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Let t be an integer such that ¢t > 2. Let Ké“o't) denote the triple
system consisting of the 2t triples {a,z;,vy:}, {b,x:,yi} for
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are all distinct. Let ex(n, Kéi)) denote the maximum size of a
triple system on n elements that does not contain Ké?’g This
function was studied by Mubayi and Verstraéte [9], where the
special case t = 2 was a problem of Erdés [1] that was studied
by various authors [3,9,10].

Mubayi and Verstraéte proved that ex(n, K;?t)) < t*(3) and
that for infinitely many n, ex(n, KS:?) > % (Z) These
bounds together with a standard argument show that g(t) :=
limy,— 00 €x(n, Ké?’t))/(g) exists and that

2t —1

<g(t) <t

Addressing the question of Mubayi and Verstraéte on the
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g(t) = Ot oW).
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1. Introduction

An r-graph is an r-uniform hypergraph. Let F be a family of r-graphs and let ex(n, F)

denote the maximum number of edges in an r-graph on n vertices containing no mem-
ber of F. We call ex(n, F) the Turdn number of F. When F consists of a single graph
F, we write ex(n, F) for ex(n,F). When r > 3, determining ex(n, F) asymptotically
or exactly is notoriously difficult. Katona, Nemetz, and Simonovits [7] showed that
lim,, o ex(n, F)/ (%) exists and this limit is called the Turdn density of F, and is de-
noted by 7(F). When 7 (F) = 0, that is, when ex(n,F) = o(n"), we call the problem of
determining ex(n, F) a degenerate hypergraph Turdn problem. For an excellent survey on
the study of hypergraph Turdn numbers, see [8]. In this paper, we study a degenerate
hypergraph Turan problem that is motivated by the study of Turdn numbers of complete
bipartite graphs as well as by a question of Erdés. In fact, the r-graph F' we study in
this paper satisfies ex(n, F') = ©(n"~1), so in this case, the natural goal is to determine
lim,, o0 ex(n, F)/(,")).
Definition 1. Let » > 3 be an integer. Let G be a bipartite graph with an ordered
bipartition (X,Y’). Suppose that Y = {y1,...,ym}. Let Y1,....Y,, be disjoint sets of
size r — 2 that are disjoint from X UY. Let Ggg)y denote the r-graph with vertex set
(XUY)U (U, Y;) and edge set ", {e UY; : e € E(G),y; € e}.

Let s,t > 2 be positive integers. If G is the complete bipartite graph with an ordered
bipartition (X,Y) where |X| = s,|Y| = t, then let Gg;)y be denoted by KS(Tt)

Definition 2. For all n > r > 3, let f,.(n) denote the maximum number of edges in
an n-vertex r-graph containing no four edges A, B,C,D with AU B = C U D and
ANB=CnNnD=0.

Note that f5(n) = ex(n,KQ(f)’Q))7 and in general f.(n) < ex(n,KéTQ)). Erd6s [1] asked
whether f,.(n) = O(n"~!) when r > 3. Fiiredi [3] answered Erd6s’ question affirmatively.
More precisely, he showed that for integers n,r with r > 3 and n > 2r,

<Z_D + VrlJ < fr(n) < 3.5<Tﬁl). (1)

The lower bound is obtained by taking the family of all r-element subsets of [n] :=

{1,2,...,n} containing a fixed element, say 1, and adding to the family any collection
of L”T’IJ pairwise disjoint r-element subsets not containing 1. For r = 3, Fiiredi also
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gave an alternative lower bound construction using Steiner systems. An (n,r,t)-Steiner
system S(n,r,t) is an r-uniform hypergraph on [n] in which every t-element subset of [n]
is contained in exactly one hyperedge. Fiiredi observed that if we replace every hyperedge
in S(n,5,2) by all its 3-element subsets then the resulting triple system has (g) triples
and contains no copy of Ké?’z) This slightly improves the lower bound in (1) for r = 3
to (g), for those n for which S(n,5,2) exists. The upper bound in (1) was improved by

Mubayi and Verstraéte [9] to 3(,",) +O(n"~2). They obtain this bound by first showing
f3(n) = ex(n, K2(32)) < 3(%) + 6n, and then combining it with a simple reduction lemma.
This was later improved to f3(n) < 22(3) by Pikhurko and Verstraéte [10].

Motivated by Firedi’s work, Mubayi and Verstraéte [9] initiated the study of the
general problem of determining ex(n, KQ(Tt)
t> 2 and n > 2t,

) for any t > 2. They showed that for any

ex(n, KQ(?t)) <t* (;L),
?’t)) > 2’5—;1 (72’), where the lower bound is obtained
by replacing each hyperedge in S(n, 2t + 1,2) with all its 3-element subsets.

Mubayi and Verstraéte noted that g(¢) := lim,,_ ex(n, Kéi)) /(5) exists and raised

the question of determining the growth rate of g(¢). Their results show that

and that for infinitely many n, ex(n, Ké

2t -1

S <9 < th. (2)

In this paper, we prove that as t — oo,
g(t) = ©(t' W), (3)

showing that their lower bound is close to the truth. More precisely, we prove the fol-
lowing.

Theorem 1. For any t > 2, we have

ex(n, Kéi)) < (15t logt + 40t) n.
Notation. Given a hypergraph (or a graph) H, throughout the paper, we also denote the
set of its edges by H. For example |H| denotes the number of edges of H. Given two
vertices z,y in a graph G, let Ng(z,y) denote the common neighborhood of = and y in
G. We drop the subscript G when the context is clear.

2. Proof of Theorem 1: Ké?t) -free hypergraphs

We will use a special case of a well-known result of Erdés and Kleitman [2].
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Lemma 1. Let H be a 3-graph on 3n vertices. Then H contains a 3-partite 3-graph, with
all parts of size n, and with at least 3 |H| hyperedges.

Let us define the sets A = {aj,a2,...,an}, B = {b1,ba,...,b,} and C =
{c1,¢2,...,¢cn}. Throughout the proof we define various 3-partite 3-graphs whose parts
are A, B and C.

Suppose H is a Ké‘?—free 3-partite 3-graph on 3n vertices with parts A, B and C.
First let us show that it suffices to prove the following inequality.

|H| < (30tlogt 4 80t)n>. (4)

It is easy to see that inequality (4) and Lemma 1 together imply that any Ké?t)-free
3-graph on 3n vertices contains at most %(3015 logt + 80t)n? hyperedges, from which
Theorem 1 would follow after replacing 3n by n.

In the remainder of the section, we will prove (4). Let us introduce the following
notion of sparsity.

Definition 3 (g-sparse and q-dense pairs). Let ¢ be a positive integer. Let G be a bipartite
graph with parts X, Y. Let x,y be two different vertices such that z,y € X or z,y € Y.
Then we call {z,y} a g-dense pair of G if |[N(z,y)| > gq. We call {z,y} a ¢-sparse pair
of G if [N(z,y)| < ¢ but x,y are still contained in a copy of Ks , in G. Note that it is
possible that {z,y} is neither g-sparse nor g-dense.

The following Procedure P(q) about making a bipartite graph Ky ,-free lies at the
heart of the proof. (We think of ¢ as the parameter of the Procedure P(q), that is changed
throughout the proof.)

Procedure P(g): Making a bipartite graph Ky ,-free.

Input: A bipartite graph G with parts A and B.

G+ G, Y+ 1.

F(z,y) + 0, D(z,y) + 0 and S(z,y) < 0 for every z,y € A and z,y € B.

while ¢ = 1 do
P+ 0.
Step 1:
For each g-sparse pair {z,y} of G such that F(z,y) = 0, let S(z,y) be the set of vertices spanned
by the g-dense pairs of G that are contained in Ng(z,y). Let F(z,y) + {ab € G| a € {z,y} and
b e S(xz,y)}, and let D(z,y) be a spanning forest of the graph formed by the dense pairs of G that
are contained in S(z,y).
If there exists an edge ab € G such that ab is contained in F(z,y) for at least ¢q/2 different pairs
{z,y} with z,y € A or for at least ¢q/2 different pairs {z, y} with z,y € B,
then G < G\ {ab} and ¢ + 1.
Step 2:
If there exists a set M of edges in G such that removing all of the edges of M from G would
decrease the number of g-dense pairs by at least |M| /2,
then G <+ G\ M and ¢ + 1.

end while

G g

F'(z,y) + F(z,y) for every 2,y € A and z,y € B.

D'(z,y) « D(zx,y) for every z,y € A and =,y € B.

S'(z,y) + S(z,y) for every z,y € A and z,y € B.

Output: The graph G’ and the sets F'(z,y), D' (z,y), S’ (x,y) for all z,y € A and =,y € B.
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In the procedure P(q), initially for all the pairs {x,y} (with 2,y € A and x,y € B)
the sets F(z,y), D(z,y), S(x,y) are set to be empty. Then as the edges are being deleted
during the procedure, possibly, new ¢-sparse pairs {z,y} are being created. When this
happens, Step 1 redefines the sets S(z,y), F(z,y), D(z,y) and gives them some non-
empty values. (They get non-empty values due to the fact that {x,y} is ¢-sparse, which
implies that {z,y} is contained in a copy of Kj 4, so there is at least one g-dense pair in
the common neighborhood of z,y.) Therefore, these values stay unchanged throughout
the rest of the procedure.

Notice that at the point S(z,y) was redefined, the pair {z,y} was g-sparse, so the
number of common neighbors is less than g. Therefore, as S(x,y) is a subset of the
common neighborhood of = and y, we also have |S(z,y)| < g. Moreover, since D(x,y)
is defined as a spanning forest with the vertex set S(x,y), we have |D(x,y)| < |S(x,y)]|.
Also, it easily follows from the definition of F(x,y) that |F(z,y)| = 2|S(z,y)|. Finally,
notice that D(z,y) does not contain any isolated vertices, because its vertex set S(z,y)
spans all of its edges, by definition. Therefore, |D(x,y)| > |S(x,y)| /2. At the end of the
procedure, the sets F(z,y), D(x,y),S(z,y) are renamed as F'(z,y), D'(z,y), S (z,y).
Note also that if a pair {x,y} never becomes g-sparse in the process then S'(x,y) =
D'(w,y) = F'(z,y) = 0.

Observation 1. For every x,y € A and for every =,y € B, we have

1) 182, y)] < ¢
2) 1D/ ()] < |8 (2, 9)].
3) |F'(z,9)| = 218'(z,9)]-
1) |D(z,y)| > @l

S~~~ o~

For convenience, throughout the paper we (informally) say that the sets F'(z,y),
D'(z,y), S'(z,y) are defined by applying Procedure P(q) to a graph G to obtain the
graph G’, instead of saying that the input to Procedure P(q) is G and the output is the
graph G’ and the sets F'(z,y), D'(z,y), S’(x,y). Note that the output is not unique and
may depend on the order in which edges were deleted when Procedure P(q) is applied
to a graph G, but we just fix one such output and define G, F'(z,y), D'(z,y), S'(z,y)
with respect to that output.

Claim 1. Let the sets F'(z,y), D'(z,y), 5 (z,y) (for z,y € A and for z,y € B) be defined
by applying Procedure P(q) to a bipartite graph G to obtain G’'. Let N(z,y) denote the
set of common neighbors of vertices x,y in the graph G. Then

|F' (2,9)|

< D' (z,y)| < q.

Moreover |F'(z,y)| < 2|N(z,y)|.
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Proof. Combining the parts (3) and (4) of Observation 1, we have
|F'(z,y)] /4 < [D'(z,y)].-
Combining the parts (1) and (2) of Observation 1, we obtain
D' (x,y)| < g,

proving the first part of the claim.

To prove the second part, notice that S’(x,y) is a common neighborhood of z,y in
some subgraph G of G, we have |S'(x,y)| < |N(z,y)|. Combining this with part (3) of
Observation 1, we obtain |F'(x,y)| < 2|N(z,y)|, as required. O

Finally, let us note the following properties of the graph obtained after applying the
procedure.

Observation 2. Let the sets F'(z,y), D'(z,y),S (z,y) (for z,y € A and z,y € B) be
defined by applying Procedure P(q) to a bipartite graph G to obtain G’. Then

1. Every edge ab in G’ is contained in at most ¢/2 members of {F'(z,y) : =,y € A}
and in at most ¢/2 members of {F'(x,y) : z,y € B}.

2. For any set M of edges in G’, removing the edges of M from G’ decreases the number
of g-dense pairs by less than |M| /2.

Definition 4. Let H be a 3-partite 3-graph with parts A, B and C.

For each 1 < i < n, let G;[H|(A, B) be the bipartite graph with parts A and B, whose
edge set is {ab | a € A,b € B,abc; € E(H)}. The graphs G;[H|(B,C) and G;[H|(A,C)
are defined similarly.

Definition 5 (Applying Procedure P(q) to a hypergraph). Let H be a 3-partite 3-graph
with parts A, B and C. We define the hypergraph H’ as follows:

For each 1 < i < n,let G;[H](A, B), G;[H|(B,C), G;[H](4, C) be the graphs obtained
by applying the procedure P(q) to the graphs G;[H|(A, B), G;[H](B,C), G;[H|(A,C)
respectively.

For each edge ab which was removed from G;[H](A, B) by the procedure P(q) (i.e.
ab € G;[H|(A, B) \ Gi[H](A, B)) we remove the hyperedge abc; from H (it may have
been removed already). Similarly for each edge be (resp. ac) which was removed from
Gi[H](B,C) (resp. G;[H](A,C)) by the procedure P(¢q) we remove the hyperedge a;be
(resp. ab;c) from H. Let the resulting hypergraph be H'. More precisely, the edge-set of
H' is

{aibjck eEH ‘ CLibj S G;[H](A7B), bjCk S G;[H](B,C), a;c € G;[H](A,C)}

We say H' is obtained from H by applying the Procedure P(q).
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Remark 1. Let H' be obtained by applying the Procedure P(q) to the hypergraph H.
Then,

[H| - |H'| < Y (IGi[H](A B)| - |Gi[H](4, B)))

1<i<n

+ 3 (GiIHIB.C)| - [Gi[H](B.C))

+ > (IGiH](A,C) — |G[H](A,0))).

1<i<n

Indeed, if a;bjc;, € H\ H' then it is easy to see that a;b; € Gx[H|(A, B) \ G}.[H](A, B)
or bje, € Gi[H|(B,C) \ Gi[H](B, C) or a;ck, € Gj[H](A,C)\ G}[H](A,C).

Lemma 2. Let ¢ > 2 be an even integer and G be a bipartite graph with parts A and B.
Suppose G’ is the graph obtained by applying Procedure P(q) to G. Then G’ is Ky 4-free.

Proof. Let us define a g-broom of size k to be a set of g-sparse pairs {zg,z;} (with
1 < j < k), and a g-dense pair {y,z} such that {y,z} is contained in the common
neighborhood of zg,z; for every 1 < j < k. Note that either {zg,z1,...,2x} € A and
{y,2} € B or {zg,x1,...,21} C B and {y,z} C A.

Claim 2. There is no q-broom of size q/2 in G'.

Proof. Suppose by contradiction that there is a set of g-sparse pairs {zo,z;} (with
1 < j < ¢q/2), and a ¢g-dense pair {y,z} such that {y,z} is contained in the common
neighborhood of z¢ and z; for every 1 < j < ¢/2. Then the edge zoy is contained in the
sets F'(xg,x;) for every 1 < j < ¢/2, which contradicts Observation 2. O

Let us suppose for a contradiction (to Lemma 2) that G’ contains a copy of Ka 4.
Then G’ contains at least one g-dense pair. Without loss of generality we may assume
there is a g-dense pair {a,a;} in A. Suppose {a,a;} (for 1 < j < p) are all the g-dense
pairs of G’ containing the vertex a. For each 1 < j < p, let B; C B be the common
neighborhood of a and a; in G'. By definition, |B;| > ¢ for 1 < j <p.

Claim 3. For any J C {1,2,...,p}, we have ’UJEJB]-‘ > 2|J|.

Proof. Let us assume for contradiction that there exists a J C {1,2,...,p} such that
‘UjeJBj‘ < 2|J|. Let G* be obtained from G’ by deleting all the edges from a to
U,ey Bj. For each j € J, the pair {a,a;} has no common neighbor in G* since we have
removed all the edges from a to B;. Thus the pair {a,a;} is not ¢-dense in G*. So in
forming G* from G’ the number of g-dense pairs decreases by at least |J|, while the

number of edges decreases by ||J.. ; B;| < 2|J| edges, contradicting Observation 2. O

jeJ
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Let B' = U, <<, Bj- For each vertex v € B’ and let

J(v) :={j| v e B},
D(v) := {{v,u} | {v,u} is g-dense in G" and {v,u} C B, for some j € J(v)}.

In the next two claims, we will prove two useful inequalities concerning |.J(v)| and
[D(v)].

Claim 4. For each v € B', |J(v)| > 2|D(v)|.

Proof. Suppose for contradiction that there is a vertex v € B’ such that |J(v)| < 2|D(v)|.
Let us delete all the edges of the form va;, j € J(v), from G’ and let the resulting graph
be G*. Since we deleted |J(v)| edges, by Observation 2, the number of g-dense pairs
decreases by less than |J(v)| /2 < |D(v)|. So there exists {v,u} € D(v) such that {v,u}
is (still) ¢-dense in G*. That is, |[N*(v,u)| > ¢, where N*(v,u) denotes the common
neighborhood of v and u in G*. Clearly each pair of vertices in N*(v,u) is contained in
a copy of Ky, in G* (and hence in G').

For each pair of vertices in N*(v, u), since it is contained in a copy of K, in G, it
is either g-sparse or g-dense in G’. Note that a € N*(v,u). If all the pairs {a,x} with
x € N*(v,u) \ {a} are g-sparse in G’ then the set of these pairs together with {v,u} is
a ¢-broom of size at least ¢ — 1 > ¢/2 in G’, which contradicts Claim 2. So there exists
a vertex © € N*(v,u) \ {a} such that {a,x} is g-dense in G’. Since v is adjacent to both
a and z, by the definition of J(v), x = a; for some j € J(v). However, by definition, in
forming G* we have removed vz from G’. This contradicts x € N*(v,u) and completes
the proof. O

Claim 5.

Sz g Y 1B

veB’ 1<j<p

Proof. Fix any j with 1 < j < p. Since {a,q;} is ¢g-dense in G', every pair {z,y} C B;
is contained in some copy of K, and hence is either g-dense or g-sparse in G’. Let v
be any vertex in B; and let S(v) = {y € B; | {v,y} is g-sparse in G’}. By definition,
the set {{v,y} | y € S(v)} together with {a,a;} is a ¢g-broom of size |S(v)|. By Claim 2,
|S(v)| <¢q/2—1<|Bj|/2—1. Since |[D(v)| + |S(v)| > |B;| — 1, we have

D) > 3 |B;] (5)

Note that (5) holds for every j =1,...,p and every v € B;.
Let us define an auxiliary bipartite graph Gy, with the parts {1,2,...,p}, B’ such
that a vertex j € {1,2,...,p} is joined to a vertex y € B’ if and only if y € B,. Let
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J be an arbitrary subset of {1,2,...,p}. The neighborhood of J in Gy is precisely
U,<s B;. By Claim 3, ’UJEJ Bj’ > 2|J| > |J|. Since this holds for every J C {1,...,p},
by Hall’s theorem [5] there exist distinct vertices w; € Bj, for j = 1,...,p. By (5), for
every j € {1,...,p},|D(w;)| > 1 | B;|. Hence

Sz Y D) =5 Y 1Bl o

veB’ 1<j<p 1<j<p

If we view {Bi,...,Bp} as a hypergraph on the vertex set B’, then the degree of a
vertex v € B’ in it is precisely |J(v)| and the degree sum formula yields

ST Iwl= > Bl (6)

veB’ 1<j<p

Using Claim 4 and Claim 5 we have

S W= Y 2pw =2 Y SiBl= Y 1B

vEB’ vEB’ 1<j<p 1<j<p

which contradicts (6). This completes proof of Lemma 2. O

In the next subsection we will prove a general lemma about making an arbitrary
hypergraph K o ,-free (for any given value of ¢). This lemma is used several times in
the following subsections.

2.1. Applying Procedure P(q) to an arbitrary hypergraph H

Let ¢ be an even integer and let ¢ > t. Let H be an arbitrary Kg(?t)-free 3-partite 3-
graph with parts A, B and C. In this subsection we will prove the following lemma that
estimates the number of edges removed from the graphs G; = G;[H](4, B) for 1 <i < n,
when the Procedure P(q) is applied to them. This lemma together with Remark 1 will
allow us to estimate the number of edges removed from H when the Procedure P(q) is
applied to it.

Throughout this subsection, N;(x,y) denotes the set of common neighbors of the
vertices x,y in the graph G;.

Lemma 3. Let g >t be an even integer. Let H be an arbitrary KQ(? -free 3-partite 3-graph
with parts A,B and C. Let G; = G;[H|(A,B) for 1 < i <n. For each 1 <i <n and
any x,y € A or z,y € B, let F/(x,y) be defined by applying the procedure P(q) to G;
and let the resulting graph be G}. Then,

Y eNG <[ X Y IRl X3 IR |+ 2

1<i<n u,v€A 1<i<n u,veEB 1<i<n



10 B. Ergemlidze et al. / Journal of Combinatorial Theory, Series A 176 (2020) 105299

Proof of Lemma 3. First let us prove the following claim.

Claim 6. Let u,v € A or u,v € B. Then {u,v} is q-dense in less than t of the graphs

Proof. Without loss of generality, suppose that u,v € A. Suppose for contradiction that
{u,v} is g-dense in t of the graphs G;, 1 < i < n. Without loss of generality suppose
{u,v} is ¢-dense in Gy,...,G¢. Then |N;(u,v)| > q¢ >t for i = 1,...,t. Therefore, we
can greedily choose t distinct vertices y1, ...,y such that for each i € [t],y; € N;(u,v).
For each i € [t], since y; € N;(u,v) we have uy;c;,vy;c; € E(H). However, the set of
hyperedges {uy;c;,vy;c; € E(H) | 1 < i <t} forms a copy of KQ(i) in H, a contradic-
tion. O

Note that when procedure P(q) is applied to G; (to obtain G), Step 1 and Step 2
may be applied several times (and each time one of these steps is applied it may delete
an edge of G;).

For each i € [n], let m; denote the number of g-dense pairs of G;. By Claim 6, we
know that each pair {u,v} with u,v € A or u,v € B, is ¢-dense in less than t different
graphs G; (for 1 <i < n). Therefore,

Yomi<s Y -+ Y (t—l):2(;)(t—1). (7)

1<i<n u,vEA u,veEB

For each i € [n], let ; denote the total number of edges that were removed by Step 1
when procedure P(q) is applied to G; and f3; be the number of edges removed by Step 2
when procedure P(q) is applied to G;. Then a; + 8; = |G; \ Gi|, s0 Y i i+ >0 Bi =
S (GGl

First, we bound Y., ;. Let i € [n]. Observe that whenever a set M of edges were
removed by Step 2 of Procedure P(q) applied to G;, the number of g-dense pairs decreased
by at least |M| /2. Hence f5; < 2m;. So summing up over all 1 < i < n, and using (7),
we get

> oBi<2 ) mi<2n(n—1)(t—1) < 2tn’. (8)

1<i<n 1<i<n

Next, we bound >_" ; ;. Let i € [n]. If an edge zy were removed from G; by Step 1
of the procedure P(g) then there are vertices z1, 22, ..., 242 such that xy € Fj(x, z;) for
every j € {1,2,...,q/2} or xy € F](y, z;) for every j € {1,2,...,¢/2}. So

1 ’ /
o< g | X 1B+ Y F )

u,vEA u,vEB

Therefore,
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Z%’S

1<i<n

Q| N

Yo IF @+ Yo > IF ()

1<i<nu,v€A 1<i<nu,veB

This is equivalent to the following.

Z%’S

1<i<n

Z Z \F{(u,v)|—|— Z Z |Fil(u7v)| . (9)

u,veA 1<i<n u,veB 1<i<n

QN

Combining this inequality with (8) completes the proof of Lemma 3. O
2.2. The overall plan

Let us define the sequence qo, q1,...,qx as follows. Let gy = 2! where [ is an integer

such that gy = 2! < 2 < 2!*1 = 2¢o. For each 1 < j <k, let ¢; = L=t and qp >t > 4.

Clearly % = 2% moreover

So we have
k <logt. (10)

Now we apply the procedure P(go) to the hypergraph H (recall Definition 5) to obtain
a K 2 g,-free hypergraph Hg. For each 0 < j < k we obtain Kj s 4, ,-free hypergraph
H, 1 by applying the procedure P(g;11) to the hypergraph H;.

This way, in the end we will get a K 2 4,-free hypergraph Hj,. In the following section,
we will upper bound |H|— |Hy|. Then in the next section, using the information that H;
is K1 ,2,4,-free, we will upper bound |Hj 1| — [H;| for each 0 < j < k. Then we sum up
these bounds to upper bound the total number of deleted edges (i.e., |H| —|Hg|) from H
to obtain Hy. Finally, we bound the size of Hy, which will provide us the desired bound
on the size of H.

2.8. Making H K1 2 4,-free

First, we are going to prove an auxiliary lemma that is similar to Lemma A.4 of [9].
In an edge-colored multigraph G, an s-frame is a collection of s edges all of different
colors such that it is possible to pick one endpoint from each edge with all the selected
endpoints being distinct.

Lemma 4. Let G be an edge-colored multigraph with e edges such that each edge has
multiplicity at most p and each color class has size at most q. If G contains no t-frame
then |G| < (*3;1)p + tq.
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Proof. Consider a maximum frame S, say with edges ej,...,es such that for every
1 € {1,2,...,s}, e; has color i and that there exist z; € ej,za € eg,..., x5 € e; with
T1,...,Ts being distinct. By our assumption, s < ¢t — 1. Let f be any edge with a color
not in [s]. Then both vertices of f must be in {z1,...,25}, otherwise ej,...,es, f give a
larger frame, a contradiction. On the other hand, each edge with both of its vertices in
{z1,...,xs} has multiplicity at most p. Hence there are at most (;)p edges with colors
not in {1,2, ..., s}. The number of edges with color in {1,2,..., s} is at most sq by our
assumption. So |G| < (5)p + sq < (tgl)ertq. |

Let us recall that H is 3 partite KQ(?t)-free hypergraph with A, B, C. For convenience
we denote G; = G;[H](A, B) where 1 <i < n. For each 1 <i <n and any z,y € A or
x,y € B, let F!(z,y), Di(z,y) and Si(x,y) be defined by applying the procedure P(qo)
on G; and let the obtained graph be Gj.

First, observe that t2/2 < gy < t? according to our definition.

Claim 7. Let u,v € A or u,v € B. Then Y, _, ., |F!(u,v)| < 6t3.

Proof. Let D* be an edge-colored multigraph in which a pair of vertices e is an edge of
color ¢ € [n] whenever e is an edge of Dj(u,v). The number of edges of color ¢ in D* is
| D (u,v)|. By Claim 1 we have |D}(u,v)| < go. Hence the number of edges in each color
class of D* is less than qp.

Let zy be an arbitrary edge of D* and let I = {i € [n] | zy € D}(u,v)}. Foreach i € I,
the pair {z,y} is go-dense in G; by the definition of D/ (u,v). Therefore, by Claim 6, we
have |I| < t. So zy has multiplicity less than ¢ in D*. Since xy is arbitrary, the multiplicity
of each edge of D* is less than t.

Next, observe that D* contains no t-frame. Indeed, otherwise without loss of generality
we may assume that D* contains t edges x1y1, ..., T+y:, where x;y; has color i for each
i € [t] and yi,...,y: are distinct. For each ¢ € [t] since x;y; € D}(u,v), in particular
yi € Ni(u,v) (where N;(u,v) denotes the common neighborhood of u and v in G;),
which means that uy;c;, vy;c; € H. But now, {uy;c;,vy;c; | i € [t]} forms a copy of Ké?’t)7
contradicting H being Ké?’t)—free.

Therefore, applying Lemma 4, we have |D*| < (tgl)t + tqo. By Claim 1, we have

| F (u, )|

2 <Dl 0)].

So

[F{(u,v)] oo — 1t <t 3
S e ST i) = 107 < (1) et < S

1<i<n 1<i<n

which proves the claim. O
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By Lemma 3 we have

SienG< [ XY Rt XY o] + o

1<i<n u,weA 1<i<n u,veB 1<i<n
Combining it with Claim 7 we get
2
SIGN\GII< = Y6+ Y 6t | + 2t
1<i<n o u,vEA u,vEB

Therefore, as qo > t2/2, we have

’ 4 3(M 2 2
> G\ Gl < 5 (126°( ) ) +2tn® < 26tn”.
1<i<n

So,

S 1Gi\Gl = 3 |GiH](A, B)\ Gi[H](A, B)| < 26tn.

1<i<n 1<i<n

By symmetry, using the same arguments, we have

Y IGilH](B,C)\ Gi[H](B, )| < 26tn®,

1<i<n

and

> IGHH](A,C) \ Gi[H](A, C)| < 26tn”.

1<i<n

Therefore, by Remark 1, we have
|H| — |Ho| < 78tn?.

2.4. Making a K 2 4, -free hypergraph K 2 4, -free

13

(11)

In this subsection, we fix a j with 0 < j < k. Recall that Hj is K 3 4;-free, and Hj4
is obtained by applying the P(g;4+1) to H;. Our goal in this subsection is to estimate

|H;|—|Hj41]. The key difference between arguments in this subsection and in the previous

subsection is that now in addition to H; being K. é?t)—free we can also utilize the fact that

Hj is K 3 4;-free. In particular, this extra condition leads to Claim 8, which improves

upon Claim 7.
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For convenience of notation, in this subsection, let G; = G;[H;|(A, B) for each 1 <
i < n. For every 1 < i < n and every u,v € A or u,v € B let the sets F/(u,v) and
D;(u,v) be defined by applying the procedure P(g;+1) to the graph G;, to obtain the
graph G.

Claim 8. Let u,v € A or u,v € B. Then ), ;. |Fj(u,v)| < 2g;t.

Proof. For each i € [n] we denote the set of common neighbors of u,v in G; as N;(z,y).
For each i € [n], since H; is K1 2 4,-free, G; is K3 g,-free and so |N;(u,v)| < g;.

Without loss of generality let us assume u,v € A. For each vertex w of B, let I, =
{i €{1,2,...,n} | w € N;(u,v)}. We claim that |I,,| < ¢;. Indeed, for each i € I,,, we
have wwe;, vwe; € Hj. So the set of hyperedges {uwc;,vwe; | i@ € I,} form a copy of
K21, in Hj. Thus if [I,| > q;, then H; contains a copy of K2 ,;, a contradiction.
Therefore, |I,,| < g;, as desired.

Consider an auxiliary bipartite graph G sy x with parts B and [n] where the vertex
i € [n] is adjacent to b € B in Gayx if and only if b € N;(u,v). Then by the discussion
in the previous paragraph, each vertex w € B has degree |I,,| < ¢;, and each vertex
i € [n] has degree |N;(u, v)| < g;. In other words, the maximum degree in Gy x is less
than g;.

We claim that G qayx does not contain a matching of size t. Indeed, suppose for a
. yieh, (Le., b, € Ny (u,v) for 1 <1 <t) form
a matching of size t in Gayx. Then the set of hyperedges ub;,c;,, vb;,¢;,, 1 <1 <t, form

contradiction that the edges i1b;,,i2b;,, .
a copy of Kéi) in Hj, a contradiction, as desired.

Since G4y x does not contain a matching of size ¢, by the Konig-Egervary theorem
it has a vertex cover of size less than t. This fact combined with the fact that the
maximum degree of Gayx is less than g¢;, implies that the number of edges of Gayx
is less than g;t. On the other hand, the number of edges in Gavx is 3¢y [Ni(u,v)l.
Therefore, 3., [Ni(u,v)| < g;t. This, combined with the fact that for each i € [n],
|N;(u,v)| > |F!(u,v)| /2 (see Claim 1), completes the proof of the lemma. O

By Lemma 3, we have
2
Yolenais 2 N Y Hwals Y Y (Hw) | +am
1<i<n B+l \ yoea1<izn w,w,€B 1<i<n

Now using Claim 8, we have

8qit 4tq,
> 1Gi\G < qj(”) +otn? < B2 4 o2,
1Sien qj+1 \2 gj+1

Since ¢j41 = g;/2, we have
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> 1Gi\ Gj| < 8tn” + 2tn® = 10tn”.
1<i<n

So,

> G\ Gl = > |Gi[H,)(A, B)\ Gj[H}](A, B)| < 10tn*.

1<i<n 1<i<n

By symmetry, using the same arguments, we have

> |GiH;](B,C)\ Gi[H}](B,C)| < 10tn?,

1<i<n

and

> |Gi[H;)(A,C) \ Gj[H,](A, C)| < 10tn”.

1<i<n

Therefore, by Remark 1, we have
|H;| — |Hj41| < 30tn?.
2.5. Putting it all together
By (11) and (12) we have

|H| — |Hy| = [H| - |Ho| + Y (|Hj| — [Hj41|) < 78tn? + k(30tn?).
0<j<k

By (10) we have k < logt, so we obtain,

|H| — |Hy| < 78tn? + 30t log tn?.

15

(13)

Notice that Hy, is K1 2 q,-free and g < 2¢. Therefore H}, is K 2 2:-free. Moreover, we
know that the hypergraph Hy is 3-partite and Ké:o’t)—free with parts A, B,C (as it is a

subhypergraph of H). Now we bound the size of Hy.

Claim 9. We have |Hy| < 2tn?.

Proof. Suppose for a contradiction that |Hy| > 2tn?. For any pair {a, b} of vertices with
a € A and b € B, let codeg(a,b) denote the number of hyperedges of Hj, containing
the pair {a,b}. Then the number of copies of Ky 1,1 in Hy of the form {abc, a’bc} where

a,a’ € A, be B,ceCis

Z (codei(b, c)).
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As the average codegree (over all the pairs b € B, ¢ € C) is more than 2t, by convexity,

(2;> n2 > (2t — 1)2<Z>.

This means there exist a pair a,a’ € A and a set of (2t —1)2+1 > (t—1)(2t —1) +1 pairs
S :={bec| b€ B,c € C} such that abc,a’bc € E(Hy,) whenever be € S. Let Gapx be a
bipartite graph whose edges are elements of S. Since G4pyx has |S| > (t—1)(2t—1)+1

this expression is more than

edges, it either contains a matching M with ¢ edges or a vertex v of degree 2t (see Lemma
A.3 in [9] or the last paragraph of our proof of Claim 8 for a proof). In the former case,
the set of all hyperedges of the form abc, a’bc with bc € M, form a copy of KQ(‘?t) in Hy,
a contradiction. In the latter case, let wuy,us,...,us: be the neighbors of v in Gapx.
Then the set of hyperedges {avu;,a’vu; | 1 < i < 2t} form a copy of Ki29; in Hy, a
contradiction again. This completes the proof of the claim. O

Combining (13) with Claim 9, we have |H| < 80tn? + 30t logtn?, thus proving (4),
which implies Theorem 1, as desired.

3. Concluding remarks

Recall that given a bipartite graph G with an ordered bipartition (X,Y"), where Y =
{yi,- s Ymbs Gg?y is the r-graph with vertex set (X UY) U (UL, Y;) and edge set
Ul {euY; : e € E(G),y; € e}, where Yi,...,Y,, are disjoint (r — 2)-sets that are
disjoint from X UY. The proof of Theorem 1.4 in [9] implies the following.

Proposition 1. Let n,r > 3 be integers and G a bipartite graph with an ordered bipartition
(X,Y). There exists a constant ¢, depending only on r such that

ex(n, Gg;)y) < en” 73 - ex(n, Gg??y).

Thus, by Theorem 1 and Proposition 1, for all » > 4, we have ex(n,KQ(Tt)) <
crtlogt(rfl) for some constant c., depending only on r. On the other hand, tak-
ing the family of all r-element subsets of [n] containing a fixed element shows that
ex(n, th)) > ("~1). Recall that in the r = 3 case, a better lower bound of Q(¢(%)) was
shown by Mubayi and Verstraéte [9]. For r = 4, we are able to improve the lower bound

to Q(t(3)) as follows.

Proposition 2. We have

ex(n, K33)) = (14 o(1)) —=n’.
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Proof. (Sketch.) Consider a K -free graph G with (1 —|—0(1))@n3/2 edges where each
vertex has degree (1+0(1))4/(t — 1)y/n. (Such a graph exists by a construction of Fiiredi
[3].) Let us a define a 4-graph H = {abed | ab,cd € G and ac, ad, be,bd ¢ G}. In other
words, let the edges of H be the vertex sets of induced 2-matchings in G. Via standard
counting, it is easy to show that |H| = (1+0(1))1n3. It remains to show H is Kéft)—free.

Claim 10. If axyz,bxyz € H, then there is a vertex ¢ € {x,y,z} such that ac,bc € G.

Proof. By our assumption, {a,z,y,z} and {b,z,y, 2z} both induce a 2-matching in G.
Without loss of generality, suppose ax,yz € G. If bx € G then we are done. Otherwise,
we have by, xz € G or bz, zy € G, both contradicting {ax, yz} being an induced matching
inG. O

Suppose for contradiction that H has a copy of Kg(jlt) whose edgeset is {az;y;2;, bx;y; 2; |
1 <4 < t}. By Claim 10, for each 1 < i < ¢, there exists a vertex w; € {x;,¥;, z;} such
that aw;, bw; € G. This yields a copy of K> in G, a contradiction. O

For » > 5, we do not yet have a lower bound that is asymptotically larger than
(:fj) It would be interesting to narrow the gap between the lower and upper bounds
on ex(n, Kg)).

It will be interesting to have a systematic study of the function ex(n, Gg;)y). Mubayi
and Verstraéte [9] showed that ex(n, KS)) = O(n*71/%) and that if t > (s —1)! > 0 then
ex(n, K St)) = Q(n®?/%) and speculated that n®~2/% is the correct order of magnitude.
The case when G is a tree is studied in [4], where the problem considered there is slightly
more general. The case when G is an even cycle has also been studied. Let 6’2(2) denote
Ggg)y where G is the even cycle Co; of length 2t. It was shown by Jiang and Liu [6]

that clt(rfl) < ex(ng)) < cot? (Tf1)7 for some positive constants ¢y, co depending
on r. Using results in this paper and new ideas, we are able to narrow the gap to
clt(rfl) < ex(n, Cg)) < cot? logt(rfl), for some positive constants ¢, co depending on
r. We would like to postpone this and other results on the topic for a future paper.

Finally, motivated by results on Kéft) and C’Q(:), we pose the following question.
Question 1. Let r > 3. Let G be the family of bipartite graphs G with an ordered bipartition

(X,Y) in which every vertex in'Y has degree at most 2 in G. Is it true that VG € G
there is a constant ¢ depending on G such that ex(n, G()?’)Y) <c(,")?
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