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Incorporating Control Barrier Functions in
Distributed Model Predictive Control for
Multirobot Coordinated Control

Chao Jiang

Abstract—Multirobot motion planning and control has
been investigated for decades and is still an active re-
search area due to the growing demand for both per-
formance optimality and safety assurance. This article
presents an optimization-based method for the coordinated
control of multiple robots with optimized control perfor-
mance and guaranteed collision avoidance. We consider a
group of differential drive wheeled robots, and design a dis-
tributed model predictive control (DMPC) where the team-
level trajectory optimization is decomposed into subprob-
lems solved by individual robots via alternating direction
method of multipliers (ADMM). Our DMPC design utilizes a
discrete-time control barrier functions method to develop
control constraints that provide collision avoidance assur-
ance. Compared to existing ADMM-based DMPC methods
with Euclidean distance constraint for collision avoidance,
our method ensures collision avoidance with minimal com-
promise of the optimality with respect to primary control
objectives. We validated our method in a multirobot clus-
ter flocking problem. The simulation results show effective
coordinated control that achieves improved control perfor-
mance and safety guarantees.

Index Terms—Alternating direction method of multipliers
(ADMM), control barrier functions (CBF), distributed model
predictive control (DMPC), multirobot coordinated control.

[. INTRODUCTION

ULTIROBOT self-organizing behavior emerges as
M robots coordinate their motion through local interactions
to achieve team-level objectives. A plethora of control protocols
have been investigated to facilitate the autonomy of multirobot
systems [1]. A major control design paradigm focuses on decen-
tralized feedback control [2], where the control protocols utilize
local information acquired by each robot to compute an analytic
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control input in a reactive manner at each time step. These ap-
proaches provide provably correct control protocols that can be
executed efficiently in real time. However, such feedback control
approaches do not explicitly account for performance optimality,
such as minimal control effort, minimal time usage, and minimal
travel distance. Therefore, optimization-based approaches that
plan robot trajectories for optimized performance ahead of time
have been investigated in a large body of work [3].

Trajectory optimization is one of the most investigated trajec-
tory planning methods, which solves for a state-control sequence
that satisfies the desired motion and performance metrics spec-
ified by an objective function. Distributed multirobot trajectory
optimization is a preferable framework that allows robots to con-
currently compute their own trajectory based on the information
acquired through local sensing and/or communication, and no
central planner is needed. Distributed trajectory optimization
problems have been approached with mixed-integer linear pro-
gramming [4], sequential convex programming [5], [6], [7], [8],
and distributed model predictive control (DMPC) [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21]. Notably,
DMPC has become an appealing control scheme to address
various multirobot planning problems owing to its capabilities
of predicting future system outputs, handling state/control con-
straints, and replanning during online execution.

The aforementioned DMPC methods essentially entail solv-
ing a distributed optimization problem in an inner loop, where
the centralized trajectory optimization at the team level is de-
composed into subproblems that can be solved on individual
robots in a distributed manner. The fundamental challenge of
the decomposition is to address interrobot couplings through
dynamics [9], [10], control objective function [11], [12], or
operational constraints [13], [14], [20], [21], due to local interac-
tion between robots. Among various decomposition techniques,
alternating direction method of multipliers (ADMM) [22] is a
well-recognized framework that combines the dual decompo-
sition method with the method of multiplier that utilizes an
augmented Lagrangian for better convergence property. ADMM
scheme has been successfully used to solve a vast range of
DMPC problems with different types of couplings [10], [12],
[13], [15]. However, the performance of ADMM in practice is
sensitive to the choice of the algorithm parameter associated
with the quadratic penalty term that balances the convergence
of the feasibility residual and the primal optimality specified
by the objective function [23]. In the context of DMPC-based
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multirobot coordinated control, the convergence of feasibility
residual is crucial for retaining the feasibility of original cen-
tralized problem and for the assurance of interaction constraints
between robots. Prior studies suggested that a better convergence
property for the feasibility residual can be attained by increasing
the value of the penalty parameter, but at the cost of a loss in
the primal optimality [9], [24], [25]. Thus, there is a need to
improve the primal optimality while ensuring the convergence
of feasibility residual to meet various forms of robot interaction
constraints.

Among different robot interaction constraints, collision avoid-
ance is the basic safety requirement for real-world multirobot
coordinated control. Traditional DMPC formulations cast colli-
sion avoidance as a coupling constraint that confines the min-
imum Euclidean distance between a robot and its neighbors.
The distance constraint under ADMM decomposition is strictly
satisfied only if the feasibility residual converges. This is because
the distance constraint only contains the robot state variables
for which slack variables are introduced for decomposition,
and thus, will only be enforced when optimizing for the slack
variables. Therefore, a larger penalty parameter is needed so that
more emphasis is placed on the residual minimization, leading
to compromised optimality with respect to the primary control
objectives. A related problem about enhancing feasibility and
safety performance at the same time for MPC was investigated
in [26], where slack variables with relaxing technique were
introduced to find a good tradeoff between feasibility and safety.

Control barrier functions (CBFs) approach [27] is a princi-
pled framework broadly exploited to enforce safety constraints,
such as collision avoidance for robotic systems [28]. By means
of CBFs, one can derive control input conditions that assure
a forward invariant set of safe states. These conditions then
act as constraints in the synthesis of optimization-based safe
controllers. For example, conditions expressed by CBFs have
been used as safety filters via constrained quadratic program-
ming [29], [30], [31], unified with control Lyapunonv functions
in quadratic programs [32], [33], or incorporated in MPC [26],
[34], [35], [36].

This article is concerned with the synthesis of distributed safe
controller for a group of differential drive wheeled robots. We
aim to achieve both improved primal optimality and guaranteed
collision avoidance for multirobot coordinated control using
ADMM-based DMPC. To this end, our idea is to impose a
constraint on the robots’ control input to produce collision-free
reference positions over the prediction horizon. The control
constraints is developed using discrete-time CBFs [37]. We then
design a DMPC-based trajectory optimization method that in-
corporates the CBF constraints for collision avoidance. Our idea
to use CBF constraints in MPC is similar to the aforementioned
works [26], [34], [36]. While these works are concerned with
single robot problems, in this article we propose an approach
that incorporates CBFs in ADMM-based DMPC to enhance
both safety and performance optimality in multirobot control.
We show that our method yielded better performance optimality
compared to traditional DMPC with distance constraint.

The main contributions of our work are twofold. First, we
propose to use a discrete-time CBF method to derive the control

constraints that ensure interrobot collision avoidance for
ADMM-based DMPC methods. Second, unlike existing meth-
ods for multirobot collision avoidance [29], [30], [31] where
CBFs are used as a safety filter [28] that confines the control
input given by a nominal controller (usually a distributed feed-
back controller), our work employs trajectory optimization and
incorporates the CBF constraint as a safety constraint to pro-
duce collision-free trajectories. While traditional ADMM-based
DMPC methods may strive to balance the tradeoff between per-
formance optimality and safety guarantee, our proposed method
guarantees collision avoidance with minimal compromise of the
optimality with respect to primary control objectives.

The rest of this article is organized as follows. Section II
presents the multirobot coordinated control problem and the
centralized MPC formulation. Section III presents the constraint
design for collision avoidance using a discrete-time CBF method
and the ADMM-based DMPC algorithm for real-time coordi-
nated control. Simulation results and performance evaluation
are provided in Section IV. Finally, Section V concludes this
article.

Il. PROBLEM FORMULATION
A. Robot Kinematics

We study the coordinated motion control of a group of N
nonholonomic robots with a two-wheel differential drive sys-
tem. For each robot ¢ € {1,..., N}, define the robot state as
x; = |74, y;,0;]7 € R3, which consists of the position p; =
[7;,1:]7 € R? and the orientation 6; € R. The robot control
input is defined as u; = [vy, viT]T € R? with v;; and v;, being
the velocity of the left wheel and right wheel of the ith robot,
respectively. The discrete-time kinematics of the differential
drive robot is then given by

zi(t+1) =a;(t) + At - G(t) - u;(t) (1)
with At being the sampling period, and
cosB;(t) cosb;(t)
2 2
G(t) = sin@;(t) sinf;(t)
2 2
1 1

l l

where [ is the distance between the robot’s left and right wheels.
The differential drive robot model (1) is nonlinear and under-
actuated, and it represents a large class of autonomous mobile
robots [38], including three-wheel and four-wheel differential
drive robots. Differential drive robots are one of the most popular
autonomous mobile robots whose flocking control has broad
application significance.

B. Proximity Graph

The communication connectivity of the robot team is defined
by an undirected proximity graph, denoted by G = (V, E(t)),
with V' being the set of vertices representing the robots i €
{1,..., N} and E(t) being the set of edges representing the com-
munication links at time step ¢. A communication link between
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robot 7 and j is established if the Euclidean distance between
the two robots is equal or less than a predefined communication
range limit, denoted by d... Thus, the set of edges F(t) is defined
as

E(t) ={@5) [ Ipi(t) = p; ()| < de Vi, j € Vii# j}. (2)

A pair of robots (i, j) is said to be neighbors at time step ¢ if
(i,7) € E(t) and the set of neighbors of each robot i is defined as
Ni(t) ={j | (i,j) € E(t)}.Itis worth noting that the proximity
graph is dynamic as both F(¢) and N;(¢) are time-varying when
the robots move around.

C. Collision Avoidance

To ensure interrobot collision avoidance, it is required that
each robot keeps a predefined minimal separation distance,
denoted by d, from its neighboring robots. That is, the following
inequality relation should be guaranteed at all times:

Ipi(t) — p;(t)] = ds Vi € V Vj € Ni(t). 3)

In optimization-based control approaches, collision avoidance
defined by (3) can be procured in both state space and control
input space [16]. The former usually uses (3) as constraints im-
posed on the Euclidean distance between two robots. The latter
imposes constraints on the control input to keep the robots from
being driven to collision-prone states. In this article, we employ a
CBF method to derive constraints on control input for collision
avoidance and demonstrate the advantage of our method over
traditional methods that use the distance constraint (3).

D. Coordinated Control via Model Predictive Control

We consider a cluster flocking control problem of multirobot
systems. We assume a reference trajectory consisting of time-
varying reference states, defined as ,.(t), is assigned to all
robots. The common reference trajectory can be given by a
long-horizon motion planner, such as those based on differential
dynamic programming or iterative LQR (a computationally ef-
ficient variant of DDP), as used in [39]. The rationale for using a
reference trajectory is that MPC uses short horizon in a receding
fashion to gain more robustness than long-horizon planning, but
the resulting trajectory usually loses long-horizon optimality.
An intuitive solution is to generate a reference trajectory that
achieves good long-horizon performance and track the reference
trajectory with receding horizon control, such as MPC [40].

The control objective of the cluster flocking is then for each
robot to track the reference trajectory, . (t), while guaranteeing
the minimal separation distance to avoid collision. Note that the
defined cluster flocking behavior does not specify an explicit
flocking formation. The cluster flocking control can be formu-
lated as the following finite-horizon optimization problem:

N M-1
NOESY ( > willai(t+ k) — o (t + k)|

i=1 k=1

min
X (1),U(t)

+wpl|lei(t+ M) — z,.(t + M)|]?

+wuui(t+k—1)||2> (4a)

s.t. ri(t+1) =x,;(t) + At-G(t) - u;i(t) Vie V
(4b)
u;(t) € [Umin, Umax) Vi €V (4c)
xz;(t)=20VieV (4d)
Ipi(t) = p; ()| = ds Vi € V Vi € Ni(t)  (4e)

where M is the prediction horizon and {X(¢),U(t)} =
{zi(t), ..zt + M),u;(t),.. ,u;(t+ M — 1)}, is the
set of trajectories of all robots, starting from time step ¢. The
first term in the objective function (4a) encapsulates the tracking
error between the robot state x,(t) and the reference state
x.(t); the second objective term is the terminal state tracking
error of the fixed-horizon optimization; the last objective term
encourages minimal control effort. The parameters wy, wy, and
w,, are constant weights associated with the respective objective
terms.

The optimization problem is subject to the kinematics con-
straint (4b), the control constraint (4c) representing the robot
motors’ upper and lower limits (i.e., the constants wm;, and
Umax ), and the distance constraint (4e) for interrobot collision
avoidance. The robot state at time step ¢ is assumed accessible
and is given as x?. The MPC scheme exploits the system
model (1) to predict future robot trajectories and solves for a
state-control sequence for each robot with optimized control
performance defined in (4a). At each decision time step ¢, the
MPC measures the current state x;(t), and compute the optimal
trajectories { X (¢), U ()}, of all robots. Then, the first step of the
computed control sequence will be executed to move the robots
one step forward and new MPC computation will be performed
repeatedly in a receding horizon fashion.

The problem (4) is a centralized formulation due to the
coupling constraint (4e). Existing works have exploited ADMM
framework to decompose the formulation (4) into subproblems,
each of which can be solved by an individual robot in a dis-
tributed fashion. However, in traditional DMPC methods with
distance constraint, the control performance measured by the
objective function (4a) can be compromised for ensuring the
distance constraint (4e) when solving the augmented Lagrangian
in an ADMM scheme. Thus, in this article we propose a DMPC
method with CBF constraints for collision avoidance and show
that our method achieves improved control performance.

lll. METHOD

In this section, we first present the constraint design for
collision avoidance and the modified MPC method with CBF
constraints. Then, we present the ADMM-based DMPC algo-
rithm for decentralized coordinated control.

A. Constraint Design for Collision Avoidance

A safe set of each robot’s state can be defined as such that
the condition (3) is satisfied for all its neighbors. CBF methods
provide a way to derive the conditions for robot control inputs
under which a forward invariance of the safe set is guaran-
teed. Therefore, starting from a collision-free state, a robot is
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guaranteed to stay in the safe set by executing the control inputs
that satisfy the conditions.

1) CBF Condition Derivation: We define the safe set S that
includes all collision-free states of each robot ¢ as

S ={zi(t) € R* | B(wi(t)) > 0} 5)

where B(z;(t)) : R® — R is known as the discrete-time ex-
ponential barrier function [37]. To ensure collision avoidance,
the control input w;(¢) should be synthesized such that the
invariance of the safety set S is promised along the entire state
sequence of robot ¢ (i.e., x;(t), vVt > 0), given that the initial
state x;(0) € S (i.e., B(x;(0)) > 0). The CBF conditions to
ensure the invariance of S are then given as follows [37].

1) B(z(0)) > 0.

2) There exists a control input w(t) € R? such that
AB(x(t),u(t)) + vB(z(t)) > 0,Vt > 0, where AB(x
(t),u(t)) == B(x(t+ 1)) — B(x(t)) and vy is a constant
such that 0 < v < 1.

Given the definition of collision avoidance in (3), we select a
barrier function as

B = ||pi(t) — p;(t)II* — d Vj € Ni(t).
Substituting (6) in AB(x;(t), u;(t)) + vB(x;(t)), we have
AB(zi(t), wi(t)) +vB(zi(t))
= B(@i(t +1)) — (1 = 7)B(x:i(t))
= llpi(t +1) = pi(t + DI = d2 — [Ips(t) — p; ()]
+d2 7 (Ipit) — pi ()] — d2)

> 0Vj € Ni(t).
Let p;(t) = C - ;(t), with C = [I342 0241], we have
pit+1)=C -zi(t+1)=C -z;(t) + C- G (0;(t)) - u;(t).

(6)

(N

Then, condition (7) can be written as (the time index ¢ is omitted
for simplicity in notation)

IC- @ +C-G(0;) - ui — C-a; — C-G(0)) - uy?

—lpi = pj|I* + 7 (Ilpi — pjI* — d2)

=|C -z —C-x; +CG;) u; — C-G(0;)  u;|*
—lpi = ;11> +~ (Ilpi — pylI* — d2)

= pij + C- G(6:) - u; — C - G(6;) - uy]”
—pi; I* + v (Ipis |* — d2)

= [|pi; > +2p]; (C- G(6:) - ui—C - G(0;) - u;) —|[pi; |?
+[IC - Glai)u; — C - G(zj)u; >+ ([piyl* —d2)

=2p;; (C-G(6:) - u; — C- G(6)) - uy) + 7 (|pis|* — d3)
+C-G(6:) - u — C - G(8;) - uy?

> 0Vj e Ni(t) 3

where p;; = p; — p; is the relative position between robot 7 and
7. Condition (8) can be used as an inequality constraint on robot

woAp;
(w2 >0)

Ap;

w1p;Ap; o
(wy <0) w2Pi;Ap;
Robot j (wz > 0)

Robot i

w1Ap;
(wy <0)

Fig. 1. Relative motion between robot i and robot ;.

i’s control input u;, by which B(x;(t)) > 0 is satisfied along
the entire robot trajectory. The scalar  is a selectable parameter
which dictates the extend to which B(x;(t)) > 01is enforced. A
larger ~y allows the state to be closer to the boundary of the safe
set S.

2) Modified CBF Condition: To evaluate the condition (8),
each robot ¢ will need to access the relative positions p;;, along
with its neighbor’s state «; and control u; via communication
during decentralized control. To reduce communication burden,
we consider a modified condition which can be evaluated by
each robot without additional communication load.

It is worth noting that, the term C - G(6;) - u; in (8) can
be interpreted as the displacement of robot j’s position by
executing the control w; during the sampling period At. Our
idea is to replace C' - G(6,) - u; with w;; - C' - G(6;) - u;, i.e.,
the displacement of robot 7 during a sampling period, scaled by a
factor w;;. The rationale behind the idea is the fact that the inner
product p; - C' - G(6;) - u; in (8) is the robot j’s displacement
projected onto the line connecting the positions of robot i and
robot 7, which captures the “tendency” of robot j to move closer
to or further away from robot .

Reasonable assumptions about the neighbor robots’ motion
can be made by tailoring the scalar w;;. Note that w;; is a
real number whose magnitude and sign determines the assumed
robot j’s motion based on robot ¢’s motion. Fig. 1 shows an
example of the relative motion between robot 7 and robot j,
given the assumption about robot j’s motion. The robot ’s
displacement is given by Ap; = p;(t + 1) — p;(t). As it tends
to move closer to robot j, the projection of robot i’s displacement
on p;;, i.e., pg Ap;, points toward robot j. A negative w;; (i.e.,
w1) assumes that robot j will execute a movement such that
the magnitude of displacement Ap; is proportional to Ap; and
the direction of Ap; is opposite to Ap;, showing a tendency
to move closer to robot ¢. In contrast, a positive w;; (i.e., wa)
assumes that robot j tends to move away from robot ¢. In fact,
the selection of w;; reflects how conservative or aggressive
robot 7’s assumption is about its neighbors “contribution” to
the collective movement that would lead to a possible collision.
Three examples of selecting w; ;, which result in different motion
behaviors of robot 7, are given as follows.

Authorized licensed use limited to: University of Wyoming Libraries. Downloaded on September 26,2024 at 18:05:34 UTC from IEEE Xplore. Restrictions apply.



JIANG AND GUO: INCORPORATING CBFS IN DMPC FOR MULTIROBOT COORDINATED CONTROL 551

1) For w;; = 0, robot ¢ assumes that robot j makes no
movement in the direction of p;;. In this case, robot 7’s
motion behavior is neither conservative nor aggressive.

2) For w;; = —1, robot ¢ assumes that the displacement of
robot j in the direction of p;; has the same magnitude
as that of robot ¢ but points to the opposite direction. In
this case, robot ¢ presents a conservative motion behavior
when it tends to move toward robot j.

3) For w;; = 1, robot ¢ assumes that the displacement of
robot j in the direction of p;; has the same magnitude and
direction as that of robot . In this case, robot ¢ presents an
aggressive motion behavior when it tends to move toward
robot j.

By replacing C' - G(6;) - u; with w;; - C - G(0;) - u;, the
condition (8) becomes

2p}; (C- G(6;) - u; — wi;C - G(6;) - u;) +
IC - G(8:) - wi —wiyC - G(6:) - will* + 7 (lpis || — d2)
=2(1 —wy)p); - C- G(0;) - wi + (|pys|I* — d2)
+ (1 —wiy)?C- G(6:) - wil®
> 0Vj e N;(t). 9

The information involving neighboring robots to evaluate (9)
now only includes the relative position, p;;, thus imposing less
communication load compared to (8). Moreover, evaluating (9)
could require no interrobot communication if p;; is estimated
or measured directly.

B. Model Predictive Control With CBF

The CBF (9) is then used as an inequality constraint for
avoiding interrobot collision, and the modified formulation of
(4) is defined as

N /M-1
min J(t) & wellei(t + k) — . (t + k)|
BB, TO 52 ( 3 wllwi(t+K) 2+ B
+wgllai(t + M) — (¢t + M)|?
+ wallwi(t + k- 1)||2> (102)
s.t. ri(t+1) =ax;(t) + At - G(t) - u;(t) Vie V
(10b)
u'l(t) € [umin>umax] VZ S V (1OC)
z(t)=20VieV (10d)
g(mi,ui, xj) <0VieV,jeN(t) (10e)

where g(x;, u;, ;) < 0represents the inequality condition (9)
derived using the CBF method for collision avoidance.

The feasible set of problem (10) is determined by the con-
straints (10b)—(10e) and is the intersection of the reachable set
determined by (10b)—(10d) and the invariant set determined by
(10e). The choice of y in (10e) thus has an effect on the feasiblity
of problem (10). A discussion on the effect of y is given in [41].

C. Distributed MPC via ADMM

The problem (10) is a centralized formulation due to the
coupling constraint (10e). We thus exploit the ADMM [22]
framework to decompose (10) into subproblems that can be
solved locally by each robot in a distributed manner. Various
ADMM-based decomposition schemes (e.g., [10], [12], [13],
[15]) have been proposed in literature. Our decomposition
scheme is similar to that in [13], which is designed to tackle
interrobot couplings imposed by operational constraints only.
That is, each robot’s dynamics and objective function are de-
coupled from other robots.

First, the coupling constraint (10e) is decoupled by introduc-
ing the slack variables, &,Vi € V, and @;;Vi € V,j € N;(t),
and enforcing &; and &;; to be equal to x; and x;, respectively.
The resulting equivalent problem of (10) is defined as

N M-1
i NOEDY ( > willai(t + k) — @ (t + k)2

i=1 k=1

+wyllx; (t+ M) —x.(t+ M)|?

+wu||ui(t+k_1)“2> (11a)
s.t. ri(t+1)=x;(t) + At - G(t) - u;(t) Vi e V

(11b)

u;(t) € [Umin, Umax) Vi €V (11¢)

xi(t) =2 VieV (11d)
9(Zi,ui, i) <0Vi € V,j € Ni(t) (11e)

&Zi=x;, Vi€V (11f)

Z;; =x; Vie VVj e Ni(t) (11g)

The slack variables &;(t) and &;;(t) can be considered as the
robot 4’s hypothesis about its own state x;(¢) and the robot j’s
state x; (t), respectively. An approximate solution to (11) can be
found by solving the dual problem of (11). To reduce the duality
gap, only the equality constraints (11f) and (11g) are dualized to
form the dual problem of (11). The ADMM scheme solves the
dual problem with an augmented Lagrangian function which is
given by

N M
L= 2; Ji(t) + kz (x?(mi(t + k) — &i(t +k))
i= =1

+ Sllwilt + k) — @t + B

>

(AiTj(wj(t +k) — &t + k)
JEN;(t)

+';’||mj(t+k)—:iij(t+k)||2>> (12)

where J; (t) is the primary control objective of each robot defined
in (11a), and A;, A;; are the dual variables associated with the
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dualized constraints (11f) and (11g). We rewrite (12) with a
simplified notation as follows:

N
L= Zci(wiauiai’ivki) + Z Lij(x;, %5, Mij)
JEN;

i1
N

= Zﬁi(miauhiiy)"i) + Z Lji(xi, Tji, ki) (13)
i1

JEN;

with £;(x;, u;, &;, A;) being the term involving robot i only
and L;; (x;, Z;;, A;j) being the term involving both robot ¢ and
j. The second equality in (13) holds due to the symmetry of
bidirectional interaction [42] with the robot j’s hypothesis about
the robot +’s state Z;; and the associated multiplier A;;. Then,
the augmented Lagrangian (12) can be solved by the following
ADMM steps recursively.

Step 1:
min ﬁi(:ci,ui7:ii,xi)+j§i£ji(:ci,@ﬁ,,\ji)
s.t. zi(t+1)=x,(t) + G(t) - u;(t) VieV
u;(t) € [Umin, Umax) Vi € V
xi(t) =@} VieV
9(Z;,u;, &) <OVie VVjeN(t). (14)
Step 2:
ixir}g; Li(@i wi, &5, 00) + Y Lij(@), &i5, hij)
JEN;
s.t. 9(&i,u;, @) <OVie VVjeN(t). (15)
Step 3:
Ai=ti+tplx,—x;)VieV
Lij = Mij + plaj — &ij) Vi e VVj € Ni(t). (16)

In step 1, each robot solves for its own trajectory over the fixed
horizon such that the primary control objective J;(t) as well as
the cost of its state x;(t) deviating from the hypotheses &, and
I ;; are minimized. In step 2, each robot updates its hypotheses
x; and x;; such that the differences between x; and x;, = ; and
x;; are minimized. The multipliers A; and A;; are updated in
step 3. Computations in steps 1-3 are fully decoupled and can
be performed simultaneously on each robot in a distributed and
parallel manner.

Remark 1 (Comparison with DMPC using distance con-
straints): In traditional MPC formulations with distance con-
straint, the centralized problem [e.g., problem (4)] is decom-
posed using the same ADMM scheme. The resulting ADMM
procedure is similar to (14)—(16) except that the distance con-
straint, ||C&;, — C&;;|| > d,isusedinstead of g(Z;, u;, &;5) <
0. Moreover, since the distance constraint, |Cx; — C&;;|| > ds,
only contains the slack variables ; and &;;, it is excluded from
(14) and is only incorporated in (15). As a result, the distance
constraint is only imposed in solving for the local hypotheses x;

Algorithm 1: Distributed MPC via ADMM.
Input : Initial =¥, &;, T;j, \i, Aijs
Output: Planned trajectory {x;(t + k), w;(t + k — 1)},
over the MPC horizon M;
1 while not converge do

2 Communicate with neighboring robots j € N;:
Send x;;, \;; and receive Tj;, Aji;
3 Compute trajectory starting from current state )
by solving (14):
{:Ei, ui} —
arg min £i(xi; U;, T, /\z) + Z £ji(ﬂﬁi, :i’ji, )\ji);
Ti, Wi

4 Communicate with neighboring robots j € N;(¢):
Send x; and receive x;;

5 Compute z;, Z;; by solving (15):

{@i, @5} <

arg min L£;(2, w;i, @i, Ai) + D Lij (25, ij, Aij);
6 Update \;, \;; using (16):

Ai = Ni + p(Ti — ;)

Aij = Nij + px; — Zi5), Vi € Ni(t);

7 end

Algorithm 2: Motion Control via DMPC.

Input : Reference trajectory [z, (0), z,(1),...,z.(T)];

Output: Robot control [u;(0),u;(1),...,u;(T)],Vi € V;
1 Initialize the states of all robots x;(0) = aint;

2 for t =0,...,7 do

3 for roboti=1,...,N do

4 Measure the current robot state x;(t);

5 Solve the fixed horizon optimization (10):
{@i(t + k), ui(t+k—1)}}L, « call
Algorithm 1;

6 Apply the first step of the computed control

sequence wu;(t) at the current state x;(t);

7 end
3 end

and &;;, and the robot trajectory {x;, u; } satisfying the distance
constraint is ensured by minimizing the deviation from the hy-
potheses in the ADMM step (14). The selection of the parameter
p in the augmented Lagrangian (12) is therefore crucial as it
should balance minimizing the primary control objective, .J;(t),
and minimizing the deviation to conform to the distance con-
straint. In contrast, our MPC formulation with CBF constraint
results in an inequality constraint in the ADMM step (14). The
collision avoidance is enforced with a hard constraint on the
control input in addition to the minimum deviation objective.
This way, the parameter p can be set to a smaller number so that
the algorithm can focus more on the primary control objective in
(12) without violating the constraint, leading to better tracking
performance.

For each robot to perform the ADMM steps (14)—(16), com-
munication between neighboring robots will be required for
local information exchange. Specifically, step (14) requires each
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robot 4 to acquire the hypotheses @ ;; and the multipliers A ;;
from all neighbors j € N;(t), and meanwhile send &;; and
Asj to all neighbors; step (15) requires each robot to acquire
the optimized trajectory x; from all neighbors and send the
optimized trajectory x; to all neighbors. The ADMM-based
DMPC algorithm performed on each robot is summarized in
Algorithm 1.

During real-time coordinated motion control, Algorithm 1
will be executed by each robot at every time step in a receding
horizon manner, and only the first step of the solved control
sequence will be executed. The real-time coordinated motion
control via DMPC is summarized in Algorithm 2. As an instance
of ADMM framework, Algorithm 1 inherits the convergence
property of ADMM. However, the convergence to the exact
solution of the centralized formulation may require considerable
ADMM iterations, imposing computation and communication
load for real-time control. Therefore, in practice, the iterations
in Algorithm 1 can be terminated if the residual, x; — x;;, is
smaller than a predefined tolerance or a maximum number of
iterations is reached.

IV. SIMULATION AND RESULTS
A. Simulation Setup and Parameters

The proposed method was validated in Matlab simulations.
For the problem defined in (11), the following simulation setup
and parameters are chosen. The number of robots N = 5. The
robots’ positions were randomly initialized in an 8-by-8-m
square area. The initial positions of any two robots were at least
2-m apart. The initial robot orientations were randomly selected
from [0, 27). The communication range limit d. was set to 2.5 m.
The minimal separation distance d; was set to 0.8 m. The robot
control limits were set as up,j, = —1.2 m/s and Uy, = 1.2 m/s.
The parameter [ in (1) was set to 0.4 m. Simulation update rate
was set to 5 Hz, i.e., At = 0.2 s. All simulation experiments
were run for 120 time steps, i.e., T = 120.

The algorithm parameters were selected as follows. The pre-
diction horizon M = 10. The weights in the objective function
were set as wy = 1, wy = 10, w,, = 0.5, respectively. The La-
grangian multipliers A; and A;;V4, j € V,i # j were initialized
to 0.1. The penalty parameter was chosen as p = 0.6. The CBF
parameter w;; and v were set to —0.5 and 0.8, respectively.
The number of ADMM iterations K was set to 2 to lessen
the computational burden. For all simulation experiments, the
constrained nonlinear programming of the ADMM algorithm
was solved using MATLAB Nonlinear Optimization toolbox
(fmincon). All simulation experiments were run on a computer
with an Intel Core 17-12700 K (3.6 GHz) CPU and a RAM of
16 GB.

B. Simulation Results

An example result of robot trajectories for the multirobot
coordinated control is shown in Fig. 2, along with the robot
positions att = 0s,t =8s,t = 16 s, and ¢t = 24 s. The dotted
lines represent the communication connection between robots.
We can see that the robots successfully tracked the reference

15

N
o
T

Position y (m)
(&)

-5 L L L
-5 0 5 10 15

Position x (m)

Fig. 2. Robot trajectories with robot positionsatt =0s, 8s, 16 s, and
24 s. The dashed black line represents the reference trajectory and the
dotted lines represent inter-robot communication links.

trajectory (represented by the black dashed line) and kept the
minimal separation distance to their neighbors. Fig. 3(a) shows
the time history of tracking error ||x;(t) — «,.|| for each robot
and the average tracking error of all robots. One can observe that
all tracking errors converged and the average tracking error, as
shown by the solid black trace, converged to 0.8 m. To verify
that the interrobot collision avoidance is guaranteed, we show
the time history of interrobot distance in Fig. 3(b). It can be seen
that the interrobot distances were all greater than the predefined
minimal separation distance (as shown by the red dashed line) at
all times, indicating that no collision occurred during the control
process. The black dashed line represents the communication
range limit. The time history of robot control inputs is shown in
Fig. 3(c). All robot motor speed control inputs converged to the
speed determined by the reference trajectory after about 14 s.
To show the convergence of the feasibility residual «; — &; and
x; — &;; of the ADMM algorithm, we define ¢(¢) that measures
the residual at each time step ¢ as

11
7NZZ s (t + k) — &(¢ + k)|

Y Mzt k) = @+ k)P
JEN(1)

7

The residual ¢(t) was averaged over the number of robots /V and
the prediction horizon M, and the residual after two ADMM
iterations (as the maximum ADMM iterations K at each time
step was set to 2) at each time step was recorded. Fig. 3(d) shows
the time history of ¢(¢) on a logarithmic scale. One can see that
the residual converged to 0.046 m2. Our approach optimized
the tracking error [as shown in Fig. 3(a)] while ensuring the
convergence of the feasibility residual.

1) Effect of Parameter v: We conducted simulations with
varying selections of the parameter v to show its effect on the
control performance. The parameter was setas v = 1,y = 0.8,
v = 0.5, v = 0.25, respectively. For each parameter selection,
200 simulation runs with randomized initial robot states were
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Fig. 3. Sample result of the multirobot coordinated control using our DMPC method with CBF constraint for collision avoidance. (a) Tracking error;

(b) inter-robot distance; (c) robot control input; and (d) ADMM feasibility residual ¢(¢) on a logarithmic scale. The red and black dashed lines in
(b) represent the minimal separation distance, ds, and the communication range limit, d., respectively.
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Fig. 4. Statistic results for the comparison between the DMPC method with CBF constraint and the DMPC method with distance constraint for

different parameters selections. (a) and (b) Average tracking error and the deviation energy, respectively, of the DMPC method with CBF constraint.
(c) and (d) Average tracking error and the deviation energy, respectively, of the DMPC with distance constraint. The comparison results show
that our DMPC-CBF method achieved better tracking accuracy than the DMPC-DC method when ~ was appropriated selected. The DMPC-DC
method could achieve comparable tracking performance with our method using a larger prediction horizon M. (a) DMPC-CBF. (b) DMPC-CBF.

(c) DMPC-DC. (d) DMPC-DC.

performed to obtain the statistic results. We use two metrics to
evaluate the control performance. The first metric measures the
average tracking error of all robots, i.e.,

et) = 3 li(t) — @ (1) (18)

eV

The minimization of (18) is enforced by the first two terms in
the objective function (4a). The second metric is the deviation
energy [43] which is defined as

Yo > (palt) = o) - do)*.

i€V jeN;

1

The deviation energy measures how far the interrobot distance
of neighboring robots deviates from the minimal separation
distance d,. It should be noted that keeping the minimal sep-
aration distance is necessary but not sufficient for successfully
minimizing the average tracking error of the group.

The statistical results of average tracking error and deviation
energy with different values of  are shown in Fig. 4(a) and (b).
Each data point in the statistical results is the average tracking
error or deviation energy of all robots at the final simulation step,
i.e., t = 24 s. The red line in each box marks the median, the
box edges represent the 25th and 75th percentiles, respectively.

The dashed vertical lines extend to the max/min, and the cross
markers are outliers.

We can see from Fig. 4(a) that v = 1 yielded best tracking
performance. Then, the tracking error increased as + became
smaller, and deteriorated dramatically when v = 0.25. From
Fig. 4(b) we observe that the deviation energy increased as vy
decreased from 1 to 0.25. These observations align with the
analysis in Section III that a smaller v creates a smaller feasible
region, resulting in control inputs that keep the robots apart
with larger interrobot distances. Although v = 1 yielded the best
tracking performance, it is worth mentioning that it is advised to
choose a slightly smaller value (e.g., v = 0.8) in practice. This
is because the constraint with v = 1 explores the boundary of
the safe set S and its forward invariance may be violated due to
uncertainties in real systems.

C. Comparison With Euclidean Distance Constraint

In this subsection, we present the performance compari-
son between our DMPC method with CBF (DMPC-CBF) and
the DMPC method with distance constraint (DMPC-DC). The
DMPC-DC method solves the centralized problem defined in
(4) by decomposing it into subproblems using the same ADMM
decomposition scheme as [13]. Unlike [13], however, the
DMPC-DC for comparison uses Euclidean distance rather than
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separating hyperplane for collision avoidance and does not adopt
spline parameterization for robot trajectories. The equivalent
problem after decomposition for DMPC-DC is similar to (11)
except that the constraint (11le) is replaced by the distance
constraint (4e). As mentioned in Section III-C, the distance
constraint is only incorporated in the ADMM step (15) and is
excluded from step (14).

Since the performance of DMPC-DC and DMPC-CBEF is
affected by multiple algorithm parameters, we first compare
the two methods without considering the effect of the ADMM
parameter p (which is discussed in Section IV-C1). We imple-
mented the DMPC-DC method with three different values of
prediction horizon M, ie., M =10, M =15, and M = 20
and our DMPC-CBF method with v =1, v = 0.8, v = 0.5,
and v = 0.25. The penalty parameter p was set to 1 for the
DMPC-DC method and 0.6 for our DMPC-CBF method. The
other parameters were the same for both methods. It should be
noted that we chose different values of p for DMPC-DC and
DMPC-CBEF, respectively, in order to obtain the best results of
the two methods for comparison. As presented in Section IV-C1,
we found from empirical evaluations that p =1 and p = 0.6
yielded best performance for DMPC-DC and DMPC-CBEF, re-
spectively, under the metrics (18) and (19) without violating
the safety constraint. The DMPC-DC and DMPC-CBF methods
with each selection of M or v were simulated 200 times with
varying initial states. The performance was compared using the
metrics defined in (18) and (19).

The statistical results of the DMPC-DC method are shown in
Fig. 4(c) and (d). We observe from Fig. 4(c) that the DMPC-DC
method with a larger prediction horizon M yielded better track-
ing performance. This is because a larger prediction horizon
allows the robots to coordinate their motions for an optimal
configuration that achieves minimum overall tracking error well
ahead of time before collision becomes imminent. As shown
in Fig. 4(d), the deviation energy also tended to decrease when
the prediction horizon became larger. Comparing the average
tracking errors shown in Fig. 4(a) and (c), we can see that
with the same prediction horizon, M = 10, our DMPC-CBF
method outperformed the DMPC-DC method when  was set
to 0.5 or larger. The DMPC-DC method requires a larger pre-
diction horizon to achieve comparable tracking performance to
our DMPC-CBF method. For example, the DMPC-DC with
M = 15 achieved similar median tracking error to our DMPC-
CBF method with v = 0.5, but with higher variance. However,
alarger prediction horizon M imposes more computational load
for each MPC computation iteration.

1) Effect of Parameter p: To verify the analysis on the effect
of the penalty parameter p in Section III-C, we evaluated both
methods with three values of the penalty parameter: p = 0.6,
p = 0.8, and p = 1. For comparison, the centralized MPC (4)
with distance constraint and the centralized MPC (10) with
CBF constraint were implemented as baseline methods. Each
centralized method and decentralized method with a selected
value of p was simulated 200 times with random initial states.
We compared their performance using average tracking error,
deviation energy, and success rate, i.e., the percentage of suc-
cessful runs out of 200. A successful run is defined as such that

the minimum separation distance dg is guaranteed during the
entire simulation.

The evaluation results are summarized in Table I, where
the mean tracking error and the mean deviation energy with a
standard deviation of all successful runs are shown. One can see
that both centralized MPC methods yielded similar performance
that outperformed the decentralized methods, DMPC-CBF and
DMPC-DC. Both decentralized methods with p = 1 success-
fully ensured the minimum distance d, for all 200 runs and
achieved comparable mean tracking error. When p was reduced
to 0.8, the DMPC-DC method only achieved a success rate of
80%, while our DMPC-CBF method still achieved a success rate
of 100%. Moreover, with a smaller value of p, the performance
of our DMPC-CBF was improved with a smaller mean tracking
error. When p was further reduced to 0.6, none of the DMPC-DC
runs was successful, while our DMPC-CBF method could obtain
further improved tracking performance with a success rate of
98%. The 2% runs of the DPMC-CBF method for p = 0.6 were
unsuccessful as violations of the minimum interrobot distance
constraint occurred at some time steps. The violations at those
time steps were a result of large feasibility residuals after the
maximum ADMM iterations were reached. The evaluation re-
sults validate that the traditional DMPC based on ADMM needs
to select an appropriate value for p such that the robot trajectories
strictly conform to the distance constraint. However, the tracking
performance is sacrificed when choosing a larger p to satisfy the
constraint. In contrast, our DMPC-CBF method can obtain better
tracking performance by choosing a smaller p with high success
rates of guaranteeing the minimum interrobot distance.

D. Discussion

1) Relation Between CBF Constraint and Distance Con-
straint: With centralized implementation, the MPC method
with CBF constraint yielded similar performance to the MPC
method with distance constraint when the parameter v ap-
proaches the upper bound of 1 (as indicated by the results in
the last two columns of Table I). Indeed, as explained in [37]
and [41], when v =1 the CBF constraint and the distance
constraint are almost the same except that the CBF constraint is
imposed to the next prediction step rather than the current one.
Similar performance of the two methods was also observed in
their decentralized implementation when the penalty parameter
p = 1. However, the DMPC-DC method failed to satisfy the
distance constraint when p became smaller. Therefore, using
the CBF constraint gains advantages in the DMPC schemes as
it allows us to choose a smaller value of p to reduce the primal
optimality gap while ensuring the constraint.

2) Primal Suboptimality: Our DMPC-CBF method under-
performed its centralized counterpart with regard to the tracking
error, as shown in Table I. This is expected considering that
1) a limited number of ADMM iterations was performed per
time step to lessen the computation load, but at the cost of
losing the optimality of the resulting solutions; 2) the modified
CBF condition (9) may make conservative assumption of the
neighboring robots’ movement by selecting a smaller w;; to
ensure the minimal separation distance. As a result, the robots
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PERFORMANCE COMPARISON BETWEEN DMPCI—ACBBIIFEAND DMPC-DC WITH DIFFERENT VALUES OF p
p=1 p=08 p=0.6 Centralized | Centralized
DMPC | DMPC || DMPC | DMPC || DMPC | DMPC MPC-CBF MPC-DC
-CBF -DC -CBF -DC -CBF -DC (baseline) (baseline)
Success 100 100 100 80 98 0 100 100
rate (%)
Tracking 0.95 0.96 0.90 0.93 0.87 N/A 0.64 0.63
error (m) +0.10 | £0.12 +0.08 | +£0.14 +0.07 +0.03 +0.02
Deviation 0.36 0.41 0.27 0.35 0.24 N/A 0.13 0.13
energy (m2) +0.09 | £0.15 +0.08 | +£0.12 +0.05 +0.03 +0.03

* N/A represents cases where results are not available as no successful run was obtained.
Values in bold typeface are the best result between DMPC-CBF and DMPC-DC, or between centralized

MPC-CBEF and centralized MPC-DC on each metric.

tended to keep a larger distance from their neighbors, thus
increasing the overall tracking error of the group. The parameter
w;; determines the robots’ collision avoidance behavior (i.e.,
aggressive or conservative) [44] and needs to be selected to
balance the tradeoff between tracking performance and safety
assurance. Both control performance and safety would benefit
from adjusting w;; adaptively at runtime based on prediction of
neighboring robots’ motion so that an appropriate w;; is always
selected at each time step.

3) Extension to High-Order Dynamics: The proposed
DMPC-CBF method relies on the robot dynamics (1) whose
relative degree [45] with respect to the CBF (6) is one. For
high-order system dynamics, the relative degree of the system
would be greater than one. In this case, the control input u;
does not appear in the CBF condition (8), and thus, safe control
can not be synthesized. To extend our approach to systems
of higher relative degree, the discrete-time high-order CBF
method (a generalization of high-order CBFs for continuous-
time systems [46]) proposed in [47] could be exploited. One
challenge in solving MPC with high-order CBF constraints is
guaranteeing feasibility. Therefore, a feasibility enforcement
method [48] needs to be designed to produce feasible solutions
while satisfying safety constraints.

V. CONCLUSION

In this work, we proposed an ADMM-based DMPC for co-
ordinated motion control of multirobot system with collision
avoidance. Unlike existing DMPC methods that use Euclidean
distance constraints, our method leverages the discrete-time
CBFs method to develop the constraints that confine the robot
control for collision avoidance. The proposed method allows us
to choose a smaller penalty parameter for the ADMM algorithm
to focus more on the primal optimality without violating the
constraints for collision avoidance, and thus improves the per-
formance with respect to the primary control objectives. We val-
idated and evaluated our method in a multirobot cluster flocking
problem and the simulation results show effective coordinated
control that achieves improved control performance and safety
guarantees. In our future work, we will extend our method

to more complex dynamics, such as high-order dynamics, as
discussed in [33] and [48], or general nonlinear dynamics.
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