)
to solve the problem. They obtained a sub-optimal solution for this
approach. Later, the authors proposed a decentralized approach by only
using local information. While the literature shows significant results,
traditional path-planning algorithms have limitations in complex and
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Table 1
Literature review for cellular connected UAV trajectory planning.
Ref. Objective Method Interference Throughput Power
[37]1 Minimize the weighted sum of mission completion time DDQN v X X
and communication outage duration
[38] Minimize UAV mission time and disconnection while RL-TD v X X
ensuring cellular network connectivity
[39] Minimize fuel consumption and distance to the target DRQN X X X
point
[40] Minimize distance to target without collisions A2C X x v
[41,42] Maximize energy efficiency, minimize latency, and reduce DRL-ESN v v v
ground network interference
[43] Minimize travel distance, maximize connection quality Heuristic algorithm X v X
[44] Maximize UAV data collection within energy and HAS-DQN v v v
coverage limits
[56] Maximize weighted sum-rate for UAV and ground users, SCA v v v
considering power and cell associations in uplink
[57] Minimize propulsion energy while ensuring required SCA X X v
sensing resolutions on landmarks
[58] Minimize UAV mission time while meeting connectivity Iterative alg. and graph X v X
requirement theory
[59] Minimize UAV Mission Completion Time while satisfying Convex opt. and graph X v X
the SNR constraint theory
[60] Minimizes disconnection duration with reduced Approximation solution X v X
computational complexity based on dynamic
programming
[61] Maximize UAV’s penetration capability in dense radar PPO v X v
environments
[62] Minimize energy consumption and execution latency MARL X X X
[63] Maximize system utility Soft Actor-Critic (SAC) X
[64] Minimize content retrieving delay and maximize content Multi-Agent Proximal 4 v X
hit ratio Policy Optimization
(MAPPO)
[65] Minimizing UAV operation energy, sensing power, and Multi-Agent Deep X X X
reporting power Deterministic Policy
Gradient (MADDPG)
[66] Maximize system throughput and minimize latency PPO and DQN v v v
This work Maximize UAV throughput, minimize interference, and Apprenticeship learning v v v

jointly optimize power allocation and path planning

via inverse RL - DQN

dynamic environments. Therefore, recent studies utilize AI approaches
to investigate optimal solutions in complex environments.

Moreover, [57] addresses the path planning problem by transform-
ing the optimization problem into a convex form. The solution involves
employing successive convex optimization, and block coordinate de-
scent techniques. Furthermore, [58] achieves path planning through
an iterative trajectory optimization algorithm. It incorporates graph
theory to address all UAV-BS associations and chooses the most suitable
candidate based on topological relationships. Also, in [59], the authors
address the trajectory optimization challenge in a cellular-connected
UAV scenario, ensuring continuous wireless connectivity with a ground
base station (GBS). They employ convex optimization and graph theory
to introduce an algorithm to approximate a UAV trajectory planning
solution. In another study [60], authors introduce a dynamic program-
ming method to optimize the UAV trajectory, considering an endurance
constraint. While their approach provides an approximate solution, it
involves higher computational complexity.

2.2. Al based solutions

Al and ML approaches have been employed to overcome the lim-
itations of conventional methods, offering more flexibility and adapt-
ability. Recent studies such as [37-44] model cellular-connected UAV
controlling challenges as an MDP optimization problem, then utilized
RL based approaches to find an optimal solution. However, these
methods often struggle with scalability issues and extensive training
data requirements.

2.2.1. Reinforcement learning approaches

Authors in [37] considered a scenario where a cellular-connected
UAV aims to finish its task and be covered by the ground cellular
network. They used a dueling double deep Q-network (DDQN) and RL
for simultaneous navigation and radio mapping, enhancing the UAV’s
aerial coverage while minimizing the timeout probability (P,,). Sim-
ilarly, [38] defined a path planning problem for a cellular-connected
UAV to minimize its mission completion time and maximize the con-
nectivity probability to the cellular BSs. They modeled the problem in
a MDP environment and used a temporal difference (TD) approach to
find the optimal policy for path planning optimization. [39] utilized
a modified Deep Recurrent Q-Network (DRQN) algorithm combining
Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN) to improve learning and action selection strategies for UAV
path planning. They designed a reward function incorporating domain
knowledge such as fuel consumption and distance to the target point.
Authors in [40] employed an Advantage-Actor Critic (A2C) RL algo-
rithm to define a path planning solution for UAVs. Furthermore, [41,
42] presented a deep RL algorithm incorporating echo state network
(ESN) cells. UAVs optimized energy efficiency, reduced wireless trans-
mission latency and interference, and minimized the time needed to
reach their destination using ESN cells.

2.2.2. Deep RL and heuristic approaches

Authors in [41,42] integrated deep RL with echo state network
(ESN) cells, optimizing energy efficiency and path planning. How-
ever, these methods face convergence issues and require extensive
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Table 2
Notation descriptions.
Notation Description Notation Description
% Set of all ground users (UEs) w Path association vector
Uy Set of all ground users associated to the main BSs 0 Cell association vector
Uy Set of all UEs associated to the neighbor BSs T Throughput threshold
By Set of main BSs N State vector in the RL approach
By Set of neighbor BSs A Action vector in the RL approach
B Bandwidth P, Transition probability
u, = (x;,¥,,2;) UAV’s longitude, latitude, and altitude y Discount factor
Vv UAV’s pitch speed R(s) Reward function
p UAV’s taken path based on locations, i.e., /; w Reward function’s weights
L Set of all locations s.t. /; € £ B(s) Features vector
d,, Distance between locations a and b 7(S) Next action policy
Shi SNR received at BS b at location / V7(s) Policy value at state s
f Center frequency u(s) Feature expectation value
D, Received throughput at BS b, D Hyper distance
P,,”_, UAV’s transmission power O(s,a) Q-Action value at state s
hy, Channel gain between the UAV and the BS b, 0 Stochastic Gradient Descent weights
G, Antennas gain between the UAV and BS b, MSE Mean Squared Error
N, Noise at the receiver T Tuple of states-actions trajectories

training. [43] presented a heuristic algorithm for UAV path planning
while maintaining Ground Base Station connectivity. They simplified
the problem into a Traveling Salesman Problem (TSP) and employed
a combination of A*, Genetic Algorithm (GA), Simulated Annealing
Algorithm (SAA), and RL. [44] presented the Hexagonal Area Search
(HAS) algorithm integrated with a multi-agent DQN, adeptly addressing
collision issues among UAVs.

2.2.3. DRL-based approaches for joint optimization

Authors in [61] proposed a DRL-based approach to jointly optimize
path planning and jamming power allocation for UAVs aimed at sup-
pressing netted radar systems. Using the Proximal Policy Optimization
(PPO) algorithm, the UAV’s trajectory and jamming power are dynam-
ically adjusted to balance stealth and radar disruption, significantly
improving UAV serviceability and mission success rates. [62] developed
a reinforcement learning-assisted framework for multi-UAV task alloca-
tion and path planning in IIoT applications. The multi-agent reinforce-
ment learning (MARL) algorithm enables efficient, conflict-free path
finding and task distribution, showing superior performance in complex
industrial settings. [63] proposed a DRL-based scheme for priority-
aware path planning and user scheduling in UAV-mounted MEC net-
works. The utility maximization problem, which optimizes both the
UAV’s path and user offloading strategy, is effectively addressed by the
DRL-based method, leading to improved system utility. [64] introduced
a DRL-based resource allocation and trajectory planning framework
in NOMA-enabled multi-UAV collaborative caching systems in 6G net-
works. This approach learns to optimize resource distribution and UAV
paths in real time, significantly improving resource utilization and data
throughput. Additionally, [65] proposed a multi-agent DRL approach
to optimize UAV trajectory, scheduling, and access control in UAV-
assisted wireless sensor networks, improving energy efficiency through
hierarchical learning that reduces action and state spaces, enhanc-
ing learning stability and sensing performance. Moreover, the authors
of [66] utilized PPO and DQN algorithms to jointly optimize UAV
positioning and radio spectrum resource allocation, aiming to maximize
cumulative discounted rewards and effectively address the non-convex
optimization challenges in dynamic UAV wireless networks.

While traditional optimization methods offer precise mathemati-
cal solutions, they often lack the flexibility and scalability needed
for dynamic environments. Common Al-based approaches, such as
RL, depend heavily on well-defined reward functions, which can be
challenging to formulate in complex, multi-objective scenarios. Our
proposed approach uniquely addresses these challenges by leveraging
apprenticeship learning through IRL combined with both Q-learning
and DQN. Unlike conventional RL methods that require meticulously
crafted reward functions, our method learns the optimal policy from

expert-generated experience data, allowing the UAV to replicate com-
plex decision-making behaviors observed in successful missions. This
is particularly advantageous in urban air mobility applications, where
safety and adaptability are paramount. By balancing multiple objectives
such as throughput, communication coverage, energy consumption,
and interference, our IRL-based approach ensures robust performance
in highly dynamic environments. The assumptions of the related works
are summarized in Table 1.

3. System model

Consider a single cellular-connected UAV with different payloads
such as sensors, GPS, and cameras. The equipment collects data and
sends it to a fusion center for further processing. We consider an
orthogonal frequency-division multiple access (OFDMA) scheme for the
wireless communication link, which divides the total cell bandwidth
B into K resource blocks (RBs). The UAV utilizes an uplink (UL) to
transfer data to the ground base station (BS). Fig. 1 depicts the system
model. This figure shows that the UAV’s operation field is divided
into multiple non-overlapping hexagonal cells, each served by one BS,
which services several terrestrial UEs with random movement. The UAV
can fly over these cells at a fixed height to reach its destination. The
BSs are categorized into two groups: (1) the main network to which
the UAV is linked, and the BS provides the required bandwidth for
the UAV’s UL. UAV’s transmission does not interfere with the com-
munication of other terrestrial UEs in the same cell; (2) The neighbor
BSs that the UAV does not communicate with. The term ’Neighbor
BS’ encompasses all adjacent base stations that may experience UAV
interference. However, the UAV’s transmission causes interference to
the neighbor BSs and their UEs when the UAV uses the same RB
with them. We assumed the neighbors’ UEs could not interfere with
the UAV’s transmission since the transmission power was not strong
enough [42]. Hence, the number of terrestrial UEs in neighbor cells is
critical because they are affected by the UAV’s interference. Here, our
design considers the UAV’s interference value on individual UEs. The
set V" of U ground UEs consists of two groups: Vy; C V" and Uy C U,
which are sets of UEs in the main and neighbor networks, respectively.

The base stations in the main and neighbor networks are shown as
b, € By and b, € By, respectively. The UAV has a predefined initial
source and destination. Its task is to reach the destination while keeping
its communication with a legitimate base station, b,,. The UAV and
other base stations are defined in a hexagon grid area where the ground
BSs are fixed, and the UAV can move in six directions (North, North
East, South East, South, South West, North West) at a fixed height.
While near the zone’s edge, the UAV cannot fly off the grid. For the sake
of simplicity, the BS is assumed to be in the center of each hexagon.
The UAV’s location is known based on the onboard GPS sensor, u; =
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Legends

@ @

Neighbor
UE

Main UE

Main Neighbor
BS BS

Fig. 1. A sample system model showing two different possible paths of the UAV from
the source to destination. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(x;, ¥, 2;)- The UAV changes its location with a constant pitch speed
velocity, V, 0 < V <V, where V is the maximum available pitch speed
for the UAV. Also, the UAV is assumed to change its direction using the
yaw action, not rolling. The UAV’s path from the source to destination
is shown as p = (I, 1,, ..., I;), which the first location is the source cell,
I; = S and the last one is the destination cell, /, = D. All locations are
subsets of the global location set £, (/;,/,,...,l;) € L, where L is the
grid size or the number of hexagons. The UAV’s path length is not fixed,
but if it cannot reach the destination in a certain number of movements,
the UAV’s operation may fail due to battery limitations. Based on the
literature [67], the grid area is assumed to be small enough for the
UAV’s location to be assumed constant inside each hexagon.

3.1. Wireless communication model

Buildings and obstructions impact on signal propagation from the
air to the ground. Depending on the environment, this connection may
be a line of sight (LoS) or a non-line of sight (NLoS) link. Accordingly,
the path loss of LoS and NLoS links of the UAV at location / and BS
b,, from the primary network on a sub-6 GHz band can be described as
follows [68]:

6,27 (dB) = 20logyg(dy, ;) +2010g o(f) = 147.55 + 5. €8]
gglmLfs (dB) = 201log o(dy, ;) +2010g1o(f) = 147.55 + o> (2)

where / is the UAV’s location or the center of the cell in which the
UAV is currently located. f is the center frequency and d,, , is the
distance between BS b,, and the UAV located at location /. Also, #; g
and .5 are LoS and NLoS links attenuation factors, respectively. The
probability of having a LoS link depends on environmental factors. In
our model, for UAV to the ground link, the LoS probability is given by
the proposed model in [68]:

1

1+c exp (—c2<l”ﬂ tan"(di) - cl>>
byl

Pros(dp, 1) = 3
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where H represents the UAV height, and ¢; and ¢, are environmental
dependent permanents. Accordingly, the total path loss of UAV at
location / and ground BS b,, can be defined as

LoS NLos
Sot = Pros Syo7 + (1= Pros) 6 7- @

The SNR for the UAV UL data transmission to the main BS b,, is
written as @, ;:
Py kb, 1k

Dy, 1k = — N (5)

where P, ;. is the transmission power that the UAV allocates to each
RB and sends its data to BS b, at location 1. h, ;, = G,,m,,,klo_gbmv’/m
indicates the channel gain between the UAV and the main BS b,, based
on the path loss defined in (4), where G, ,, denotes the antenna gain
values of the UAV and the BS (b,,). While we assumed a simplified
model in this study to calculate the gain value, in the real-world sce-
nario, the antennas of the BSs are down-tilted to have better coverage
for the ground UEs and reduce the effect of inter-cell interference.
Hence, the UAV is usually served by the side-lobe antenna of the ground
BS. N, is the noise power spectral density at the main receiver BS
b,,. Based on the SNR definition in (5), and by considering B, as the
bandwidth of RB k, the throughput rate for the UAV at location / and
based on the connected BS b,, can be written as:

K
Ty =D, Bilogy(1+ @, ;0. )
k=0

The UAV may interfere with the terrestrial UE transmission in the
neighbor networks. This interference depends on the UAV’s transmis-
sion power, quality of the UAV’s channel to the neighbor BS b5, and
the probability of allocating the same resource block in the UAV and
terrestrial UEs. Due to minimum knowledge sharing, the UAV is blind to
the knowledge of UEs in the neighbor networks. Therefore, we assume
that at least one UE in neighbor cells is assigned with the same resource
block. Accordingly, the UAV’s interference in the uplink of a UE u €
Uy C U at BS b, and by considering K, as a set of allocated RBs to
UE u, will be [42]:

By 1Ky
I/I;,,,[ = z Z Pbm,l,khb,,,l,m (@)
m=1 k=0

where P, , is the UAV’s transmission power in RB k € K, when it was
transmitting to the main BS b,, € By, at location / on the same RBs of
UE u. Also, h,_;, indicates the channel gain between the UAV and the
neighbor BS b,. This interference rate is an argument that affects the
terrestrial UE u SINR and throughput rate:

Pu hu

b,''b,
=T N . N , ®
! b0 T N0

T[;‘n = Blog,(1 + @Zﬂ), 9
where P} is the transmission power for UE u. For the sake of simplicity,
all UEs’ transmission powers are assumed to be constant. Also, h}
indicates the channel gain between the UE « and the BS b,.

3.2. Objective definition

Based on the defined system model, the UAV’s objective is to fly
from the source point and reach the destination point based on the BSs’
locations and the density of the UEs in neighbor cells to minimize the
interference level it causes on the neighbor terrestrial UEs, maximize
its UL throughput by finding an optimal transmission power value, and
the shortest path between the source and destination.

The path association vector based on the hexagons is shown as @
that consists of elements @, , € {0, 1}. The value 1 means that the UAV
has moved from location a to b, and 0 means otherwise. The UAV has to
find the optimized path association vector from the source to destina-
tion w*. To meet these requirements, the UAV has to find the optimal
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transmission power P, | at each location / where the UAV is associated
. . om . . . PR
with tower b,,, which is the main base station. The optimal transmission
power P, | for transmission to base station b,, can be chosen from the

transmission power range Pb,,,,/ € [Puin»

of discrete values. Py ; should meet the satisfactory throughput rate

P,.x] which includes a vector

T, 1> T, where T is the minimum acceptable throughput. The optimal
power vector during the UAV’s flight is shown as P*. To find Pb*m’l, the
UAV has to find its BS-connectivity association vector. This connectivity
vector, g, ; € o, shows whether the UAV connects to BS b, at location
1. The values for the connectivity vector are {0, 1}.

The UAV has to find the best BS connectivity vector ¢* based on
other optimization variables in this problem. Since the UAV does not
cause any interference on the UEs in its current cell and it can interfere
with other neighbor UEs in neighbor cells, the optimal variables such as
w*, P*, and ¢* are chosen to minimize the interference to neighboring
terrestrial UEs. In a nutshell, this optimization problem can be written
as:

Iy 1Byl I I
Ignin a Z Z IZ,,,/ +p Z Z Wy ps
@0 I=l} n=1 a=l; b=l
Ir |1Buml
+6) Y oy (10a)
I=l] m=1
S't~a Pmin < Pbm,l < Pmax’ bm € BM’ (1Ob)
w,, €{0,1}, 0p,.1 € {0,1}, l,a,bE L, (10c)
I,
> Ty0 2 04,7 (10d)
I=1,
[Bml Iy
> os,i— Y, s =0, (10e)
m=1 b=l ,b#a
I
Z wg,=1, a#s, (109
a=l|
I
Y wp=1  b#ED, b#S, (10g)
b=1,
I Iy
Z Wap ~ 2 =0, (10h)
a=ly,a%b k=Iy kb
I
Y w1 (10i)
a=ly,a#b

where parameters a, #, 5 serve as weight coefficients to represent the
relative importance of different objectives—uplink interference on UEs,
path association vector, and BS connectivity vector, respectively. The
optimization problem in (10a) aims to minimize the interference level
on neighbor network UEs and BSs; also, it minimizes the UAV’s path
length from the source to the destination and selects the main BSs for
the communication, which imposes less interference to neighbor net-
works. Egs. (10b) and (10c) are the optimization problem constraints
regarding the UAV’s transmission power, the UAV’s path between
different hexagon cells, and the UAV-BS connectivity vector. Eq. (10d)
guarantees that the throughput rate for the UAV-BS UL at each location
I when it is associated with BS b,, is greater than a predefined threshold
T, Eq. (10e) guarantees that the UAV is only connected to one main BS
b,, at each location / on its path to the destination. Eq. (10f) claims that
the UAV’s path starts with the source point .S and the UAV only visits
the source one time, (10g) claims that each UAV’s path is ended at the
destination D, (10h) guarantees that if the UAV visits any midpoint
such as b between the source .S and destination D, then it will leave
that point and fly to another cell. (10i) claims that each hexagon b on
the UAV’s path will be visited at most once.

Fig. 1 shows a sample scenario of this system model. The UAV
chooses two paths from the source to the destination; the green one is
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the optimal path considering the density of the terrestrial UEs since the
neighbor cells have lower densities, and the UAV’s UL communication
has less interference on the terrestrial UEs. We should note that the
UAV can allocate an optimal value for the transmission power in
each cell to control the trade-off between the throughput satisfaction
threshold and the level of interference. On the other hand, the orange
path shows a route in which the neighbor cells carry a more significant
density regarding the number of UEs, and as a result, the UAV faces a
more strict restriction on its transmission power.

This optimization problem is categorized as a mixed integer non-
linear one, which is hard to solve. This study aims to consider an
autonomous approach as a solution for the UAV to find the optimal val-
ues for the UAV’s transmission power, path, and cellular connectivity
vector. This multi-parameter problem involves a huge state-space set,
which is overwhelming when solving and finding the optimal values
in a reasonable amount of time. To investigate the possible solution
for this problem, we utilize an apprenticeship learning approach and
use the expert’s knowledge to expedite the solving problem and better
understand the optimal reward function.

4. Background on IRL

Many artificial intelligence and robotic applications consist of au-
tonomous agents such as ground robots, UAVs, and self-driving cars.
These agents usually operate in an uncertain and complex environment
where decision-making is cumbersome and necessary.

In multi-objective reinforcement learning problems, where the agent
deals with various and possibly conflicting objective functions to per-
form tasks of different natures, it is not always possible to define
a reward function that optimally captures all the objectives (10a)—
(10i). The problem studied in this paper also involves multiple actions,
such as movement and level of transmission power, with different
natures and behaviors. This problem makes it more intense for the
agent to understand the reward function meaningfully. Usually, in
these situations, an expert with enough experience in the domain
and field can demonstrate appropriate behavior to the agent. These
demonstrations may save some training time while assisting the agent
in determining the best reward function based on the most optimal
presented behavior. This type of learning is referred to as Learning from
Demonstration (LfD) or Programming by Demonstration (PbD), and it
is also known as imitation learning (IL). IL techniques are categorized
into two branches: (i) behavioral cloning [69] and (ii) apprenticeship
learning via IRL [70,71].

In BC, the agent blindly mimics the expert or teacher without con-
sidering the expert’s optimality, which means that if the expert makes
a wrong decision, the expert may follow that. Usually, IL problems are
solved using supervised learning approaches. However, if the expert
has yet to experience the state the agent observes, the learned policy
may not achieve an optimal outcome. This issue can be solved by an
approach called Data Aggregation (DAGGER) [72]. DAGGER aims to
collect expert demonstrations based on the state distribution observed
by the agent. In this case, the expert should always be available, which
is impossible in all scenarios and applications.

On the other hand, apprenticeship learning via IRL tries to find
the expert’s hidden desire (reward function) from the demonstrations
to find the optimal policy [51,73]. This paper utilizes apprenticeship
learning via IRL to solve the problem proposed in Section 3. Similar
approaches such as BC, Q-Learning, and Deep Q-Network are also
implemented to evaluate the numerical performance.

5. UAV’s self-organizing approach
5.1. Apprenticeship learning via inverse reinforcement learning

The problem definition of this study can be shown as a sequen-
tial decision-making process that can be posed in the (finite-state)
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Fig. 2. Difference between reinforcement learning and Inverse RL for apprenticeship learning (SARSA: State-action-reward-state-action, SVM: support vector machine).

MDP. The reward function is typically provided in MDP problems,
allowing the agent to determine the optimal transition probabilities,
value function, and policy. The agent can utilize the optimal policy
for decision-making in every state. However, assuming that the reward
function is present in every complex system model is overly optimistic,
and manually obtaining the reward function is challenging.

The existence of an expert may make it possible to have a set of tra-
jectories and demonstrations to learn the optimal behavior. The expert
could be a virtual agent that operates on a high-performance computing
machine but cannot be utilized onboard a UAV. In this study, the
term “trajectory” refers to a set of states and actions rather than the
UAV’s trajectory movement or path. The IRL aims to re-construct the
unknown reward function R(r) from the expert demonstrations. Later,
this obtained reward function can be used in an RL approach to find
the optimal policy. However, this problem is “ill-posed” since multiple
reward functions exist for a unique and optimal policy.

Here, we assumed that the expert is trying to optimize an unknown
reward function, which this unknown function can be represented as a
linear mixture of known “features”. Fig. 2 shows the main difference be-
tween a reinforcement learning problem and an apprenticeship learning
via IRL (AL-IRL) problem. The reward function is available in Fig. 2(a),
and the optimal policy is gained based on that. However, in Fig. 2(b),
the reward function is found based on the IRL and the expert data, and
the optimal policy is obtained. Expert trajectories are not the same as
optimal policies; however, they describe optimal behavior.

We assumed that the problem is MDP\R, which shows the MDP
problem without a reward function. This MDP\R consists of a tuple of
(S, A, Pr,y,T), where S, A, and Pr represent the state space, action
space, and transition probability from current state s € S to the next
state s’ € S, respectively. Also, y is a discount factor, and T is a
set of trajectories demonstrated by an expert. The MDP\R tuples are
described as follows:

(1) State

To define the state s € S, we assume that a vector of features ¢ : s
— [0, 11%, where k is the number of features. S represents a finite set
of feature states, S = {¢,;|1 <i < 5}. Each state s € S is displayed with
five feature functions.

* ¢,(s) is the feature that keeps track of the UAV’s distance to
the destination. This feature helps the agent to have a better
understanding of the shortest path.

¢, (s) is the feature that keeps track of the UAV’s hop counts as
its traveled distance. This feature helps the agent to perform its
task in a limited number of hop counts because of UAV’s battery
life constraint.

¢5(s) keeps track of the UAV’s successful task, where the term
“successful” refers to the cases in which the UAV reaches the
destination cell. ¢;(s) behaves like a binary variable, where it
takes the value of “0” if the UAV does not reach the destination
and “1” for reaching the destination cell.

* ¢4(s) is a feature for the amount of received throughput from the
UAV to the designated BS based on the allocated transmission
power and SNR defined in (5) and (6) at each state.

* ¢s(s) keeps the value for the interference imposed on the neighbor
UEs in the neighbor cells.

All feature values are normalized to the range of [0, 1]. This condition
on the reward function is necessary for the IRL algorithm to converge.
Hence, each state can be expressed based on the feature value functions
as,

P(s) = {¢;(s), 1 <i <5} an

(2) Action

A represents the action space, which consists of the UAV’s move-
ment action and the transmission power allocation P. The UAV’s
movement action somehow includes the defined movement variables
w, ¢ in (10a). The UAV chooses both actions autonomously at the same
time.
(3) Reward

Here, the unknown reward function is defined by considering the
feature functions in the state space. The reward function is defined as:

Rs)=w" - §(s), 12)

where, w* are the optimal weights for the features to define the
desirable optimal reward function, w € R¥. To have the convergence
for the IRL, it is necessary to bound the reward function by —1 and
1. Therefore, the weights are also bounded ||w*|| < 1. Based on the
definition in (12) and the defined features, the reward function can be
re-written as:

R(s,a,s") =w’ - ¢(s,), 13)
5
=Y wiy(s.a.5).
i=1

In IRL approaches, researchers have the flexibility to define reward
functions in two main categories: linear and non-linear functions. The
choice between them depends on the problem’s nature and the environ-
ment’s characteristics. In this study, the reward function is specifically
introduced as a linear combination of feature values, ¢(s,), as described
in (13). A linear reward function offers enhanced interpretability,
where the weight of each feature in the linear combination directly
reflects its significance in shaping the agent’s behavior. This trans-
parency proves beneficial for a comprehensive understanding of the
learned policy. Furthermore, the inherently linear nature of this func-
tion contributes to computational efficiency, often leading to quicker
convergence during the training process. Importantly, it is less suscep-
tible to overfitting, facilitating generalization across diverse scenarios.
The pragmatic choice of using a linear function is particularly apt in
scenarios where such a representation effectively captures the essential
relationships between features and rewards. These features make linear
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functions a commonly adopted form for reward functions in IRL meth-
ods, often represented as a linearly weighted combination of reward
features [51,52].

It is worth mentioning that not all feature value functions behave
positively for the reward function. For instance, throughput is en-
couragement, and interference is punishment. The IRL algorithm aims
to find the optimum value for the weight vector, w*, to express the
expert’s behavior for this specific problem. Let us define = as a policy
that maps the visited states to probabilities on the action vectors for the
decision-making process. The value of each policy z can be defined as
an expected value of the summation of discounted reward values based
on the chosen policy:

i=0

E, [Z yw. ¢(si,a,-,s,f)] ,

E[V*s)]=E, [ y"R(si,ai,s;)],

i=0

wE, [z yi¢(si,ai,s;)] , 14)

i=0
=w u(r),

where i is the step the agent or the UAV takes in every episode. u(r) is
defined as a feature expectation value for the policy 7, u(r) € R¥, and
k is the number of defined features.

To find the unknown parameters, w, in the IRL algorithm, different
tools such as feature expectation matching [51,70], maximum margin
planning [74,75], and maximum causal entropy [76] have been pro-
posed. This paper uses the feature expectation matching between the
expert and the learner UAV. The reason is that the behavior of the agent
and expert can be expressed based on different explicit features; hence,
feature expectation matching can be used in this scenario.

We assume that an expert exists who has access to the simulator
environment. The expert has a complete understanding and knowl-
edge of the problem and scenario, which means it considers the UEs’
density, shortest path, throughput, and interference for the sake of
the optimization problem defined in (10a)-(10i). The expert simulates
a finite number of trajectories to show the desired behavior. These
expert behaviors can be saved in terms of trajectories as some vector
of features state ¢(s) and actions a(s) € A. Later, these trajectories can
be used to define the expert feature expectation value by getting an
average over several trajectories as follows:

N

> ), as)
t=0

Jj=1

fp =

Z|~

where N is the number of trajectories and j denotes the index for
each trajectory. This up or u(zy) carries the expert policy for the
demonstrated trajectories.

Claim. The goal is to find a policy =* such that the second-norm distance
between the expert feature expectation and the current policy feature ex-
pectation is less than a threshold ez;. The mentioned policy will meet the
criteria for the value of that policy as well which means the first-norm
distance between the two value functions for the expert policy and learned
policy based on the unknown reward function is less than the same threshold

€IRL-

Proof. The first-norm distance between the expert’s and agent’s value
function is written as,

D= 'E =] -k [v]

s

o0 [s+]
B, [z yiR(si,ai,s;)] -E, [2 yxR(S,.,a,-,s,’.)H,

i=0 i=0

= |w" uer") - w” )|
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< lwll, ||uz*) - atag)||, .
<1 . epp, (16
< €RL-

This shows that finding the optimal weights for the reward function
such that ||u(z*) — ji(zg)ll, < eg;, guarantees that the distance between
the value function for the expert and the optimal policy is less than the
same threshold. [

5.2. Support vector machine problem formulation

To find the weights for the reward function, the authors of [51]
defined the problem as a support vector machine (SVM) problem,
where the aim is to maximize the difference between the value function
for the expert optimal policy and other previous learned policies. In the
SVM problem, this maximization problem is mapped to maximize the
distance between hyperplanes. This SVM problem aims to find a hyper-
distance or margin (D) such that the difference between the expert
value function and all other previously learned policies is D. This SVM
problem can be written as

w () - w )| < 4, a7
w*' |u(z) - inp)] < 4, as

where, i is index of the ith learned policy using the reinforcement
learning approach. To solve this SVM problem, the class for the expert
policy is labeled as “+1”, and all other learned policies from the RL tool

are labeled as “—1”. Based on the defined SVM problem, the distance

between the origin and the expert policy class is m and the distance

between the origin and all other learned policies is ﬁ, hence, maxi-
2

mizing the distance between hyper-planes is equal to minimizing ||w||§.
As a result, (17) can be written as:

min - [lwl (192)
s.t. whyp > 1, (19b)
why, <-1. (19¢)

Since this SVM problem looks like a quadratic programming (QP)
problem, any convex optimization tools or QP solvers such as CVXPY
[77] or CVXOPT [78] can solve this optimization problem. Here, CVX-
OPT is used in Python to find the weights. The objective function of this
optimization, (19a), is to minimize the weights and the variables are the
weights as well. Constraint (19b) is the subject for the expert policy
with the label of “+1” and constraint (19c¢) is the subject for all the
learned policies at different iterations with the label of “—1”. It is worth
mentioning that the algorithm of finding the optimal weight such that
the distance is less than a threshold e, is iterative, and the number
of learned policies is increasing in the QP. Hence, the optimality of the
given solution is crucial to solving this problem. The standard format
of any QP problem looks like the following,

min %xT Px+q'x, (20a)

X
s.t. Gx < h, (20b)
Ax=b. (200)

To match this with our SVM problem (19a), matrices of g, A, and b
are all zeros and matrix P is 2Iy, which I is the identity matrix and
K is the number of features (K = 5 in our problem). The dimension of
matrices G and h changes and increases with each iteration. Then, in
nth iteration for different weights and learned policies, the formats of
G and h are

—up()  —pp?) —up(k)
Gonripy = u,,]:(l) Il,,l:(Z) o, (k) 1)
e (D) oy (D) g, (K)
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-1
-1

h(n+1,1)= R (22)
-1

where Hz, (K) is the kth UAV’s feature expectation based on the nth
learned policy. These matrices of P, ¢, G, h, A, and b map the QP
problem to our scenario defined in (19a), (19b), and (19c¢). Algorithm 1
summarizes the approach of the apprenticeship learning via IRL inside
the loop iteration to find the optimal weights.

Algorithm 1: Apprenticeship learning via IRL algorithm

1 Initialization:
2 Load the simulation environment
3 Load the expert trajectories

N o X
4 Calculate the expert feature expectation jiy = % Z] Zg)y’q&(s{ );
j=1 1=
5 Add some random values to the agent feature expectation for
the first round of optimization
6 while True do

7 Weights = SolveQP(Expert feature exp, Agent feature exp
list);

8 Weights(w;) = Weights / norm;

9 TrainedPolicy(z;) = learner(Weights);

10 Reset the simulation environment;

11 pi(z;, w;) = RunSimulation(z;);

12 Add p;(7;, w;) to the agent feature expectation list;
13 Hyper distance = D = |w” u(x;) — wT ji(z)|;

14 if D < ey, then

15 ‘ Break;

16 end

17 i+=1;
18 end

-

9 Return Weight(w,), u;, r;;

The main loop of Algorithm 1 continues until it reaches a point
where the hyperdistance is less than a threshold and in that case, it
breaks from the main loop and returns the optimal weights (w,), feature
expectation (y;), and the learned policy (x;).

To train a model for the optimized weights of the reward function
and find the optimal policy to evaluate the hyperdistance, learning
methods like RL, especially a temporal difference (TD) learning tool,
must be utilized. These methods find the optimal policy on line 9 of
the Algorithm 1. In this paper, we use two TD methods: the first one is
Q-learning based on linear function approximation, and the second one
is DRL or DQN. The following two sections propose these two tools for
the mentioned problem of apprenticeship learning to learn the policy.

5.3. AL-IRL with Q-learning using linear function approximation

After finding the normalized weights in apprenticeship learning, the
reward function is known for the specific iteration and the problem of
MDPA\R is converted to a MDP problem with the tuple of (S, A, Pr, R,y)
where R is the reward function defined based on the obtained weights,
(12) and (13). The learning policy aims to find a policy that can decide
on an action for the agent at each observed state to maximize the
immediate reward while also considering the future reward. Different
value iteration approaches are available to find this policy [79,80]. We
chose the Q-learning tool to solve this problem [81,82]. In the standard
Q-learning, the updating rule for the Q values is defined based on

0(s,a) < (1 = )0O(s,a) + a[R(s,a,s") +y max Q(s", a")], (23)

where s € S is the current state, a € A is the action chosen based on
the policy or random exploration which changes the agent’s state from
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s to s’, a is the learning rate, R(s,a,s’) is the reward function defined
based on the IRL approach from the previous section. y is the discount
factor considering the future reward (value-iteration or Q(s")). After
updating the Q-values based on different approaches, such as temporal
difference (TD) or Monte Carlo (MC), the agent follows the policy rule
for exploiting greedy behavior. Later, this policy is considered a learned
policy for apprenticeship learning.

7(s) = argmax Q(s, a) . 24)

It is worth mentioning that this Q-updating approach works for
problems with discrete states and actions, such as the grid-world cells
or scenarios. However, the state in this paper is based on the vector
of features ¢(s) based on (11). Because the states are defined as con-
tinuous values from the feature vectors, the Q-learning updating rule
is more challenging to update. The solution to this problem is to find
the Q-value from the defined feature vectors using a linear function
approximation (LFA) tool such as linear regression. This means each
function of Q(s, a) can be defined based on the values of features:

O(s;,a,) =6y +6) ¢1(s,a)+ 6, py(s,a)+ -+ (25)
+0, ¢ (s,a) = 0T P(s,a),

where « is the number of features, and in this paper, five features
are for each visited state. 6, are the weight vectors to find the value
of O(s,a). To find the 6 vectors, we need to use a batch of sample
data to update the values. To solve this linear regression problem, the
stochastic gradient descent (SGD) approach minimizes the loss function
for the difference between the predicted Q-value and the actual value.
The true target value for the Q is obtained based on the Q-value
updating rule, and this value is called Q% (s, a):

Q% (s,a) ~ R(s,a,s" )+ max o', d) . (26)

This Q target is used in the loss function for the SGD:

MWU=%@W&®—Q@®V @7)

= 20" — 4. 0 00
Now, considering the mentioned loss function, the values of the weights
update based on the gradient:

00D = 00 — o ga(L(OD))/00 28
= 00— aga 1050~ 95, 0 /00
=00 — ag[0"(s,a) — (5. a) 0D] . P(s,a) .

The optimal values of the weights are obtained based on different
episodes, visits, and agent exploration. The agent’s exploration and
exploitation process is based on the e-greedy process with ¢ decay over
the episodes. It means that the agent behaves randomly in the early
episodes, and then acts more greedy based on exploitation of Q-values.
At the end of this process, the learned policy (r;) will be used in the
apprenticeship learning to get the latest feature expectation values (y;).
Algorithm 2 summarizes the procedure for policy learning using Q-
learning via linear function approximation for a specific weight of the
reward function. Algorithm 2 finds and returns the learned policy for
the specific reward function. DIST_LIM indicate the UAV’s hop count
limitation based on the UAV’s battery life and flight time limitation is
adopted. In this case, the learned policy is the trained SGD model. The
size of the SGD model depends on the action vector. For instance, in
this paper, the agent has 6 (Mobility) x 6 (Power Allocation) actions
to choose from. Hence, 36 SGD models are the learned policy for
this specific configuration. In the next section, we propose a deep Q-
network instead of the stochastic gradient descent approach for linear
function approximation.
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Algorithm 2: Q-learning algorithm with Linear Function
Approximation

1 Initialization:
2 Load the simulation environment;

3 e=1;

4 while episode < NUM_EPS do

5 distance = 0;

6 Reset UAV();

7 Done = FALSE;

8 while distance < DIST LIM & not DONE do

9 if random < ¢ then

10 ‘ action = random Action;

1 else

12 ‘ action = GetGreedyAction(SGD Model);
13 end

14 Update Location ;

15 Calculate SNR, Interference, Throughput;

16 Calculate Features (¢,(s,a,s’), ..., ¢s(s,a,s"));
17 Calculate immediate reward R(s) = w’ .¢p(s);
18 Q(s") = predict(SGD Model, ¢(s"));

19 if New location is DESTINATION then

20 Done = TRUE;

21 0*(s,a) = R(s);

22 else

23 ‘ hon O*(s,a) = R(s) +y max o', d);

24 end

25 Update SGD Model(SGD Model, ¢(s), O* (s, a));
26 distance+ = 1;

27 end

28 if € > 0.1 & episode > NUM_EPS/10 then

20 € -= 1/NUM_EPS ;

30 end

31 episode+ = 1;

32 end

Return SGD Model;

5.4. AL-IRL with deep Q-network

In the previous section, the solution to find the optimal policy was
based on the Q-learning algorithm using the linear function approx-
imation with stochastic gradient descent. This section uses the DQN
approach to predict the Q-value based on the current features vector
(current state) and the chosen action. Fig. 3 demonstrates the deep
reinforcement learning structure for the apprenticeship learning for the
obtained reward weights based on the inverse reinforcement learning
algorithm.

The optimal policy learning block consists of a deep neural network
with two hidden layers: an input layer with the size of the number
of features for each state and an output layer with the size of all
actions. The numbers of neurons in the hidden layers are 30 and
30, respectively. Both hidden layers utilize the Rectified Linear Unit
(RELU) [83] for the activation layer. The last layer has the linear
activation function since the output of the deep neural networks is a
continuous value for the Q-Action-Value. The structure of this DNN is
demonstrated in Fig. 4.

The training concept for the exploration and exploitation is similar
to Algorithm 2. However, the training process is different, and in
this approach, the training model is based on batch samples. The
batch samples are picked randomly from the replay memory. Also, a
buffer length is considered for the replay memory to keep the data
fresh and pop the old data from the replay. Algorithm 3 presents the
random batch sample training and fitting those data for the model. This

10
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Fig. 3. Deep Q-Network approach for the optimal policy in the apprenticeship learning.

algorithm is summarized since some structures appeared in Algorithm
2. Hence, a few lines are just removed.

Algorithm 3: Deep Q-Network to predict the Q-Action-Value on
batch samples

1 while episode < NUM_EPS do

2 )
3 while distance < DIST LIM & not DONE do

4 )

5 Collect features, actions, reward for the Replay memory;
6 if episode > NUM_EPS/10 then

7 batch = random.sample(replay, BATCH_SIZE) ;
8 for all data in batch do

9 X_train = batch[current feature];

10 if New location is DESTINATION then

1 ‘ 0% (s,a) = R(s);

12 else

13 \ 0*(s,a) = R(s) + y max O(s', a");

14 end

15 y_train = batch[Q7 (s, a)];

16 end

17 model DQN.fit(x_train, y_train);

18 end

19 distance+ = 1;
20 end
21 if € > 0.1 & episode > NUM_EPS/10 then

22 | e-=1/NUMLEPS;
23 end
24 episode+ = 1;
25 end

26 Return DQN Model;

To train the model and find the optimal weights for the neurons,
the Mean Squared Error (MSE) [84] is used as the loss function for the
optimization. To perform the stochastic optimization on the MSE, an
optimizer called “Adam” is used to solve the problem for each batch of
collected data [85]. The MSE loss function for a batch with » samples
is shown below

Y (O (s,a) — OCs, @))?

n

MSE = (29)

where Q(s, a) is the predicted value based on the current features vector
and Q7 (s, a) is the actual values (target value) for the Q-value updated
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Fig. 4. Deep neural network structure used in the DQN approach to predict the Q-Action value based on the features vector.

based on (26). n is the number of samples in each batch samples for
the training.

5.5. Imitation learning: Behavioral cloning

This section proposes the model used in this paper for the BC.
Usually, supervised learning tools can obtain the model for imitation
learning to mimic the expert’s behavior [86]. However, the BC ap-
proach only has the solution for those states the expert observes. If
the agent or UAV examines a state that the expert has never seen,
the outcome may not be optimal. All trajectories from the expert are
gathered for imitation learning and BC. The same feature vectors of
states with the respective actions are used to train a deep neural
network for task classification based on the observed state by the UAV.
This problem is categorized as a task classification problem since the
UAV wants to choose the right action at the right time based on the
expert’s experience.

We first collect the expert’s data and trajectories to implement the
supervised learning for the BC. These trajectories provide a simulated
dataset for the training and test evaluation. BC does not need constant
access to the expert; however, DAGGER requires the expert’s presence
in states that have never been visited. Implementing the DAGGER
approach is more costly and not always feasible; thus, the BC is applied
here for imitation learning. We should note that the collected dataset
is based on states and actions, and there is no meaning of the reward
function, and the agent mimics the expert blindly.

The expert data, (D), is collected in terms of D = {(x,,s,,a,)}, where
x, is the initial condition for the expert. This paper assumes that x, is
the location where the agent or UAV starts its initial location (0, 0). s,
is the UAV’s state that consists of the features vector defined in (11)
in Section 5.1. Action (a,) is the mixed action based on the mobility
and the transmission power allocation, a € .A. The action space is
A = {an(i)|0 < I < 35}, which consists of 6 movement actions and
six transmission powers. Since the agent decides at the same time for
both the mobility and transmission power, there are 36 actions. If the
actions were independent, the number of actions would be 12 instead
of 36. The collected expert trajectories can be shown as,

= {)?,a?, ps)P a1} . (30)

After collecting the expert trajectories, the problem is defined as
multi-class classification and a supervised learning technique is utilized
to handle the problem. The supervised learning approach generates a
model predicting the appropriate class (action) based on the visited
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state. A decision tree algorithm is chosen as a supervised learning
technique. Next, based on the expert’s collected information, the UAV
will use this model to decide on the next cell and the next transmission
power. Here, the learned model is called zpc

a = 7p(X,,8,), BD

which BC stands for the BC. To train the model, the decision tree from
the SciKit-Learn Python package is used to solve the problem [87,88].
Gini impurity is used to determine the quality of split for various
features. After training, the decision tree model has a depth of five with
seven leaves.

To illustrate the interaction between the components of our pro-
posed solution, we have provided a sequence diagram in Fig. 5. This
diagram shows the interaction between key components: Apprentice-
ship Learning via IRL in Algorithm 1, SVM, and Q-learning and DQN
in Algorithms 2 and 3, respectively. It integrates the block diagrams
and structural details of our approach, highlighting the process flow
and component interactions. While the diagram specifically illustrates
the DQN component, it should be noted that the Q-learning process
follows a similar sequence, and thus has not been separately depicted
to avoid repetition. Additionally, the overhead and time complexity of
the proposed solution are important considerations for practical appli-
cations. Detailed analysis of the time complexity for each algorithm is
provided in Appendix.

6. Numerical results and experiments

In this section, the designed simulator is explained first, and then
the convergence of the apprenticeship learning for the IRL and the
policy learner using both the Q-learning and deep Q-network methods
is analyzed. Afterward, the performance comparison among various
decision-making approaches at the UAV, including inverse reinforce-
ment learning (Q-learning using linear function approximation), in-
verse Deep Q-Network, BC, shortest path, and a random policy, is
utilized to compare the proposed method with similar approaches.
Through all the experimental results, a probabilistic channel according
to (3) for UAV is considered. However, in some cases, to show the
performance comparison results in different UAV channel conditions,
we mentioned two different UAV channel scenarios, probabilistic and
LoS channels. All designs and simulations are tested on a Ubuntu system
with a Ryzen nine 3900X CPU and Nvidia RTX 2080 Ti GPU. The
training phase for the deep neural network approach was done based
on Tensorflow 2.3.0, Keras 2.4.0 API, CUDA 10.1, and cuDNN 7.6 with
Python 3.6.
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Fig. 5. Sequence diagram of the proposed AL-IRL via DQN approach.

6.1. Designed simulation environment

In this study, we develop an Open Source simulation environment
based on the proposed problem in Section 3. The simulation environ-
ment is designed in Python 3.6 to consider the UAV in a pre-defined
area with 25 cellular base stations and multiple terrestrial UEs. The
UEs’ distribution is such that some cells and areas have a higher density,
and others are less crowded. While the distribution of UEs is considered
fixed, the dynamicity of the environment is maintained through the
variability in UEs’ power and their connection channels, effectively
characterizing the dynamic nature of the environment.

To provide a comprehensive simulation model, we considered key
factors relevant to UAV-based communication environments. One com-
mon method for modeling air-to-ground propagation channels is to
consider LoS and NLoS components along with their occurrence proba-
bilities separately, as shown in [9,89]. In NLoS connections, due to the
shadowing effect and reflection from obstacles, the path loss is higher
than in LoS connections. We have incorporated these effects into our
path loss model, as detailed in Egs. (1) and (2). Our simulation utilizes a
probabilistic Gaussian channel model that includes path loss modeling
for both LoS and NLoS scenarios, realistically capturing variations
in signal propagation. This allows us to simulate various multipath
effects and environmental factors impacting signal strength and quality.
Specifically, our model accounts for shadowing from obstacles such as
trees and buildings, ensuring realistic representation of signal atten-
uation. Additionally, the fixed altitude assumption for UAVs reflects
practical utilization strategies, where predefined air corridors at spe-
cific heights are followed for safe and efficient airspace management.
This assumption is supported by relevant literature [41,42,90]. Overall,
our approach aligns with established standards and previous literature,
providing a robust and realistic representation of UAV communication
scenarios.

The proposed solution should be able to find the optimal path
regarding the distance, throughput, number of adjacent UEs, and in-
terference on UEs in a dense urban environment with parameters ¢; =
12.076 and ¢, = 0.114. This simulation is event-based, and the event
is the UAV’s action. The UAV has six actions for mobility and six
discrete actions for transmission power, which results in 36 actions
together. The user can change the transmission power range to consider
a broader or narrower range to increase or decrease the number of
actions. More actions bring more complexity to convergence. This
simulator is designed based on an object-oriented approach. Different
classes are defined for the UAV, UEs, and BSs. All parameters for the
learning algorithms and environment are configurable in the simulator.
Table 3 summarizes the main simulation parameters.
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Fig. 6. Demonstration of the designed graphical interface for the user.
Table 3
Simulation parameters.
Parameter Value Parameter Value
Number of cellular BS 25 UE transmit power 2 mW
Number of UEs 75 UAV antenna gain 100
UAV altitude (H) 50 m Number of features 5
UAV max transmit power 200 mW Number of epochs le4
UAV min transmit power 50 mW € 0.1
Dense urban (1,5, Mxros) (1.6,23) [dB] Batch size 24
Dense urban (¢, ¢,) (12.076,0.114) Replay buffer size led
A —90 dBm y 0.99
Carrier frequency 2 GHz a 0.001

In Fig. 6, a circle notation is considered to show the UAV’s coverage
area as a function of its transmission power to demonstrate the interfer-
ence level. Black arrows demonstrate the UAV’s directions to show the
chosen path. The user can turn off the Graphical User Interface (GUI)
to speed up the simulation. All models and trajectories can be saved
on a drive for future evaluations. Fig. 6 shows a sample snapshot of
the simulator with the chosen path. In this sample, the UAV flies from
the source cell (BS;)) towards the destination cell (BS,4) with varying
transmission power. The source code of this simulator is available on
the GitHub repository [91]. A sample video of the designed simulator
implementing the different approaches in this study is available on
YouTube [92]. In the video, we showed the simulation based on the
different approaches during the training phase and also after training
for the evaluation.

6.2. Convergence of the IRL

To investigate the convergence for Inverse Reinforcement Learn-
ing, the hyperdistance between the expert’s feature expectation and
the learner’s feature expectation is considered a metric to show the
convergence behavior of the IRL algorithm. Fig. 7 demonstrates this
hyperdistance for different iterations. The learning process stops at the
iteration where the hyper-distance is getting lower than a predefined
threshold (err;). The user can choose the desired threshold based on
the requirements. If the user chooses ejp; = 0, the user wants to achieve
the same behavior as the expert. Choosing er; = 0 may need infinite
iterations for the IRL algorithm to find the optimal weight.
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Fig. 7. Hyper distance between the expert and agent feature expectation based on
different weights, reward functions, and optimal policy.

In Fig. 7, we assumed that the threshold (epg;) for the distance be-
tween the expert and agent feature expectation is 0.1 and any distance
less than the threshold stops the algorithm. After ten iterations, this
algorithm stops when the distance is 0.057.

6.3. Convergence of the Q-learning and deep Q-network

Fig. 8 demonstrates a few iterations of the feature policy learning
for each unique reward function for the Q-learning with linear function
approximation using the SGD. Based on the exploration-greedy rate,
the accumulative reward function is converged to the best optimum
value. It is worth mentioning that the optimum value for the reward
function depends on the obtained weight for the reward function at
each iteration based on the QP. Because of that, each plot converges to
a different value. Also, Fig. 9 illustrates the same convergence concept
for the various iterations of the policy learning for the Deep Q-Network.

6.4. Apprenticeship learning via inverse RL performance - Training phase

All results in this section average over 25 runs for a smooth and
clear demonstration for comparison. Figs. 10(a), 10(b), 10(c) represent
results for UAV’s probabilistic channels, and Figs. 10(d), 10(e), 10(f)
show the results for UAV’s LoS channels. Figs. 10(a) and 10(d) show
the throughput result of the inverse RL using the Q-learning and deep
Q-network during the training phase of the optimal reward function
after the final optimization and termination of the IRL algorithm. In
Fig. 10(d), both approaches converge at the same number of epochs
and values after the e-greedy exploration. It is worth mentioning that
achieving the maximum throughput is not always the optimum policy
since it also increases interference.

Also, Figs. 10(b) and 10(e) show the summation of interference
levels on the neighbor UEs when the UAV uses the same resource block
for its transmission and the UAV’s uplink can interfere with the other
UEs’ downlink as well. Keeping the interference as low as possible is
desired; however, it decreases the throughput as well, and it is not
in line with the problem objectives defined in (10a) and (10d) in
Section 3. As Fig. 10(e) represents, Q-learning and DQN algorithms
converge to different values, and the reason is that because these two
algorithms utilized different paths for the problem, thus the agent
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(UAV) senses a different number of UEs, and the effect of its UL
transmission is different in these models.

Figs. 10(c) and 10(f) demonstrate the distance between the location
where the UAV finishes its task and the destination cell where it was
supposed to finish and stop based on resource limitations such as the
battery capacity and flight time. In Fig. 10(c), DQN converges to the
distance of zero, which means this algorithm finds the destination
cell (in this scenario (BS,;)). However, the limited energy of UAVs
for flight, coupled with the highly dynamic wireless environment and
the low convergence power of the Q-learning algorithm, results in an
inability to reach the destination in probabilistic channel conditions.
However, in Fig. 10(f) both Q-learning and DQN converges to the
distance of zero, which means both algorithms find the destination cell.

6.5. Apprenticeship learning via inverse RL performance

Here, the goal is to compare the performance of different path plan-
ning mechanisms including apprenticeship learning via IRL, inverse
deep RL, BC, shortest path, and random action. The previous section
shows the result for the inverse RL using Q-learning and DQN during
the training phase. Here, based on the trained model and obtained
weights for the reward function, a sample scenario is considered to
compare the performance of these different approaches. The imple-
mented BC model defined in Section 5.5 predicts the desired action
based on the visited features vector state with 89.08% accuracy using
the decision tree classification approach.

In Fig. 11(a), the throughput of the DQN, BC, shortest path, and
random policy is compared. Following BC, which mimics the expert’s
behavior without knowledge, DQN exhibits better throughput behavior
than random and shortest-path algorithms. This can be attributed to
the positive influence of feature expectations for the throughput metric
on the reward function in the feature state vector (¢(s,?)). In the
shortest path, the UAV selects the shortest route between the source
cell (BS;) and the destination to conserve energy, randomly selecting
transmission power. Both the movement action and transmission power
are random in the random policy. The random policy demonstrates the
worst performance in terms of throughput in the same scenario, with
the primary factor affecting throughput metrics being the agent’s (UAV)
transmission power for its UL transmission.

Fig. 11(b) compares interference management across all approaches.
This interference represents the summation of interference applied
to all neighboring UEs when utilizing the same resource block. This
figure’s interference level depends on the UAV’s transmission power
for its UL, the density of neighbor UEs in the neighboring cells, and the
distance between the UAV and the affected UEs. BC exhibits the lowest
interference level as it precisely mimics the expert’s behavior without
comprehending it. Following that, the DQN approach has the next level
of applied interference. The shortest path selects a route with a higher
density of UEs than other approaches, resulting in higher interference
than the other two techniques and almost similar to the random policy.
If the user aims to train the DQN approach to align more closely with
the expert’s behavior, a lower value for the epsilon threshold (e; ;) can
be chosen. In this case, the algorithm’s convergence process will take
longer to meet the threshold. However, the agent’s feature expectation
vector (u(z;)) will be closer to the expert’s feature expectation vector
(fi(zg)). Therefore, the threshold value can be determined based on
the user’s expectations for the learning and optimization process of the
reward function’s weights and the optimal policy. It is essential to note
that changes in the epsilon threshold (¢;z;) may impact the results in
Fig. 7, and more iterations may be required to meet the criteria.

Fig. 12 illustrates the distance between the destination cell (BS,4)
and the cell where the agent stops or completes its tasks. In both
behavioral cloning and the shortest path approaches, the destination
cell is reached at the 6th step. However, in the DQN approach, the
destination cell is visited at the 7th step. Notably, the random policy
does not reach the destination cell due to limitations in battery life and
flight time.
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Fig. 10. Evaluation of UAV’s UL throughput, interference value on neighbor UEs, and the final distance of the UAV during the training phase of the inverse RL for both Q-learning

and DQN.
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6.6. Inverse RL and behavioral cloning in unseen states by the expert

In this section, we explore another scenario to assess the perfor-
mance of the Q-learning, DQN, and BC in a situation where the UAV
is placed in a cell that an expert has never seen or experienced. Since
we assumed that the expert is only available for a few trajectories or
it is costly to have on-demand access to the expert, it is not possible
to ask the expert to experience the new state. Therefore, methods like
DAGGER are not practical in this situation. To simulate this scenario,
an environmental variable, such as wind, is applied to the drone and
placed the drone in the adjacent cell (BSs) as the initial or source cell.
The expert has never observed BSs, and no data exists for this location.

Fig. 13 illustrates trajectories, states, and actions taken by the agent
using the three approaches. In Fig. 13(a), the UAV employing the
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BC approach initiates its journey from BS5 and selects a path with
a higher UE density. However, it fails to reach the destination cell
(BS24) to complete its task. In Fig. 13(b), Q-learning is utilized to
avoid areas with high UE density. Nevertheless, it struggles to reach
the destination due to a complex and dynamic wireless environment.
On the other hand, DQN successfully identifies the destination cell,
navigating around areas with high UE density, as depicted in Fig. 13(c).

The performance evaluation of throughput, interference, and the
distance between the drone and the destination cell is illustrated in
Fig. 14. The key focus is completing the agent’s task while maintaining
an acceptable level of interference and throughput. The DQN approach
exhibits a superior average and standard deviation for throughput, as
seen in Fig. 14(a). This improvement is attributed to the fact that
BC selects power values for its path, which is incorrect. The path
has never been experienced before, and data for it was unavailable
in the dataset. Fig. 14(b) demonstrates that DQN excels in interfer-
ence management in the event of errors in the system. Additionally,
Fig. 14(c) shows that DQN successfully reached the destination and
completed the task by the 6th step. However, BC could not finish the
task by reaching the destination cell. In Fig. 14, we demonstrate that
the BC method, which accurately mimics the expert’s behavior but lacks
a comprehensive understanding, achieves slightly higher throughput
and lower interference. However, it fails to complete the task and
reach the destination. This underscores the superiority of the DQN
method, which accomplishes the task and exhibits significantly better
performance. Furthermore, this figure also illustrates results in unseen
scenarios where BC fails to reach the destination and complete the
task, highlighting its limitations in handling such states. This evaluation
shows that apprenticeship learning using inverse deep RL performs
better compared to imitation learning like BC for the cases where the
expert did not experience the visited state by the agent.

One future direction for this work is to explore a more realistic
scenario by modeling the antenna gains. Ground-based BS antennas
are typically down-tilted and optimized to enhance capacity for ground
UEs while minimizing inter-cell interference. Consequently, cellular-
connected UAVs may be served by the sidelobes of terrestrial BSs. In
such situations, the UAV may establish connections with BSs located at
a distance, leading to non-trivial behavior in channel state information.
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Previous studies, like [93,94], have delved into antenna behavior for
trajectory optimization and observation, employing both simulation
and experimental approaches. Addressing this challenge could shape
future directions regarding system modeling and methodology within
this paper.

7. Conclusions

Given the growing applications of unmanned aerial vehicles, the
demand for reliable communication technologies that enable low-
latency, high-transmission-rate communication is paramount. Cellular
networks, particularly 5G and beyond, offer numerous advantages for
drones, including reliability, extensive coverage, and security. How-
ever, the increasing use of drones as aerial cellular users presents
unique challenges, such as potential interference with terrestrial users
and base stations. This paper introduces a novel interference-aware
scheme that combines joint path planning and power allocation for
autonomous cellular-connected unmanned aerial vehicles (UAVs). Our
UAVs are tasked with navigating from their initial points to destina-
tions while minimizing interference with terrestrial User Equipment
(UEs) and maximizing uplink throughput. To tackle this challenge, we
propose an apprenticeship learning approach using IRL, which incor-
porates both Q-learning and deep Q-network solutions. Additionally,
we employ behavioral cloning, a form of imitation learning employing
decision tree supervised learning, for comparative analysis.

Our numerical and simulation results demonstrate that apprentice-
ship learning via IRL closely aligns with expert behavior and out-
performs the behavioral cloning approach. Moreover, we allow users
to define a threshold to control the agent’s adherence to the desired
expert behavior. Importantly, our study underscores the effectiveness of
inverse RL in scenarios involving system errors or situations where the
expert has not collected supervised data for visited states. Furthermore,
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our research addresses a critical need in the field of UAV communica-
tion, offering a solution that optimizes communication quality while
mitigating interference. By combining state-of-the-art techniques in
reinforcement learning, we contribute valuable insights and method-
ologies to enhance the reliability and performance of cellular-connected
UAVs. This work paves the way for improved drone applications and
further advancements in autonomous aerial communication systems.
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Appendix. Time complexity analysis

Detailed analysis of the time complexity for each algorithm used in
the proposed solution is provided here.

A.1. Algorithm 1: Apprenticeship learning via IRL algorithm

To analyze the time complexity of Algorithm 1, we examine each
step and its computational complexity.

« Initialization: Loading the simulation environment and expert
trajectories: Assume this has a constant time complexity, O(1).
Calculating the expert feature expectation: This involves summing
over N trajectories and the steps ¢ in each trajectory. Assuming
each trajectory has an average length L, the complexity is O(N X
L).

Main Loop (While True): Solving the Quadratic Program (QP)
to find the weights has a complexity of O(QP), which depends
on the specific QP solver used. Normalizing the weights has a
complexity of O(d), where d is the dimension of the weight
vector. Training the policy with the learner involves training the
policy, which could be a complex operation depending on the
specific learner used (e.g., training a neural network). Let us
denote this as O(Learner). Resetting the simulation environment
is O(1). Running the simulation to calculate the agent’s feature
expectation has a complexity of O(M x L), where M is the number
of episodes run in the simulation. Calculating the hyper distance
involves a dot product calculation, which has a complexity of
O(d). Checking the stopping condition is O(1).

The main loop runs until the stopping condition D < eg; is met. Let us
denote the number of iterations of the loop as I. Inside each iteration,
the most significant contributions to the complexity are solving the QP,
training the learner, and running the simulation. Thus, the overall time
complexity of the algorithm can be approximated as:

O(T x L) + I X (O(QP) + O(d) + O(Learner) + O(M X L) + O(d)). (A.1)
Simplifying this expression, we get:
O(T X L)+ I X (O(QP) + O(Learner) + O(M X L)+ O(d)). (A.2)

A.2. Algorithm 2: Q-learning algorithm with Linear Function Approxima-
tion

Similarly, to analyze the time complexity of Algorithm 2, we exam-
ine each step and its computational complexity.

+ Initialization: Loading the simulation environment: This has a
constant time complexity, O(1).

» Main Loop (While episode < NUM_EPS): The outer loop runs for
a specified number of episodes, denoted a NUM_EPS. Within each
episode, the distance is reset, and the UAV is reset, both having
constant time complexity, O(1).
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« Inner Loop (While distance < DIST _LIM & not DONE): This loop
runs until the distance reaches DIST_LIM or the task is marked as
done. Let us assume the maximum number of steps per episode is
N.

Action Selection: Selecting an action (either random or greedy)
has a constant time complexity, O(1).

Environment Update and Reward Calculation: Updating the
UAV’s location and calculating SNR, interference, and throughput
are assumed to have constant time complexity, O(1). Calculating
the features ¢(s, a, s’) and the immediate reward R(s) = w” - ¢(s’)
both have constant time complexity, O(d), where d is the number
of features.

Q-value Calculation and Update: Predicting Q(s’) using the SGD
model has a complexity of O(d). Updating the Q-value Q% (s, a)
involves a maximum operation and an addition, both of which
have a constant time complexity, O(1). Updating the SGD model
has a complexity of O(d).

Epsilon Decay: Decaying epsilon has a constant time complexity,
o).

Finally, the overall time complexity of the algorithm can be approxi-
mated as follows:

- Initialization: O(1).

» Outer Loop (Episodes): This runs for NUM_EPS iterations.

+ Inner Loop (Steps per Episode): This runs for up to N steps per
episode.

Thus, the time complexity within the inner loop for each step includes:

+ Action selection: O(1).

- Environment update and reward calculation: O(d).

+ Q-value prediction and update: O(d).

« Epsilon decay (outside inner loop but within the outer loop): O(1).

Combining these, the time complexity per episode is:

O(N x(0(1)+ 0(d)+ O0(d)+ O(1))) = O(N x d). (A.3)
Therefore, the overall time complexity for NUM_EPS episodes is:
ONUM_EPS X N X d). (A.4)

A.3. Algorithm 3: Deep Q-network to predict the Q-action-value on batch
samples

To analyze the time complexity of Algorithm 3, we examine each
step and its computational complexity.

« Initialization: Same as Algorithm 2, initialization of variables
and the model is O(1).

Main Loop (While episode < NUM_EPS): The outer loop runs
for a specified number of episodes, denoted as NUM_EPS.

Inner Loop (While distance < DIST LIM & not DONE): This
loop runs until the distance reaches DIST LIM or the task is
marked as done. We assume the maximum number of steps per
episode is N.

Collecting Features, Actions, Reward for Replay Memory:
Collecting features, actions, and rewards has a complexity of O(1)
for each step.

Batch Sampling and Training: Once the episode exceeds
NUM_EPS/10, a batch of size BATCH_S1ZE is randomly sam-
pled from the replay memory. The cost of sampling a batch is
O(BATCH_SIZE).

Processing Each Batch: For each data point in the batch, extract-
ing x_train has a complexity of O(1). Calculating O (s, a) involves
either setting it to R(s) or calculating R(s) + y max, O(s',d’),
both of which have a complexity of O(1). Storing y_train has a
complexity of O(1).
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» Model Training: The model training step involves fitting the
DQN model to the x_train and y_train batches. Let f be the
time complexity of fitting the model for each batch. This step’s
complexity is O(f x BATCH_SIZE).

+ Epsilon Decay: Decaying epsilon has a constant time complexity,
o).

As a result, the overall time complexity of the algorithm can be approx-

ima

ted as follows:

« Initialization: O(1).

» Outer Loop (Episodes): This runs for NUM_EPS iterations.

+ Inner Loop (Steps per Episode): This runs for up to N steps per
episode.

Within the inner loop for each step, after NUM_EPS/10:

+ Collecting features, actions, and rewards: O(1).
» Sampling a batch: O(BATCH_SIZE).
* Processing each batch:

- Extracting x_train: O(1).
— Calculating Q% (s, a): O(1).
— Storing y_train: O(1).

» Model training: O(f X BATCH_SI1ZE).

Combining these, the time complexity per step after NUM_EPS/10 is:

O(BATCH_SIZE)+ O(BATCH_SIZE x (0O(1)+ O0(1) + O(1)))
+ O(f X BATCH_SIZE)=O(BATCH_SI1ZE)
+O(f X BATCH_SIZE)

=O(BATCH_SIZE x(1+ f)).

(A.5)

Since this occurs for each step in the inner loop, the time complexity

per

episode is:

O(N X (1 + BATCH_SIZE x (1 + f)))

= O(N x BATCH_SIZE x (1 + f)). (A.6)
Therefore, the overall time complexity for NUM_EPS episodes is:
ONUM_EPS X N X BATCH_SIZE X (1+ f)). (A7)
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