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Distributed Sampling-Based Model Predictive
Control via Belief Propagation for Multi-Robot
Formation Navigation

Chao Jiang

Abstract—Sampling-based stochastic optimal control has be-
come an appealing robotic control framework due to its ability
to handle complex and general forms of dynamics models and
task specifications. Although sampling-based methods have been
shown successful in a variety of single-robot control tasks, studies
on their extension to multi-robot problems are limited. In this letter,
we propose a distributed framework for sampling-based optimal
control. The framework formulates multi-robot optimal control as
probabilistic inference over graphical models and leverages belief
propagation to achieve inference via distributed computation. We
developed a distributed sampling-based model predictive control
(MPC) algorithm based on the proposed framework, which ob-
tains optimal controls via variational inference. The algorithm
was validated in a multi-robot formation navigation problem. The
simulation results show the efficacy of our proposed method with
improved control performance over a gradient-based distributed
MPC algorithm.

Index Terms—Distributed robot systems, model predictive
control, variational inference, optimization and optimal control.

1. INTRODUCTION

OORDINATED control of multi-robot systems has been
C extensively studied for decades as one of the key algorith-
mic enablers for a broad range of multi-robot applications such
as collaborative transportation, precision agriculture, and en-
vironment monitoring. Traditionally, multi-robot control prob-
lems were approached via heuristic-based behaviors, artificial
potentials, and decentralized feedback control. Although such
methods were successful in producing coordinated behaviors
of multi-robot systems, they fall short of meeting various per-
formance optimality and operational constraints in real-world
deployment. As a result, optimization-based approaches have
gained considerable attention due to their ability to exploit
rigorous mathematical optimization framework to achieve per-
formance and constraint specifications.
There have been a myriad of works on optimization-based
multi-robot control, where control problems are framed as
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constrained optimization programs which are solved by, e.g.,
dynamic programming [1], sequential convex programming [2],
or model predictive control (MPC) [3]. MPC is a noteworthy
optimal control scheme where long time-horizon optimization
problems are divided into short time-horizon sub-problems
and individual sub-problems are solved in a receding hori-
zon manner. Owing to its predictive and online re-planning
abilities, MPC has become one of the most appealing robotic
control approaches. The aforementioned optimization-based ap-
proaches are gradient-based, which leverage well established
mathematical optimization tools to obtain solutions. On the
downside, the dependence on gradients limits the applicability
of those approaches in complex scenarios: as gradient-based
approaches require computation of derivatives, they are not
well-suited for non-smooth dynamics or cost functions. While
theories have been developed for non-smooth problems, there
is still a lack of practical numerical methods for different
types of non-smoothness [4]. Moreover, as the complexity (e.g.,
non-convexity, local minima) of the functions increases, those
approaches could become inefficient or even fail to find fea-
sible solutions. Existing MPC methods using gradient-based
optimization were mostly successful in problems that can be
described with a smooth optimization landscape.

In recent years, sampling-based approaches have been pro-
posed to address stochastic optimal control with complex models
of system dynamics and uncertainties. Such approaches use
random trajectory samples produced by forward prediction or
simulation to synthesize optimal controls. Sampling-based ap-
proaches do not rely on computation of exact gradients of the
models, and therefore accepts more general forms of dynamics
and task specifications. Moreover, the stochastic forward search
in sampling-based approaches provides a principled way to
reason about uncertainty and leads to exploration that makes
the algorithm less prone to undesirable local minima. Recent
sampling-based methods for robotic control include path inte-
gral control [5], cross-entropy method [6], information-theoretic
MPC [7], and variational inference MPC [8], [9], [10].

However, most of the prior works on sampling-based optimal
control are concerned with single-robot problems. There is
limited work on extending sampling-based approaches and pro-
viding a distributed framework to multi-robot systems. In [11],
multi-robot optimal control was framed as graphical model infer-
ence and the solutions were obtained by a path integral method.
Nonetheless, the method therein relied on the assumption that the
global state of all robots is observable to each robot, which only
stands valid in few scenarios. In [12], a multi-robot system was
factorized into multiple sub-systems, each of which consisted of
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a central robot and its neighbors. The central robot obtained the
joint state and computed the joint control of the sub-system using
a single-agent path integral algorithm. However, the method
could not ensure consensus between sub-systems due to local
observability and thus tended to settle on sub-optimal solutions
for coordination. The work in [13] developed a decentralized
path integral method where robots iteratively exchange local
information to reach consensus. More recently, a stein vari-
ational belief propagation algorithm was introduced in [14],
which solves distributed multi-robot control using particle belief
propagation.

In this letter, we propose a distributed framework for
sampling-based optimal control, which formulates multi-robot
optimal control as probabilistic inference over graphical models
and leverages belief propagation to achieve inference via dis-
tributed computation. The framework could lead to various dis-
tributed optimal control algorithms grounded on sampling-based
stochastic optimization. We present a distributed sampling-
based MPC algorithm based on the proposed framework and
demonstrate the efficacy of our method in a multi-robot forma-
tion navigation problem which has a broad range of applications
such as collaborative transportation, search and rescue, and
environment exploration.

The main contribution of this letter is the distributed frame-
work that extends the sampling-based optimization methods [6],
[71, [81, [9], [10] to multi-robot problems. Unlike the work
described in [11], our framework is fully distributed and only
local information is needed by each robot. Compared to the
path integral-based algorithms [12], [13] and recent works using
belief propagation [14], [15], our framework offers the flexibil-
ity to choose the class of control/sampling policy and sample
evaluation criterion, which are two major design components
in sampling-based optimal control algorithms. This flexibility
allows a variety of algorithms to be designed for different control
tasks.

The remainder of this letter is organized as follows. Section II
describes the multi-robot formation navigation problem. Sec-
tion III presents the distributed framework for sampling-based
optimal control based on belief propagation. Simulation and re-
sults are presented in Section IV. Finally, our work is concluded
in Section V.

II. PROBLEM DEFINITION

A. Robot Motion Model

Consider a multi-robot team comprising /N non-holonomic
ground robots with two differential-drive wheels. The robot
state x; = [z, 1:,0;]7 € R3, Vi€ {1,...,N}, where p; £
[;,1]7 € R? is position and #; € R is orientation. Robot
motion is controlled by the velocity of left and right wheels,
denoted as u; = [v;, ;)T € R2. Control magnitude is limited
t0 [—Umax, Umax] With vmax being the maximum speed. The
discrete-time robot motion is then modeled by

i1 = iy + 0.DA(viy + Vi1 ) cOs by
Yit+1 = Yit + 0.5A(vip s + vig 1) sinb;
Oi 441 = 0ip + 0.5At(vir s — vire) /1 (1)

with ¢ denoting time step and At denoting updating interval. [
is the distance between left and right wheels. The motion model
(1) represents a large class of wheeled robots.
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B. Proximity Graph

The multi-robot team is modeled as an undirected graph G =
(V, E;), where V & {1,..., N} is the set of vertices represent-
ing robots and FJ is the set of edges representing communication
connectivity between robots at time step ¢. Robot ¢ and robot j
are considered connected if the Euclidean distance between them
is equal to or smaller than a given communication range limit
dmax- Then, the set of edges F; at each time step is defined as

Et é {(7’73) | Hpi,t _pj,tH S dmamVimj S ‘/77’ #]} (2)

Note that £y may vary over time as robots move around. At each
time step, robot ¢ and robot j are neighbors if they are connected
by a valid edge, i.e., (i,j) € E;. We define the set of neighbors

of robot i as N, = {j | (i, ) € E;}.

C. Collision and Obstacle Avoidance

Collision avoidance between two robots ¢ and j is ensured by
the following inequality at every time step ¢:

|Pit — Pjell > dmin, Vi € V,Vj € Ny, (3)

where dp, is a minimum distance for safety. Likewise, each
robot’s position can not coincide with the space occupied by
obstacles at all times, i.e., p; € X,, Vi € V, where X, € R2is
the position space occupied by obstacles and is extended by a
small margin to account for the body size of robots.

D. Navigation and Formation Preservation

The robots are tasked to navigate to a goal region in a desired
formation while avoiding collisions with neighboring robots and
obstacles. To guide navigation, a sequence of reference states
over the task duration, {z, ,},Vt € [0,T], is planned before
the navigation task. Each robot tracks the reference by mini-
mizing ||z; ; — @, ||, Vt € [0, T]. Given an environment map, a
reference trajectory can be obtained by various global motion
planners such as differential dynamic programming used in [1].

The desired formation is specified by the relative position
Ap;; between robot ¢ and its neighbor j. The following equality
holds when the desired formation is preserved:

9ij(Pit,Pjt) Z Pit — Pt — Apij = 0. )

E. Model Predictive Formation Control

The multi-robot formation navigation is formulated as finite-
horizon (of length M) trajectory optimization with the following
cost function:

N M-1
(Z Wy 127,04k = e | 0|6 e ||2>

i=1 \ k=1

5)
where w, and w,, are the weights for reference tracking error and
control effort cost, respectively. The optimization (5) is subject
to collision avoidance constraint (3), obstacle avoidance con-
straint, i.e., p; ; ¢ X,, formation configuration (4), and control
constraint ©; ¢ € [—Vmax; Vmax)-

At each time step ¢, MPC uses the motion model (1) and the
current robot state x; ; to solve problem (5). The solution is
optimized trajectories {7;}}¥ ; of all robots. A trajectory 7; is
defined as a state-control sequence over a prediction horizon
M, ie,T; & {1 Witrr}hey, starting at time step ¢. Each

. A

min.J =
N

{riHily
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Fig. 1. Graphical model of multi-robot control. Left: A multi-robot team
modeled as a Markov random field. Right: A single robot node factorized into a
graph comprising a sequence of state, control, and optimality variables.

robot executes the control of the first step, i.e., u; ;, to move one
step forward and starts a new MPC cycle. MPC is performed
repeatedly in a receding horizon manner over the task duration
[0, T']. In the next section, we present a distributed framework for
sampling-based optimal control, which solves (5) via distributed
probabilistic inference.

III. METHOD

We view the multi-robot predictive control problem (5) as an
instance of distributed probabilistic inference and approach the
problem using the control as inference framework [16]. The goal
of the inference problem is to find the probability distribution
over optimal trajectory and thus optimal control for each robot.
We first model the multi-robot team as a probabilistic graphical
model named Markov random field (MRF) [17] and then employ
belief propagation for distributed inference via local message-
passing. Lastly, a sampling-based MPC algorithm is developed
to obtain optimal control of each robot.

A. Markov Random Field and Belief Propagation

1) Markov Random Field: A multi-robot MRF, as shown
on the left side of Fig. 1, factorizes the joint trajectories of
all robots into an undirected connected graph G = (V, E) with
eachnode i € V representing a robot’s trajectory 7; as a hidden
random variable and each edge in E representing the dependence
between two neighboring nodes. The definition of edges here is
the same as that described in (2). Each node also includes an
observable variable O; (omitted in the MRF graph) representing
the robot’s local observation. Let 7 = {7; | i € V'} denotes the
set of all hidden trajectory variables of the multi-robot MRF
and O £ {O; | i € V'} be the set of local observations obtained
by all robots. The joint probability of the trajectories in 7T is
expressed as the following factorization:

Pr(T) o H Vj,i(T5,Ti) H ¢i(7i, O0;) (6)

(i,j)EE eV

where v, ;(7;,7;) is a pairwise potential, or compatibility,
between each pair of neighboring robots ¢ and j, which describes
how likely the robots could take their respective trajectories T;
and 7;; ¢;(7;, O;) is a unary potential describing the likelihood
of arobot’s own trajectory 7; given its local observation O;. The
design of pairwise and unary potentials is problem-specific and
depends on the objectives of a given control problem. The design
details for our control problem are presented in Section III-C.
2) Belief Propagation: The factored structure of the multi-
robot MRF described in (6) allows the global inference problem
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to be solved in a distributed way using BP method [18]. Specif-
ically, each node computes its own marginal posterior distribu-
tion, denoted as p(7;|O), given the robot’s own observation and
information obtained via local communication with neighbors.
The marginal posterior distribution, or belief, of robot trajectory
at each node is estimated by

p(7:]0) < ¢i(1:, O;) H mi(Ti) (N
JEN;

where m; ;(7;) is a message sent from robot j to robot ¢ and is
defined as

m‘m(‘ri):/ ¢i(15,0)0;:(5, 7)) [ mas(ry)dr;.
T keN;\i
(8)

Message m; ;(7;) carries robot j’s belief about the likelihood of
robot ¢’s trajectory T; as a product of robot j’s unary potential,
the pairwise potential between robots ¢ and j, and the messages
received by robot j from its neighbors excluding robot i, with
robot j’s trajectory T; marginalized out by integrating over all
values of 7.

In BP algorithms, messages computed by (8) are passed
between neighboring robots via local communication and each
robot updates its belief p(7;|O) based on (7) continuously
until the algorithm converges to the true marginal posterior
distributions. The original BP algorithm guarantees convergence
to exact solutions on tree graphs [18]. In practice, however,
multi-robot team can form graphs that contain cycles under the
definition of proximity graph in Section II-B. Therefore, the
loopy BP algorithm [19] is used, which iterates between (8) and
(7) to find an approximation of p(7;|O). Loopy BP has been
shown effective for graphs with cycles in empirical studies [19],
[20].

B. Robot Control as Inference

In this subsection, we formulate the multi-robot optimal con-
trol as a distributed probabilistic inference problem that is solved
by the BP framework presented in Section III-A.

1) Graphical Representation of Predictive Control: Under
the control as inference framework [16], predictive control of
each robot is formulated as a directed graphical model as shown
on the right side of Fig. 1. The sequence of state and control
variables, x; ; and w;, are laid out as nodes. The nodes are
connected by directed edges pointing from a parent node to a
child node that is dependent on the parent node. The dependence
between state and control variables is described by state tran-
sition probability p(@; 41|, ¢, w;), which is a probabilistic
generalization of the robot motion model (1). The graphical
model also includes an observable variable O; ; serving as a
notion of optimality for state-control pair (x; ¢, u; ;). Specifi-
cally, O; ; is defined as a binary random variable with O; ; = 1
representing that the state-control pair is optimal and O; ; = 0
representing that it is not optimal. It should be noted that the
optimality O; ;, as a robot’s local observation, is defined with
regard to each robot’s private control objectives (i.e., refer-
ence tracking and obstacle avoidance) and does not account
for inter-robot control objectives (i.e., desired formation and
collision avoidance). We use p(O; ; = 1|@;,, u; ;) to denote the
likelihood of (;;, ;) being optimal with regard to private
objectives (hereafter referred to as private optimality likelihood
and O, ; = 1 is simplified as O; ; for notational brevity). The
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design of the optimality likelihood essentially influences the
behavior of inference algorithm to search for the distribution
over optimal control. More details are presented in Section III-C.

2) Distributions of Optimal Trajectory and Control: With the
graphical representation introduced in Section III-B1, we can
factorize the unary potential ¢;(7;, O;) in (6) as

¢i(1i,0;) = p(O4|Ti)p(Ti) = p(Oi|T:)p(X:|U:)p(Us)

)
where  p(OilT:) = [Ty  p(Oit|®is,uiy)  with O; 2
{0i0,...,0;pm-1} defined as a sequence of private
optimality variables of trajectory 7,. The trajectory
distribution  p(7;) is factorized as p(X;|U;)p(U;)
with — p(X;|U:) = p(wo) [Ty p(i eal@i e, wiy)  and

p(U;) =TI,  p(ui,) being the distribution over control
sequence U; = {u;,...,u; pr1}. The factor p(u; ;) is a
prior distribution over control for each time step (e.g., a uniform
distribution if no prior knowledge is available or a Gaussian as in
this letter). (9) implies that given a prior p(U;), the probability
for an observed trajectory is proportional to the product of state
transition probability p(@;41|®i¢, i), private optimality
likelihood p(O; ¢|x; ¢, i), and probability of initial state
p(xo).

Substituting (9) into (7), we specify the marginal posterior
p(7;]O) that describes the distribution over optimal trajectories

of each robot
p(7i|0) < p(X iU )p(Os|m)p(Us) [ mya(rs)  (10)
JEN;

The marginal posterior (10) is considered a target trajectory
distribution that we aim to reproduce by using an optimal control
policy. To this end, we first describe the trajectory distribution
given by an arbitrary control policy as

M-1

q(7:) = p(xo) H P(@i 1] @i e, wit)q(Wi)
t=0

:P(Xz'|Ui)Q(U¢) (1)

withq(U;) = Ht ! ¢(u;,;) denoting the distribution of control
sequence induced by the control policy. Then the optimal con-
trol problem amounts to finding an optimal distribution ¢(U ;)
so that the resulting trajectory distribution (11) best matches
the marginal posterior distribution (10). Finding ¢(U;) can be
approached by probabilistic inference. We employ variational
inference (VI) methods to solve the inference problem in a
computationally efficient way.

3) Variational Inference: Variational inference uses a candi-
date distribution to estimate a target distribution by minimizing
the Kullback-Leibler (KL) divergence between the candidate
and target distributions, thus transforming the inference prob-
lem to an optimization problem. Given a candidate distribution
q(U;) and the resulting trajectory distribution (11), the opti-
mization is formulated as

¢ (1i) = arg ;I(HH) Dk, (q¢(7:)|[p(7:]O)) (12)

Using the definition of KL divergence and substituting (10) and
(11), the KL divergence is further written as

Dz (q(7i)llp(7:|0)) :/Q(Ti)log _almi)

p(7i|O)
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Sample trajectories via (o icate
Xizt| current belief gt (U;) |{7{}s=1
S

Ti [ myei(7)
keN\j
P(0il7)|Robot ————> Robot
s=1, ... L| e j
Nk my (7))
e {"]t=1'ksl:!\. (5 |

Overview of the distributed VI-MPC algorithm deployed on robot .

K , l(r ) [Update current belief
and messages Is=1,...L| q*1(U) < q*(Uy)

q(Uy)

PR

Fig. 2.

— 1o p(X|U:)q(U.)
_/q( z)l gp(X2|Ul)p(Ol|T2)p(U1)Hje,/\/l mjﬂ'(‘l'i)

_ T, )10 Q(UZ)
_/q( i)l gp(Oi|Ti)p(Ui)HjeN¢ mj,i(Ti)

qU;)
— log H m;i(T;)
p(Ul) JEN;

dTZ'

dTi

=E

log —logp(O;|Ti)

q(Ti)

= —Eq(r,) |logp(Oi|Ti) + Z logm;i(7:) | + Dir (¢/lp)
JeN;
(13)

The optimization of (13) aims to maximize in expectation the
log-likelihood of private optimality with the first term and the
log-likelihood of trajectories given all neighbors’ believes with
the second term. The two terms in the expectation can be viewed
as the overall (both private and inter-robot) control objective for
each robot. The third term is a regularization that penalizes for
the difference between the target ¢(U;) and the prior p(U;).
It’s worth mentioning that (13) takes the form of the variational
lower bound, or variational objective, which is commonly seen
in single-agent stochastic optimal control [8], [9], [10], while our
formulation (13) includes an additional term that encapsulates
the BP messages received from neighbors to achieve inter-robot
coordination.

The objective (13) represents a general and novel formulation
of stochastic optimization for distributed dynamical systems.
In this letter, the distributed control for multi-robot formation
navigation is solved as an instance of (13) with specific design
of the private optimality likelihood p(O;|T;), the BP message
m;;(7;), and the distribution family for ¢(U;). We propose
a distributed VI-MPC algorithm that employs particle belief
propagation [21] to approximately compute the message in (13)
and a sampling-based optimization algorithm to solve (13) for

q(Uy).

C. Distributed VI-MPC via Particle BP

The idea of distributed VI-MPC algorithm is to use impor-
tance sampling to solve (13) iteratively. An overview of the
algorithm running on each robot is shown in Fig. 2. In each MPC
cycle, the algorithm first samples L trajectories {75}, using
current belief ¢'(U;) and evaluates each sample by p(O;|7%),
then communicates trajectory samples with neighbors and up-
dates BP messages 72, ;(77) for each sample s, and finally
updates current belief as ¢'*1 (U ;). Next, we explain the details
of the algorithm.

1) Design of Optimality Likelihood: The private optimality
likelihood at each time step is defined as an exponential family
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distribution, i.e.,

P(Oitl@ie, uir) = exp <;(Cp(mi,t7ui,t) + Co(mi,t))>
u

(14)
where Cp(x; ¢, u;,) is the cost related to reference tracking
and control effort and is given by Cp, (@4, u; ¢) = %(ws llei: —
T t||? + wy||wig]|*) with ws and w, being the weights.
Co(z; ) is the obstacle collision cost which evaluates to a
positive value (e.g., 10 was used in the numerical example
presented in Section IV) if p;; € X, and O otherwise. The
cost value should be chosen to prioritize collision avoidance
over reference tracking and formation objectives. Note that
Co(xi,) is non-differentiable as sampling-based optimization
methods do not require differentiability of cost functions (and
dynamics functions) as opposed to gradient-based methods. One
can exploit this advantage to allow more flexible representa-
tions of environment and control objective specifications. The
parameter A, in (14) is known as the inverse temperature of the
exponential family distribution, which determines the extend to
which optimality is sought by an optimization algorithm.

2) Design of BP Potentials: The unary potential defined in
(9) describes the likelihood of a robot’s trajectory given its
observation of private optimality. With the private optimality
likelihood given in (14), the unary potential ¢;(7;, O;) is spec-
ified by substituting (14) into (9). For deterministic dynamics
as considered in this letter, p(@; ¢11|; ¢, w;¢) and p(zo) in (9)
evaluate to one, and it follows that

(b (Tza H p 1t|xz t7uz t)p(uz t)

M-1
t=0
1 M-1
= exp (—)L Z (Cp(xir) + Co(wi,t))> p(U;). (15)
=0

The pairwise potential describes the joint likelihood of two
neighboring robots’ trajectories. Intuitively, two trajectories
achieving inter-robot control objectives (i.e., desired formation
and collision avoidance) should be given highest probability.
Therefore, we define the pairwise potential as an exponential
family distribution, i.e.,

M—
1
wj,i(fj,n)=e><p< — Z (Ci(xj, i) +Cp(xj,2i4))
e

(16)
where Cj(x; ¢, ;) is the cost related to inter-robot collision
and is given by ( [14]) C; = wi(1 = (|pi — Pl /dmin)?) if
lpit — Pjtll < dmin and C; = 0 otherwise. w; is the weight.
This function imposes penalty when the distance between two
robots is smaller than d,;;, and the cost increases at a rate [3.
Cy(wjp, i) = swrlpie — pje — Apij||* is the formation-
dependent cost, where wy is the weight. The parameter A, in
(16) is the inverse temperature.

3) Particle Belief Propagation: The computation of BP mes-
sage (8) is intractable due to the integral over continuous do-
main of trajectory variable. We thus resort to particle belief
propagation [21] which uses Monte-Carlo samples to approx-
imately compute messages. Suppose that robot j, Vj € N;, uses
a proposal distribution W (7 ;) to sample L trajectories, then (8)
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equals an importance-adjusted expectation:

¢;(15,05)
%%Z 75,7 [ mei(rs)
keN;\i

mj,i(Ti) :ET_7‘~W

a7
The expectation can be estimated empirically as the mean of
L trajectory samples. Specifically, the message defined on the
s-th trajectory sample of robot ¢ is estimated using importance-
sampling, i.e.,

L
_ ZZ
) (18)

Since the continuous trajectory space is represented by a finite
set of samples, the message (8) is now defined on each trajectory
rather than the entire trajectory space.

The estimated message 772, ;(7) is then used to solve (13)
to find the best estimation of the marginal posterior distribution
p(7;]O). As mentioned in Section III-A, since the graph formed
by multi-robot team likely contains cycles, we apply loopy BP
algorithm to solve for p(7;|O). Loopy BP algorithm [19] is an
iterative procedure that alternately updates message m; ;(7;) via
(18) and marginal posterior distribution p(7;|O) by optimizing
(13). When updating messages via (18) at each iteration, the
robot’s current belief ¢(7;) (i.e., the solution to (13)) is used as
the proposal distribution W (7 ;) to generate trajectory samples.
The current belief ¢(7;) also serves as the prior p(7;) for
computing the unary potential ¢; (75, O") in (18). Note that the
samples used for message computation are the same as the ones
used to update the current belief ¢(7;) through the sampling-
based stochastic optimization presented in Section III-C4. This
enables a natural integration of particle belief propagation and
sampling-based stochastic optimization.

4) Stochastic Optimization via Sampling: Given the private
optimality likelihood (14) and BP message (18), the minimiza-
tion of (13) has a closed-form solution (known as the Gibbs
distribution) as shown in prior works [7], [8], [9], [10]:

exp (—C(7;)) p(U;)
Ey,~pw,) [exp (—C(7:))]

where C(7;) = —logp(Oi|Ti) — > ;cn; log () repre-
sents the trajectory cost combining both private and inter-robot
control objectives; p(U;) is the prior as in the factorization (9).
The first equality in (19) holds for deterministic dynamics since
the factor p(X;|U;) evaluates to one. Since the computation of
the closed-form solution (19) is intractable, an iterative impor-
tance sampling procedure is applied to search for ¢*(U ;) based
on Monte-Carlo estimate.

At each iteration m of the importance sampling, the prior
p(U;) in (19) is set as the current distribution ¢"(U;) =
Ht]\i o ¢™(u;,) from which samples of control sequence U;
are drawn. Then, the resulting trajectory samples (obtained using
the known motion model (1)) are evaluated with respect to the
trajectory cost C'(7;) to update the current sampling distribution
q™(U;). The update law is given by

exp (—=C(73)) ¢"(U.)
Ey,~gmw,) lexp (=C(74))]

Ol
T ) H _—

keN;\i

mﬂ

q(mi) =q (Us) = (19)

"N U) = (20)
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We set the sampling distribution ¢™ (u; +) as a Gaussian distribu-
tion and initialize it with a zero-mean and variance & = 02155
at m = 0 with o being a fixed standard deviation. By taking the
expectation of both sides of (20), we obtain the update law for
the mean of the Gaussian:

7m+1 . ]EUiqun(Ui) [exp (_C(TZ)) U’L}

T =
! Ey,~qm@,) lexp (—C(74))]
L L
exp (_C(Tf)) s s s
— — Ui =S WU @
25T e (-c) 2

where L is the number of samples drawn from the current sam-
pling distribution ¢ (U;) and W(7) denotes the normalized
importance weight of each sample s based on the trajectory
cost. The update law (21) suggests that the mean is updated as
the sum of the current control samples weighted by their impor-
tance W(7?¢). The importance sampling is repeated to improve
the Monte-Carlo estimate of ¢*(U;) by using a more accurate
sampling distribution. The mean U, £ {uly, ..., a"y ) ob-
tained by (21) serves as the solution of robot control at current
iteration m.

5) The Overall Algorithm: We now frame the particle BP
algorithm (Section III-C3) with the sampling-based stochastic
optimization (Section III-C4) into the MPC scheme introduced
in Section II-E, resulting in our proposed distributed VI-MPC
algorithm. In our MPC scheme, iterations of BP algorithm and
importance sampling for belief update are split into time steps
over the task duration [0, 7). That is, at each time step, the BP
message update (18) and the belief update (21) are performed
once. The updated message and belief are carried over to the
next time step to perform a new iteration.

The algorithm deployed on each robot is summarized in
Algorithm 1. At ¢ = 0, each robot starts with an initial state
x; 0 and its belief ¢°(U;) is initialized as a Gaussian with a
zero-mean and variance X. All messages m; ; (-) from neighbors
are initialized to one. At each time step ¢, each robot obtains
its current state x; ; (line 2) and samples L trajectory {7¢}%_;
from the current belief ¢* (U ;) (lines 3-6). Each robot exchanges
trajectory samples and messages with its neighbors (lines 8-9),
estimates message 1M ; (77) using (18) for each sample 77 and
saves the results (lines 10-13). The cost and importance weight
are computed for each sample 77 (lines 15-17) and the mean

U, , of the current belief ¢* (U ;) is updated using the update law
(21) (line 18). Each robot executes the first control action ;¢
from the updated mean U; ; (line 19). The unexecuted control
actions in ﬁi,t are used to construct the mean of the belief
q'T1(U;) for the next time step (line 20).

6) Connections and Comparisons to Related Works: The
update law (21) resembles the MPPI algorithm in [7], but our
framework allows for different choices for p(O;|T;) and ¢(U;)
(e.g., if we represent ¢(U;) by a set of particles, an algorithm
similar to [14] could be developed). In contrast, the related
works [12], [13] are based on the path integral control that
synthesizes optimal controls via forward sampling of an uncon-
trolled diffusion process driven by Brownian noise. Thus, the
sampling distribution is limited to the noise distribution. Also,
the theory relies on an exponential transformation of the value
function of an optimal control problem, limiting the evaluation
of sampled trajectories (similar to the notion of p(O;|7;) in our
method) to the exponential family. The method in [15] uses a
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Algorithm 1: Distributed VI-MPC via Particle BP.

Input : Initial state x; o, initial sampling distribution
¢°(U;) with a zero-mean and variance ¥, and
initial messages m; ;(-),Vj € N; set to one;

Output: Optimized robot trajectory {x: ¢, Wi ¢ }1—o;

1 for time step t =0 to T do

2 Get current state &; ¢;

3 for each sample s € {1,...,L} do

4 Sample control U} = {u;,, ...
current distribution ¢*(U;);

S
US4 a—1) from

5 Compute sample trajectories 7, using robot motion
model (1);

6 end

7 for each neighbor j € N; do

8 Send L trajectory samples {7 }._; and products
[Tieny mwi(T), Vs € {1,..., L} to robot j;

9 Receive L trajectory samples {T;}le and products
er]\/j\i mu,; (7)), VI € {1, ..., L} from robot j;

10 for each sample s € {1, ..., L} do

11 Estimate message m; ;(7;) using (18);

12 Save sample 7;° and updated message

myi(T77) = 15 (77);

13 end

14 end

15 for each sample s € {1, ..., L} do

16 Evaluate trajectory cost C'(7;) and compute
importance weight W(7});

17 end

18 Update mean U ; ; = {Wi,t, ..., Wi, e+ pr—1} of current

belief ¢*(U;) using (21);
19 Execute the first control action w; ;;
20 Initialize ¥; ¢ ar < Wi, e+a—1 and ¢ (U;) with mean

U1 ={Wits1, ., Wiprm 1
21 end

Gaussian graphical model and requires an analytical dynamics
model. Our method could incorporate a general dynamics model
(e.g., neural networks) for trajectory sampling.

IV. SIMULATION AND RESULTS

A. Simulation Setup and Parameters

The proposed method was validated in Matlab simulations,
where the algorithm was implemented using the following
parameters. The MPC prediction horizon M = 10. The cost
function weights wy = 5, w,, = 0.5, w; = 10 and wy = 2. The
inverse temperature parameters A, = 0.3 and A, = 0.1. The
Gaussian sampling distribution was initialized with a zero mean
and a standard deviation o = 0.3 such that ¥ = 0.3%215,5. The
sample size L = 200. All simulations were conducted on a
desktop computer with an Intel Core 17-12700 K 3.6 GHz CPU
with 12 cores and 16 GB of RAM.

A 20-by-20-m square environment with static obstacles was
created, as shown in Fig. 3. The number of robots N = 7, with
initial positions uniformly randomized in a 5-by-5-m area at
the lower left corner of the environment, and initial orientations
sampled from [0, 27). The formation objective was such that 6
robots position themselves into a regular hexagon and 1 robot
is at the center of the formation. The distance from each robot
to its closest neighbors was 1.2 m. The maximum communica-
tion range dp,x = 1.5 m and the minimum inter-robot distance
dmin = 0.6 m. The maximum control vy, = 1.2 m/s. The robot
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Fig. 3. Snapshots of the navigation in formation simulation with 7 robots at
20s,31 s, and 38 s.
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Fig. 4. Simulation results: (a) Inter-robot distance; (b) formation error; (c)
tracking error averaged over all robots; (d) joint probability of robot trajectories
over time steps.

kinematics parameter | = 0.4 m. The task duration 7" = 190
with At = 0.2 s.

B. Simulation Results

The snapshots of a simulation run at time ¢ =20 s, t = 31
s, and ¢ = 38 s are shown in Fig. 3. The solid lines represent
robot trajectories and the dotted line represents the reference
trajectory. The short solid lines originating from each robot’s
position are predicted trajectories over the horizon M, sam-
pled by current belief ¢*(U;). The gray areas are obstacles.
One can see that the robots successfully navigate through the
environment in the desired formation while avoiding obstacles
(t = 20 s) and moving through a narrow passage (t = 31 s).
Fig. 4(a) shows the distances between neighboring robots, i.e.,
lpi,t — pjtll,V(4,5) € E. The distances converged to 1.2 m
as the robots achieved the desired formation. The perturba-
tions were due to the robots compromising formation preser-
vation to avoid obstacles. Fig. 4(b) shows the formation error
llpit — pj.+ — Ap;j|| averaged over the number of edges |E]|,
which converged nearly to O but increases while the robots
avoided obstacles. Fig. 4(c) shows the mean reference tracking
error of all robots, which eventually converged around 1.3 m.
Note that the least mean tracking error is about 1.03 m when
the desired formation is preserved. To show the convergence
of BP in solving the global inference (6) on the multi-robot
MREF graph, we factorized robot trajectories into a sequence
of state-control pairs {x; ¢, w; ;}~ ; over [0,7] and computed
the joint probability (6) at each time step without normalization.
Fig. 4(d) shows that the joint probability increased and plateaued
around 0.68. More simulation results with N = 3,5, 7,9 can be
found in the video file included with this article.

3473

TABLE I
PERFORMANCE COMPARISON BETWEEN OUR METHOD AND TWO BASELINE
METHODS FOR N =7

Centralized | ADMM | Our method
Success rate (%) 100 82 98
Formation 0.08 0.20 0.11
error (m) +0.01 +0.12 +0.05
Tracking 1.12 1.43 1.31
error (m) +0.05 +0.10 +0.07

C. Comparison With Baseline Methods

We compared the performance of our method with two
gradient-based baseline methods: a centralized MPC and an
ADMM-based distributed MPC similar to the one in [22] expect
that we did not use the spline-based robot trajectories. The cost
function used by the two baseline methods is based on (5)
with an additional term w¢||p;; — pj« — Api;||? added as a
soft formation constraint. The weights were set the same as our
method. The collision and obstacle avoidance were formulated
as inequality constraints using the method in [22]. The penalty
parameter of the ADMM-based MPC was set to 2 and the
algorithm executed only one ADMM iteration and used the
solution of the previous iteration to warm start the optimization
per MPC cycle. Both baseline methods used the interior-point
algorithm from the Matlab Nonlinear Optimization toolbox
(fmincon) to solve the constrained nonlinear optimization prob-
lems. We conducted 100 simulation runs for each methods with
different initial states. The performance was evaluated with
respect to 1) success rate (a test run is considered successful
if robots reach the goal without collision), 2) formation error
ﬁ > (i.j)er, IPit+k — Pjt+k — Apsj|, and 3) tracking error
+ Y .cv ll®ie — @,.¢||. Both formation and tracking errors were
averaged over time steps after the algorithms converged.

Table I shows the success rate, the mean and standard devia-
tion of formation and tracking error of all successful runs. The
centralized MPC successfully completed the task in all 100 runs
and achieved the best performance over the two distributed MPC
methods. Our method achieved a success rate of 98%, while
the ADMM-based distributed MPC only achieved a success
rate of 82%. Our method could obtain better performance than
the ADMM-based distributed MPC. The success rate of our
method could be improved by choosing a larger sample size
L and adaptively updating o of the sampling distribution. The
ADMM-based MPC failed when the algorithm could not con-
verge to a feasible solution. This is partly because the algorithm
only performs one ADMM iteration per time step. Moreover, as
gradient updates are deterministic, the algorithm is sensitive to
initial conditions and thus prone to undesirable local minima.
Our sampling-based method benefits from the probabilistic de-
scription of optimality which allows the algorithm to explore
and seek optimal solutions via stochastic forward search.

D. Scaling and Computational Time

We evaluated the scalability of our method by testing it
for robot team sizes N = 3,5,7,9, and each team size was
simulated 100 times. Fig. 5(a) shows the success rate, mean
and standard deviation of formation and tracking errors of all
successful runs. The tracking error for each [V is the result after
subtracting the least possible error (which varies with V) from
the original error for fair comparison. One can see the success
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Fig. 5. Scalability of our method: (a) Success rate and formation/tracking
error; (b) comparison of computation time.

rate was 100% for N = 3 and 5, and 98% and 95% for N =7
and 9, respectively. The mean formation errors were between
0.09 m and 0.14 m and the mean tracking errors were between
0.22 m and 0.34 m for different team sizes. The results show
that our method could achieve similar performance as IV varies
from 3 to 9.

We also compared the computational time per each MPC
cycle with the centralized MPC and the ADMM-based dis-
tributed MPC. For the centralized MPC, we recorded the time
used to solve the centralized optimization in each MPC cycle
when robot team size N = 3,4, ...,9. For the ADMM-based
distributed MPC (with one ADMM iteration per MPC cycle)
and our method, we recorded the time used on each robot locally
when the number of neighbors |A;| = 3,4, ...,9. We present
two computing implementations of our method: 1) parallel
computing of L trajectory samples on CPU using the Matlab
Parallel Computing toolbox and 2) serial computing. Fig. 5(b)
shows the mean and standard deviation of computational time
for each method. While the centralized MPC grows super-
linearly as N increases, all distributed MPC methods scales
linearly with |Aj|. It is notable that the computation time of
our method can be significantly reduced by parallel computing.
The mean computation time with parallelization is about 150 ms
when |A;| = 3 and 460 ms when |\;| = 9. The computation of
sampling-based methods are easily parallelizable and could be
further accelerated using GPUs.

V. CONCLUSION

In this letter, we proposed a distributed framework for
sampling-based optimal control, which leverages belief prop-
agation and variational inference to solve multi-robot optimal
control problems as probabilistic inference over graphical mod-
elsin adistributed manner. We developed a distributed sampling-
based MPC algorithm based on the proposed framework and
validated our method in a multi-robot formation navigation prob-
lem. Our method showed effective control and outperformed
an ADMM-based distributed MPC that uses gradient-based
optimization. Our future work will consider stochastic robot
and environmental dynamics, and other multi-robot coordinated
control problems such as collective information gathering or
active perception. We will also evaluate our method with real
robot experiments.
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