
a

b

c

d

i
i
s

f

h
R

Computer Networks 254 (2024) 110789

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Joint path planning and power allocation of a cellular-connected UAV using
apprenticeship learning via deep inverse reinforcement learning
Alireza Shamsoshoara a,1, Fatemeh Lotfi b,∗,1, Sajad Mousavi c, Fatemeh Afghah b, İsmail Güvenç d
School of Informatics, Computing and Cyber Systems at Northern Arizona University, Flagstaff, AZ, USA
Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
Harvard Medical School, Boston, MA, USA
North Carolina State University, Raleigh, NC, USA

A R T I C L E I N F O

Keywords:
Apprenticeship learning
Cellular-connected drones
Inverse reinforcement learning
Path planning
UAV communication

A B S T R A C T

This paper investigates an interference-aware joint path planning and power allocation mechanism for a
cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment. The UAV’s goal is to fly
from an initial point and reach a destination point by moving along the cells to guarantee the required quality
of service (QoS). In particular, the UAV aims to maximize its uplink throughput and minimize interference
to the ground user equipment (UEs) connected to neighboring cellular base stations (BSs), considering both
the shortest path and limitations on flight resources. Expert knowledge is used to experience the scenario
and define the desired behavior for the sake of the agent (i.e., UAV) training. To solve the problem, an
apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning
and deep reinforcement learning (DRL). The performance of this method is compared to learning from a
demonstration technique called behavioral cloning (BC) using a supervised learning approach. Simulation and
numerical results show that the proposed approach can achieve expert-level performance. We also demonstrate
that, unlike the BC technique, the performance of our proposed approach does not degrade in unseen situations.
1. Introduction

The rapid advancement of unmanned aerial vehicles (UAVs) has
spurred extensive research in both academia and industry. UAVs are
being deployed in a variety of applications, including cargo delivery,
search and rescue (SAR), aerial imaging, disaster monitoring, surveil-
lance, and public safety [1–8]. These versatile applications leverage
unique UAV capabilities such as a wide ground field of view (FoV),
3-dimensional movement, fast deployment, and agile response. One sig-
nificant area of interest is drone-assisted communication, where UAVs
act as aerial base stations (BSs) or flying access points (APs) to support
terrestrial user equipment (UE) connectivity, particularly in disaster
relief scenarios. UAVs can extend cellular coverage and improve con-
nectivity, and they can relay information between UEs and neighboring
BSs, enhancing the overall communication infrastructure [9–14].

As UAV technology evolves, their integration into cellular networks,
ncluding 5G and beyond, presents several challenges. These challenges
nclude interference management, spectrum management, quality-of-
ervice (QoS) management, frequent handovers, and ensuring robust,

∗ Corresponding author.
E-mail addresses: alireza_shamsoshoara@nau.edu (A. Shamsoshoara), flotfi@clemson.edu (F. Lotfi), seyedsajad_mousavi@hms.harvard.edu (S. Mousavi),

afghah@clemson.edu (F. Afghah), iguvenc@ncsu.edu (İ. Güvenç).
1 These authors contributed equally to this work

secure, and reliable communication [15–23]. Traditional cellular in-
frastructures, designed primarily for terrestrial UEs, need significant
modifications to serve aerial UEs effectively [24–27]. Advanced tech-
niques such as massive multiple-input multiple-output (mMIMO) tech-
nology and beamforming algorithms have been proposed to enhance
interference management and improve signal targeting. These methods
aim to direct the signal towards the intended receiver and minimize
interference with other users, thereby ensuring reliable communication
for aerial UEs [28–30].

Most existing research employs model-free reinforcement learn-
ing (RL) methods, such as temporal difference learning, to address
complex issues like interference and path planning [31–46]. These
methods, while powerful, often struggle with dynamic and complex
environments where problems are non-convex and computationally
intensive. The effectiveness of RL methods depends heavily on the
definition of the reward function, which establishes the relationship
between the Markov Decision Process (MDP) environment, Q-action
values, and optimal policy learning. As the complexity of the problem
ttps://doi.org/10.1016/j.comnet.2024.110789
eceived 21 February 2024; Received in revised form 3 August 2024; Accepted 4 S
vailable online 12 September 2024
389-1286/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
eptember 2024

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:alireza_shamsoshoara@nau.edu
mailto:flotfi@clemson.edu
mailto:seyedsajad_mousavi@hms.harvard.edu
mailto:fafghah@clemson.edu
mailto:iguvenc@ncsu.edu
https://doi.org/10.1016/j.comnet.2024.110789
https://doi.org/10.1016/j.comnet.2024.110789
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Shamsoshoara et al. Computer Networks 254 (2024) 110789
increases, defining a comprehensive reward function becomes chal-
lenging, leading to suboptimal policies. Furthermore, in real-world
scenarios, defining a reward function that captures all aspects of the
problem is not always feasible, resulting in less meaningful comparisons
with other methods.

1.1. Motivation

Traditional RL approaches face significant hurdles in dynamic and
complex environments due to the difficulty of formulating comprehen-
sive reward functions. This often results in suboptimal policy outcomes,
especially when dealing with non-convex problems. Moreover, most ex-
isting methods do not effectively leverage expert knowledge, which can
be crucial for developing more robust and adaptive UAV path planning
and power allocation strategies. With the rise of open-source software,
simulators, and emulators such as Network Simulator-3 (NS3) [47],
srsLTE [48], OpenAirInterface [49], and others, it is now possible to
generate optimal behavior for an agent in a simulated environment
with expert assistance. This data can be used for the agent to learn
optimal behavior through imitation learning (IL), learning from demon-
stration (LfD), or apprenticeship learning (AL). In [50], the authors
examined a disaster relief scenario where a UAV assists terrestrial UEs
in scheduling packet deliveries to neighboring BSs using an IL solution.
The authors implemented a supervised learning solution in the form of
a behavioral cloning (BC) approach to mimic the expert’s behavior in a
similar situation. BC typically does not consider any reward functions
and relies solely on visited states and actions, with the agent mindlessly
following the expert. If the expert makes incorrect decisions, the agent
may replicate those errors. Moreover, suppose the state visited by the
agent has never been experienced by the expert. In that case, the agent
cannot take appropriate action since that state was not considered in
the optimal learned policy.

1.2. Novelty and contribution

To overcome these limitations, we propose a novel approach based
on apprenticeship learning via inverse reinforcement learning
(IRL) [51,52]. This method leverages expert-generated data to recon-
struct optimal reward functions, enabling the UAV to learn effective
policies without needing a meticulously defined reward function. By
employing deep Q-networks (DQN), our approach demonstrates supe-
rior performance in various scenarios, including those not encountered
during training. Our significant contributions are:

• Novel Problem Formulation: We present a comprehensive formu-
lation of the joint path planning and power allocation problem
for a cellular-connected UAV. The objective is to minimize uplink
(UL) transmission interference to terrestrial UEs while maximiz-
ing the UAV’s UL throughput and signal-to-noise ratio (SNR). This
formulation considers multiple factors such as UAV transmission
power, path planning, and the density of terrestrial UEs, ensuring
a holistic approach to the problem.

• Open-Source Simulator: We develop an open-source simulator to
generate expert trajectories and behaviors in a controlled envi-
ronment. This simulator is fully object-oriented and customizable,
allowing users to adjust parameters such as the number of cells
and UE density. A graphical user interface (GUI) visually repre-
sents the UAV’s interaction with the simulation environment. This
tool not only aids in training but also serves as a valuable resource
for future research.

• Apprenticeship Learning Framework: We design an apprentice-
ship learning framework using IRL and deep IRL. This approach
analyzes expert behaviors to derive an optimal reward function,
which is then used to generate effective policies for the UAV. The
framework utilizes the strengths of Q-learning and DQN to handle
both simple and complex scenarios effectively.
2
• Comprehensive Performance Evaluation: We conduct a thorough
evaluation of our apprenticeship learning approach, comparing
it with alternative methods such as behavioral cloning, shortest
path, and random path strategies. Our results demonstrate the
robustness and effectiveness of our approach in both familiar and
unseen scenarios. We show that our method can achieve expert-
level performance and maintain its robustness in dynamic and
unpredictable environments.

Furthermore, our method enhances the decision-making capabilities
of UAVs in urban air mobility applications, where safety and adapt-
ability are critical. By balancing multiple factors, such as throughput,
coverage, energy consumption, and interference, our approach ensures
reliable and efficient UAV operations. This has significant implications
for real-world applications, particularly in densely populated urban
areas where UAVs must navigate complex environments.

1.3. Organization

The rest of this paper is organized as follows. Section 2 reviews the
related works regarding the cellular-connected UAV for similar prob-
lems and approaches. The problem definition and the system model are
discussed in Section 3 with all related assumptions. Section 4 provides
background information on inverse RL approach. Section 5 introduces
the apprenticeship learning via IRL using both Q-learning with linear
function approximation and Deep Q-Network. Section 6 evaluates the
convergence and other metrics and parameters using our designed
simulator. Conclusions and discussions are summarized in Section 7.

1.4. Table of notations

Table 2 shows all the parameters and notations used in this study
in both the system model and methodology.

2. Related works

Investigating cellular-connected UAVs, we delve into prior research
tackling various challenges such as interference management, power
allocation, task allocation, path planning, etc. These problems were
tackled using both centralized and distributed approaches [30,35–44,
50,53–60]. In the context of UAV operations, autonomous navigation
in unfamiliar environments stands out as a crucial task. A vital aspect
of this is path planning, which essentially means figuring out the best
route from the starting point to the desired destination while avoiding
collisions. These path planning methods can be broadly categorized into
two groups: those that rely on conventional optimization techniques
and those that leverage artificial intelligence (AI) and machine learning
(ML) to identify optimal routes.

2.1. Conventional optimization solutions

Conventional methods have primarily focused on optimization tech-
niques to address UAV-related challenges:

2.1.1. Interference and power coordination
In [56], the focus was on addressing the complexities of inter-cell in-

terference and power coordination in the context of cellular-connected
UAVs. The authors tried to solve the problem of inter-interference
minimization using a centralized approach. The authors assumed a
central point exists to collect global information for the optimization
problem. The challenge is defined as a non-convex optimization prob-
lem. Hence, the authors used a successive convex approximation (SCA)
to solve the problem. They obtained a sub-optimal solution for this
approach. Later, the authors proposed a decentralized approach by only
using local information. While the literature shows significant results,

traditional path-planning algorithms have limitations in complex and

A. Shamsoshoara et al. Computer Networks 254 (2024) 110789
Table 1
Literature review for cellular connected UAV trajectory planning.
Ref. Objective Method Interference Throughput Power

[37] Minimize the weighted sum of mission completion time
and communication outage duration

DDQN ✓ × ×

[38] Minimize UAV mission time and disconnection while
ensuring cellular network connectivity

RL-TD ✓ × ×

[39] Minimize fuel consumption and distance to the target
point

DRQN × × ×

[40] Minimize distance to target without collisions A2C × × ✓

[41,42] Maximize energy efficiency, minimize latency, and reduce
ground network interference

DRL-ESN ✓ ✓ ✓

[43] Minimize travel distance, maximize connection quality Heuristic algorithm × ✓ ×

[44] Maximize UAV data collection within energy and
coverage limits

HAS-DQN ✓ ✓ ✓

[56] Maximize weighted sum-rate for UAV and ground users,
considering power and cell associations in uplink

SCA ✓ ✓ ✓

[57] Minimize propulsion energy while ensuring required
sensing resolutions on landmarks

SCA × × ✓

[58] Minimize UAV mission time while meeting connectivity
requirement

Iterative alg. and graph
theory

× ✓ ×

[59] Minimize UAV Mission Completion Time while satisfying
the SNR constraint

Convex opt. and graph
theory

× ✓ ×

[60] Minimizes disconnection duration with reduced
computational complexity

Approximation solution
based on dynamic
programming

× ✓ ×

[61] Maximize UAV’s penetration capability in dense radar
environments

PPO ✓ × ✓

[62] Minimize energy consumption and execution latency MARL × × ×

[63] Maximize system utility Soft Actor-Critic (SAC) × ✓ ✓

[64] Minimize content retrieving delay and maximize content
hit ratio

Multi-Agent Proximal
Policy Optimization
(MAPPO)

✓ ✓ ×

[65] Minimizing UAV operation energy, sensing power, and
reporting power

Multi-Agent Deep
Deterministic Policy
Gradient (MADDPG)

× × ×

[66] Maximize system throughput and minimize latency PPO and DQN ✓ ✓ ✓

This work Maximize UAV throughput, minimize interference, and
jointly optimize power allocation and path planning

Apprenticeship learning
via inverse RL - DQN

✓ ✓ ✓
(

dynamic environments. Therefore, recent studies utilize AI approaches
to investigate optimal solutions in complex environments.

Moreover, [57] addresses the path planning problem by transform-
ing the optimization problem into a convex form. The solution involves
employing successive convex optimization, and block coordinate de-
scent techniques. Furthermore, [58] achieves path planning through
an iterative trajectory optimization algorithm. It incorporates graph
theory to address all UAV-BS associations and chooses the most suitable
candidate based on topological relationships. Also, in [59], the authors
address the trajectory optimization challenge in a cellular-connected
UAV scenario, ensuring continuous wireless connectivity with a ground
base station (GBS). They employ convex optimization and graph theory
to introduce an algorithm to approximate a UAV trajectory planning
solution. In another study [60], authors introduce a dynamic program-
ming method to optimize the UAV trajectory, considering an endurance
constraint. While their approach provides an approximate solution, it
involves higher computational complexity.

2.2. AI based solutions

AI and ML approaches have been employed to overcome the lim-
itations of conventional methods, offering more flexibility and adapt-
ability. Recent studies such as [37–44] model cellular-connected UAV
controlling challenges as an MDP optimization problem, then utilized
RL based approaches to find an optimal solution. However, these
methods often struggle with scalability issues and extensive training

data requirements. e

3
2.2.1. Reinforcement learning approaches
Authors in [37] considered a scenario where a cellular-connected

UAV aims to finish its task and be covered by the ground cellular
network. They used a dueling double deep Q-network (DDQN) and RL
for simultaneous navigation and radio mapping, enhancing the UAV’s
aerial coverage while minimizing the timeout probability (𝑃𝑜𝑢𝑡). Sim-
ilarly, [38] defined a path planning problem for a cellular-connected
UAV to minimize its mission completion time and maximize the con-
nectivity probability to the cellular BSs. They modeled the problem in
a MDP environment and used a temporal difference (TD) approach to
find the optimal policy for path planning optimization. [39] utilized
a modified Deep Recurrent Q-Network (DRQN) algorithm combining
Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN) to improve learning and action selection strategies for UAV
path planning. They designed a reward function incorporating domain
knowledge such as fuel consumption and distance to the target point.
Authors in [40] employed an Advantage-Actor Critic (A2C) RL algo-
rithm to define a path planning solution for UAVs. Furthermore, [41,
42] presented a deep RL algorithm incorporating echo state network
(ESN) cells. UAVs optimized energy efficiency, reduced wireless trans-
mission latency and interference, and minimized the time needed to
reach their destination using ESN cells.

2.2.2. Deep RL and heuristic approaches
Authors in [41,42] integrated deep RL with echo state network

ESN) cells, optimizing energy efficiency and path planning. How-

ver, these methods face convergence issues and require extensive

A. Shamsoshoara et al. Computer Networks 254 (2024) 110789
Table 2
Notation descriptions.
Notation Description Notation Description

 Set of all ground users (UEs) 𝝕 Path association vector
𝑀 Set of all ground users associated to the main BSs 𝝔 Cell association vector
𝑁 Set of all UEs associated to the neighbor BSs 𝑇̄ Throughput threshold
𝑀 Set of main BSs 𝑆 State vector in the RL approach
𝑁 Set of neighbor BSs 𝐴 Action vector in the RL approach
𝐵 Bandwidth 𝑃𝑟 Transition probability
𝑢𝑙 = (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙) UAV’s longitude, latitude, and altitude 𝛾 Discount factor
𝑉 UAV’s pitch speed 𝑅(𝑠) Reward function
𝒑 UAV’s taken path based on locations, i.e., 𝑙𝑖 𝑤 Reward function’s weights
 Set of all locations s.t. 𝑙𝑖 ∈  𝜙(𝑠) Features vector
𝑑𝑎,𝑏 Distance between locations 𝑎 and 𝑏 𝜋(𝑆) Next action policy
𝜍𝑏,𝑙 SNR received at BS 𝑏 at location 𝑙 𝑉 𝜋 (𝑠) Policy value at state 𝑠
𝑓 Center frequency 𝜇(𝑠) Feature expectation value
𝛷𝑏𝑚 ,𝑙 Received throughput at BS 𝑏𝑚 𝐷 Hyper distance
𝑃𝑏𝑚 ,𝑙 UAV’s transmission power 𝑄(𝑠, 𝑎) Q-Action value at state 𝑠
ℎ𝑏𝑚 ,𝑙 Channel gain between the UAV and the BS 𝑏𝑚 𝜃 Stochastic Gradient Descent weights
𝐺𝑏𝑚 ,𝑙 Antennas gain between the UAV and BS 𝑏𝑚 𝑀𝑆𝐸 Mean Squared Error
𝑁0 Noise at the receiver 𝜏 Tuple of states-actions trajectories
t

training. [43] presented a heuristic algorithm for UAV path planning
while maintaining Ground Base Station connectivity. They simplified
the problem into a Traveling Salesman Problem (TSP) and employed
a combination of A*, Genetic Algorithm (GA), Simulated Annealing
Algorithm (SAA), and RL. [44] presented the Hexagonal Area Search
(HAS) algorithm integrated with a multi-agent DQN, adeptly addressing
collision issues among UAVs.

2.2.3. DRL-based approaches for joint optimization
Authors in [61] proposed a DRL-based approach to jointly optimize

path planning and jamming power allocation for UAVs aimed at sup-
pressing netted radar systems. Using the Proximal Policy Optimization
(PPO) algorithm, the UAV’s trajectory and jamming power are dynam-
ically adjusted to balance stealth and radar disruption, significantly
improving UAV serviceability and mission success rates. [62] developed
a reinforcement learning-assisted framework for multi-UAV task alloca-
tion and path planning in IIoT applications. The multi-agent reinforce-
ment learning (MARL) algorithm enables efficient, conflict-free path
finding and task distribution, showing superior performance in complex
industrial settings. [63] proposed a DRL-based scheme for priority-
aware path planning and user scheduling in UAV-mounted MEC net-
works. The utility maximization problem, which optimizes both the
UAV’s path and user offloading strategy, is effectively addressed by the
DRL-based method, leading to improved system utility. [64] introduced
a DRL-based resource allocation and trajectory planning framework
in NOMA-enabled multi-UAV collaborative caching systems in 6G net-
works. This approach learns to optimize resource distribution and UAV
paths in real time, significantly improving resource utilization and data
throughput. Additionally, [65] proposed a multi-agent DRL approach
to optimize UAV trajectory, scheduling, and access control in UAV-
assisted wireless sensor networks, improving energy efficiency through
hierarchical learning that reduces action and state spaces, enhanc-
ing learning stability and sensing performance. Moreover, the authors
of [66] utilized PPO and DQN algorithms to jointly optimize UAV
positioning and radio spectrum resource allocation, aiming to maximize
cumulative discounted rewards and effectively address the non-convex
optimization challenges in dynamic UAV wireless networks.

While traditional optimization methods offer precise mathemati-
cal solutions, they often lack the flexibility and scalability needed
for dynamic environments. Common AI-based approaches, such as
RL, depend heavily on well-defined reward functions, which can be
challenging to formulate in complex, multi-objective scenarios. Our
proposed approach uniquely addresses these challenges by leveraging
apprenticeship learning through IRL combined with both Q-learning
and DQN. Unlike conventional RL methods that require meticulously

crafted reward functions, our method learns the optimal policy from

4
expert-generated experience data, allowing the UAV to replicate com-
plex decision-making behaviors observed in successful missions. This
is particularly advantageous in urban air mobility applications, where
safety and adaptability are paramount. By balancing multiple objectives
such as throughput, communication coverage, energy consumption,
and interference, our IRL-based approach ensures robust performance
in highly dynamic environments. The assumptions of the related works
are summarized in Table 1.

3. System model

Consider a single cellular-connected UAV with different payloads
such as sensors, GPS, and cameras. The equipment collects data and
sends it to a fusion center for further processing. We consider an
orthogonal frequency-division multiple access (OFDMA) scheme for the
wireless communication link, which divides the total cell bandwidth
𝐵 into 𝐾 resource blocks (RBs). The UAV utilizes an uplink (UL) to
ransfer data to the ground base station (BS). Fig. 1 depicts the system
model. This figure shows that the UAV’s operation field is divided
into multiple non-overlapping hexagonal cells, each served by one BS,
which services several terrestrial UEs with random movement. The UAV
can fly over these cells at a fixed height to reach its destination. The
BSs are categorized into two groups: (1) the main network to which
the UAV is linked, and the BS provides the required bandwidth for
the UAV’s UL. UAV’s transmission does not interfere with the com-
munication of other terrestrial UEs in the same cell; (2) The neighbor
BSs that the UAV does not communicate with. The term ’Neighbor
BS’ encompasses all adjacent base stations that may experience UAV
interference. However, the UAV’s transmission causes interference to
the neighbor BSs and their UEs when the UAV uses the same RB
with them. We assumed the neighbors’ UEs could not interfere with
the UAV’s transmission since the transmission power was not strong
enough [42]. Hence, the number of terrestrial UEs in neighbor cells is
critical because they are affected by the UAV’s interference. Here, our
design considers the UAV’s interference value on individual UEs. The
set  of U ground UEs consists of two groups: M ⊆  and N ⊆  ,
which are sets of UEs in the main and neighbor networks, respectively.

The base stations in the main and neighbor networks are shown as
𝑏𝑚 ∈ M and 𝑏𝑛 ∈ N, respectively. The UAV has a predefined initial
source and destination. Its task is to reach the destination while keeping
its communication with a legitimate base station, 𝑏𝑚. The UAV and
other base stations are defined in a hexagon grid area where the ground
BSs are fixed, and the UAV can move in six directions (North, North
East, South East, South, South West, North West) at a fixed height.
While near the zone’s edge, the UAV cannot fly off the grid. For the sake
of simplicity, the BS is assumed to be in the center of each hexagon.

The UAV’s location is known based on the onboard GPS sensor, 𝑢𝑙 =

A. Shamsoshoara et al.

v
f
y
i
𝑙
s

𝜍

w
U
d
a
p
o
t



w

𝛷

R
i
o
v
m
n
f
H
B
𝑏

𝑇

w
a
i

3

f
l
i
i
t

t
h
f

Computer Networks 254 (2024) 110789
Fig. 1. A sample system model showing two different possible paths of the UAV from
the source to destination. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙). The UAV changes its location with a constant pitch speed
elocity, 𝑉 , 0 < 𝑉 ≤ 𝑉 , where 𝑉 is the maximum available pitch speed
or the UAV. Also, the UAV is assumed to change its direction using the
aw action, not rolling. The UAV’s path from the source to destination
s shown as 𝒑 = (𝑙1, 𝑙2,… , 𝑙f), which the first location is the source cell,
1 = 𝑆 and the last one is the destination cell, 𝑙𝑓 = 𝐷. All locations are
ubsets of the global location set , (𝑙1, 𝑙2,… , 𝑙L) ∈ , where 𝐿 is the
grid size or the number of hexagons. The UAV’s path length is not fixed,
but if it cannot reach the destination in a certain number of movements,
the UAV’s operation may fail due to battery limitations. Based on the
literature [67], the grid area is assumed to be small enough for the
UAV’s location to be assumed constant inside each hexagon.

3.1. Wireless communication model

Buildings and obstructions impact on signal propagation from the
air to the ground. Depending on the environment, this connection may
be a line of sight (LoS) or a non-line of sight (NLoS) link. Accordingly,
the path loss of LoS and NLoS links of the UAV at location 𝑙 and BS
𝑏𝑚 from the primary network on a sub-6 GHz band can be described as
follows [68]:

𝜍LoS𝑏𝑚 ,𝑙
(dB) = 20 log10(𝑑𝑏𝑚 ,𝑙) + 20 log10(𝑓) − 147.55 + 𝜂LoS, (1)

NLoS
𝑏𝑚 ,𝑙

(dB) = 20 log10(𝑑𝑏𝑚 ,𝑙) + 20 log10(𝑓) − 147.55 + 𝜂NLoS, (2)

here 𝑙 is the UAV’s location or the center of the cell in which the
AV is currently located. 𝑓 is the center frequency and 𝑑𝑏𝑚 ,𝑙 is the
istance between BS 𝑏𝑚 and the UAV located at location 𝑙. Also, 𝜂LoS
nd 𝜂NLoS are LoS and NLoS links attenuation factors, respectively. The
robability of having a LoS link depends on environmental factors. In
ur model, for UAV to the ground link, the LoS probability is given by
he proposed model in [68]:

LoS(𝑑𝑏𝑚 ,𝑙) =
1

1 + 𝑐1 exp
(

−𝑐2

(

180 tan−1(𝐻) − 𝑐1

)) , (3)
𝜋 𝑑𝑏𝑚,𝑙 t

5
where 𝐻 represents the UAV height, and 𝑐1 and 𝑐2 are environmental
dependent permanents. Accordingly, the total path loss of UAV at
location 𝑙 and ground BS 𝑏𝑚 can be defined as

𝜍𝑏𝑚 ,𝑙 = LoS 𝜍LoS𝑏𝑚 ,𝑙
+
(

1 − LoS
)

𝜍NLoS𝑏𝑚 ,𝑙
. (4)

The SNR for the UAV UL data transmission to the main BS 𝑏𝑚 is
ritten as 𝛷𝑏𝑚 ,𝑙:

𝑏𝑚 ,𝑙,𝑘 =
𝑃𝑏𝑚 ,𝑙,𝑘ℎ𝑏𝑚 ,𝑙,𝑘

𝑁0
, (5)

where 𝑃𝑏𝑚 ,𝑙,𝑘 is the transmission power that the UAV allocates to each
B and sends its data to BS 𝑏𝑚 at location 𝑙. ℎ𝑏𝑚 ,𝑙,𝑘 = 𝐺𝑏𝑚 ,𝑙,𝑘10

−𝜍𝑏𝑚,𝑙∕10

ndicates the channel gain between the UAV and the main BS 𝑏𝑚 based
n the path loss defined in (4), where 𝐺𝑏𝑚 ,𝑙,𝑘 denotes the antenna gain
alues of the UAV and the BS (𝑏𝑚). While we assumed a simplified
odel in this study to calculate the gain value, in the real-world sce-
ario, the antennas of the BSs are down-tilted to have better coverage
or the ground UEs and reduce the effect of inter-cell interference.
ence, the UAV is usually served by the side-lobe antenna of the ground
S. 𝑁0 is the noise power spectral density at the main receiver BS
𝑚. Based on the SNR definition in (5), and by considering 𝐵𝑘 as the
bandwidth of RB 𝑘, the throughput rate for the UAV at location 𝑙 and
based on the connected BS 𝑏𝑚 can be written as:

𝑇𝑏𝑚 ,𝑙 =
𝐾
∑

𝑘=0
𝐵𝑘 log2(1 +𝛷𝑏𝑚 ,𝑙,𝑘). (6)

The UAV may interfere with the terrestrial UE transmission in the
neighbor networks. This interference depends on the UAV’s transmis-
sion power, quality of the UAV’s channel to the neighbor BS 𝑏𝑛 and
the probability of allocating the same resource block in the UAV and
terrestrial UEs. Due to minimum knowledge sharing, the UAV is blind to
the knowledge of UEs in the neighbor networks. Therefore, we assume
that at least one UE in neighbor cells is assigned with the same resource
block. Accordingly, the UAV’s interference in the uplink of a UE 𝑢 ∈
N ⊆  at BS 𝑏𝑛, and by considering 𝑢 as a set of allocated RBs to
UE 𝑢, will be [42]:

𝐼𝑢𝑏𝑛 ,𝑙 =
M
∑

𝑚=1

|𝑢|
∑

𝑘=0
𝑃𝑏𝑚 ,𝑙,𝑘ℎ𝑏𝑛 ,𝑙,𝑘, (7)

where 𝑃𝑏𝑚 ,𝑙,𝑘 is the UAV’s transmission power in RB 𝑘 ∈ 𝑢 when it was
transmitting to the main BS 𝑏𝑚 ∈ M at location 𝑙 on the same RBs of
UE 𝑢. Also, ℎ𝑏𝑛 ,𝑙,𝑘 indicates the channel gain between the UAV and the
neighbor BS 𝑏𝑛. This interference rate is an argument that affects the
terrestrial UE 𝑢 SINR and throughput rate:

𝛷𝑢
𝑏𝑛

=
𝑃 𝑢
𝑏𝑛
ℎ𝑢𝑏𝑛

𝐼𝑢𝑏𝑛 ,𝑙 +𝑁0
, (8)

𝑢
𝑏𝑛

= 𝐵 log2(1 +𝛷𝑢
𝑏𝑛
), (9)

here 𝑃 𝑢
𝑏𝑛
is the transmission power for UE 𝑢. For the sake of simplicity,

ll UEs’ transmission powers are assumed to be constant. Also, ℎ𝑢𝑏𝑛
ndicates the channel gain between the UE 𝑢 and the BS 𝑏𝑛.

.2. Objective definition

Based on the defined system model, the UAV’s objective is to fly
rom the source point and reach the destination point based on the BSs’
ocations and the density of the UEs in neighbor cells to minimize the
nterference level it causes on the neighbor terrestrial UEs, maximize
ts UL throughput by finding an optimal transmission power value, and
he shortest path between the source and destination.
The path association vector based on the hexagons is shown as 𝝕

hat consists of elements 𝜛𝑎,𝑏 ∈ {0, 1}. The value 1 means that the UAV
as moved from location 𝑎 to 𝑏, and 0 means otherwise. The UAV has to
ind the optimized path association vector from the source to destina-
ion 𝝕∗. To meet these requirements, the UAV has to find the optimal

A. Shamsoshoara et al.

w
p

𝑙

t
a

𝑷

w
r
p
o
o
l
t
w

Computer Networks 254 (2024) 110789
transmission power 𝑃 ∗
𝑏𝑚 ,𝑙

at each location 𝑙 where the UAV is associated
ith tower 𝑏𝑚, which is the main base station. The optimal transmission
ower 𝑃 ∗

𝑏𝑚 ,𝑙
for transmission to base station 𝑏𝑚 can be chosen from the

transmission power range 𝑃 ∗
𝑏𝑚 ,𝑙

∈ [𝑃min, 𝑃max] which includes a vector
of discrete values. 𝑃 ∗

𝑏𝑚 ,𝑙
should meet the satisfactory throughput rate

𝑇𝑏𝑚 ,𝑙 > 𝑇̄ , where 𝑇̄ is the minimum acceptable throughput. The optimal
power vector during the UAV’s flight is shown as 𝑷 ∗. To find 𝑃 ∗

𝑏𝑚 ,𝑙
, the

UAV has to find its BS-connectivity association vector. This connectivity
vector, 𝜚𝑏𝑚 ,𝑙 ∈ 𝝔, shows whether the UAV connects to BS 𝑏𝑚 at location
. The values for the connectivity vector are {0, 1}.
The UAV has to find the best BS connectivity vector 𝝔∗ based on

other optimization variables in this problem. Since the UAV does not
cause any interference on the UEs in its current cell and it can interfere
with other neighbor UEs in neighbor cells, the optimal variables such as
𝝕∗, 𝑷 ∗, and 𝝔∗ are chosen to minimize the interference to neighboring
errestrial UEs. In a nutshell, this optimization problem can be written
s:

min
,𝝕,𝝔

𝛼
𝑙𝐿
∑

𝑙=𝑙1

|N|
∑

𝑛=1
𝐼𝑢𝑏𝑛 ,𝑙 + 𝛽

𝑙𝐿
∑

𝑎=𝑙1

𝑙𝐿
∑

𝑏=𝑙1

𝜛𝑎,𝑏,

+ 𝛿
𝑙𝐿
∑

𝑙=𝑙1

|M|

∑

𝑚=1
𝜚𝑏𝑚 ,𝑙 , (10a)

s.t., 𝑃min ≤ 𝑃𝑏𝑚 ,𝑙 ≤ 𝑃max, 𝑏𝑚 ∈ M, (10b)

𝜛𝑎,𝑏 ∈ {0, 1}, 𝜚𝑏𝑚 ,𝑙 ∈ {0, 1}, 𝑙, 𝑎, 𝑏 ∈ , (10c)

𝑙𝐿
∑

𝑙=𝑙1

𝑇𝑏𝑚 ,𝑙 ≥ 𝜚𝑏𝑚 ,𝑙𝑇̄ , (10d)

|M|

∑

𝑚=1
𝜚𝑏𝑚 ,𝑙 −

𝑙𝐿
∑

𝑏=𝑙1 ,𝑏≠𝑎
𝜛𝑏,𝑎 = 0, (10e)

𝑙𝐿
∑

𝑎=𝑙1

𝜛𝑆,𝑎 = 1, 𝑎 ≠ 𝑆, (10f)

𝑙𝐿
∑

𝑏=𝑙1

𝜛𝑏,𝐷 = 1, 𝑏 ≠ 𝐷, 𝑏 ≠ 𝑆, (10g)

𝑙𝐿
∑

𝑎=𝑙1 ,𝑎≠𝑏
𝜛𝑎,𝑏 −

𝑙𝐿
∑

𝑘=𝑙1 ,𝑘≠𝑏
𝜛𝑏,𝑘 = 0, (10h)

𝑙𝐿
∑

𝑎=𝑙1 ,𝑎≠𝑏
𝜛𝑎,𝑏 ≤ 1. (10i)

here parameters 𝛼, 𝛽, 𝛿 serve as weight coefficients to represent the
elative importance of different objectives—uplink interference on UEs,
ath association vector, and BS connectivity vector, respectively. The
ptimization problem in (10a) aims to minimize the interference level
n neighbor network UEs and BSs; also, it minimizes the UAV’s path
ength from the source to the destination and selects the main BSs for
he communication, which imposes less interference to neighbor net-
orks. Eqs. (10b) and (10c) are the optimization problem constraints

regarding the UAV’s transmission power, the UAV’s path between
different hexagon cells, and the UAV-BS connectivity vector. Eq. (10d)
guarantees that the throughput rate for the UAV-BS UL at each location
𝑙 when it is associated with BS 𝑏𝑚 is greater than a predefined threshold
𝑇̄ , Eq. (10e) guarantees that the UAV is only connected to one main BS
𝑏𝑚 at each location 𝑙 on its path to the destination. Eq. (10f) claims that
the UAV’s path starts with the source point 𝑆 and the UAV only visits
the source one time, (10g) claims that each UAV’s path is ended at the
destination 𝐷, (10h) guarantees that if the UAV visits any midpoint
such as 𝑏 between the source 𝑆 and destination 𝐷, then it will leave
that point and fly to another cell. (10i) claims that each hexagon 𝑏 on
the UAV’s path will be visited at most once.

Fig. 1 shows a sample scenario of this system model. The UAV
chooses two paths from the source to the destination; the green one is
6
the optimal path considering the density of the terrestrial UEs since the
neighbor cells have lower densities, and the UAV’s UL communication
has less interference on the terrestrial UEs. We should note that the
UAV can allocate an optimal value for the transmission power in
each cell to control the trade-off between the throughput satisfaction
threshold and the level of interference. On the other hand, the orange
path shows a route in which the neighbor cells carry a more significant
density regarding the number of UEs, and as a result, the UAV faces a
more strict restriction on its transmission power.

This optimization problem is categorized as a mixed integer non-
linear one, which is hard to solve. This study aims to consider an
autonomous approach as a solution for the UAV to find the optimal val-
ues for the UAV’s transmission power, path, and cellular connectivity
vector. This multi-parameter problem involves a huge state-space set,
which is overwhelming when solving and finding the optimal values
in a reasonable amount of time. To investigate the possible solution
for this problem, we utilize an apprenticeship learning approach and
use the expert’s knowledge to expedite the solving problem and better
understand the optimal reward function.

4. Background on IRL

Many artificial intelligence and robotic applications consist of au-
tonomous agents such as ground robots, UAVs, and self-driving cars.
These agents usually operate in an uncertain and complex environment
where decision-making is cumbersome and necessary.

In multi-objective reinforcement learning problems, where the agent
deals with various and possibly conflicting objective functions to per-
form tasks of different natures, it is not always possible to define
a reward function that optimally captures all the objectives (10a)–
(10i). The problem studied in this paper also involves multiple actions,
such as movement and level of transmission power, with different
natures and behaviors. This problem makes it more intense for the
agent to understand the reward function meaningfully. Usually, in
these situations, an expert with enough experience in the domain
and field can demonstrate appropriate behavior to the agent. These
demonstrations may save some training time while assisting the agent
in determining the best reward function based on the most optimal
presented behavior. This type of learning is referred to as Learning from
Demonstration (LfD) or Programming by Demonstration (PbD), and it
is also known as imitation learning (IL). IL techniques are categorized
into two branches: (i) behavioral cloning [69] and (ii) apprenticeship
learning via IRL [70,71].

In BC, the agent blindly mimics the expert or teacher without con-
sidering the expert’s optimality, which means that if the expert makes
a wrong decision, the expert may follow that. Usually, IL problems are
solved using supervised learning approaches. However, if the expert
has yet to experience the state the agent observes, the learned policy
may not achieve an optimal outcome. This issue can be solved by an
approach called Data Aggregation (DAGGER) [72]. DAGGER aims to
collect expert demonstrations based on the state distribution observed
by the agent. In this case, the expert should always be available, which
is impossible in all scenarios and applications.

On the other hand, apprenticeship learning via IRL tries to find
the expert’s hidden desire (reward function) from the demonstrations
to find the optimal policy [51,73]. This paper utilizes apprenticeship
learning via IRL to solve the problem proposed in Section 3. Similar
approaches such as BC, Q-Learning, and Deep Q-Network are also
implemented to evaluate the numerical performance.

5. UAV’s self-organizing approach

5.1. Apprenticeship learning via inverse reinforcement learning

The problem definition of this study can be shown as a sequen-
tial decision-making process that can be posed in the (finite-state)

A. Shamsoshoara et al.

M
a
v
f
f
a

j
c
m
t

Computer Networks 254 (2024) 110789
Fig. 2. Difference between reinforcement learning and Inverse RL for apprenticeship learning (SARSA: State–action–reward–state–action, SVM: support vector machine).
DP. The reward function is typically provided in MDP problems,
llowing the agent to determine the optimal transition probabilities,
alue function, and policy. The agent can utilize the optimal policy
or decision-making in every state. However, assuming that the reward
unction is present in every complex system model is overly optimistic,
nd manually obtaining the reward function is challenging.
The existence of an expert may make it possible to have a set of tra-

ectories and demonstrations to learn the optimal behavior. The expert
ould be a virtual agent that operates on a high-performance computing
achine but cannot be utilized onboard a UAV. In this study, the
erm ‘‘trajectory ’’ refers to a set of states and actions rather than the
UAV’s trajectory movement or path. The IRL aims to re-construct the
unknown reward function 𝑅(𝜏) from the expert demonstrations. Later,
this obtained reward function can be used in an RL approach to find
the optimal policy. However, this problem is ‘‘ill-posed ’’ since multiple
reward functions exist for a unique and optimal policy.

Here, we assumed that the expert is trying to optimize an unknown
reward function, which this unknown function can be represented as a
linear mixture of known ‘‘features’’. Fig. 2 shows the main difference be-
tween a reinforcement learning problem and an apprenticeship learning
via IRL (AL-IRL) problem. The reward function is available in Fig. 2(a),
and the optimal policy is gained based on that. However, in Fig. 2(b),
the reward function is found based on the IRL and the expert data, and
the optimal policy is obtained. Expert trajectories are not the same as
optimal policies; however, they describe optimal behavior.

We assumed that the problem is MDP\R, which shows the MDP
problem without a reward function. This MDP\R consists of a tuple of
⟨ ,, 𝑃 𝑟, 𝛾, 𝑇 ⟩, where , , and 𝑃𝑟 represent the state space, action
space, and transition probability from current state 𝑠 ∈  to the next
state 𝑠′ ∈ , respectively. Also, 𝛾 is a discount factor, and 𝑇 is a
set of trajectories demonstrated by an expert. The MDP\R tuples are
described as follows:
(1) State

To define the state 𝑠 ∈ , we assume that a vector of features 𝝓 : s
→ [0, 1]𝑘, where 𝑘 is the number of features.  represents a finite set
of feature states,  = {𝜙𝑖|1 ≤ 𝑖 ≤ 5}. Each state 𝑠 ∈  is displayed with
five feature functions.

• 𝜙1(𝑠) is the feature that keeps track of the UAV’s distance to
the destination. This feature helps the agent to have a better
understanding of the shortest path.

• 𝜙2(𝑠) is the feature that keeps track of the UAV’s hop counts as
its traveled distance. This feature helps the agent to perform its
task in a limited number of hop counts because of UAV’s battery
life constraint.

• 𝜙3(𝑠) keeps track of the UAV’s successful task, where the term
‘‘successful’’ refers to the cases in which the UAV reaches the
destination cell. 𝜙3(𝑠) behaves like a binary variable, where it
takes the value of ‘‘0’’ if the UAV does not reach the destination

and ‘‘1’’ for reaching the destination cell.

7
• 𝜙4(𝑠) is a feature for the amount of received throughput from the
UAV to the designated BS based on the allocated transmission
power and SNR defined in (5) and (6) at each state.

• 𝜙5(𝑠) keeps the value for the interference imposed on the neighbor
UEs in the neighbor cells.

All feature values are normalized to the range of [0, 1]. This condition
on the reward function is necessary for the IRL algorithm to converge.
Hence, each state can be expressed based on the feature value functions
as,

𝝓(𝑠𝑡) = {𝜙𝑖(𝑠𝑡), 1 ≤ 𝑖 ≤ 5}. (11)

(2) Action
 represents the action space, which consists of the UAV’s move-

ment action and the transmission power allocation 𝑷 . The UAV’s
movement action somehow includes the defined movement variables
𝝕,𝝔 in (10a). The UAV chooses both actions autonomously at the same
time.
(3) Reward

Here, the unknown reward function is defined by considering the
feature functions in the state space. The reward function is defined as:

𝑅(𝑠) = 𝒘∗ ⋅ 𝝓(𝑠), (12)

where, 𝒘∗ are the optimal weights for the features to define the
desirable optimal reward function, 𝒘 ∈ R𝑘. To have the convergence
for the IRL, it is necessary to bound the reward function by −1 and
1. Therefore, the weights are also bounded ‖𝒘∗

‖ ≤ 1. Based on the
definition in (12) and the defined features, the reward function can be
re-written as:

𝑅(𝑠, 𝑎, 𝑠′) = 𝒘𝑇 ⋅ 𝝓(𝑠𝑡), (13)

=
5
∑

𝑖=1
𝑤𝑖𝜙𝑖(𝑠, 𝑎, 𝑠′).

In IRL approaches, researchers have the flexibility to define reward
functions in two main categories: linear and non-linear functions. The
choice between them depends on the problem’s nature and the environ-
ment’s characteristics. In this study, the reward function is specifically
introduced as a linear combination of feature values, 𝝓(𝑠𝑡), as described
in (13). A linear reward function offers enhanced interpretability,
where the weight of each feature in the linear combination directly
reflects its significance in shaping the agent’s behavior. This trans-
parency proves beneficial for a comprehensive understanding of the
learned policy. Furthermore, the inherently linear nature of this func-
tion contributes to computational efficiency, often leading to quicker
convergence during the training process. Importantly, it is less suscep-
tible to overfitting, facilitating generalization across diverse scenarios.
The pragmatic choice of using a linear function is particularly apt in
scenarios where such a representation effectively captures the essential

relationships between features and rewards. These features make linear

A. Shamsoshoara et al.

𝜇

e
d

C
b
p
c
d
p
𝜖

P

Computer Networks 254 (2024) 110789
functions a commonly adopted form for reward functions in IRL meth-
ods, often represented as a linearly weighted combination of reward
features [51,52].

It is worth mentioning that not all feature value functions behave
positively for the reward function. For instance, throughput is en-
couragement, and interference is punishment. The IRL algorithm aims
to find the optimum value for the weight vector, 𝒘∗, to express the
expert’s behavior for this specific problem. Let us define 𝜋 as a policy
that maps the visited states to probabilities on the action vectors for the
decision-making process. The value of each policy 𝜋 can be defined as
an expected value of the summation of discounted reward values based
on the chosen policy:

E [𝑉 𝜋 (𝑠)] = E𝜋

[∞
∑

𝑖=0
𝛾 𝑖𝑅(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖)

]

,

= E𝜋

[∞
∑

𝑖=0
𝛾 𝑖 𝒘 . 𝝓(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖)

]

,

= 𝒘 E𝜋

[∞
∑

𝑖=0
𝛾 𝑖𝝓(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖)

]

, (14)

= 𝒘 𝜇(𝜋),

where 𝑖 is the step the agent or the UAV takes in every episode. 𝜇(𝜋) is
defined as a feature expectation value for the policy 𝜋, 𝜇(𝜋) ∈ R𝑘, and
𝑘 is the number of defined features.

To find the unknown parameters, 𝒘, in the IRL algorithm, different
tools such as feature expectation matching [51,70], maximum margin
planning [74,75], and maximum causal entropy [76] have been pro-
posed. This paper uses the feature expectation matching between the
expert and the learner UAV. The reason is that the behavior of the agent
and expert can be expressed based on different explicit features; hence,
feature expectation matching can be used in this scenario.

We assume that an expert exists who has access to the simulator
environment. The expert has a complete understanding and knowl-
edge of the problem and scenario, which means it considers the UEs’
density, shortest path, throughput, and interference for the sake of
the optimization problem defined in (10a)–(10i). The expert simulates
a finite number of trajectories to show the desired behavior. These
expert behaviors can be saved in terms of trajectories as some vector
of features state 𝝓(𝑠) and actions 𝑎(𝑠) ∈ . Later, these trajectories can
be used to define the expert feature expectation value by getting an
average over several trajectories as follows:

̄𝐸 = 1
N

N
∑

𝑗=1

∞
∑

𝑡=0
𝛾 𝑡𝜙(𝑠𝑗𝑡), (15)

where 𝑁 is the number of trajectories and 𝑗 denotes the index for
ach trajectory. This 𝜇𝐸 or 𝜇(𝜋𝐸) carries the expert policy for the
emonstrated trajectories.

laim. The goal is to find a policy 𝜋∗ such that the second-norm distance
etween the expert feature expectation and the current policy feature ex-
ectation is less than a threshold 𝜖IRL. The mentioned policy will meet the
riteria for the value of that policy as well which means the first-norm
istance between the two value functions for the expert policy and learned
olicy based on the unknown reward function is less than the same threshold
IRL.

roof. The first-norm distance between the expert’s and agent’s value
function is written as,

D =
|

|

|

|

E
[

𝑉 𝜋E
]

− E
[

𝑉 𝜋∗
]

|

|

|

|

,

=
|

|

|

|

|

|

E𝜋E

[∞
∑

𝑖=0
𝛾 𝑖𝑅(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖)

]

− E𝜋∗

[∞
∑

𝑖=0
𝛾 𝑖𝑅(𝑠𝑖, 𝑎𝑖, 𝑠′𝑖)

]

|

|

|

|

|

|

,

|𝒘𝑇 𝜇(𝜋∗) −𝒘𝑇 𝜇̄(𝜋)| ,
= |

|

E |

|

8
≤ ‖𝒘‖2
‖

‖

𝜇(𝜋∗) − 𝜇̄(𝜋E)‖‖2 ,

≤ 1 . 𝜖IRL, (16)
≤ 𝜖IRL.

This shows that finding the optimal weights for the reward function
such that ‖𝜇(𝜋∗) − 𝜇̄(𝜋𝐸)‖2 ≤ 𝜖IRL guarantees that the distance between
the value function for the expert and the optimal policy is less than the
same threshold. □

5.2. Support vector machine problem formulation

To find the weights for the reward function, the authors of [51]
defined the problem as a support vector machine (SVM) problem,
where the aim is to maximize the difference between the value function
for the expert optimal policy and other previous learned policies. In the
SVM problem, this maximization problem is mapped to maximize the
distance between hyperplanes. This SVM problem aims to find a hyper-
distance or margin (𝐷) such that the difference between the expert
value function and all other previously learned policies is 𝐷. This SVM
problem can be written as
|

|

|

𝒘∗𝑇 𝜇(𝜋𝑖) −𝒘∗𝑇 𝜇̄(𝜋𝐸)
|

|

|

≤ 𝛥, (17)

𝒘∗𝑇
|

|

𝜇(𝜋𝑖) − 𝜇̄(𝜋𝐸)|| ≤ 𝛥, (18)

where, 𝑖 is index of the 𝑖th learned policy using the reinforcement
learning approach. To solve this SVM problem, the class for the expert
policy is labeled as ‘‘+1’’, and all other learned policies from the RL tool
are labeled as ‘‘−1’’. Based on the defined SVM problem, the distance
between the origin and the expert policy class is 1

‖𝒘‖2
and the distance

between the origin and all other learned policies is −1
‖𝒘‖2

, hence, maxi-
mizing the distance between hyper-planes is equal to minimizing ‖𝒘‖

2
2.

As a result, (17) can be written as:

min
𝒘

‖𝒘‖

2
2 , (19a)

𝑠.𝑡. 𝒘𝑇 𝜇𝐸 ≥ 1, (19b)

𝒘𝑇 𝜇𝜋𝑖 ≤ −1 . (19c)

Since this SVM problem looks like a quadratic programming (QP)
problem, any convex optimization tools or QP solvers such as CVXPY
[77] or CVXOPT [78] can solve this optimization problem. Here, CVX-
OPT is used in Python to find the weights. The objective function of this
optimization, (19a), is to minimize the weights and the variables are the
weights as well. Constraint (19b) is the subject for the expert policy
with the label of ‘‘+1’’ and constraint (19c) is the subject for all the
learned policies at different iterations with the label of ‘‘−1’’. It is worth
mentioning that the algorithm of finding the optimal weight such that
the distance is less than a threshold 𝜖IRL is iterative, and the number
of learned policies is increasing in the QP. Hence, the optimality of the
given solution is crucial to solving this problem. The standard format
of any QP problem looks like the following,

min
𝑥

1
2
𝑥𝑇 𝑃𝑥 + 𝑞𝑇 𝑥, (20a)

𝑠.𝑡. 𝐺𝑥 ≤ ℎ, (20b)

𝐴𝑥 = 𝑏 . (20c)

To match this with our SVM problem (19a), matrices of 𝑞, 𝐴, and 𝑏
are all zeros and matrix 𝑃 is 2𝐈𝐾 , which 𝐈 is the identity matrix and
𝐾 is the number of features (K = 5 in our problem). The dimension of
matrices 𝐺 and ℎ changes and increases with each iteration. Then, in
𝑛th iteration for different weights and learned policies, the formats of
𝐺 and ℎ are

𝐺(𝑛+1,𝑘) =

⎡

⎢

⎢

⎢

⎢

−𝜇𝐸 (1) −𝜇𝐸 (2) … −𝜇𝐸 (𝑘)
𝜇𝜋1 (1) 𝜇𝜋1 (2) … 𝜇𝜋1 (𝑘)

⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

, (21)
⎣

𝜇𝜋𝑛 (1) 𝜇𝜋𝑛 (2) … 𝜇𝜋𝑛 (𝑘) ⎦

A. Shamsoshoara et al.

w
l
p
s
t

o
i
v
c
Q

𝑄

w
t

𝑠
b
f
u
d
f
p

𝜋

p
o
o
t
i
t
a
f

𝑄

w
a
o
d
s
f
T
u

𝑄

T

𝐿

A
l
r
t
l
a
s
t
t
t
n

Computer Networks 254 (2024) 110789
ℎ(𝑛+1,1) =

⎡

⎢

⎢

⎢

⎢

⎣

−1
−1
⋮
−1

⎤

⎥

⎥

⎥

⎥

⎦

, (22)

here 𝜇𝜋𝑛 (𝑘) is the 𝑘th UAV’s feature expectation based on the 𝑛th
earned policy. These matrices of 𝑃 , 𝑞, 𝐺, ℎ, 𝐴, and 𝑏 map the QP
roblem to our scenario defined in (19a), (19b), and (19c). Algorithm 1
ummarizes the approach of the apprenticeship learning via IRL inside
he loop iteration to find the optimal weights.

Algorithm 1: Apprenticeship learning via IRL algorithm
1 Initialization:
2 Load the simulation environment
3 Load the expert trajectories

4 Calculate the expert feature expectation 𝜇̄𝐸 = 1
𝑁

𝑁
∑

𝑗=1

∞
∑

𝑡=0
𝛾 𝑡𝜙(𝑠𝑗𝑡);

5 Add some random values to the agent feature expectation for
the first round of optimization

6 while True do
7 Weights = SolveQP(Expert feature exp, Agent feature exp

list);
8 Weights(𝑤𝑖) = Weights / norm;
9 TrainedPolicy(𝜋𝑖) = learner(Weights);
10 Reset the simulation environment;
11 𝜇𝑖(𝜋𝑖, 𝑤𝑖) = RunSimulation(𝜋𝑖);
12 Add 𝜇𝑖(𝜋𝑖, 𝑤𝑖) to the agent feature expectation list;
13 Hyper distance = D = |

|

𝑤𝑇 𝜇(𝜋𝑖) −𝑤𝑇 𝜇̄(𝜋𝐸)||;
14 if D < 𝜖IRL then
15 Break;
16 end
17 𝑖+ = 1;
18 end
19 Return Weight(𝑤𝑖), 𝜇𝑖, 𝜋𝑖;

The main loop of Algorithm 1 continues until it reaches a point
where the hyperdistance is less than a threshold and in that case, it
breaks from the main loop and returns the optimal weights (𝑤𝑖), feature
expectation (𝜇𝑖), and the learned policy (𝜋𝑖).

To train a model for the optimized weights of the reward function
and find the optimal policy to evaluate the hyperdistance, learning
methods like RL, especially a temporal difference (TD) learning tool,
must be utilized. These methods find the optimal policy on line 9 of
the Algorithm 1. In this paper, we use two TD methods: the first one is
Q-learning based on linear function approximation, and the second one
is DRL or DQN. The following two sections propose these two tools for
the mentioned problem of apprenticeship learning to learn the policy.

5.3. AL-IRL with Q-learning using linear function approximation

After finding the normalized weights in apprenticeship learning, the
reward function is known for the specific iteration and the problem of
MDP\R is converted to a MDP problem with the tuple of ⟨ ,, 𝑃 𝑟, 𝑅, 𝛾⟩
where 𝑅 is the reward function defined based on the obtained weights,
(12) and (13). The learning policy aims to find a policy that can decide
n an action for the agent at each observed state to maximize the
mmediate reward while also considering the future reward. Different
alue iteration approaches are available to find this policy [79,80]. We
hose the Q-learning tool to solve this problem [81,82]. In the standard
-learning, the updating rule for the Q values is defined based on

(𝑠, 𝑎) ← (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)], (23)

here 𝑠 ∈  is the current state, 𝑎 ∈  is the action chosen based on

he policy or random exploration which changes the agent’s state from f

9
to 𝑠′, 𝛼 is the learning rate, 𝑅(𝑠, 𝑎, 𝑠′) is the reward function defined
ased on the IRL approach from the previous section. 𝛾 is the discount
actor considering the future reward (value-iteration or 𝑄(𝑠′)). After
pdating the Q-values based on different approaches, such as temporal
ifference (TD) or Monte Carlo (MC), the agent follows the policy rule
or exploiting greedy behavior. Later, this policy is considered a learned
olicy for apprenticeship learning.

(𝑠) = argmax
𝑎

𝑄(𝑠, 𝑎) . (24)

It is worth mentioning that this Q-updating approach works for
roblems with discrete states and actions, such as the grid-world cells
r scenarios. However, the state in this paper is based on the vector
f features 𝝓(𝑠) based on (11). Because the states are defined as con-
inuous values from the feature vectors, the Q-learning updating rule
s more challenging to update. The solution to this problem is to find
he Q-value from the defined feature vectors using a linear function
pproximation (LFA) tool such as linear regression. This means each
unction of 𝑄(𝑠, 𝑎) can be defined based on the values of features:

(𝑠𝑡, 𝑎𝑡) = 𝜃0 + 𝜃1 𝜙1(𝑠, 𝑎) + 𝜃2 𝜙2(𝑠, 𝑎) +⋯ (25)
+ 𝜃𝜅 𝜙𝜅 (𝑠, 𝑎) = 𝜽𝑇𝜙(𝑠, 𝑎),

here 𝜅 is the number of features, and in this paper, five features
re for each visited state. 𝜃𝑖 are the weight vectors to find the value
f 𝑄(𝑠, 𝑎). To find the 𝜽 vectors, we need to use a batch of sample
ata to update the values. To solve this linear regression problem, the
tochastic gradient descent (SGD) approach minimizes the loss function
or the difference between the predicted Q-value and the actual value.
he true target value for the Q is obtained based on the Q-value
pdating rule, and this value is called 𝑄+(𝑠, 𝑎):

+(𝑠, 𝑎) ≈ 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) . (26)

his Q target is used in the loss function for the SGD:

(𝜃(𝑖)) = 1
2
(𝑄+(𝑠, 𝑎) −𝑄(𝑠, 𝑎))2 (27)

= 1
2
(𝑄+(𝑠, 𝑎) − 𝜙(𝑠, 𝑎)𝑇 𝜃(𝑖))2 .

Now, considering the mentioned loss function, the values of the weights
update based on the gradient:

𝜃(𝑖+1) = 𝜃(𝑖) − 𝛼𝑆𝜕(𝐿(𝜃(𝑖)))∕𝜕𝜃 (28)

= 𝜃(𝑖) − 𝛼𝑆𝜕(
1
2
(𝑄+(𝑠, 𝑎) − 𝜙(𝑠, 𝑎)𝑇 𝜃(𝑖))2)∕𝜕𝜃

= 𝜃(𝑖) − 𝛼𝑆 [𝑄+(𝑠, 𝑎) − 𝜙(𝑠, 𝑎)𝑇 𝜃(𝑖)] . 𝜙(𝑠, 𝑎) .

The optimal values of the weights are obtained based on different
episodes, visits, and agent exploration. The agent’s exploration and
exploitation process is based on the 𝜖-greedy process with 𝜖 decay over
the episodes. It means that the agent behaves randomly in the early
episodes, and then acts more greedy based on exploitation of Q-values.
At the end of this process, the learned policy (𝜋𝑖) will be used in the
apprenticeship learning to get the latest feature expectation values (𝜇𝑖).
lgorithm 2 summarizes the procedure for policy learning using Q-
earning via linear function approximation for a specific weight of the
eward function. Algorithm 2 finds and returns the learned policy for
he specific reward function. DIST_LIM indicate the UAV’s hop count
imitation based on the UAV’s battery life and flight time limitation is
dopted. In this case, the learned policy is the trained SGD model. The
ize of the SGD model depends on the action vector. For instance, in
his paper, the agent has 6 (Mobility) × 6 (Power Allocation) actions
o choose from. Hence, 36 SGD models are the learned policy for
his specific configuration. In the next section, we propose a deep Q-
etwork instead of the stochastic gradient descent approach for linear
unction approximation.

A. Shamsoshoara et al. Computer Networks 254 (2024) 110789
Algorithm 2: Q-learning algorithm with Linear Function
Approximation
1 Initialization:
2 Load the simulation environment;
3 𝜖 = 1;
4 while episode < NUM_EPS do
5 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0;
6 Reset UAV();
7 𝐷𝑜𝑛𝑒 = FALSE;
8 while distance < DIST_LIM & not DONE do
9 if random < 𝜖 then
10 𝑎𝑐𝑡𝑖𝑜𝑛 = random Action;
11 else
12 𝑎𝑐𝑡𝑖𝑜𝑛 = GetGreedyAction(SGD Model);
13 end
14 Update 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ;
15 Calculate SNR, Interference, Throughput;
16 Calculate Features (𝜙1(𝑠, 𝑎, 𝑠′),… , 𝜙5(𝑠, 𝑎, 𝑠′));
17 Calculate immediate reward 𝑅(𝑠) = 𝒘𝑇 .𝝓(𝑠′);
18 𝑄(𝑠′) = predict(SGD Model, 𝜙(𝑠′));
19 if New location is DESTINATION then
20 𝐷𝑜𝑛𝑒 = TRUE;
21 𝑄+(𝑠, 𝑎) = 𝑅(𝑠);
22 else
23 hon 𝑄+(𝑠, 𝑎) = 𝑅(𝑠) + 𝛾 max

𝑎′
𝑄(𝑠′, 𝑎′);

24 end
25 Update SGD Model(SGD Model, 𝝓(𝑠), 𝑄+(𝑠, 𝑎));
26 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+ = 1;
27 end
28 if 𝜖 > 0.1 & episode > NUM_EPS/10 then
29 𝜖 -= 1/NUM_EPS ;
30 end
31 𝑒𝑝𝑖𝑠𝑜𝑑𝑒+ = 1;
32 end
33 Return SGD Model;

5.4. AL-IRL with deep Q-network

In the previous section, the solution to find the optimal policy was
based on the Q-learning algorithm using the linear function approx-
imation with stochastic gradient descent. This section uses the DQN
approach to predict the Q-value based on the current features vector
(current state) and the chosen action. Fig. 3 demonstrates the deep
reinforcement learning structure for the apprenticeship learning for the
obtained reward weights based on the inverse reinforcement learning
algorithm.

The optimal policy learning block consists of a deep neural network
with two hidden layers: an input layer with the size of the number
of features for each state and an output layer with the size of all
actions. The numbers of neurons in the hidden layers are 30 and
30, respectively. Both hidden layers utilize the Rectified Linear Unit
(RELU) [83] for the activation layer. The last layer has the linear
activation function since the output of the deep neural networks is a
continuous value for the Q-Action-Value. The structure of this DNN is
demonstrated in Fig. 4.

The training concept for the exploration and exploitation is similar
to Algorithm 2. However, the training process is different, and in
this approach, the training model is based on batch samples. The
batch samples are picked randomly from the replay memory. Also, a
buffer length is considered for the replay memory to keep the data
fresh and pop the old data from the replay. Algorithm 3 presents the
random batch sample training and fitting those data for the model. This
10
Fig. 3. Deep Q-Network approach for the optimal policy in the apprenticeship learning.

algorithm is summarized since some structures appeared in Algorithm
2. Hence, a few lines are just removed.

Algorithm 3: Deep Q-Network to predict the Q-Action-Value on
batch samples
1 while episode < NUM_EPS do
2 ...;
3 while distance < DIST_LIM & not DONE do
4 ...;
5 Collect features, actions, reward for the Replay memory;
6 if episode > NUM_EPS/10 then
7 batch = random.sample(replay, BATCH_SIZE) ;
8 for all data in batch do
9 x_train = batch[current feature];
10 if New location is DESTINATION then
11 𝑄+(𝑠, 𝑎) = 𝑅(𝑠);
12 else
13 𝑄+(𝑠, 𝑎) = 𝑅(𝑠) + 𝛾 max

𝑎′
𝑄(𝑠′, 𝑎′);

14 end
15 y_train = batch[𝑄+(𝑠, 𝑎)];
16 end
17 model_DQN.fit(x_train, y_train);
18 end
19 distance+ = 1;
20 end
21 if 𝜖 > 0.1 & episode > NUM_EPS/10 then
22 𝜖 -= 1/NUM_EPS;
23 end
24 𝑒𝑝𝑖𝑠𝑜𝑑𝑒+ = 1;
25 end
26 Return DQN Model;

To train the model and find the optimal weights for the neurons,
the Mean Squared Error (MSE) [84] is used as the loss function for the
optimization. To perform the stochastic optimization on the MSE, an
optimizer called ‘‘Adam’’ is used to solve the problem for each batch of
collected data [85]. The MSE loss function for a batch with 𝑛 samples
is shown below

𝑀𝑆𝐸 =
∑𝑛

𝑖=1(𝑄
+(𝑠, 𝑎) −𝑄(𝑠, 𝑎))2

𝑛
, (29)

where 𝑄(𝑠, 𝑎) is the predicted value based on the current features vector
and 𝑄+(𝑠, 𝑎) is the actual values (target value) for the Q-value updated

A. Shamsoshoara et al.

b
t

5

U
l
p
t
t
g
s
n
T
U
e

s
d
a
i
a
h
i
f

𝐱
t
i
i
a

s
b
a
o

𝜏

m
t
m

Computer Networks 254 (2024) 110789
Fig. 4. Deep neural network structure used in the DQN approach to predict the Q-Action value based on the features vector.
s
t
w
p

𝐚

w
t
G
f
s

p
d
s
i
a
a
t
f
t
t
c
p

6

t
p
i
d
m
v
u
T
t
p
w
L
w
t
o

ased on (26). 𝑛 is the number of samples in each batch samples for
he training.

.5. Imitation learning: Behavioral cloning

This section proposes the model used in this paper for the BC.
sually, supervised learning tools can obtain the model for imitation
earning to mimic the expert’s behavior [86]. However, the BC ap-
roach only has the solution for those states the expert observes. If
he agent or UAV examines a state that the expert has never seen,
he outcome may not be optimal. All trajectories from the expert are
athered for imitation learning and BC. The same feature vectors of
tates with the respective actions are used to train a deep neural
etwork for task classification based on the observed state by the UAV.
his problem is categorized as a task classification problem since the
AV wants to choose the right action at the right time based on the
xpert’s experience.
We first collect the expert’s data and trajectories to implement the

upervised learning for the BC. These trajectories provide a simulated
ataset for the training and test evaluation. BC does not need constant
ccess to the expert; however, DAGGER requires the expert’s presence
n states that have never been visited. Implementing the DAGGER
pproach is more costly and not always feasible; thus, the BC is applied
ere for imitation learning. We should note that the collected dataset
s based on states and actions, and there is no meaning of the reward
unction, and the agent mimics the expert blindly.
The expert data, (), is collected in terms of  = {(𝐱𝑡, 𝐬𝑡, 𝐚𝑡)}, where

𝑡 is the initial condition for the expert. This paper assumes that 𝐱𝑡 is
he location where the agent or UAV starts its initial location (0, 0). 𝐬𝑡
s the UAV’s state that consists of the features vector defined in (11)
n Section 5.1. Action (𝐚𝑡) is the mixed action based on the mobility
nd the transmission power allocation, 𝐚 ∈ . The action space is
= {𝑎𝑛(𝑖)|0 ≤ 𝐼 ≤ 35}, which consists of 6 movement actions and

ix transmission powers. Since the agent decides at the same time for
oth the mobility and transmission power, there are 36 actions. If the
ctions were independent, the number of actions would be 12 instead
f 36. The collected expert trajectories can be shown as,

= {𝝓(𝐬)(0), 𝐚(0),𝝓(𝐬)(1), 𝐚(1),…} . (30)

After collecting the expert trajectories, the problem is defined as
ulti-class classification and a supervised learning technique is utilized
o handle the problem. The supervised learning approach generates a

odel predicting the appropriate class (action) based on the visited P

11
tate. A decision tree algorithm is chosen as a supervised learning
echnique. Next, based on the expert’s collected information, the UAV
ill use this model to decide on the next cell and the next transmission
ower. Here, the learned model is called 𝜋BC

= 𝜋BC(𝐱𝑡, 𝐬𝑡), (31)

hich BC stands for the BC. To train the model, the decision tree from
he SciKit-Learn Python package is used to solve the problem [87,88].
ini impurity is used to determine the quality of split for various
eatures. After training, the decision tree model has a depth of five with
even leaves.
To illustrate the interaction between the components of our pro-

osed solution, we have provided a sequence diagram in Fig. 5. This
iagram shows the interaction between key components: Apprentice-
hip Learning via IRL in Algorithm 1, SVM, and Q-learning and DQN
n Algorithms 2 and 3, respectively. It integrates the block diagrams
nd structural details of our approach, highlighting the process flow
nd component interactions. While the diagram specifically illustrates
he DQN component, it should be noted that the Q-learning process
ollows a similar sequence, and thus has not been separately depicted
o avoid repetition. Additionally, the overhead and time complexity of
he proposed solution are important considerations for practical appli-
ations. Detailed analysis of the time complexity for each algorithm is
rovided in Appendix.

. Numerical results and experiments

In this section, the designed simulator is explained first, and then
he convergence of the apprenticeship learning for the IRL and the
olicy learner using both the Q-learning and deep Q-network methods
s analyzed. Afterward, the performance comparison among various
ecision-making approaches at the UAV, including inverse reinforce-
ent learning (Q-learning using linear function approximation), in-
erse Deep Q-Network, BC, shortest path, and a random policy, is
tilized to compare the proposed method with similar approaches.
hrough all the experimental results, a probabilistic channel according
o (3) for UAV is considered. However, in some cases, to show the
erformance comparison results in different UAV channel conditions,
e mentioned two different UAV channel scenarios, probabilistic and
oS channels. All designs and simulations are tested on a Ubuntu system
ith a Ryzen nine 3900X CPU and Nvidia RTX 2080 Ti GPU. The
raining phase for the deep neural network approach was done based
n Tensorflow 2.3.0, Keras 2.4.0 API, CUDA 10.1, and cuDNN 7.6 with

ython 3.6.

A. Shamsoshoara et al. Computer Networks 254 (2024) 110789
Fig. 5. Sequence diagram of the proposed AL-IRL via DQN approach.

6.1. Designed simulation environment

In this study, we develop an Open Source simulation environment
based on the proposed problem in Section 3. The simulation environ-
ment is designed in Python 3.6 to consider the UAV in a pre-defined
area with 25 cellular base stations and multiple terrestrial UEs. The
UEs’ distribution is such that some cells and areas have a higher density,
and others are less crowded. While the distribution of UEs is considered
fixed, the dynamicity of the environment is maintained through the
variability in UEs’ power and their connection channels, effectively
characterizing the dynamic nature of the environment.

To provide a comprehensive simulation model, we considered key
factors relevant to UAV-based communication environments. One com-
mon method for modeling air-to-ground propagation channels is to
consider LoS and NLoS components along with their occurrence proba-
bilities separately, as shown in [9,89]. In NLoS connections, due to the
shadowing effect and reflection from obstacles, the path loss is higher
than in LoS connections. We have incorporated these effects into our
path loss model, as detailed in Eqs. (1) and (2). Our simulation utilizes a
probabilistic Gaussian channel model that includes path loss modeling
for both LoS and NLoS scenarios, realistically capturing variations
in signal propagation. This allows us to simulate various multipath
effects and environmental factors impacting signal strength and quality.
Specifically, our model accounts for shadowing from obstacles such as
trees and buildings, ensuring realistic representation of signal atten-
uation. Additionally, the fixed altitude assumption for UAVs reflects
practical utilization strategies, where predefined air corridors at spe-
cific heights are followed for safe and efficient airspace management.
This assumption is supported by relevant literature [41,42,90]. Overall,
our approach aligns with established standards and previous literature,
providing a robust and realistic representation of UAV communication
scenarios.

The proposed solution should be able to find the optimal path
regarding the distance, throughput, number of adjacent UEs, and in-
terference on UEs in a dense urban environment with parameters 𝑐1 =
12.076 and 𝑐2 = 0.114. This simulation is event-based, and the event
is the UAV’s action. The UAV has six actions for mobility and six
discrete actions for transmission power, which results in 36 actions
together. The user can change the transmission power range to consider
a broader or narrower range to increase or decrease the number of
actions. More actions bring more complexity to convergence. This
simulator is designed based on an object-oriented approach. Different
classes are defined for the UAV, UEs, and BSs. All parameters for the
learning algorithms and environment are configurable in the simulator.

Table 3 summarizes the main simulation parameters.

12
Fig. 6. Demonstration of the designed graphical interface for the user.

Table 3
Simulation parameters.
Parameter Value Parameter Value

Number of cellular BS 25 UE transmit power 2 mW
Number of UEs 75 UAV antenna gain 100
UAV altitude (𝐻) 50 m Number of features 5
UAV max transmit power 200 mW Number of epochs 1e4
UAV min transmit power 50 mW 𝜖 0.1
Dense urban (𝜂𝐿𝑜𝑆 , 𝜂𝑁𝐿𝑜𝑆) (1.6, 23) [dB] Batch size 24
Dense urban (𝑐1, 𝑐2) (12.076, 0.114) Replay buffer size 1𝑒4
𝑁0 −90 dBm 𝛾 0.99
Carrier frequency 2 GHz 𝛼 0.001

In Fig. 6, a circle notation is considered to show the UAV’s coverage
area as a function of its transmission power to demonstrate the interfer-
ence level. Black arrows demonstrate the UAV’s directions to show the
chosen path. The user can turn off the Graphical User Interface (GUI)
to speed up the simulation. All models and trajectories can be saved
on a drive for future evaluations. Fig. 6 shows a sample snapshot of
the simulator with the chosen path. In this sample, the UAV flies from
the source cell (BS0) towards the destination cell (BS24) with varying
transmission power. The source code of this simulator is available on
the GitHub repository [91]. A sample video of the designed simulator
implementing the different approaches in this study is available on
YouTube [92]. In the video, we showed the simulation based on the
different approaches during the training phase and also after training
for the evaluation.

6.2. Convergence of the IRL

To investigate the convergence for Inverse Reinforcement Learn-
ing, the hyperdistance between the expert’s feature expectation and
the learner’s feature expectation is considered a metric to show the
convergence behavior of the IRL algorithm. Fig. 7 demonstrates this
hyperdistance for different iterations. The learning process stops at the
iteration where the hyper-distance is getting lower than a predefined
threshold (𝜖IRL). The user can choose the desired threshold based on
the requirements. If the user chooses 𝜖IRL = 0, the user wants to achieve
the same behavior as the expert. Choosing 𝜖IRL = 0 may need infinite

iterations for the IRL algorithm to find the optimal weight.

A. Shamsoshoara et al.

t
l
a

6

f
a
t
v
f
e
a
f

6

c
r
s
t
Q
a
F
a
a
s

l
f
U
d
i
S
c
a

(
t

w
s
b
d
c
f
t
i
H
d

6

n
d
s
t
w
c
m
b
t

r
b
t
t
o
s
c
t
a
w
t
t

T
t
f
f
d
i
c
o
d
t
I
t
b
l
v
(
t
r
t
F

a
b
c
d
d

Computer Networks 254 (2024) 110789
Fig. 7. Hyper distance between the expert and agent feature expectation based on
different weights, reward functions, and optimal policy.

In Fig. 7, we assumed that the threshold (𝜖IRL) for the distance be-
ween the expert and agent feature expectation is 0.1 and any distance
ess than the threshold stops the algorithm. After ten iterations, this
lgorithm stops when the distance is 0.057.

.3. Convergence of the Q-learning and deep Q-network

Fig. 8 demonstrates a few iterations of the feature policy learning
or each unique reward function for the Q-learning with linear function
pproximation using the SGD. Based on the exploration-greedy rate,
he accumulative reward function is converged to the best optimum
alue. It is worth mentioning that the optimum value for the reward
unction depends on the obtained weight for the reward function at
ach iteration based on the QP. Because of that, each plot converges to
different value. Also, Fig. 9 illustrates the same convergence concept
or the various iterations of the policy learning for the Deep Q-Network.

.4. Apprenticeship learning via inverse RL performance - Training phase

All results in this section average over 25 runs for a smooth and
lear demonstration for comparison. Figs. 10(a), 10(b), 10(c) represent
esults for UAV’s probabilistic channels, and Figs. 10(d), 10(e), 10(f)
how the results for UAV’s LoS channels. Figs. 10(a) and 10(d) show
he throughput result of the inverse RL using the Q-learning and deep
-network during the training phase of the optimal reward function
fter the final optimization and termination of the IRL algorithm. In
ig. 10(d), both approaches converge at the same number of epochs
nd values after the 𝜖-greedy exploration. It is worth mentioning that
chieving the maximum throughput is not always the optimum policy
ince it also increases interference.
Also, Figs. 10(b) and 10(e) show the summation of interference

evels on the neighbor UEs when the UAV uses the same resource block
or its transmission and the UAV’s uplink can interfere with the other
Es’ downlink as well. Keeping the interference as low as possible is
esired; however, it decreases the throughput as well, and it is not
n line with the problem objectives defined in (10a) and (10d) in
ection 3. As Fig. 10(e) represents, Q-learning and DQN algorithms
onverge to different values, and the reason is that because these two
lgorithms utilized different paths for the problem, thus the agent
 f

13
UAV) senses a different number of UEs, and the effect of its UL
ransmission is different in these models.
Figs. 10(c) and 10(f) demonstrate the distance between the location

here the UAV finishes its task and the destination cell where it was
upposed to finish and stop based on resource limitations such as the
attery capacity and flight time. In Fig. 10(c), DQN converges to the
istance of zero, which means this algorithm finds the destination
ell (in this scenario (BS24)). However, the limited energy of UAVs
or flight, coupled with the highly dynamic wireless environment and
he low convergence power of the Q-learning algorithm, results in an
nability to reach the destination in probabilistic channel conditions.
owever, in Fig. 10(f) both Q-learning and DQN converges to the
istance of zero, which means both algorithms find the destination cell.

.5. Apprenticeship learning via inverse RL performance

Here, the goal is to compare the performance of different path plan-
ing mechanisms including apprenticeship learning via IRL, inverse
eep RL, BC, shortest path, and random action. The previous section
hows the result for the inverse RL using Q-learning and DQN during
he training phase. Here, based on the trained model and obtained
eights for the reward function, a sample scenario is considered to
ompare the performance of these different approaches. The imple-
ented BC model defined in Section 5.5 predicts the desired action
ased on the visited features vector state with 89.08% accuracy using
he decision tree classification approach.
In Fig. 11(a), the throughput of the DQN, BC, shortest path, and

andom policy is compared. Following BC, which mimics the expert’s
ehavior without knowledge, DQN exhibits better throughput behavior
han random and shortest-path algorithms. This can be attributed to
he positive influence of feature expectations for the throughput metric
n the reward function in the feature state vector (𝜙(𝑠, 𝑡)). In the
hortest path, the UAV selects the shortest route between the source
ell (BS0) and the destination to conserve energy, randomly selecting
ransmission power. Both the movement action and transmission power
re random in the random policy. The random policy demonstrates the
orst performance in terms of throughput in the same scenario, with
he primary factor affecting throughput metrics being the agent’s (UAV)
ransmission power for its UL transmission.
Fig. 11(b) compares interference management across all approaches.

his interference represents the summation of interference applied
o all neighboring UEs when utilizing the same resource block. This
igure’s interference level depends on the UAV’s transmission power
or its UL, the density of neighbor UEs in the neighboring cells, and the
istance between the UAV and the affected UEs. BC exhibits the lowest
nterference level as it precisely mimics the expert’s behavior without
omprehending it. Following that, the DQN approach has the next level
f applied interference. The shortest path selects a route with a higher
ensity of UEs than other approaches, resulting in higher interference
han the other two techniques and almost similar to the random policy.
f the user aims to train the DQN approach to align more closely with
he expert’s behavior, a lower value for the epsilon threshold (𝜖𝐼𝑅𝐿) can
e chosen. In this case, the algorithm’s convergence process will take
onger to meet the threshold. However, the agent’s feature expectation
ector (𝜇(𝜋𝑖)) will be closer to the expert’s feature expectation vector
𝜇̄(𝜋𝐸)). Therefore, the threshold value can be determined based on
he user’s expectations for the learning and optimization process of the
eward function’s weights and the optimal policy. It is essential to note
hat changes in the epsilon threshold (𝜖𝐼𝑅𝐿) may impact the results in
ig. 7, and more iterations may be required to meet the criteria.
Fig. 12 illustrates the distance between the destination cell (BS24)

nd the cell where the agent stops or completes its tasks. In both
ehavioral cloning and the shortest path approaches, the destination
ell is reached at the 6th step. However, in the DQN approach, the
estination cell is visited at the 7th step. Notably, the random policy
oes not reach the destination cell due to limitations in battery life and

light time.

A. Shamsoshoara et al.

Fig. 8. Convergence of the policy learning using Q-Learning in different iterations for the IRL approach.

Fig. 9. Convergence of the policy learning using deep Q-Network in different iterations for the IRL approach.

Fig. 10. Evaluation of UAV’s UL throughput, interference value on neighbor UEs, and the final distance of the UAV during the training phase of the inverse RL for both Q-learning
and DQN.

Computer Networks 254 (2024) 110789

14

A. Shamsoshoara et al.

d
F
a
e
s
B
h
i
e
F
c
t
t
a
a
r
m
p
s
t
s
b
e

s
a
U
c
s

Computer Networks 254 (2024) 110789
Fig. 11. Evaluation of the UAV’s UL throughput and the effect of interference with
neighbor UEs in a single scenario.

6.6. Inverse RL and behavioral cloning in unseen states by the expert

In this section, we explore another scenario to assess the perfor-
mance of the Q-learning, DQN, and BC in a situation where the UAV
is placed in a cell that an expert has never seen or experienced. Since
we assumed that the expert is only available for a few trajectories or
it is costly to have on-demand access to the expert, it is not possible
to ask the expert to experience the new state. Therefore, methods like
DAGGER are not practical in this situation. To simulate this scenario,
an environmental variable, such as wind, is applied to the drone and
placed the drone in the adjacent cell (𝐵𝑆5) as the initial or source cell.
The expert has never observed 𝐵𝑆5, and no data exists for this location.

Fig. 13 illustrates trajectories, states, and actions taken by the agent
using the three approaches. In Fig. 13(a), the UAV employing the
 a

15
Fig. 12. The distance between the last location where the UAV stops its task and the
center of the destination cell.

BC approach initiates its journey from BS5 and selects a path with
a higher UE density. However, it fails to reach the destination cell
(BS24) to complete its task. In Fig. 13(b), Q-learning is utilized to
avoid areas with high UE density. Nevertheless, it struggles to reach
the destination due to a complex and dynamic wireless environment.
On the other hand, DQN successfully identifies the destination cell,
navigating around areas with high UE density, as depicted in Fig. 13(c).

The performance evaluation of throughput, interference, and the
istance between the drone and the destination cell is illustrated in
ig. 14. The key focus is completing the agent’s task while maintaining
n acceptable level of interference and throughput. The DQN approach
xhibits a superior average and standard deviation for throughput, as
een in Fig. 14(a). This improvement is attributed to the fact that
C selects power values for its path, which is incorrect. The path
as never been experienced before, and data for it was unavailable
n the dataset. Fig. 14(b) demonstrates that DQN excels in interfer-
nce management in the event of errors in the system. Additionally,
ig. 14(c) shows that DQN successfully reached the destination and
ompleted the task by the 6th step. However, BC could not finish the
ask by reaching the destination cell. In Fig. 14, we demonstrate that
he BC method, which accurately mimics the expert’s behavior but lacks
comprehensive understanding, achieves slightly higher throughput
nd lower interference. However, it fails to complete the task and
each the destination. This underscores the superiority of the DQN
ethod, which accomplishes the task and exhibits significantly better
erformance. Furthermore, this figure also illustrates results in unseen
cenarios where BC fails to reach the destination and complete the
ask, highlighting its limitations in handling such states. This evaluation
hows that apprenticeship learning using inverse deep RL performs
etter compared to imitation learning like BC for the cases where the
xpert did not experience the visited state by the agent.
One future direction for this work is to explore a more realistic

cenario by modeling the antenna gains. Ground-based BS antennas
re typically down-tilted and optimized to enhance capacity for ground
Es while minimizing inter-cell interference. Consequently, cellular-
onnected UAVs may be served by the sidelobes of terrestrial BSs. In
uch situations, the UAV may establish connections with BSs located at

distance, leading to non-trivial behavior in channel state information.

A. Shamsoshoara et al. Computer Networks 254 (2024) 110789
Fig. 13. Running Q-learning, DQN, and behavioral cloning on the defined scenario with an environmental error where wind moves the UAV to from cell(0) to the adjacent cell.
Fig. 14. Performance of DQN, and BC with the applied error.
Previous studies, like [93,94], have delved into antenna behavior for
trajectory optimization and observation, employing both simulation
and experimental approaches. Addressing this challenge could shape
future directions regarding system modeling and methodology within
this paper.

7. Conclusions

Given the growing applications of unmanned aerial vehicles, the
demand for reliable communication technologies that enable low-
latency, high-transmission-rate communication is paramount. Cellular
networks, particularly 5G and beyond, offer numerous advantages for
drones, including reliability, extensive coverage, and security. How-
ever, the increasing use of drones as aerial cellular users presents
unique challenges, such as potential interference with terrestrial users
and base stations. This paper introduces a novel interference-aware
scheme that combines joint path planning and power allocation for
autonomous cellular-connected unmanned aerial vehicles (UAVs). Our
UAVs are tasked with navigating from their initial points to destina-
tions while minimizing interference with terrestrial User Equipment
(UEs) and maximizing uplink throughput. To tackle this challenge, we
propose an apprenticeship learning approach using IRL, which incor-
porates both Q-learning and deep Q-network solutions. Additionally,
we employ behavioral cloning, a form of imitation learning employing
decision tree supervised learning, for comparative analysis.

Our numerical and simulation results demonstrate that apprentice-
ship learning via IRL closely aligns with expert behavior and out-
performs the behavioral cloning approach. Moreover, we allow users
to define a threshold to control the agent’s adherence to the desired
expert behavior. Importantly, our study underscores the effectiveness of
inverse RL in scenarios involving system errors or situations where the

expert has not collected supervised data for visited states. Furthermore,

16
our research addresses a critical need in the field of UAV communica-
tion, offering a solution that optimizes communication quality while
mitigating interference. By combining state-of-the-art techniques in
reinforcement learning, we contribute valuable insights and method-
ologies to enhance the reliability and performance of cellular-connected
UAVs. This work paves the way for improved drone applications and
further advancements in autonomous aerial communication systems.

CRediT authorship contribution statement

Alireza Shamsoshoara: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Resources, Method-
ology, Formal analysis, Data curation, Conceptualization. Fatemeh
Lotfi: Writing – review & editing, Writing – original draft, Visualiza-
tion, Validation, Software, Resources, Methodology, Formal analysis,
Data curation, Conceptualization. Sajad Mousavi: Writing – original
draft, Methodology. Fatemeh Afghah: Writing – review & editing,
Writing – original draft, Supervision, Project administration, Method-
ology, Investigation, Funding acquisition, Conceptualization. İsmail
Güvenç: Supervision, Resources, Methodology, Investigation, Funding
acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Alireza Shamsoshoara reports financial support was provided by Air
Force Office of Scientific Research. Fatemeh Afghah reports financial
support was provided by Air Force Office of Scientific Research. Fate-
meh Loti reports financial support was provided by National Science
Foundation. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

A. Shamsoshoara et al.

A
t

i

F
m

T

C

𝑂

T

𝑂

A
s

s

Computer Networks 254 (2024) 110789
Data availability

Data will be made available on request.

Acknowledgments

This material is based upon work supported by the Air Force Office
of Scientific Research, United States under award number FA9550-
20-1-0090 and the National Science Foundation, United States un-
der Grant Numbers CNS-2232048, CNS-2318726, CNS-2332834 and
CNS-2120485.

Appendix. Time complexity analysis

Detailed analysis of the time complexity for each algorithm used in
the proposed solution is provided here.

A.1. Algorithm 1: Apprenticeship learning via IRL algorithm

To analyze the time complexity of Algorithm 1, we examine each
step and its computational complexity.

• Initialization: Loading the simulation environment and expert
trajectories: Assume this has a constant time complexity, 𝑂(1).
Calculating the expert feature expectation: This involves summing
over 𝑁 trajectories and the steps 𝑡 in each trajectory. Assuming
each trajectory has an average length 𝐿, the complexity is 𝑂(𝑁 ×
𝐿).

• Main Loop (While True): Solving the Quadratic Program (QP)
to find the weights has a complexity of 𝑂(𝑄𝑃), which depends
on the specific QP solver used. Normalizing the weights has a
complexity of 𝑂(𝑑), where 𝑑 is the dimension of the weight
vector. Training the policy with the learner involves training the
policy, which could be a complex operation depending on the
specific learner used (e.g., training a neural network). Let us
denote this as 𝑂(𝐿𝑒𝑎𝑟𝑛𝑒𝑟). Resetting the simulation environment
is 𝑂(1). Running the simulation to calculate the agent’s feature
expectation has a complexity of 𝑂(𝑀×𝐿), where𝑀 is the number
of episodes run in the simulation. Calculating the hyper distance
involves a dot product calculation, which has a complexity of
𝑂(𝑑). Checking the stopping condition is 𝑂(1).

The main loop runs until the stopping condition 𝐷 < 𝜖IRL is met. Let us
denote the number of iterations of the loop as 𝐼 . Inside each iteration,
the most significant contributions to the complexity are solving the QP,
training the learner, and running the simulation. Thus, the overall time
complexity of the algorithm can be approximated as:

𝑂(𝑇 × 𝐿) + 𝐼 × (𝑂(𝑄𝑃) + 𝑂(𝑑) + 𝑂(𝐿𝑒𝑎𝑟𝑛𝑒𝑟) + 𝑂(𝑀 × 𝐿) + 𝑂(𝑑)). (A.1)

Simplifying this expression, we get:

𝑂(𝑇 × 𝐿) + 𝐼 × (𝑂(𝑄𝑃) + 𝑂(𝐿𝑒𝑎𝑟𝑛𝑒𝑟) + 𝑂(𝑀 × 𝐿) + 𝑂(𝑑)). (A.2)

.2. Algorithm 2: Q-learning algorithm with Linear Function Approxima-
ion

Similarly, to analyze the time complexity of Algorithm 2, we exam-
ne each step and its computational complexity.

• Initialization: Loading the simulation environment: This has a
constant time complexity, 𝑂(1).

• Main Loop (While episode < NUM_EPS): The outer loop runs for
a specified number of episodes, denoted a NUM_EPS. Within each
episode, the distance is reset, and the UAV is reset, both having
constant time complexity, 𝑂(1).
17
• Inner Loop (While distance < DIST_LIM & not DONE): This loop
runs until the distance reaches DIST_LIM or the task is marked as
done. Let us assume the maximum number of steps per episode is
𝑁 .

• Action Selection: Selecting an action (either random or greedy)
has a constant time complexity, 𝑂(1).

• Environment Update and Reward Calculation: Updating the
UAV’s location and calculating SNR, interference, and throughput
are assumed to have constant time complexity, 𝑂(1). Calculating
the features 𝝓(𝑠, 𝑎, 𝑠′) and the immediate reward 𝑅(𝑠) = 𝒘𝑇 ⋅𝝓(𝑠′)
both have constant time complexity, 𝑂(𝑑), where 𝑑 is the number
of features.

• Q-value Calculation and Update: Predicting 𝑄(𝑠′) using the SGD
model has a complexity of 𝑂(𝑑). Updating the Q-value 𝑄+(𝑠, 𝑎)
involves a maximum operation and an addition, both of which
have a constant time complexity, 𝑂(1). Updating the SGD model
has a complexity of 𝑂(𝑑).

• Epsilon Decay: Decaying epsilon has a constant time complexity,
𝑂(1).

inally, the overall time complexity of the algorithm can be approxi-
ated as follows:

• Initialization: 𝑂(1).
• Outer Loop (Episodes): This runs for NUM_EPS iterations.
• Inner Loop (Steps per Episode): This runs for up to 𝑁 steps per
episode.

hus, the time complexity within the inner loop for each step includes:

• Action selection: 𝑂(1).
• Environment update and reward calculation: 𝑂(𝑑).
• Q-value prediction and update: 𝑂(𝑑).
• Epsilon decay (outside inner loop but within the outer loop): 𝑂(1).

ombining these, the time complexity per episode is:

(𝑁 × (𝑂(1) + 𝑂(𝑑) + 𝑂(𝑑) + 𝑂(1))) = 𝑂(𝑁 × 𝑑). (A.3)

herefore, the overall time complexity for NUM_EPS episodes is:

(NUM_EPS ×𝑁 × 𝑑). (A.4)

.3. Algorithm 3: Deep Q-network to predict the Q-action-value on batch
amples

To analyze the time complexity of Algorithm 3, we examine each
tep and its computational complexity.

• Initialization: Same as Algorithm 2, initialization of variables
and the model is 𝑂(1).

• Main Loop (While episode < NUM_EPS): The outer loop runs
for a specified number of episodes, denoted as NUM_EPS.

• Inner Loop (While distance < DIST_LIM & not DONE): This
loop runs until the distance reaches DIST_LIM or the task is
marked as done. We assume the maximum number of steps per
episode is 𝑁 .

• Collecting Features, Actions, Reward for Replay Memory:
Collecting features, actions, and rewards has a complexity of 𝑂(1)
for each step.

• Batch Sampling and Training: Once the episode exceeds
NUM_EPS/10, a batch of size 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 is randomly sam-
pled from the replay memory. The cost of sampling a batch is
𝑂(𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸).

• Processing Each Batch: For each data point in the batch, extract-
ing 𝑥_𝑡𝑟𝑎𝑖𝑛 has a complexity of 𝑂(1). Calculating 𝑄+(𝑠, 𝑎) involves
either setting it to 𝑅(𝑠) or calculating 𝑅(𝑠) + 𝛾 max𝑎′ 𝑄(𝑠′, 𝑎′),
both of which have a complexity of 𝑂(1). Storing 𝑦_𝑡𝑟𝑎𝑖𝑛 has a
complexity of 𝑂(1).

A. Shamsoshoara et al.

A
i

W

C

𝑂

S
p

𝑂

T

𝑂

Computer Networks 254 (2024) 110789
• Model Training: The model training step involves fitting the
DQN model to the 𝑥_𝑡𝑟𝑎𝑖𝑛 and 𝑦_𝑡𝑟𝑎𝑖𝑛 batches. Let 𝑓 be the
time complexity of fitting the model for each batch. This step’s
complexity is 𝑂(𝑓 × 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸).

• Epsilon Decay: Decaying epsilon has a constant time complexity,
𝑂(1).

s a result, the overall time complexity of the algorithm can be approx-
mated as follows:

• Initialization: 𝑂(1).
• Outer Loop (Episodes): This runs for NUM_EPS iterations.
• Inner Loop (Steps per Episode): This runs for up to 𝑁 steps per
episode.

ithin the inner loop for each step, after NUM_EPS/10:

• Collecting features, actions, and rewards: 𝑂(1).
• Sampling a batch: 𝑂(𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸).
• Processing each batch:

– Extracting 𝑥_𝑡𝑟𝑎𝑖𝑛: 𝑂(1).
– Calculating 𝑄+(𝑠, 𝑎): 𝑂(1).
– Storing 𝑦_𝑡𝑟𝑎𝑖𝑛: 𝑂(1).

• Model training: 𝑂(𝑓 × 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸).

ombining these, the time complexity per step after NUM_EPS/10 is:

(𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸) + 𝑂(𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 × (𝑂(1) + 𝑂(1) + 𝑂(1)))

+ 𝑂(𝑓 × 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸) = 𝑂(𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸)

+ 𝑂(𝑓 × 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸)

= 𝑂(𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 × (1 + 𝑓)). (A.5)

ince this occurs for each step in the inner loop, the time complexity
er episode is:

(𝑁 × (1 + 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 × (1 + 𝑓)))

= 𝑂(𝑁 × 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 × (1 + 𝑓)). (A.6)

herefore, the overall time complexity for NUM_EPS episodes is:

(NUM_EPS ×𝑁 × 𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 × (1 + 𝑓)). (A.7)

References

[1] A. Andreeva-Mori, D. Kubo, K. Kobayashi, Y. Okuno, J.R. Homola, M. Johnson,
P.H. Kopardekar, Supporting disaster relief operations through UTM: Operational
concept and flight tests of unmanned and manned vehicles at a disaster drill, in:
AIAA Scitech 2020 Forum, 2020, p. 2202.

[2] A. Pandey, P.K. Shukla, R. Agrawal, An adaptive Flying Ad-hoc Network (FANET)
for disaster response operations to improve quality of service (QoS), Modern
Phys. Lett. B 34 (10) (2020) 2050010.

[3] S. Javed, A. Hassan, R. Ahmad, W. Ahmed, M.M. Alam, J.J. Rodrigues, UAV
trajectory planning for disaster scenarios, Veh. Commun. (2023) 100568.

[4] F. Afghah, A. Razi, J. Chakareski, J. Ashdown, Wildfire monitoring in remote
areas using autonomous unmanned aerial vehicles, in: IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS,
2019, pp. 835–840, http://dx.doi.org/10.1109/INFCOMW.2019.8845309.

[5] A. Shamsoshoara, F. Afghah, A. Razi, L. Zheng, P.Z. Fulé, E. Blasch, Aerial
Imagery Pile burn detection using deep learning: the FLAME dataset, Comput.
Netw. (2021) 108001.

[6] M. Keshavarz, A. Shamsoshoara, F. Afghah, J. Ashdown, A real-time framework
for trust monitoring in a network of unmanned aerial vehicles, in: IEEE
INFOCOM 2020-IEEE Conference on Computer Communications Workshops,
INFOCOM WKSHPS, IEEE, 2020, pp. 677–682.

[7] H. Rajoli, P. Afshin, F. Afghah, Thermal image calibration and correction
using unpaired cycle-consistent adversarial networks, in: IEEE 57th Asilomar
Conference on Signals, Systems, and Computers, 2023, pp. 1425–1429.

[8] H. Rajoli, S. Khoshdel, F. Afghah, X. Ma, FlameFinder: Illuminating obscured
fire through smoke with attentive deep metric learning, IEEE Transactions on
Geoscience and Remote Sensing (2024) http://dx.doi.org/10.1109/TGRS.2024.
3440880, 1-1.
18
[9] M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Unmanned aerial vehicle with
underlaid device-to-device communications: Performance and tradeoffs, IEEE
Trans. Wireless Commun. 15 (6) (2016) 3949–3963.

[10] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, M. Debbah, A tutorial on UAVs for
wireless networks: Applications, challenges, and open problems, IEEE Commun.
Surv. Tutor. 21 (3) (2019) 2334–2360.

[11] Q. Huang, A. Razi, F. Afghah, P. Fule, Wildfire spread modeling with aerial
image processing, in: 2020 IEEE 21st International Symposium on "a World
of Wireless, Mobile and Multimedia Networks", WoWMoM, 2020, pp. 335–340,
http://dx.doi.org/10.1109/WoWMoM49955.2020.00063.

[12] Y. Zeng, R. Zhang, T.J. Lim, Wireless communications with unmanned aerial
vehicles: Opportunities and challenges, IEEE Commun. Mag. 54 (5) (2016) 36–42.

[13] N. Namvar, F. Afghah, Heterogeneous airborne mmWave cells: Optimal place-
ment for power-efficient maximum coverage, in: IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications Workshops, INFOCOM WKSHPS, 2022,
pp. 1–6, http://dx.doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798023.

[14] N. Namvar, F. Afghah, Joint 3D placement and interference management for
drone small cells, in: 2021 55th Asilomar Conference on Signals, Systems,
and Computers, 2021, pp. 780–784, http://dx.doi.org/10.1109/IEEECONF53345.
2021.9723350.

[15] 3rd Generation Partnership Project (3GPP), 3Rd generation partnership project
(3GPP), release 15, 2020, https://www.3gpp.org/specifications/67-releases.
(Accessed 05 December 2020).

[16] 3rd Generation Partnership Project (3GPP), 3GPP TS 36.420 3GPP TSG RAN
evolved universal terrestrial radio access network (EUTRAN), X2 general as-
pects and principles, version 11.0.0, release 11, 2012, https://www.3gpp.org/
specifications/67-releases. (Accessed on 15/17/2020).

[17] A. Rovira-Sugranes, A. Razi, F. Afghah, J. Chakareski, A review of AI-enabled
routing protocols for UAV networks: Trends, challenges, and future outlook, Ad
Hoc Netw. 130 (2022) 102790.

[18] M.-A. Lahmeri, M.A. Kishk, M.-S. Alouini, Artificial intelligence for UAV-enabled
wireless networks: A survey, IEEE Open J. Commun. Soc. 2 (2021) 1015–1040.

[19] Y. Huang, Q. Wu, R. Lu, X. Peng, R. Zhang, Massive MIMO for cellular-connected
UAV: Challenges and promising solutions, IEEE Commun. Mag. 59 (2) (2021)
84–90.

[20] M. Gharib, B. Hopkins, J. Murrin, A. Koka, F. Afghah, 5G wings: Investigating
5G-connected drones performance in non-urban areas, in: 2023 IEEE 34th Annual
International Symposium on Personal, Indoor and Mobile Radio Communications,
PIMRC, IEEE, 2023, pp. 1–6.

[21] A. Festag, S. Udupa, L. Garcia, R. Wellens, M. Hecht, P. Ulfig, End-to-end
performance measurements of drone communications in 5g cellular networks,
in: 2021 IEEE 94th Vehicular Technology Conference, VTC2021-Fall, IEEE, 2021,
pp. 1–6.

[22] A.H.F. Raouf, S.J. Maeng, I. Guvenc, Ö. Özdemir, M. Sichitiu, Cellular spectrum
occupancy probability in urban and rural scenarios at various UAS altitudes, in:
2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile
Radio Communications, PIMRC, IEEE, 2023, pp. 1–6.

[23] S.J. Maeng, O. Ozdemir, I. Guvenc, M.L. Sichitiu, M. Mushi, R. Dutta, LTE I/Q
data set for UAV propagation modeling, communication, and navigation research,
IEEE Commun. Mag. 61 (9) (2023) 90–96.

[24] Y. Huo, X. Dong, W. Xu, 5G cellular user equipment: From theory to practical
hardware design, IEEE Access 5 (2017) 13992–14010.

[25] A. Checko, H.L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M.S. Berger,
L. Dittmann, Cloud RAN for mobile networks—A technology overview, IEEE
Commun. Surv. Tutor. 17 (1) (2014) 405–426.

[26] M. Gharib, S. Nandadapu, F. Afghah, An exhaustive study of using commercial
LTE network for UAV communication in rural areas, 2021, arXiv:2105.03778.

[27] F. Lotfi, O. Semiari, Performance analysis and optimization of uplink cellular
networks with flexible frame structure, in: 2021 IEEE 93rd Vehicular Tech-
nology Conference, VTC2021-Spring, 2021, pp. 1–5, http://dx.doi.org/10.1109/
VTC2021-Spring51267.2021.9448665.

[28] 3rd Generation Partnership Project (3GPP), 5G;Unmanned Aerial System (UAS)
support in 3gpp, 3GPP TS 22.125 version 16.3.0 release 16, technical
specification, 2020, https://www.3gpp.org/specifications/67-releases.

[29] 3rd Generation Partnership Project (3GPP), Universal [mobile telecommuni-
cations system] (UMTS); LTE; 5G; T8 reference point for Northbound APIs,
3GPP TS 29.122 version 17.5.0 release 17, technical specification, 2022, https:
//www.3gpp.org/specifications/67-releases.

[30] D. Mishra, E. Natalizio, A survey on cellular-connected UAVs: Design challenges,
enabling 5G/B5G innovations, and experimental advancements, Comput. Netw.
182 (2020) 107451.

[31] F. Lotfi, O. Semiari, W. Saad, Semantic-aware collaborative deep reinforcement
learning over wireless cellular networks, in: ICC 2022 - IEEE International
Conference on Communications, 2022, pp. 5256–5261, http://dx.doi.org/10.
1109/ICC45855.2022.9839122.

[32] F. Lotfi, O. Semiari, F. Afghah, Evolutionary deep reinforcement learning for
dynamic slice management in O-RAN, 2022, arXiv preprint arXiv:2208.14394.

[33] F. Lotfi, F. Afghah, J. Ashdown, Attention-based open RAN slice management
using deep reinforcement learning, in: GLOBECOM 2023 - 2023 IEEE Global
Communications Conference, 2023, pp. 6328–6333, http://dx.doi.org/10.1109/
GLOBECOM54140.2023.10436850.

http://refhub.elsevier.com/S1389-1286(24)00621-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb2
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb2
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb2
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb2
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb2
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb3
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb3
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb3
http://dx.doi.org/10.1109/INFCOMW.2019.8845309
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb7
http://dx.doi.org/10.1109/TGRS.2024.3440880
http://dx.doi.org/10.1109/TGRS.2024.3440880
http://dx.doi.org/10.1109/TGRS.2024.3440880
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb10
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb10
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb10
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb10
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb10
http://dx.doi.org/10.1109/WoWMoM49955.2020.00063
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb12
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb12
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb12
http://dx.doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798023
http://dx.doi.org/10.1109/IEEECONF53345.2021.9723350
http://dx.doi.org/10.1109/IEEECONF53345.2021.9723350
http://dx.doi.org/10.1109/IEEECONF53345.2021.9723350
https://www.3gpp.org/specifications/67-releases
https://www.3gpp.org/specifications/67-releases
https://www.3gpp.org/specifications/67-releases
https://www.3gpp.org/specifications/67-releases
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb24
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb24
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb24
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb25
http://arxiv.org/abs/2105.03778
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448665
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448665
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448665
https://www.3gpp.org/specifications/67-releases
https://www.3gpp.org/specifications/67-releases
https://www.3gpp.org/specifications/67-releases
https://www.3gpp.org/specifications/67-releases
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb30
http://dx.doi.org/10.1109/ICC45855.2022.9839122
http://dx.doi.org/10.1109/ICC45855.2022.9839122
http://dx.doi.org/10.1109/ICC45855.2022.9839122
http://arxiv.org/abs/2208.14394
http://dx.doi.org/10.1109/GLOBECOM54140.2023.10436850
http://dx.doi.org/10.1109/GLOBECOM54140.2023.10436850
http://dx.doi.org/10.1109/GLOBECOM54140.2023.10436850

A. Shamsoshoara et al. Computer Networks 254 (2024) 110789
[34] F. Lotfi, F. Afghah, Open RAN LSTM traffic prediction and slice management
using deep reinforcement learning, in: 2023 57th Asilomar Conference on
Signals, Systems, and Computers, 2023, pp. 646–650, http://dx.doi.org/10.1109/
IEEECONF59524.2023.10476972.

[35] A. Shamsoshoara, M. Khaledi, F. Afghah, A. Razi, J. Ashdown, K. Turck, A
solution for dynamic spectrum management in mission-critical UAV networks,
in: 2019 16th Annual IEEE International Conference on Sensing, Communication,
and Networking, SECON, IEEE, 2019, pp. 1–6.

[36] A. Shamsoshoara, F. Afghah, A. Razi, S. Mousavi, J. Ashdown, K. Turk, An au-
tonomous spectrum management scheme for unmanned aerial vehicle networks
in disaster relief operations, IEEE Access 8 (2020) 58064–58079.

[37] Y. Zeng, X. Xu, S. Jin, R. Zhang, Simultaneous navigation and radio mapping for
cellular-connected UAV with deep reinforcement learning, IEEE Trans. Wireless
Commun. (2021).

[38] Y. Zeng, X. Xu, Path design for cellular-connected UAV with reinforcement
learning, in: 2019 IEEE Global Communications Conference, GLOBECOM, IEEE,
2019, pp. 1–6.

[39] R. Xie, Z. Meng, L. Wang, H. Li, K. Wang, Z. Wu, Unmanned aerial vehicle
path planning algorithm based on deep reinforcement learning in large-scale
and dynamic environments, IEEE Access 9 (2021) 24884–24900.

[40] C. Chronis, G. Anagnostopoulos, E. Politi, A. Garyfallou, I. Varlamis, G. Dimi-
trakopoulos, Path planning of autonomous UAVs using reinforcement learning,
in: Journal of Physics: Conference Series, Vol. 2526, IOP Publishing, 2023,
012088.

[41] U. Challita, W. Saad, C. Bettstetter, Deep reinforcement learning for interference-
aware path planning of cellular-connected UAVs, in: 2018 IEEE International
Conference on Communications, ICC, IEEE, 2018, pp. 1–7.

[42] U. Challita, W. Saad, C. Bettstetter, Interference management for cellular-
connected UAVs: A deep reinforcement learning approach, IEEE Trans. Wireless
Commun. 18 (4) (2019) 2125–2140.

[43] J. Bao, Y. Yang, Y. Wang, X. Yang, Z. Du, Path planning for cellular-connected
UAV using heuristic algorithm and reinforcement learning, in: 2023 25th
International Conference on Advanced Communication Technology, ICACT, IEEE,
2023, pp. 454–459.

[44] X. Zhu, L. Wang, Y. Li, S. Song, S. Ma, F. Yang, L. Zhai, Path planning of
multi-UAVs based on deep Q-network for energy-efficient data collection in
UAVs-assisted IoT, Veh. Commun. 36 (2022) 100491.

[45] Y. Li, P. Ni, V. Chang, Application of deep reinforcement learning in stock trading
strategies and stock forecasting, Computing 102 (6) (2020) 1305–1322.

[46] B. Huang, Z. Li, Y. Xu, L. Pan, S. Wang, H. Hu, V. Chang, Deep reinforcement
learning for performance-aware adaptive resource allocation in mobile edge
computing, Wirel. Commun. Mob. Comput. 2020 (2020) 1–17.

[47] G.F. Riley, T.R. Henderson, The ns-3 network simulator, in: Modeling and Tools
for Network Simulation, Springer, 2010, pp. 15–34.

[48] I. Gomez-Miguelez, A. Garcia-Saavedra, P.D. Sutton, P. Serrano, C. Cano, D.J.
Leith, srsLTE: An open-source platform for LTE evolution and experimentation,
in: Proceedings of the Tenth ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characterization, 2016, pp. 25–32.

[49] N. Nikaein, M.K. Marina, S. Manickam, A. Dawson, R. Knopp, C. Bonnet,
OpenAirInterface: A flexible platform for 5G research, ACM SIGCOMM Comput.
Commun. Rev. 44 (5) (2014) 33–38.

[50] A. Shamsoshoara, F. Afghah, E. Blasch, J. Ashdown, M. Bennis, UAV-assisted
communication in Remote Disaster Areas using imitation learning, IEEE Open J.
Commun. Soc. (2021).

[51] P. Abbeel, A.Y. Ng, Apprenticeship learning via inverse reinforcement learn-
ing, in: Proceedings of the Twenty-First International Conference on Machine
Learning, 2004, p. 1.

[52] S. Arora, P. Doshi, A survey of inverse reinforcement learning: Challenges,
methods and progress, Artificial Intelligence 297 (2021) 103500.

[53] A. Shamsoshoara, M. Khaledi, F. Afghah, A. Razi, J. Ashdown, Distributed
cooperative spectrum sharing in uav networks using multi-agent reinforcement
learning, in: 2019 16th IEEE Annual Consumer Communications & Networking
Conference, CCNC, IEEE, 2019, pp. 1–6.

[54] H. Kurunathan, H. Huang, K. Li, W. Ni, E. Hossain, Machine learning-aided
operations and communications of unmanned aerial vehicles: A contemporary
survey, IEEE Commun. Surv. Tutor. (2023).

[55] S. Aggarwal, N. Kumar, Path planning techniques for unmanned aerial vehicles:
A review, solutions, and challenges, Comput. Commun. 149 (2020) 270–299.

[56] W. Mei, Q. Wu, R. Zhang, Cellular-connected UAV: Uplink association, power
control and interference coordination, IEEE Trans. Wireless Commun. 18 (11)
(2019) 5380–5393.

[57] S. Hu, X. Yuan, W. Ni, X. Wang, Trajectory planning of cellular-connected UAV
for communication-assisted radar sensing, IEEE Trans. Commun. 70 (9) (2022)
6385–6396.

[58] D. Yang, Q. Dan, L. Xiao, C. Liu, L. Cuthbert, An efficient trajectory planning
for cellular-connected UAV under the connectivity constraint, China Commun.
18 (2) (2021) 136–151.

[59] S. Zhang, Y. Zeng, R. Zhang, Cellular-enabled UAV communication: Trajec-
tory optimization under connectivity constraint, in: 2018 IEEE International
Conference on Communications, ICC, IEEE, 2018, pp. 1–6.
19
[60] E. Bulut, I. Guevenc, Trajectory optimization for cellular-connected UAVs
with disconnectivity constraint, in: 2018 IEEE International Conference on
Communications Workshops, ICC Workshops, IEEE, 2018, pp. 1–6.

[61] S. Li, G. Liu, K. Zhang, Z. Qian, S. Ding, DRL-based joint path planning and
jamming power allocation optimization for suppressing netted radar system, IEEE
Signal Process. Lett. 30 (2023) 548–552, http://dx.doi.org/10.1109/LSP.2023.
3270762.

[62] G. Zhao, Y. Wang, T. Mu, Z. Meng, Z. Wang, Reinforcement learning assisted
multi-UAV task allocation and path planning for IIoT, IEEE Internet Things J.
(2024) 1.

[63] X. Zheng, Y. Wu, L. Zhang, M. Tang, F. Zhu, Priority-aware path planning and
user scheduling for UAV-mounted MEC networks: A deep reinforcement learning
approach, Phys. Commun. 62 (2024) 102234.

[64] P. Qin, Y. Fu, J. Zhang, S. Geng, J. Liu, X. Zhao, DRL-based resource allocation
and trajectory planning for NOMA-enabled multi-UAV collaborative caching 6 G
network, IEEE Trans. Veh. Technol. (2024) 1–15.

[65] X. Luo, C. Chen, C. Zeng, C. Li, J. Xu, S. Gong, Deep reinforcement learning
for joint trajectory planning, transmission scheduling, and access control in
UAV-assisted wireless sensor networks, Sensors 23 (10) (2023) 4691.

[66] A.M. Jwaifel, T. Van Do, Deep reinforcement learning for jointly resource
allocation and trajectory planning in UAV-assisted networks, in: N.T. Nguyen,
J. Botzheim, L. Gulyás, M. Núñez, J. Treur, G. Vossen, A. Kozierkiewicz (Eds.),
Computational Collective Intelligence, Springer Nature Switzerland, Cham, 2023,
pp. 71–83.

[67] Q. Wu, Y. Zeng, R. Zhang, Joint trajectory and communication design for multi-
UAV enabled wireless networks, IEEE Trans. Wireless Commun. 17 (3) (2018)
2109–2121.

[68] A. Al-Hourani, S. Kandeepan, S. Lardner, Optimal LAP altitude for maximum
coverage, IEEE Wirel. Commun. Lett. 3 (6) (2014) 569–572.

[69] M. Bain, C. Sammut, A framework for behavioural cloning, in: Machine
Intelligence 15, 1995, pp. 103–129.

[70] T. Osa, J. Pajarinen, G. Neumann, J.A. Bagnell, P. Abbeel, J. Peters, et al., An
algorithmic perspective on imitation learning, Found. Trends® Robot. 7 (1–2)
(2018) 1–179.

[71] S. Adams, T. Cody, P.A. Beling, A survey of inverse reinforcement learning, Artif.
Intell. Rev. (2022) 1–40.

[72] S. Ross, G. Gordon, D. Bagnell, A reduction of imitation learning and structured
prediction to no-regret online learning, in: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, JMLR Workshop
and Conference Proceedings, 2011, pp. 627–635.

[73] A.Y. Ng, S.J. Russell, et al., Algorithms for inverse reinforcement learning, in:
Icml, Vol. 1, 2000, p. 2.

[74] N.D. Ratliff, J.A. Bagnell, M.A. Zinkevich, Maximum margin planning, in:
Proceedings of the 23rd International Conference on Machine Learning, 2006,
pp. 729–736.

[75] M. Wulfmeier, P. Ondruska, I. Posner, Maximum entropy deep inverse
reinforcement learning, 2015, arXiv preprint arXiv:1507.04888.

[76] Z. Zhou, M. Bloem, N. Bambos, Infinite time horizon maximum causal entropy
inverse reinforcement learning, IEEE Trans. Autom. Control 63 (9) (2017)
2787–2802.

[77] S. Diamond, S. Boyd, CVXPY: A python-embedded modeling language for convex
optimization, J. Mach. Learn. Res. 17 (83) (2016) 1–5.

[78] CVXOPT, Convex Optimization for Python, https://cvxopt.org/. (Accessed 04
July 2021).

[79] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[80] S. Levine, A. Kumar, G. Tucker, J. Fu, Offline reinforcement learning: Tutorial,
review, and perspectives on open problems, 2020, arXiv preprint arXiv:2005.
01643.

[81] Y. Shoham, R. Powers, T. Grenager, Multi-Agent Reinforcement Learning: A
Critical Survey, Tech. Rep., Technical Report, Stanford University, 2003.

[82] L. Busoniu, R. Babuska, B. De Schutter, Multi-agent reinforcement learning: A
survey, in: 2006 9th International Conference on Control, Automation, Robotics
and Vision, IEEE, 2006, pp. 1–6.

[83] Y. Li, Y. Yuan, Convergence analysis of two-layer neural networks with relu
activation, in: Advances in Neural Information Processing Systems, 2017, pp.
597–607.

[84] D.M. Allen, Mean square error of prediction as a criterion for selecting variables,
Technometrics 13 (3) (1971) 469–475.

[85] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[86] F. Torabi, G. Warnell, P. Stone, Behavioral cloning from observation, 2018, arXiv
preprint arXiv:1805.01954.

[87] L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen, Classification and Regression
Trees, CRC Press, 1984.

[88] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning
in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

http://dx.doi.org/10.1109/IEEECONF59524.2023.10476972
http://dx.doi.org/10.1109/IEEECONF59524.2023.10476972
http://dx.doi.org/10.1109/IEEECONF59524.2023.10476972
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb36
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb36
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb36
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb36
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb36
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb45
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb45
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb45
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb47
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb47
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb47
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb49
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb49
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb49
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb49
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb49
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb51
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb51
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb51
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb51
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb51
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb52
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb52
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb52
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb53
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb53
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb53
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb53
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb53
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb53
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb53
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb54
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb54
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb54
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb54
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb54
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb55
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb55
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb55
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb56
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb56
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb56
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb56
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb56
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb57
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb57
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb57
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb57
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb57
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb58
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb58
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb58
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb58
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb58
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb59
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb59
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb59
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb59
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb59
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb60
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb60
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb60
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb60
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb60
http://dx.doi.org/10.1109/LSP.2023.3270762
http://dx.doi.org/10.1109/LSP.2023.3270762
http://dx.doi.org/10.1109/LSP.2023.3270762
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb62
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb62
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb62
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb62
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb62
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb63
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb63
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb63
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb63
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb63
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb64
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb64
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb64
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb64
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb64
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb65
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb65
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb65
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb65
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb65
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb66
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb67
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb67
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb67
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb67
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb67
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb68
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb68
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb68
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb69
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb69
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb69
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb70
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb70
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb70
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb70
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb70
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb71
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb71
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb71
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb72
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb72
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb72
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb72
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb72
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb72
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb72
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb73
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb73
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb73
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb74
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb74
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb74
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb74
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb74
http://arxiv.org/abs/1507.04888
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb76
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb76
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb76
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb76
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb76
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb77
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb77
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb77
https://cvxopt.org/
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb79
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb79
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb79
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb81
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb81
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb81
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb82
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb82
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb82
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb82
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb82
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb83
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb83
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb83
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb83
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb83
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb84
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb84
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb84
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1805.01954
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb87
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb87
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb87
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb88
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb88
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb88
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb88
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb88
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb88
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb88

A. Shamsoshoara et al. Computer Networks 254 (2024) 110789
[89] A. Al-Hourani, S. Kandeepan, A. Jamalipour, Modeling air-to-ground path
loss for low altitude platforms in urban environments, in: 2014 IEEE Global
Communications Conference, IEEE, 2014, pp. 2898–2904.

[90] H.K. Armeniakos, K. Maliatsos, P.S. Bithas, A.G. Kanatas, A stochastic geometry-
based performance analysis of a UAV corridor-assisted IoT network, Front.
Commun. Netw. 5 (2024) 1337697.

[91] F. Lotfi, Inverse RL apprenticeship learning UAV communication code,
2024, https://github.com/FLotfiGit/Inverse-RL-Apprenticeship-learning-UAV-
Communication.

[92] A. Shamsoshoara, Apprenticeship Learning Via Inverse RL for a Cellular-
Connected UAV, Wireless Networking & Information Processing (WINIP) LAB,
2021, https://youtu.be/FGAlHaTQ_nc. (Accessed 19 May 2021).

[93] M.M.U. Chowdhury, S.J. Maeng, E. Bulut, I. Güvenç, 3-D trajectory optimiza-
tion in UAV-assisted cellular networks considering antenna radiation pattern
and backhaul constraint, IEEE Trans. Aerosp. Electron. Syst. 56 (5) (2020)
3735–3750.

[94] M.M.U. Chowdhury, C.K. Anjinappa, I. Guvenc, M. Sichitiu, O. Ozdemir, U.
Bhattacherjee, R. Dutta, V. Marojevic, B. Floyd, A taxonomy and survey on
experimentation scenarios for aerial advanced wireless testbed platforms, in:
2021 IEEE Aerospace Conference (50100), IEEE, 2021, pp. 1–20.

Alireza Shamsoshoara received the B.Sc. degree in Elec-
trical Engineering from Shahid Beheshti University (SBU),
Tehran, Iran, and the M.Sc. degree in Electrical and Com-
munication Engineering from Khaje Nasir Toosi University
of Technology (KNTU), Tehran, Iran in 2012 and 2014 re-
spectively. Also, he received the M.Sc. degree in Informatics
from Northern Arizona University in 2018. Currently, he
is a Ph.D. student in the School of Informatics, Comput-
ing & Cyber Systems at Northern Arizona University. His
main research interests are security, wireless networks, UAV
networks, spectrum sharing, and machine learning.

Fatemeh Lotfi received the B.Sc. degree in Electrical En-
gineering from Iran University of Science and Technology
(IUST), Tehran, Iran, and the M.Sc. degree in Electrical
and Communication Engineering from University of Tehran
(UT), Tehran, Iran in 2010 and 2013 respectively. Currently,
she is a Ph.D. student in the Department of Electrical and
Computer Engineering at Clemson University. Her main
research interests are wireless networks, UAV networks,
semantic communication, deep reinforcement learning and
machine learning.

Sajad Mousavi received the B.Sc. degree in computer
engineering from Zanjan University (ZNU), Zanjan, Iran, in
2010, and the M.Sc. degree in artificial intelligence and
robotics from the Iran University of Science and Technology
(IUST), Tehran, Iran, in 2012. He is currently pursuing the
Ph.D. degree with the School of Informatics, Computing and
Cyber Systems, Northern Arizona University. He worked as
a Research Assistant in machine learning and deep learning
with the National University of Ireland Galway, Galway,
Ireland, from 2015 to 2017. His main research interests
include machine learning, deep learning, computer vision,
multiagent systems, and task allocation.
20
Fatemeh Afghah (Senior Member, IEEE) is currently an
Associate Professor with the Department of Electrical and
Computer Engineering, Clemson University, where she is
also the Director of the Intelligent Systems and Wireless
Networking (IS-WiN) Laboratory. Prior to joining Clemson
University, she was an Associate Professor with the School
of Informatics, Computing and Cyber Systems, Northern
Arizona University (NAU), Flagstaff, AZ, USA, from 2015
to 2021. She has coauthored more than 100 technical
papers. Her research interests include wireless communi-
cation networks, decision making in multiagent systems,
radio spectrum management, hardware-based security, and
artificial intelligence in healthcare. She was a recipient of
several awards, including the NSF CRII Award, in 2017, the
Air Force Office of Scientific Research Young Investigator
Award, in 2019, and the National Science Foundation (NSF)
CAREER Award, in 2020. She serves as an Editor for several
journals, including Ad hoc Networks journal and Computer
Networks journal.

Ismail Guvenc (F’21) received the Ph.D. degree in elec-
trical engineering from the University of South Florida
in 2006. He was with the Mitsubishi Electric Research
Labs in 2005, with DOCOMO Innovations from 2006 to
2012, and with Florida International University, from 2012
to 2016. From 2016 to 2020, he has been an Associate
Professor, and since 2020, he has been a Professor, with
the Department of Electrical and Computer Engineering of
North Carolina State University. He has published more
than 300 conference/journal articles and book chapters, and
several standardization contributions. He coauthored/co-
edited four books and he is an inventor/coinventor of
some 30 U.S. patents. His recent research interests include
5G wireless systems, communications and networking with
drones, and heterogeneous wireless networks. Güvenc is a
Senior Member of the National Academy of Inventors. He
was a recipient of the USF Outstanding Dissertation Award
in 2006, the Ralph E. Powe Junior Faculty Enhancement
Award in 2014, the NSF CAREER Award in 2015, the FIU
College of Engineering Faculty Research Award in 2016,
and the NCSU ECE R. Ray Bennett Faculty Fellow Award
in 2019. He has served as an Editor for the IEEE Commu-
nications Letters from 2010 to 2015 and the IEEE Wireless
Communications Letters from 2011 to 2016. He has been
serving as an Editor for the IEEE Transactions on Wireless
Communications since 2016, and for IEEE Transactions on
Communications since 2020. He has served as a guest editor
for several other journals.

http://refhub.elsevier.com/S1389-1286(24)00621-2/sb89
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb89
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb89
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb89
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb89
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb90
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb90
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb90
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb90
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb90
https://github.com/FLotfiGit/Inverse-RL-Apprenticeship-learning-UAV-Communication
https://github.com/FLotfiGit/Inverse-RL-Apprenticeship-learning-UAV-Communication
https://github.com/FLotfiGit/Inverse-RL-Apprenticeship-learning-UAV-Communication
https://youtu.be/FGAlHaTQ_nc
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb93
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb93
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb93
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb93
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb93
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb93
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb93
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb94
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb94
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb94
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb94
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb94
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb94
http://refhub.elsevier.com/S1389-1286(24)00621-2/sb94

	Joint path planning and power allocation of a cellular-connected UAV using apprenticeship learning via deep inverse reinforcement learning
	Introduction
	Motivation
	Novelty and Contribution
	Organization
	Table of Notations

	Related works
	Conventional Optimization Solutions
	Interference and Power Coordination

	AI Based Solutions
	Reinforcement Learning Approaches
	Deep RL and Heuristic Approaches
	DRL-Based Approaches for Joint Optimization

	System Model
	Wireless Communication Model
	Objective Definition

	Background on IRL
	UAV's Self-Organizing Approach
	Apprenticeship Learning via Inverse Reinforcement Learning
	Support Vector Machine Problem Formulation
	AL-IRL with Q-learning using Linear Function Approximation
	AL-IRL with Deep Q-Network
	Imitation Learning: Behavioral Cloning

	Numerical Results and Experiments
	Designed Simulation Environment
	Convergence of the IRL
	Convergence of the Q-Learning and Deep Q-Network
	Apprenticeship Learning via Inverse RL performance - Training Phase
	Apprenticeship Learning via Inverse RL Performance
	Inverse RL and Behavioral Cloning in Unseen States by the Expert

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Time Complexity Analysis
	Algorithm 1: Apprenticeship learning via IRL algorithm
	Algorithm 2: Q-learning algorithm with Linear Function Approximation
	Algorithm 3: Deep Q-Network to predict the Q-Action-Value on batch samples

	References

