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Let t be an integer such that t ≥ 2. Let K(3)
2,t denote the triple 

system consisting of the 2t triples {a, xi, yi}, {b, xi, yi} for 
1 ≤ i ≤ t, where the elements a, b, x1, x2, . . . , xt, y1, y2, . . . , yt

are all distinct. Let ex(n, K(3)
2,t ) denote the maximum size of a 

triple system on n elements that does not contain K(3)
2,t . This 

function was studied by Mubayi and Verstraëte [9], where the 
special case t = 2 was a problem of Erdős [1] that was studied 
by various authors [3,9,10].

Mubayi and Verstraëte proved that ex(n, K(3)
2,t ) < t4

(

n

2

)

and 

that for infinitely many n, ex(n, K(3)
2,t ) ≥ 2t−1

3

(

n

2

)

. These 
bounds together with a standard argument show that g(t) :=
limn→∞ ex(n, K(3)

2,t )/
(

n

2

)

exists and that

2t − 1

3
≤ g(t) ≤ t4.

Addressing the question of Mubayi and Verstraëte on the 
growth rate of g(t), we prove that as t → ∞,
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g(t) = Θ(t1+o(1)).

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

An r-graph is an r-uniform hypergraph. Let F be a family of r-graphs and let ex(n, F)

denote the maximum number of edges in an r-graph on n vertices containing no mem-

ber of F . We call ex(n, F) the Turán number of F . When F consists of a single graph 

F , we write ex(n, F ) for ex(n, F). When r ≥ 3, determining ex(n, F) asymptotically 

or exactly is notoriously difficult. Katona, Nemetz, and Simonovits [7] showed that 

limn→∞ ex(n, F)/
(

n
r

)

exists and this limit is called the Turán density of F , and is de-

noted by π(F). When π(F) = 0, that is, when ex(n, F) = o(nr), we call the problem of 

determining ex(n, F) a degenerate hypergraph Turán problem. For an excellent survey on 

the study of hypergraph Turán numbers, see [8]. In this paper, we study a degenerate 

hypergraph Turán problem that is motivated by the study of Turán numbers of complete 

bipartite graphs as well as by a question of Erdős. In fact, the r-graph F we study in 

this paper satisfies ex(n, F ) = Θ(nr−1), so in this case, the natural goal is to determine 

limn→∞ ex(n, F )/
(

n
r−1

)

.

Definition 1. Let r ≥ 3 be an integer. Let G be a bipartite graph with an ordered 

bipartition (X, Y ). Suppose that Y = {y1, . . . , ym}. Let Y1, . . . , Ym be disjoint sets of 

size r − 2 that are disjoint from X ∪ Y . Let G
(r)
X,Y denote the r-graph with vertex set 

(X ∪ Y ) ∪ (
⋃m

i=1 Yi) and edge set 
⋃m

i=1{e ∪ Yi : e ∈ E(G), yi ∈ e}.

Let s, t ≥ 2 be positive integers. If G is the complete bipartite graph with an ordered 

bipartition (X, Y ) where |X| = s, |Y | = t, then let G
(r)
X,Y be denoted by K

(r)
s,t .

Definition 2. For all n ≥ r ≥ 3, let fr(n) denote the maximum number of edges in 

an n-vertex r-graph containing no four edges A, B, C, D with A ∪ B = C ∪ D and 

A ∩ B = C ∩ D = ∅.

Note that f3(n) = ex(n, K
(3)
2,2), and in general fr(n) ≤ ex(n, K

(r)
2,2). Erdős [1] asked 

whether fr(n) = O(nr−1) when r ≥ 3. Füredi [3] answered Erdős’ question affirmatively. 

More precisely, he showed that for integers n, r with r ≥ 3 and n ≥ 2r,

(

n − 1

r − 1

)

+

⌊

n − 1

r

⌋

≤ fr(n) < 3.5

(

n

r − 1

)

. (1)

The lower bound is obtained by taking the family of all r-element subsets of [n] :=

{1, 2, . . . , n} containing a fixed element, say 1, and adding to the family any collection 

of 
⌊

n−1
r

⌋

pairwise disjoint r-element subsets not containing 1. For r = 3, Füredi also 
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gave an alternative lower bound construction using Steiner systems. An (n, r, t)-Steiner 

system S(n, r, t) is an r-uniform hypergraph on [n] in which every t-element subset of [n]

is contained in exactly one hyperedge. Füredi observed that if we replace every hyperedge 

in S(n, 5, 2) by all its 3-element subsets then the resulting triple system has 
(

n
2

)

triples 

and contains no copy of K
(3)
2,2 . This slightly improves the lower bound in (1) for r = 3

to 
(

n
2

)

, for those n for which S(n, 5, 2) exists. The upper bound in (1) was improved by 

Mubayi and Verstraëte [9] to 3
(

n
r−1

)

+O(nr−2). They obtain this bound by first showing 

f3(n) = ex(n, K
(3)
2,2) < 3

(

n
2

)

+ 6n, and then combining it with a simple reduction lemma. 

This was later improved to f3(n) ≤ 13
9

(

n
2

)

by Pikhurko and Verstraëte [10].

Motivated by Füredi’s work, Mubayi and Verstraëte [9] initiated the study of the 

general problem of determining ex(n, K
(r)
2,t ) for any t ≥ 2. They showed that for any 

t ≥ 2 and n ≥ 2t,

ex(n, K
(3)
2,t ) < t4

(

n

2

)

,

and that for infinitely many n, ex(n, K
(3)
2,t ) ≥ 2t−1

3

(

n
2

)

, where the lower bound is obtained 

by replacing each hyperedge in S(n, 2t + 1, 2) with all its 3-element subsets.

Mubayi and Verstraëte noted that g(t) := limn→∞ ex(n, K
(3)
2,t )/

(

n
2

)

exists and raised 

the question of determining the growth rate of g(t). Their results show that

2t − 1

3
≤ g(t) ≤ t4. (2)

In this paper, we prove that as t → ∞,

g(t) = Θ(t1+o(1)), (3)

showing that their lower bound is close to the truth. More precisely, we prove the fol-

lowing.

Theorem 1. For any t ≥ 2, we have

ex(n, K
(3)
2,t ) ≤ (15t log t + 40t) n2.

Notation. Given a hypergraph (or a graph) H, throughout the paper, we also denote the 

set of its edges by H. For example |H| denotes the number of edges of H. Given two 

vertices x, y in a graph G, let NG(x, y) denote the common neighborhood of x and y in 

G. We drop the subscript G when the context is clear.

2. Proof of Theorem 1: K
(3)
2,t -free hypergraphs

We will use a special case of a well-known result of Erdős and Kleitman [2].
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Lemma 1. Let H be a 3-graph on 3n vertices. Then H contains a 3-partite 3-graph, with 

all parts of size n, and with at least 2
9 |H| hyperedges.

Let us define the sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C =

{c1, c2, . . . , cn}. Throughout the proof we define various 3-partite 3-graphs whose parts 

are A, B and C.

Suppose H is a K
(3)
2,t -free 3-partite 3-graph on 3n vertices with parts A, B and C. 

First let us show that it suffices to prove the following inequality.

|H| ≤ (30t log t + 80t)n2. (4)

It is easy to see that inequality (4) and Lemma 1 together imply that any K
(3)
2,t -free 

3-graph on 3n vertices contains at most 9
2 (30t log t + 80t)n2 hyperedges, from which 

Theorem 1 would follow after replacing 3n by n.

In the remainder of the section, we will prove (4). Let us introduce the following 

notion of sparsity.

Definition 3 (q-sparse and q-dense pairs). Let q be a positive integer. Let G be a bipartite 

graph with parts X, Y . Let x, y be two different vertices such that x, y ∈ X or x, y ∈ Y . 

Then we call {x, y} a q-dense pair of G if |N(x, y)| ≥ q. We call {x, y} a q-sparse pair 

of G if |N(x, y)| < q but x, y are still contained in a copy of K2,q in G. Note that it is 

possible that {x, y} is neither q-sparse nor q-dense.

The following Procedure P(q) about making a bipartite graph K2,q-free lies at the 

heart of the proof. (We think of q as the parameter of the Procedure P(q), that is changed 

throughout the proof.)

Procedure P(q): Making a bipartite graph K2,q-free.
Input: A bipartite graph G with parts A and B.

G ← G, ψ ← 1.
F (x, y) ← ∅ , D(x, y) ← ∅ and S(x, y) ← ∅ for every x, y ∈ A and x, y ∈ B.
while ψ = 1 do

ψ ← 0.
Step 1:

For each q-sparse pair {x, y} of G such that F (x, y) = ∅, let S(x, y) be the set of vertices spanned
by the q-dense pairs of G that are contained in NG(x, y). Let F (x, y) ← {ab ∈ G | a ∈ {x, y} and
b ∈ S(x, y)}, and let D(x, y) be a spanning forest of the graph formed by the dense pairs of G that
are contained in S(x, y).
If there exists an edge ab ∈ G such that ab is contained in F (x, y) for at least q/2 different pairs
{x, y} with x, y ∈ A or for at least q/2 different pairs {x, y} with x, y ∈ B,
then G ← G \ {ab} and ψ ← 1.
Step 2:

If there exists a set M of edges in G such that removing all of the edges of M from G would
decrease the number of q-dense pairs by at least |M | /2,
then G ← G \ M and ψ ← 1.

end while

G′ ← G
F ′(x, y) ← F (x, y) for every x, y ∈ A and x, y ∈ B.
D′(x, y) ← D(x, y) for every x, y ∈ A and x, y ∈ B.
S′(x, y) ← S(x, y) for every x, y ∈ A and x, y ∈ B.

Output: The graph G′ and the sets F ′(x, y), D′(x, y), S′(x, y) for all x, y ∈ A and x, y ∈ B.
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In the procedure P(q), initially for all the pairs {x, y} (with x, y ∈ A and x, y ∈ B) 

the sets F (x, y), D(x, y), S(x, y) are set to be empty. Then as the edges are being deleted 

during the procedure, possibly, new q-sparse pairs {x, y} are being created. When this 

happens, Step 1 redefines the sets S(x, y), F (x, y), D(x, y) and gives them some non-

empty values. (They get non-empty values due to the fact that {x, y} is q-sparse, which 

implies that {x, y} is contained in a copy of K2,q, so there is at least one q-dense pair in 

the common neighborhood of x, y.) Therefore, these values stay unchanged throughout 

the rest of the procedure.

Notice that at the point S(x, y) was redefined, the pair {x, y} was q-sparse, so the 

number of common neighbors is less than q. Therefore, as S(x, y) is a subset of the 

common neighborhood of x and y, we also have |S(x, y)| < q. Moreover, since D(x, y)

is defined as a spanning forest with the vertex set S(x, y), we have |D(x, y)| ≤ |S(x, y)|. 
Also, it easily follows from the definition of F (x, y) that |F (x, y)| = 2 |S(x, y)|. Finally, 

notice that D(x, y) does not contain any isolated vertices, because its vertex set S(x, y)

spans all of its edges, by definition. Therefore, |D(x, y)| ≥ |S(x, y)| /2. At the end of the 

procedure, the sets F (x, y), D(x, y), S(x, y) are renamed as F ′(x, y), D′(x, y), S′(x, y). 

Note also that if a pair {x, y} never becomes q-sparse in the process then S′(x, y) =

D′(x, y) = F ′(x, y) = ∅.

Observation 1. For every x, y ∈ A and for every x, y ∈ B, we have

(1) |S′(x, y)| < q.

(2) |D′(x, y)| ≤ |S′(x, y)|.
(3) |F ′(x, y)| = 2 |S′(x, y)|.
(4) |D′(x, y)| ≥

∣

∣S′(x,y)
∣

∣

2 .

For convenience, throughout the paper we (informally) say that the sets F ′(x, y), 

D′(x, y), S′(x, y) are defined by applying Procedure P(q) to a graph G to obtain the 

graph G′, instead of saying that the input to Procedure P(q) is G and the output is the 

graph G′ and the sets F ′(x, y), D′(x, y), S′(x, y). Note that the output is not unique and 

may depend on the order in which edges were deleted when Procedure P(q) is applied 

to a graph G, but we just fix one such output and define G′, F ′(x, y), D′(x, y), S′(x, y)

with respect to that output.

Claim 1. Let the sets F ′(x, y), D′(x, y), S′(x, y) (for x, y ∈ A and for x, y ∈ B) be defined 

by applying Procedure P(q) to a bipartite graph G to obtain G′. Let N(x, y) denote the 

set of common neighbors of vertices x, y in the graph G. Then

|F ′(x, y)|
4

≤ |D′(x, y)| < q.

Moreover |F ′(x, y)| ≤ 2 |N(x, y)|.
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Proof. Combining the parts (3) and (4) of Observation 1, we have

|F ′(x, y)| /4 ≤ |D′(x, y)| .

Combining the parts (1) and (2) of Observation 1, we obtain

|D′(x, y)| < q,

proving the first part of the claim.

To prove the second part, notice that S′(x, y) is a common neighborhood of x, y in 

some subgraph G of G, we have |S′(x, y)| ≤ |N(x, y)|. Combining this with part (3) of 

Observation 1, we obtain |F ′(x, y)| ≤ 2 |N(x, y)|, as required. �

Finally, let us note the following properties of the graph obtained after applying the 

procedure.

Observation 2. Let the sets F ′(x, y), D′(x, y), S′(x, y) (for x, y ∈ A and x, y ∈ B) be 

defined by applying Procedure P(q) to a bipartite graph G to obtain G′. Then

1. Every edge ab in G′ is contained in at most q/2 members of {F ′(x, y) : x, y ∈ A}
and in at most q/2 members of {F ′(x, y) : x, y ∈ B}.

2. For any set M of edges in G′, removing the edges of M from G′ decreases the number 

of q-dense pairs by less than |M | /2.

Definition 4. Let H be a 3-partite 3-graph with parts A, B and C.

For each 1 ≤ i ≤ n, let Gi[H](A, B) be the bipartite graph with parts A and B, whose 

edge set is {ab | a ∈ A, b ∈ B, abci ∈ E(H)}. The graphs Gi[H](B, C) and Gi[H](A, C)

are defined similarly.

Definition 5 (Applying Procedure P(q) to a hypergraph). Let H be a 3-partite 3-graph 

with parts A, B and C. We define the hypergraph H ′ as follows:

For each 1 ≤ i ≤ n, let G′
i[H](A, B), G′

i[H](B, C), G′
i[H](A, C) be the graphs obtained 

by applying the procedure P(q) to the graphs Gi[H](A, B), Gi[H](B, C), Gi[H](A, C)

respectively.

For each edge ab which was removed from Gi[H](A, B) by the procedure P(q) (i.e. 

ab ∈ Gi[H](A, B) \ G′
i[H](A, B)) we remove the hyperedge abci from H (it may have 

been removed already). Similarly for each edge bc (resp. ac) which was removed from 

Gi[H](B, C) (resp. Gi[H](A, C)) by the procedure P(q) we remove the hyperedge aibc

(resp. abic) from H. Let the resulting hypergraph be H ′. More precisely, the edge-set of 

H ′ is

{aibjck ∈ H | aibj ∈ G′
k[H](A, B), bjck ∈ G′

i[H](B, C), aick ∈ G′
j [H](A, C)}.

We say H ′ is obtained from H by applying the Procedure P(q).
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Remark 1. Let H ′ be obtained by applying the Procedure P(q) to the hypergraph H. 

Then,

|H| − |H ′| ≤
∑

1≤i≤n

(|Gi[H](A, B)| − |G′
i[H](A, B)|)

+
∑

1≤i≤n

(|Gi[H](B, C)| − |G′
i[H](B, C)|)

+
∑

1≤i≤n

(|Gi[H](A, C)| − |G′
i[H](A, C)|) .

Indeed, if aibjck ∈ H \ H ′ then it is easy to see that aibj ∈ Gk[H](A, B) \ G′
k[H](A, B)

or bjck ∈ Gi[H](B, C) \ G′
i[H](B, C) or aick ∈ Gj [H](A, C) \ G′

j [H](A, C).

Lemma 2. Let q ≥ 2 be an even integer and G be a bipartite graph with parts A and B. 

Suppose G′ is the graph obtained by applying Procedure P(q) to G. Then G′ is K2,q-free.

Proof. Let us define a q-broom of size k to be a set of q-sparse pairs {x0, xj} (with 

1 ≤ j ≤ k), and a q-dense pair {y, z} such that {y, z} is contained in the common 

neighborhood of x0, xj for every 1 ≤ j ≤ k. Note that either {x0, x1, . . . , xk} ⊆ A and 

{y, z} ⊆ B or {x0, x1, . . . , xk} ⊆ B and {y, z} ⊆ A.

Claim 2. There is no q-broom of size q/2 in G′.

Proof. Suppose by contradiction that there is a set of q-sparse pairs {x0, xj} (with 

1 ≤ j ≤ q/2), and a q-dense pair {y, z} such that {y, z} is contained in the common 

neighborhood of x0 and xj for every 1 ≤ j ≤ q/2. Then the edge x0y is contained in the 

sets F ′(x0, xj) for every 1 ≤ j ≤ q/2, which contradicts Observation 2. �

Let us suppose for a contradiction (to Lemma 2) that G′ contains a copy of K2,q. 

Then G′ contains at least one q-dense pair. Without loss of generality we may assume 

there is a q-dense pair {a, a1} in A. Suppose {a, aj} (for 1 ≤ j ≤ p) are all the q-dense 

pairs of G′ containing the vertex a. For each 1 ≤ j ≤ p, let Bj ⊆ B be the common 

neighborhood of a and aj in G′. By definition, |Bj | ≥ q for 1 ≤ j ≤ p.

Claim 3. For any J ⊆ {1, 2, . . . , p}, we have 
∣

∣

∣

⋃

j∈J Bj

∣

∣

∣
> 2 |J |.

Proof. Let us assume for contradiction that there exists a J ⊆ {1, 2, . . . , p} such that 
∣

∣

∣

⋃

j∈J Bj

∣

∣

∣ ≤ 2 |J |. Let G∗ be obtained from G′ by deleting all the edges from a to 
⋃

j∈J Bj . For each j ∈ J , the pair {a, aj} has no common neighbor in G∗ since we have 

removed all the edges from a to Bj . Thus the pair {a, aj} is not q-dense in G∗. So in 

forming G∗ from G′ the number of q-dense pairs decreases by at least |J |, while the 

number of edges decreases by | ⋃j∈J Bj | ≤ 2|J | edges, contradicting Observation 2. �
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Let B′ =
⋃

1≤j≤p Bj . For each vertex v ∈ B′ and let

J(v) := {j | v ∈ Bj},

D(v) := {{v, u} | {v, u} is q-dense in G′ and {v, u} ⊆ Bj for some j ∈ J(v)}.

In the next two claims, we will prove two useful inequalities concerning |J(v)| and 

|D(v)|.

Claim 4. For each v ∈ B′, |J(v)| > 2 |D(v)|.

Proof. Suppose for contradiction that there is a vertex v ∈ B′ such that |J(v)| ≤ 2 |D(v)|. 
Let us delete all the edges of the form vaj , j ∈ J(v), from G′ and let the resulting graph 

be G∗. Since we deleted |J(v)| edges, by Observation 2, the number of q-dense pairs 

decreases by less than |J(v)| /2 ≤ |D(v)|. So there exists {v, u} ∈ D(v) such that {v, u}
is (still) q-dense in G∗. That is, |N∗(v, u)| ≥ q, where N∗(v, u) denotes the common 

neighborhood of v and u in G∗. Clearly each pair of vertices in N∗(v, u) is contained in 

a copy of K2,q in G∗ (and hence in G′).

For each pair of vertices in N∗(v, u), since it is contained in a copy of K2,q in G′, it 
is either q-sparse or q-dense in G′. Note that a ∈ N∗(v, u). If all the pairs {a, x} with 

x ∈ N∗(v, u) \ {a} are q-sparse in G′ then the set of these pairs together with {v, u} is 

a q-broom of size at least q − 1 ≥ q/2 in G′, which contradicts Claim 2. So there exists 

a vertex x ∈ N∗(v, u) \ {a} such that {a, x} is q-dense in G′. Since v is adjacent to both 

a and x, by the definition of J(v), x = aj for some j ∈ J(v). However, by definition, in 

forming G∗ we have removed vx from G′. This contradicts x ∈ N∗(v, u) and completes 

the proof. �

Claim 5.

∑

v∈B′

|D(v)| ≥ 1

2

∑

1≤j≤p

|Bj |.

Proof. Fix any j with 1 ≤ j ≤ p. Since {a, aj} is q-dense in G′, every pair {x, y} ⊆ Bj

is contained in some copy of K2,q and hence is either q-dense or q-sparse in G′. Let v

be any vertex in Bj and let S(v) = {y ∈ Bj | {v, y} is q-sparse in G′}. By definition, 

the set {{v, y} | y ∈ S(v)} together with {a, aj} is a q-broom of size |S(v)|. By Claim 2, 

|S(v)| ≤ q/2 − 1 ≤ |Bj | /2 − 1. Since |D(v)| + |S(v)| ≥ |Bj | − 1, we have

|D(v)| ≥ 1

2
|Bj | (5)

Note that (5) holds for every j = 1, . . . , p and every v ∈ Bj .

Let us define an auxiliary bipartite graph Gaux with the parts {1, 2, . . . , p}, B′ such 

that a vertex j ∈ {1, 2, . . . , p} is joined to a vertex y ∈ B′ if and only if y ∈ Bj . Let 
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J be an arbitrary subset of {1, 2, . . . , p}. The neighborhood of J in Gaux is precisely 
⋃

j∈J Bj . By Claim 3, 
∣

∣

∣

⋃

j∈J Bj

∣

∣

∣
> 2 |J | ≥ |J |. Since this holds for every J ⊆ {1, . . . , p}, 

by Hall’s theorem [5] there exist distinct vertices wj ∈ Bj , for j = 1, . . . , p. By (5), for 

every j ∈ {1, . . . , p}, |D(wj)| ≥ 1
2 |Bj |. Hence

∑

v∈B′

|D(v)| ≥
∑

1≤j≤p

|D(wj)| ≥ 1

2

∑

1≤j≤p

|Bj |. �

If we view {B1, . . . , Bp} as a hypergraph on the vertex set B′, then the degree of a 

vertex v ∈ B′ in it is precisely |J(v)| and the degree sum formula yields

∑

v∈B′

|J(v)| =
∑

1≤j≤p

|Bj | . (6)

Using Claim 4 and Claim 5 we have

∑

v∈B′

|J(v)| >
∑

v∈B′

2 |D(v)| ≥ 2
∑

1≤j≤p

1

2
|Bj | =

∑

1≤j≤p

|Bj |,

which contradicts (6). This completes proof of Lemma 2. �

In the next subsection we will prove a general lemma about making an arbitrary 

hypergraph K1,2,q-free (for any given value of q). This lemma is used several times in 

the following subsections.

2.1. Applying Procedure P(q) to an arbitrary hypergraph H

Let q be an even integer and let q ≥ t. Let H be an arbitrary K
(3)
2,t -free 3-partite 3-

graph with parts A, B and C. In this subsection we will prove the following lemma that 

estimates the number of edges removed from the graphs Gi = Gi[H](A, B) for 1 ≤ i ≤ n, 

when the Procedure P(q) is applied to them. This lemma together with Remark 1 will 

allow us to estimate the number of edges removed from H when the Procedure P(q) is 

applied to it.

Throughout this subsection, Ni(x, y) denotes the set of common neighbors of the 

vertices x, y in the graph Gi.

Lemma 3. Let q ≥ t be an even integer. Let H be an arbitrary K
(3)
2,t -free 3-partite 3-graph 

with parts A, B and C. Let Gi = Gi[H](A, B) for 1 ≤ i ≤ n. For each 1 ≤ i ≤ n and 

any x, y ∈ A or x, y ∈ B, let F ′
i (x, y) be defined by applying the procedure P(q) to Gi

and let the resulting graph be G′
i. Then,

∑

1≤i≤n

|Gi \ G′
i| <

2

q

⎛

⎝

∑

u,v∈A

∑

1≤i≤n

|F ′
i (u, v)| +

∑

u,v∈B

∑

1≤i≤n

|F ′
i (u, v)|

⎞

⎠ + 2tn2.
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Proof of Lemma 3. First let us prove the following claim.

Claim 6. Let u, v ∈ A or u, v ∈ B. Then {u, v} is q-dense in less than t of the graphs 

Gi, 1 ≤ i ≤ n.

Proof. Without loss of generality, suppose that u, v ∈ A. Suppose for contradiction that 

{u, v} is q-dense in t of the graphs Gi, 1 ≤ i ≤ n. Without loss of generality suppose 

{u, v} is q-dense in G1, . . . , Gt. Then |Ni(u, v)| ≥ q ≥ t for i = 1, . . . , t. Therefore, we 

can greedily choose t distinct vertices y1, . . . , yt such that for each i ∈ [t], yi ∈ Ni(u, v). 

For each i ∈ [t], since yi ∈ Ni(u, v) we have uyici, vyici ∈ E(H). However, the set of 

hyperedges {uyici, vyici ∈ E(H) | 1 ≤ i ≤ t} forms a copy of K
(3)
2,t in H, a contradic-

tion. �

Note that when procedure P(q) is applied to Gi (to obtain G′
i), Step 1 and Step 2 

may be applied several times (and each time one of these steps is applied it may delete 

an edge of Gi).

For each i ∈ [n], let mi denote the number of q-dense pairs of Gi. By Claim 6, we 

know that each pair {u, v} with u, v ∈ A or u, v ∈ B, is q-dense in less than t different 

graphs Gi (for 1 ≤ i ≤ n). Therefore,

∑

1≤i≤n

mi ≤
∑

u,v∈A

(t − 1) +
∑

u,v∈B

(t − 1) = 2

(

n

2

)

(t − 1). (7)

For each i ∈ [n], let αi denote the total number of edges that were removed by Step 1 

when procedure P(q) is applied to Gi and βi be the number of edges removed by Step 2 

when procedure P(q) is applied to Gi. Then αi + βi = |Gi \ G′
i|, so 

∑n
i=1 αi +

∑n
i=1 βi =

∑n
i=1 |Gi \ G′

i|.
First, we bound 

∑n
i=1 βi. Let i ∈ [n]. Observe that whenever a set M of edges were 

removed by Step 2 of Procedure P(q) applied to Gi, the number of q-dense pairs decreased 

by at least |M | /2. Hence βi ≤ 2mi. So summing up over all 1 ≤ i ≤ n, and using (7), 

we get

∑

1≤i≤n

βi ≤ 2
∑

1≤i≤n

mi ≤ 2n(n − 1)(t − 1) < 2tn2. (8)

Next, we bound 
∑n

i=1 αi. Let i ∈ [n]. If an edge xy were removed from Gi by Step 1 

of the procedure P(q) then there are vertices z1, z2, . . . , zq/2 such that xy ∈ F ′
i (x, zj) for 

every j ∈ {1, 2, . . . , q/2} or xy ∈ F ′
i (y, zj) for every j ∈ {1, 2, . . . , q/2}. So

αi ≤ 1

q/2

⎛

⎝

∑

u,v∈A

|F ′
i (u, v)| +

∑

u,v∈B

|F ′
i (u, v)|

⎞

⎠ .

Therefore,
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∑

1≤i≤n

αi ≤ 2

q

⎛

⎝

∑

1≤i≤n

∑

u,v∈A

|F ′
i (u, v)| +

∑

1≤i≤n

∑

u,v∈B

|F ′
i (u, v)|

⎞

⎠ .

This is equivalent to the following.

∑

1≤i≤n

αi ≤ 2

q

⎛

⎝

∑

u,v∈A

∑

1≤i≤n

|F ′
i (u, v)| +

∑

u,v∈B

∑

1≤i≤n

|F ′
i (u, v)|

⎞

⎠ . (9)

Combining this inequality with (8) completes the proof of Lemma 3. �

2.2. The overall plan

Let us define the sequence q0, q1, . . . , qk as follows. Let q0 = 2l where l is an integer 

such that q0 = 2l ≤ t2 < 2l+1 = 2q0. For each 1 ≤ j ≤ k, let qj =
qj−1

2 and qk ≥ t > qk

2 . 

Clearly q0

qk
= 2k, moreover

2k =
q0

qk
≤ t2

t
= t.

So we have

k ≤ log t. (10)

Now we apply the procedure P(q0) to the hypergraph H (recall Definition 5) to obtain 

a K1,2,q0
-free hypergraph H0. For each 0 ≤ j < k we obtain K1,2,qj+1

-free hypergraph 

Hj+1 by applying the procedure P(qj+1) to the hypergraph Hj .

This way, in the end we will get a K1,2,qk
-free hypergraph Hk. In the following section, 

we will upper bound |H| − |H0|. Then in the next section, using the information that Hj

is K1,2,qj
-free, we will upper bound |Hj+1| − |Hj | for each 0 ≤ j < k. Then we sum up 

these bounds to upper bound the total number of deleted edges (i.e., |H|− |Hk|) from H

to obtain Hk. Finally, we bound the size of Hk, which will provide us the desired bound 

on the size of H.

2.3. Making H K1,2,q0
-free

First, we are going to prove an auxiliary lemma that is similar to Lemma A.4 of [9]. 

In an edge-colored multigraph G, an s-frame is a collection of s edges all of different 

colors such that it is possible to pick one endpoint from each edge with all the selected 

endpoints being distinct.

Lemma 4. Let G be an edge-colored multigraph with e edges such that each edge has 

multiplicity at most p and each color class has size at most q. If G contains no t-frame 

then |G| ≤
(

t−1
2

)

p + tq.
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Proof. Consider a maximum frame S, say with edges e1, . . . , es such that for every 

i ∈ {1, 2, . . . , s}, ei has color i and that there exist x1 ∈ e1, x2 ∈ e2, . . . , xs ∈ es with 

x1, . . . , xs being distinct. By our assumption, s ≤ t − 1. Let f be any edge with a color 

not in [s]. Then both vertices of f must be in {x1, . . . , xs}, otherwise e1, . . . , es, f give a 

larger frame, a contradiction. On the other hand, each edge with both of its vertices in 

{x1, . . . , xs} has multiplicity at most p. Hence there are at most 
(

s
2

)

p edges with colors 

not in {1, 2, . . . , s}. The number of edges with color in {1, 2, . . . , s} is at most sq by our 

assumption. So |G| ≤
(

s
2

)

p + sq ≤
(

t−1
2

)

p + tq. �

Let us recall that H is 3 partite K
(3)
2,t -free hypergraph with A, B, C. For convenience 

we denote Gi = Gi[H](A, B) where 1 ≤ i ≤ n. For each 1 ≤ i ≤ n and any x, y ∈ A or 

x, y ∈ B, let F ′
i (x, y), D′

i(x, y) and S′
i(x, y) be defined by applying the procedure P(q0)

on Gi and let the obtained graph be G′
i.

First, observe that t2/2 < q0 ≤ t2 according to our definition.

Claim 7. Let u, v ∈ A or u, v ∈ B. Then 
∑

1≤i≤n |F ′
i (u, v)| ≤ 6t3.

Proof. Let D∗ be an edge-colored multigraph in which a pair of vertices e is an edge of 

color i ∈ [n] whenever e is an edge of D′
i(u, v). The number of edges of color i in D∗ is 

|D′
i(u, v)|. By Claim 1 we have |D′

i(u, v)| < q0. Hence the number of edges in each color 

class of D∗ is less than q0.

Let xy be an arbitrary edge of D∗ and let I = {i ∈ [n] | xy ∈ D′
i(u, v)}. For each i ∈ I, 

the pair {x, y} is q0-dense in Gi by the definition of D′
i(u, v). Therefore, by Claim 6, we 

have |I| < t. So xy has multiplicity less than t in D∗. Since xy is arbitrary, the multiplicity 

of each edge of D∗ is less than t.

Next, observe that D∗ contains no t-frame. Indeed, otherwise without loss of generality 

we may assume that D∗ contains t edges x1y1, . . . , xtyt, where xiyi has color i for each 

i ∈ [t] and y1, . . . , yt are distinct. For each i ∈ [t] since xiyi ∈ D′
i(u, v), in particular 

yi ∈ Ni(u, v) (where Ni(u, v) denotes the common neighborhood of u and v in Gi), 

which means that uyici, vyici ∈ H. But now, {uyici, vyici | i ∈ [t]} forms a copy of K
(3)
2,t , 

contradicting H being K
(3)
2,t -free.

Therefore, applying Lemma 4, we have |D∗| ≤
(

t−1
2

)

t + tq0. By Claim 1, we have

|F ′
i (u, v)|

4
≤ |D′

i(u, v)| .

So

∑

1≤i≤n

|F ′
i (u, v)|

4
≤

∑

1≤i≤n

|D′
i(u, v)| = |D∗| ≤

(

t − 1

2

)

t + tq0 <
3

2
t3,

which proves the claim. �
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By Lemma 3 we have

∑

1≤i≤n

|Gi \ G′
i| <

2

q0

⎛

⎝

∑

u,v∈A

∑

1≤i≤n

|F ′
i (u, v)| +

∑

u,v∈B

∑

1≤i≤n

|F ′
i (u, v)|

⎞

⎠ + 2tn2.

Combining it with Claim 7 we get

∑

1≤i≤n

|Gi \ G′
i| <

2

q0

⎛

⎝

∑

u,v∈A

6t3 +
∑

u,v∈B

6t3

⎞

⎠ + 2tn2.

Therefore, as q0 > t2/2, we have

∑

1≤i≤n

|Gi \ G′
i| <

4

t2

(

12t3

(

n

2

))

+ 2tn2 < 26tn2.

So,

∑

1≤i≤n

|Gi \ G′
i| =

∑

1≤i≤n

|Gi[H](A, B) \ G′
i[H](A, B)| < 26tn2.

By symmetry, using the same arguments, we have

∑

1≤i≤n

|Gi[H](B, C) \ G′
i[H](B, C)| < 26tn2,

and

∑

1≤i≤n

|Gi[H](A, C) \ G′
i[H](A, C)| < 26tn2.

Therefore, by Remark 1, we have

|H| − |H0| < 78tn2. (11)

2.4. Making a K1,2,qj
-free hypergraph K1,2,qj+1

-free

In this subsection, we fix a j with 0 ≤ j < k. Recall that Hj is K1,2,qj
-free, and Hj+1

is obtained by applying the P(qj+1) to Hj . Our goal in this subsection is to estimate 

|Hj |−|Hj+1|. The key difference between arguments in this subsection and in the previous 

subsection is that now in addition to Hj being K
(3)
2,t -free we can also utilize the fact that 

Hj is K1,2,qj
-free. In particular, this extra condition leads to Claim 8, which improves 

upon Claim 7.
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For convenience of notation, in this subsection, let Gi = Gi[Hj ](A, B) for each 1 ≤
i ≤ n. For every 1 ≤ i ≤ n and every u, v ∈ A or u, v ∈ B let the sets F ′

i (u, v) and 

D′
i(u, v) be defined by applying the procedure P(qj+1) to the graph Gi, to obtain the 

graph G′
i.

Claim 8. Let u, v ∈ A or u, v ∈ B. Then 
∑

1≤i≤n |F ′
i (u, v)| < 2qjt.

Proof. For each i ∈ [n] we denote the set of common neighbors of u, v in Gi as Ni(x, y). 

For each i ∈ [n], since Hj is K1,2,qj
-free, Gi is K2,qj

-free and so |Ni(u, v)| < qj .

Without loss of generality let us assume u, v ∈ A. For each vertex w of B, let Iw =

{i ∈ {1, 2, . . . , n} | w ∈ Ni(u, v)}. We claim that |Iw| < qj . Indeed, for each i ∈ Iw, we 

have uwci, vwci ∈ Hj . So the set of hyperedges {uwci, vwci | i ∈ Iw} form a copy of 

K1,2,|Iw| in Hj . Thus if |Iw| ≥ qj , then Hj contains a copy of K1,2,qj
, a contradiction. 

Therefore, |Iw| < qj , as desired.

Consider an auxiliary bipartite graph GAUX with parts B and [n] where the vertex 

i ∈ [n] is adjacent to b ∈ B in GAUX if and only if b ∈ Ni(u, v). Then by the discussion 

in the previous paragraph, each vertex w ∈ B has degree |Iw| < qj , and each vertex 

i ∈ [n] has degree |Ni(u, v)| < qj . In other words, the maximum degree in GAUX is less 

than qj .

We claim that GAUX does not contain a matching of size t. Indeed, suppose for a 

contradiction that the edges i1bi1
, i2bi2

, . . . , itbit
(i.e., bil

∈ Nil
(u, v) for 1 ≤ l ≤ t) form 

a matching of size t in GAUX . Then the set of hyperedges ubil
cil

, vbil
cil

, 1 ≤ l ≤ t, form 

a copy of K
(3)
2,t in Hj , a contradiction, as desired.

Since GAUX does not contain a matching of size t, by the König-Egerváry theorem 

it has a vertex cover of size less than t. This fact combined with the fact that the 

maximum degree of GAUX is less than qj , implies that the number of edges of GAUX

is less than qjt. On the other hand, the number of edges in GAUX is 
∑

i∈[n] |Ni(u, v)|. 
Therefore, 

∑

i∈[n] |Ni(u, v)| < qjt. This, combined with the fact that for each i ∈ [n], 

|Ni(u, v)| ≥ |F ′
i (u, v)| /2 (see Claim 1), completes the proof of the lemma. �

By Lemma 3, we have

∑

1≤i≤n

|Gi \ G′
i| ≤ 2

qj+1

⎛

⎝

∑

u,v,∈A

∑

1≤i≤n

|F ′
i (u, v)| +

∑

u,v,∈B

∑

1≤i≤n

|F ′
i (u, v)|

⎞

⎠ + 2tn2.

Now using Claim 8, we have

∑

1≤i≤n

|Gi \ G′
i| ≤ 8qjt

qj+1

(

n

2

)

+ 2tn2 <
4tqj

qj+1
n2 + 2tn2.

Since qj+1 = qj/2, we have
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∑

1≤i≤n

|Gi \ G′
i| < 8tn2 + 2tn2 = 10tn2.

So,

∑

1≤i≤n

|Gi \ G′
i| =

∑

1≤i≤n

|Gi[Hj ](A, B) \ G′
i[Hj ](A, B)| < 10tn2.

By symmetry, using the same arguments, we have

∑

1≤i≤n

|Gi[Hj ](B, C) \ G′
i[Hj ](B, C)| < 10tn2,

and

∑

1≤i≤n

|Gi[Hj ](A, C) \ G′
i[Hj ](A, C)| < 10tn2.

Therefore, by Remark 1, we have

|Hj | − |Hj+1| < 30tn2. (12)

2.5. Putting it all together

By (11) and (12) we have

|H| − |Hk| = |H| − |H0| +
∑

0≤j<k

(|Hj | − |Hj+1|) < 78tn2 + k(30tn2).

By (10) we have k ≤ log t, so we obtain,

|H| − |Hk| < 78tn2 + 30t log tn2. (13)

Notice that Hk is K1,2,qk
-free and qk < 2t. Therefore Hk is K1,2,2t-free. Moreover, we 

know that the hypergraph Hk is 3-partite and K
(3)
2,t -free with parts A, B, C (as it is a 

subhypergraph of H). Now we bound the size of Hk.

Claim 9. We have |Hk| ≤ 2tn2.

Proof. Suppose for a contradiction that |Hk| > 2tn2. For any pair {a, b} of vertices with 

a ∈ A and b ∈ B, let codeg(a, b) denote the number of hyperedges of Hk containing 

the pair {a, b}. Then the number of copies of K2,1,1 in Hk of the form {abc, a′bc} where 

a, a′ ∈ A, b ∈ B, c ∈ C is

∑

b,c
b∈B,c∈C

(

codeg(b, c)

2

)

.
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As the average codegree (over all the pairs b ∈ B, c ∈ C) is more than 2t, by convexity, 

this expression is more than

(

2t

2

)

n2 > (2t − 1)2

(

n

2

)

.

This means there exist a pair a, a′ ∈ A and a set of (2t −1)2 +1 > (t −1)(2t −1) +1 pairs 

S := {bc | b ∈ B, c ∈ C} such that abc, a′bc ∈ E(Hk) whenever bc ∈ S. Let GAUX be a 

bipartite graph whose edges are elements of S. Since GAUX has |S| ≥ (t − 1)(2t − 1) + 1

edges, it either contains a matching M with t edges or a vertex v of degree 2t (see Lemma 

A.3 in [9] or the last paragraph of our proof of Claim 8 for a proof). In the former case, 

the set of all hyperedges of the form abc, a′bc with bc ∈ M , form a copy of K
(3)
2,t in Hk, 

a contradiction. In the latter case, let u1, u2, . . . , u2t be the neighbors of v in GAUX . 

Then the set of hyperedges {avui, a
′vui | 1 ≤ i ≤ 2t} form a copy of K1,2,2t in Hk, a 

contradiction again. This completes the proof of the claim. �

Combining (13) with Claim 9, we have |H| ≤ 80tn2 + 30t log tn2, thus proving (4), 

which implies Theorem 1, as desired.

3. Concluding remarks

Recall that given a bipartite graph G with an ordered bipartition (X, Y ), where Y =

{y1, . . . , ym}, G
(r)
X,Y is the r-graph with vertex set (X ∪ Y ) ∪ (

⋃m
i=1 Yi) and edge set 

⋃m
i=1{e ∪ Yi : e ∈ E(G), yi ∈ e}, where Y1, . . . , Ym are disjoint (r − 2)-sets that are 

disjoint from X ∪ Y . The proof of Theorem 1.4 in [9] implies the following.

Proposition 1. Let n, r ≥ 3 be integers and G a bipartite graph with an ordered bipartition 

(X, Y ). There exists a constant cr depending only on r such that

ex(n, G
(r)
X,Y ) ≤ crnr−3 · ex(n, G

(3)
X,Y ).

Thus, by Theorem 1 and Proposition 1, for all r ≥ 4, we have ex(n, K
(r)
2,t ) ≤

crt log t
(

n
r−1

)

for some constant cr, depending only on r. On the other hand, tak-

ing the family of all r-element subsets of [n] containing a fixed element shows that 

ex(n, K
(r)
2,t ) ≥

(

n−1
r−1

)

. Recall that in the r = 3 case, a better lower bound of Ω(t
(

n
2

)

) was 

shown by Mubayi and Verstraëte [9]. For r = 4, we are able to improve the lower bound 

to Ω(t
(

n
3

)

) as follows.

Proposition 2. We have

ex(n, K
(4)
2,t ) ≥ (1 + o(1))

t − 1

8
n3.
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Proof. (Sketch.) Consider a K2,t-free graph G with (1 +o(1))
√

t−1
2 n3/2 edges where each 

vertex has degree (1 +o(1))
√

(t − 1)
√

n. (Such a graph exists by a construction of Füredi 

[3].) Let us a define a 4-graph H = {abcd | ab, cd ∈ G and ac, ad, bc, bd /∈ G}. In other 

words, let the edges of H be the vertex sets of induced 2-matchings in G. Via standard 

counting, it is easy to show that |H| = (1 +o(1)) t−1
8 n3. It remains to show H is K

(4)
2,t -free.

Claim 10. If axyz, bxyz ∈ H, then there is a vertex c ∈ {x, y, z} such that ac, bc ∈ G.

Proof. By our assumption, {a, x, y, z} and {b, x, y, z} both induce a 2-matching in G. 

Without loss of generality, suppose ax, yz ∈ G. If bx ∈ G then we are done. Otherwise, 

we have by, xz ∈ G or bz, xy ∈ G, both contradicting {ax, yz} being an induced matching 

in G. �

Suppose for contradiction that H has a copy of K
(4)
2,t whose edgeset is {axiyizi, bxiyizi |

1 ≤ i ≤ t}. By Claim 10, for each 1 ≤ i ≤ t, there exists a vertex wi ∈ {xi, yi, zi} such 

that awi, bwi ∈ G. This yields a copy of K2,t in G, a contradiction. �

For r ≥ 5, we do not yet have a lower bound that is asymptotically larger than 
(

n−1
r−1

)

. It would be interesting to narrow the gap between the lower and upper bounds 

on ex(n, K
(r)
2,t ).

It will be interesting to have a systematic study of the function ex(n, G
(r)
X,Y ). Mubayi 

and Verstraëte [9] showed that ex(n, K
(3)
s,t ) = O(n3−1/s) and that if t > (s − 1)! > 0 then 

ex(n, K
(3)
s,t ) = Ω(n3−2/s) and speculated that n3−2/s is the correct order of magnitude. 

The case when G is a tree is studied in [4], where the problem considered there is slightly 

more general. The case when G is an even cycle has also been studied. Let C
(r)
2t denote 

G
(r)
X,Y where G is the even cycle C2t of length 2t. It was shown by Jiang and Liu [6]

that c1t
(

n
r−1

)

≤ ex(n, C
(r)
2t ) ≤ c2t5

(

n
r−1

)

, for some positive constants c1, c2 depending 

on r. Using results in this paper and new ideas, we are able to narrow the gap to 

c1t
(

n
r−1

)

≤ ex(n, C
(r)
2t ) ≤ c2t2 log t

(

n
r−1

)

, for some positive constants c1, c2 depending on 

r. We would like to postpone this and other results on the topic for a future paper.

Finally, motivated by results on K
(r)
2,t and C

(r)
2t , we pose the following question.

Question 1. Let r ≥ 3. Let G be the family of bipartite graphs G with an ordered bipartition 

(X, Y ) in which every vertex in Y has degree at most 2 in G. Is it true that ∀G ∈ G
there is a constant c depending on G such that ex(n, G

(r)
X,Y ) ≤ c

(

n
r−1

)

?
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