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Incorporating Control Barrier Functions in
Distributed Model Predictive Control for

Multirobot Coordinated Control
Chao Jiang , Member, IEEE, and Yi Guo , Senior Member, IEEE

Abstract—Multirobot motion planning and control has
been investigated for decades and is still an active re-
search area due to the growing demand for both per-
formance optimality and safety assurance. This article
presents an optimization-based method for the coordinated
control of multiple robots with optimized control perfor-
mance and guaranteed collision avoidance. We consider a
group of differential drive wheeled robots, and design a dis-
tributed model predictive control (DMPC) where the team-
level trajectory optimization is decomposed into subprob-
lems solved by individual robots via alternating direction
method of multipliers (ADMM). Our DMPC design utilizes a
discrete-time control barrier functions method to develop
control constraints that provide collision avoidance assur-
ance. Compared to existing ADMM-based DMPC methods
with Euclidean distance constraint for collision avoidance,
our method ensures collision avoidance with minimal com-
promise of the optimality with respect to primary control
objectives. We validated our method in a multirobot clus-
ter flocking problem. The simulation results show effective
coordinated control that achieves improved control perfor-
mance and safety guarantees.

Index Terms—Alternating direction method of multipliers
(ADMM), control barrier functions (CBF), distributed model
predictive control (DMPC), multirobot coordinated control.

I. INTRODUCTION

M
ULTIROBOT self-organizing behavior emerges as

robots coordinate their motion through local interactions

to achieve team-level objectives. A plethora of control protocols

have been investigated to facilitate the autonomy of multirobot

systems [1]. A major control design paradigm focuses on decen-

tralized feedback control [2], where the control protocols utilize

local information acquired by each robot to compute an analytic
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control input in a reactive manner at each time step. These ap-

proaches provide provably correct control protocols that can be

executed efficiently in real time. However, such feedback control

approaches do not explicitly account for performance optimality,

such as minimal control effort, minimal time usage, and minimal

travel distance. Therefore, optimization-based approaches that

plan robot trajectories for optimized performance ahead of time

have been investigated in a large body of work [3].

Trajectory optimization is one of the most investigated trajec-

tory planning methods, which solves for a state-control sequence

that satisfies the desired motion and performance metrics spec-

ified by an objective function. Distributed multirobot trajectory

optimization is a preferable framework that allows robots to con-

currently compute their own trajectory based on the information

acquired through local sensing and/or communication, and no

central planner is needed. Distributed trajectory optimization

problems have been approached with mixed-integer linear pro-

gramming [4], sequential convex programming [5], [6], [7], [8],

and distributed model predictive control (DMPC) [9], [10], [11],

[12], [13], [14], [15], [16], [17], [18], [19], [20], [21]. Notably,

DMPC has become an appealing control scheme to address

various multirobot planning problems owing to its capabilities

of predicting future system outputs, handling state/control con-

straints, and replanning during online execution.

The aforementioned DMPC methods essentially entail solv-

ing a distributed optimization problem in an inner loop, where

the centralized trajectory optimization at the team level is de-

composed into subproblems that can be solved on individual

robots in a distributed manner. The fundamental challenge of

the decomposition is to address interrobot couplings through

dynamics [9], [10], control objective function [11], [12], or

operational constraints [13], [14], [20], [21], due to local interac-

tion between robots. Among various decomposition techniques,

alternating direction method of multipliers (ADMM) [22] is a

well-recognized framework that combines the dual decompo-

sition method with the method of multiplier that utilizes an

augmented Lagrangian for better convergence property. ADMM

scheme has been successfully used to solve a vast range of

DMPC problems with different types of couplings [10], [12],

[13], [15]. However, the performance of ADMM in practice is

sensitive to the choice of the algorithm parameter associated

with the quadratic penalty term that balances the convergence

of the feasibility residual and the primal optimality specified

by the objective function [23]. In the context of DMPC-based
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multirobot coordinated control, the convergence of feasibility

residual is crucial for retaining the feasibility of original cen-

tralized problem and for the assurance of interaction constraints

between robots. Prior studies suggested that a better convergence

property for the feasibility residual can be attained by increasing

the value of the penalty parameter, but at the cost of a loss in

the primal optimality [9], [24], [25]. Thus, there is a need to

improve the primal optimality while ensuring the convergence

of feasibility residual to meet various forms of robot interaction

constraints.

Among different robot interaction constraints, collision avoid-

ance is the basic safety requirement for real-world multirobot

coordinated control. Traditional DMPC formulations cast colli-

sion avoidance as a coupling constraint that confines the min-

imum Euclidean distance between a robot and its neighbors.

The distance constraint under ADMM decomposition is strictly

satisfied only if the feasibility residual converges. This is because

the distance constraint only contains the robot state variables

for which slack variables are introduced for decomposition,

and thus, will only be enforced when optimizing for the slack

variables. Therefore, a larger penalty parameter is needed so that

more emphasis is placed on the residual minimization, leading

to compromised optimality with respect to the primary control

objectives. A related problem about enhancing feasibility and

safety performance at the same time for MPC was investigated

in [26], where slack variables with relaxing technique were

introduced to find a good tradeoff between feasibility and safety.

Control barrier functions (CBFs) approach [27] is a princi-

pled framework broadly exploited to enforce safety constraints,

such as collision avoidance for robotic systems [28]. By means

of CBFs, one can derive control input conditions that assure

a forward invariant set of safe states. These conditions then

act as constraints in the synthesis of optimization-based safe

controllers. For example, conditions expressed by CBFs have

been used as safety filters via constrained quadratic program-

ming [29], [30], [31], unified with control Lyapunonv functions

in quadratic programs [32], [33], or incorporated in MPC [26],

[34], [35], [36].

This article is concerned with the synthesis of distributed safe

controller for a group of differential drive wheeled robots. We

aim to achieve both improved primal optimality and guaranteed

collision avoidance for multirobot coordinated control using

ADMM-based DMPC. To this end, our idea is to impose a

constraint on the robots’ control input to produce collision-free

reference positions over the prediction horizon. The control

constraints is developed using discrete-time CBFs [37]. We then

design a DMPC-based trajectory optimization method that in-

corporates the CBF constraints for collision avoidance. Our idea

to use CBF constraints in MPC is similar to the aforementioned

works [26], [34], [36]. While these works are concerned with

single robot problems, in this article we propose an approach

that incorporates CBFs in ADMM-based DMPC to enhance

both safety and performance optimality in multirobot control.

We show that our method yielded better performance optimality

compared to traditional DMPC with distance constraint.

The main contributions of our work are twofold. First, we

propose to use a discrete-time CBF method to derive the control

constraints that ensure interrobot collision avoidance for

ADMM-based DMPC methods. Second, unlike existing meth-

ods for multirobot collision avoidance [29], [30], [31] where

CBFs are used as a safety filter [28] that confines the control

input given by a nominal controller (usually a distributed feed-

back controller), our work employs trajectory optimization and

incorporates the CBF constraint as a safety constraint to pro-

duce collision-free trajectories. While traditional ADMM-based

DMPC methods may strive to balance the tradeoff between per-

formance optimality and safety guarantee, our proposed method

guarantees collision avoidance with minimal compromise of the

optimality with respect to primary control objectives.

The rest of this article is organized as follows. Section II

presents the multirobot coordinated control problem and the

centralized MPC formulation. Section III presents the constraint

design for collision avoidance using a discrete-time CBF method

and the ADMM-based DMPC algorithm for real-time coordi-

nated control. Simulation results and performance evaluation

are provided in Section IV. Finally, Section V concludes this

article.

II. PROBLEM FORMULATION

A. Robot Kinematics

We study the coordinated motion control of a group of N

nonholonomic robots with a two-wheel differential drive sys-

tem. For each robot i ∈ {1, . . ., N}, define the robot state as

xi = [xi, yi, θi]
T ∈ R

3, which consists of the position pi =
[xi, yi]

T ∈ R
2 and the orientation θi ∈ R. The robot control

input is defined as ui = [vil, vir]
T ∈ R

2 with vil and vir being

the velocity of the left wheel and right wheel of the ith robot,

respectively. The discrete-time kinematics of the differential

drive robot is then given by

xi(t+ 1) = xi(t) + ∆t ·G(t) · ui(t) (1)

with ∆t being the sampling period, and

G(t) =
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where l is the distance between the robot’s left and right wheels.

The differential drive robot model (1) is nonlinear and under-

actuated, and it represents a large class of autonomous mobile

robots [38], including three-wheel and four-wheel differential

drive robots. Differential drive robots are one of the most popular

autonomous mobile robots whose flocking control has broad

application significance.

B. Proximity Graph

The communication connectivity of the robot team is defined

by an undirected proximity graph, denoted by G = (V,E(t)),
with V being the set of vertices representing the robots i ∈
{1, . . ., N} andE(t)being the set of edges representing the com-

munication links at time step t. A communication link between
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robot i and j is established if the Euclidean distance between

the two robots is equal or less than a predefined communication

range limit, denoted by dc. Thus, the set of edges E(t) is defined

as

E(t) = {(i, j) | ‖pi(t)− pj(t)‖ ≤ dc ∀i, j ∈ V, i �= j}. (2)

A pair of robots (i, j) is said to be neighbors at time step t if

(i, j) ∈ E(t) and the set of neighbors of each robot i is defined as

Ni(t) = {j | (i, j) ∈ E(t)}. It is worth noting that the proximity

graph is dynamic as both E(t) and Ni(t) are time-varying when

the robots move around.

C. Collision Avoidance

To ensure interrobot collision avoidance, it is required that

each robot keeps a predefined minimal separation distance,

denoted byds, from its neighboring robots. That is, the following

inequality relation should be guaranteed at all times:

‖pi(t)− pj(t)‖ ≥ ds ∀i ∈ V ∀j ∈ Ni(t). (3)

In optimization-based control approaches, collision avoidance

defined by (3) can be procured in both state space and control

input space [16]. The former usually uses (3) as constraints im-

posed on the Euclidean distance between two robots. The latter

imposes constraints on the control input to keep the robots from

being driven to collision-prone states. In this article, we employ a

CBF method to derive constraints on control input for collision

avoidance and demonstrate the advantage of our method over

traditional methods that use the distance constraint (3).

D. Coordinated Control via Model Predictive Control

We consider a cluster flocking control problem of multirobot

systems. We assume a reference trajectory consisting of time-

varying reference states, defined as xr(t), is assigned to all

robots. The common reference trajectory can be given by a

long-horizon motion planner, such as those based on differential

dynamic programming or iterative LQR (a computationally ef-

ficient variant of DDP), as used in [39]. The rationale for using a

reference trajectory is that MPC uses short horizon in a receding

fashion to gain more robustness than long-horizon planning, but

the resulting trajectory usually loses long-horizon optimality.

An intuitive solution is to generate a reference trajectory that

achieves good long-horizon performance and track the reference

trajectory with receding horizon control, such as MPC [40].

The control objective of the cluster flocking is then for each

robot to track the reference trajectory,xr(t), while guaranteeing

the minimal separation distance to avoid collision. Note that the

defined cluster flocking behavior does not specify an explicit

flocking formation. The cluster flocking control can be formu-

lated as the following finite-horizon optimization problem:

min
X(t),U(t)

J(t) �

N
∑

i=1

(

M−1
∑

k=1

wt‖xi(t+ k)− xr(t+ k)‖2

+ wf‖xi(t+M)− xr(t+M)‖2

+ wu‖ui(t+ k − 1)‖2

)

(4a)

s.t. xi(t+ 1) = xi(t) + ∆t ·G(t) · ui(t) ∀i ∈ V

(4b)

ui(t) ∈ [umin,umax] ∀i ∈ V (4c)

xi(t) = x0
i ∀i ∈ V (4d)

‖pi(t)− pj(t)‖ ≥ ds ∀i ∈ V ∀j ∈ Ni(t) (4e)

where M is the prediction horizon and {X(t),U(t)} �

{xi(t), . . .,xi(t+M),ui(t), . . .,ui(t+M − 1)}Ni=1 is the

set of trajectories of all robots, starting from time step t. The

first term in the objective function (4a) encapsulates the tracking

error between the robot state xi(t) and the reference state

xr(t); the second objective term is the terminal state tracking

error of the fixed-horizon optimization; the last objective term

encourages minimal control effort. The parameters wt, wf , and

wu are constant weights associated with the respective objective

terms.

The optimization problem is subject to the kinematics con-

straint (4b), the control constraint (4c) representing the robot

motors’ upper and lower limits (i.e., the constants umin and

umax), and the distance constraint (4e) for interrobot collision

avoidance. The robot state at time step t is assumed accessible

and is given as x0
i . The MPC scheme exploits the system

model (1) to predict future robot trajectories and solves for a

state-control sequence for each robot with optimized control

performance defined in (4a). At each decision time step t, the

MPC measures the current state xi(t), and compute the optimal

trajectories {X(t),U(t)}, of all robots. Then, the first step of the

computed control sequence will be executed to move the robots

one step forward and new MPC computation will be performed

repeatedly in a receding horizon fashion.

The problem (4) is a centralized formulation due to the

coupling constraint (4e). Existing works have exploited ADMM

framework to decompose the formulation (4) into subproblems,

each of which can be solved by an individual robot in a dis-

tributed fashion. However, in traditional DMPC methods with

distance constraint, the control performance measured by the

objective function (4a) can be compromised for ensuring the

distance constraint (4e) when solving the augmented Lagrangian

in an ADMM scheme. Thus, in this article we propose a DMPC

method with CBF constraints for collision avoidance and show

that our method achieves improved control performance.

III. METHOD

In this section, we first present the constraint design for

collision avoidance and the modified MPC method with CBF

constraints. Then, we present the ADMM-based DMPC algo-

rithm for decentralized coordinated control.

A. Constraint Design for Collision Avoidance

A safe set of each robot’s state can be defined as such that

the condition (3) is satisfied for all its neighbors. CBF methods

provide a way to derive the conditions for robot control inputs

under which a forward invariance of the safe set is guaran-

teed. Therefore, starting from a collision-free state, a robot is
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guaranteed to stay in the safe set by executing the control inputs

that satisfy the conditions.

1) CBF Condition Derivation: We define the safe set S that

includes all collision-free states of each robot i as

S = {xi(t) ∈ R
3 | B(xi(t)) ≥ 0} (5)

where B(xi(t)) : R
3 → R is known as the discrete-time ex-

ponential barrier function [37]. To ensure collision avoidance,

the control input ui(t) should be synthesized such that the

invariance of the safety set S is promised along the entire state

sequence of robot i (i.e., xi(t), ∀t ≥ 0), given that the initial

state xi(0) ∈ S (i.e., B(xi(0)) ≥ 0). The CBF conditions to

ensure the invariance of S are then given as follows [37].

1) B(x(0)) ≥ 0.

2) There exists a control input u(t) ∈ R
2 such that

∆B(x(t),u(t)) + γB(x(t)) ≥ 0, ∀t ≥ 0, where ∆B(x
(t),u(t)) := B(x(t+ 1))−B(x(t)) and γ is a constant

such that 0 < γ ≤ 1.

Given the definition of collision avoidance in (3), we select a

barrier function as

B := ‖pi(t)− pj(t)‖
2 − d2s ∀j ∈ Ni(t). (6)

Substituting (6) in ∆B(xi(t),ui(t)) + γB(xi(t)), we have

∆B(xi(t),ui(t)) + γB(xi(t))

= B(xi(t+ 1))− (1− γ)B(xi(t))

= ‖pi(t+ 1)− pj(t+ 1)‖2 − d2s − ‖pi(t)− pj(t)‖
2

+ d2s + γ
(

‖pi(t)− pj(t)‖
2 − d2s

)

≥ 0 ∀j ∈ Ni(t). (7)

Let pi(t) = C · xi(t), with C = [I2×2 02×1], we have

pi(t+ 1) = C · xi(t+ 1) = C · xi(t) + C ·G (θi(t)) · ui(t).

Then, condition (7) can be written as (the time index t is omitted

for simplicity in notation)

‖C · xi + C ·G(θi) · ui − C · xj − C ·G(θj) · uj‖
2

− ‖pi − pj‖
2 + γ

(

‖pi − pj‖
2 − d2s

)

= ‖C · xi − C · xj + CG(θi) · ui − C ·G(θj) · uj‖
2

− ‖pi − pj‖
2 + γ

(

‖pi − pj‖
2 − d2s

)

= ‖pij + C ·G(θi) · ui − C ·G(θj) · uj‖
2

− ‖pij‖
2 + γ

(

‖pij‖
2 − d2s

)

= ‖pij‖
2+2pT

ij (C ·G(θi) · ui−C ·G(θj) · uj)−‖pij‖
2

+ ‖C ·G(xi)ui − C ·G(xj)uj‖
2+γ

(

‖pij‖
2−d2s

)

= 2pT
ij (C ·G(θi) · ui − C ·G(θj) · uj) + γ

(

‖pij‖
2 − d2s

)

+ ‖C ·G(θi) · ui − C ·G(θj) · uj‖
2

≥ 0 ∀j ∈ Ni(t) (8)

where pij = pi − pj is the relative position between robot i and

j. Condition (8) can be used as an inequality constraint on robot

Fig. 1. Relative motion between robot i and robot j.

i’s control input ui, by which B(xi(t)) ≥ 0 is satisfied along

the entire robot trajectory. The scalar γ is a selectable parameter

which dictates the extend to which B(xi(t)) ≥ 0 is enforced. A

larger γ allows the state to be closer to the boundary of the safe

set S .

2) Modified CBF Condition: To evaluate the condition (8),

each robot i will need to access the relative positions pij , along

with its neighbor’s state xj and control uj via communication

during decentralized control. To reduce communication burden,

we consider a modified condition which can be evaluated by

each robot without additional communication load.

It is worth noting that, the term C ·G(θj) · uj in (8) can

be interpreted as the displacement of robot j’s position by

executing the control uj during the sampling period ∆t. Our

idea is to replace C ·G(θj) · uj with ωij · C ·G(θi) · ui, i.e.,

the displacement of robot i during a sampling period, scaled by a

factor ωij . The rationale behind the idea is the fact that the inner

product pT
ij · C ·G(θj) · uj in (8) is the robot j’s displacement

projected onto the line connecting the positions of robot i and

robot j, which captures the “tendency” of robot j to move closer

to or further away from robot i.

Reasonable assumptions about the neighbor robots’ motion

can be made by tailoring the scalar ωij . Note that ωij is a

real number whose magnitude and sign determines the assumed

robot j’s motion based on robot i’s motion. Fig. 1 shows an

example of the relative motion between robot i and robot j,

given the assumption about robot j’s motion. The robot i’s

displacement is given by ∆pi = pi(t+ 1)− pi(t). As it tends

to move closer to robot j, the projection of robot i’s displacement

on pij , i.e., pT
ij∆pi, points toward robot j. A negative ωij (i.e.,

ω1) assumes that robot j will execute a movement such that

the magnitude of displacement ∆pj is proportional to ∆pi and

the direction of ∆pj is opposite to ∆pi, showing a tendency

to move closer to robot i. In contrast, a positive ωij (i.e., ω2)

assumes that robot j tends to move away from robot i. In fact,

the selection of ωij reflects how conservative or aggressive

robot i’s assumption is about its neighbors “contribution” to

the collective movement that would lead to a possible collision.

Three examples of selectingωij , which result in different motion

behaviors of robot i, are given as follows.
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1) For ωij = 0, robot i assumes that robot j makes no

movement in the direction of pij . In this case, robot i’s

motion behavior is neither conservative nor aggressive.

2) For ωij = −1, robot i assumes that the displacement of

robot j in the direction of pij has the same magnitude

as that of robot i but points to the opposite direction. In

this case, robot i presents a conservative motion behavior

when it tends to move toward robot j.

3) For ωij = 1, robot i assumes that the displacement of

robot j in the direction of pij has the same magnitude and

direction as that of robot i. In this case, robot i presents an

aggressive motion behavior when it tends to move toward

robot j.

By replacing C ·G(θj) · uj with ωij · C ·G(θi) · ui, the

condition (8) becomes

2pT
ij (C ·G(θi) · ui − ωijC ·G(θi) · ui)+

‖C ·G(θi) · ui − ωijC ·G(θi) · ui‖
2 + γ

(

‖pij‖
2 − d2s

)

= 2(1− ωij)p
T
ij · C ·G(θi) · ui + γ

(

‖pij‖
2 − d2s

)

+ (1− ωij)
2‖C ·G(θi) · ui‖

2

≥ 0 ∀j ∈ Ni(t). (9)

The information involving neighboring robots to evaluate (9)

now only includes the relative position, pij , thus imposing less

communication load compared to (8). Moreover, evaluating (9)

could require no interrobot communication if pij is estimated

or measured directly.

B. Model Predictive Control With CBF

The CBF (9) is then used as an inequality constraint for

avoiding interrobot collision, and the modified formulation of

(4) is defined as

min
X(t),U(t)

J(t) �
N
∑

i=1

(

M−1
∑

k=1

wt‖xi(t+ k)− xr(t+ k)‖2

+ wf‖xi(t+M)− xr(t+M)‖2

+ wu‖ui(t+ k − 1)‖2

)

(10a)

s.t. xi(t+ 1) = xi(t) + ∆t ·G(t) · ui(t) ∀i ∈ V

(10b)

ui(t) ∈ [umin,umax] ∀i ∈ V (10c)

xi(t) = x0
i ∀i ∈ V (10d)

g(xi,ui,xj) ≤ 0 ∀i ∈ V, j ∈ Ni(t) (10e)

where g(xi,ui,xj) ≤ 0 represents the inequality condition (9)

derived using the CBF method for collision avoidance.

The feasible set of problem (10) is determined by the con-

straints (10b)–(10e) and is the intersection of the reachable set

determined by (10b)–(10d) and the invariant set determined by

(10e). The choice of γ in (10e) thus has an effect on the feasiblity

of problem (10). A discussion on the effect of γ is given in [41].

C. Distributed MPC via ADMM

The problem (10) is a centralized formulation due to the

coupling constraint (10e). We thus exploit the ADMM [22]

framework to decompose (10) into subproblems that can be

solved locally by each robot in a distributed manner. Various

ADMM-based decomposition schemes (e.g., [10], [12], [13],

[15]) have been proposed in literature. Our decomposition

scheme is similar to that in [13], which is designed to tackle

interrobot couplings imposed by operational constraints only.

That is, each robot’s dynamics and objective function are de-

coupled from other robots.

First, the coupling constraint (10e) is decoupled by introduc-

ing the slack variables, x̃i∀i ∈ V , and x̃ij∀i ∈ V, j ∈ Ni(t),
and enforcing x̃i and x̃ij to be equal to xi and xj , respectively.

The resulting equivalent problem of (10) is defined as

min
X(t),U(t)

J(t) �

N
∑

i=1

(

M−1
∑

k=1

wt‖xi(t+ k)− xr(t+ k)‖2

+ wf‖xi(t+M)− xr(t+M)‖2

+ wu‖ui(t+ k − 1)‖2

)

(11a)

s.t. xi(t+ 1) = xi(t) + ∆t ·G(t) · ui(t) ∀i ∈ V

(11b)

ui(t) ∈ [umin,umax] ∀i ∈ V (11c)

xi(t) = x0
i ∀i ∈ V (11d)

g(x̃i,ui, x̃ij) ≤ 0 ∀i ∈ V, j ∈ Ni(t) (11e)

x̃i = xi ∀i ∈ V (11f)

x̃ij = xj ∀i ∈ V ∀j ∈ Ni(t) (11g)

The slack variables x̃i(t) and x̃ij(t) can be considered as the

robot i’s hypothesis about its own state xi(t) and the robot j’s

state xj(t), respectively. An approximate solution to (11) can be

found by solving the dual problem of (11). To reduce the duality

gap, only the equality constraints (11f) and (11g) are dualized to

form the dual problem of (11). The ADMM scheme solves the

dual problem with an augmented Lagrangian function which is

given by

L =
N
∑

i=1

Ji(t) +
M
∑

k=1

(

λ
T
i (xi(t+ k)− x̃i(t+ k))

+
ρ

2
‖xi(t+ k)− x̃i(t+ k)‖2

+
∑

j∈Ni(t)

(

λ
T
ij(xj(t+ k)− x̃ij(t+ k))

+
ρ

2
‖xj(t+ k)− x̃ij(t+ k)‖2

)

)

(12)

whereJi(t) is the primary control objective of each robot defined

in (11a), and λi, λij are the dual variables associated with the
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dualized constraints (11f) and (11g). We rewrite (12) with a

simplified notation as follows:

L =

N
∑

i=1

Li(xi,ui, x̃i, λi) +
∑

j∈Ni

Lij(xj , x̃ij , λij)

=

N
∑

i=1

Li(xi,ui, x̃i, λi) +
∑

j∈Ni

Lji(xi, x̃ji, λji) (13)

with Li(xi,ui, x̃i, λi) being the term involving robot i only

and Lij(xi, x̃ij , λij) being the term involving both robot i and

j. The second equality in (13) holds due to the symmetry of

bidirectional interaction [42] with the robot j’s hypothesis about

the robot i’s state x̃ji and the associated multiplier λji. Then,

the augmented Lagrangian (12) can be solved by the following

ADMM steps recursively.

Step 1:

min
xi,ui

Li(xi,ui, x̃i, λi) +
∑

j∈Ni

Lji(xi, x̃ji, λji)

s.t. xi(t+ 1) = xi(t) +G(t) · ui(t) ∀i ∈ V

ui(t) ∈ [umin,umax] ∀i ∈ V

xi(t) = x0
i ∀i ∈ V

g(x̃i,ui, x̃ji) ≤ 0 ∀i ∈ V ∀j ∈ Ni(t). (14)

Step 2:

min
x̃i,x̃ij

Li(xi,ui, x̃i, λi) +
∑

j∈Ni

Lij(xj , x̃ij , λij)

s.t. g(x̃i,ui, x̃ij) ≤ 0 ∀i ∈ V ∀j ∈ Ni(t). (15)

Step 3:

λi = λi + ρ(xi − x̃i) ∀i ∈ V

λij = λij + ρ(xj − x̃ij) ∀i ∈ V ∀j ∈ Ni(t). (16)

In step 1, each robot solves for its own trajectory over the fixed

horizon such that the primary control objective Ji(t) as well as

the cost of its state xi(t) deviating from the hypotheses x̃i and

x̃ji are minimized. In step 2, each robot updates its hypotheses

x̃i and x̃ij such that the differences between xi and x̃i, xj and

x̃ij are minimized. The multipliers λi and λij are updated in

step 3. Computations in steps 1–3 are fully decoupled and can

be performed simultaneously on each robot in a distributed and

parallel manner.

Remark 1 (Comparison with DMPC using distance con-

straints): In traditional MPC formulations with distance con-

straint, the centralized problem [e.g., problem (4)] is decom-

posed using the same ADMM scheme. The resulting ADMM

procedure is similar to (14)–(16) except that the distance con-

straint,‖Cx̃i − Cx̃ij‖ ≥ ds, is used in stead of g(x̃i,ui, x̃ij) ≤
0. Moreover, since the distance constraint, ‖Cx̃i − Cx̃ij‖ ≥ ds,

only contains the slack variables x̃i and x̃ij , it is excluded from

(14) and is only incorporated in (15). As a result, the distance

constraint is only imposed in solving for the local hypotheses x̃i

Algorithm 1: Distributed MPC via ADMM.

Algorithm 2: Motion Control via DMPC.

and x̃ij , and the robot trajectory {xi,ui} satisfying the distance

constraint is ensured by minimizing the deviation from the hy-

potheses in the ADMM step (14). The selection of the parameter

ρ in the augmented Lagrangian (12) is therefore crucial as it

should balance minimizing the primary control objective, Ji(t),
and minimizing the deviation to conform to the distance con-

straint. In contrast, our MPC formulation with CBF constraint

results in an inequality constraint in the ADMM step (14). The

collision avoidance is enforced with a hard constraint on the

control input in addition to the minimum deviation objective.

This way, the parameter ρ can be set to a smaller number so that

the algorithm can focus more on the primary control objective in

(12) without violating the constraint, leading to better tracking

performance.

For each robot to perform the ADMM steps (14)–(16), com-

munication between neighboring robots will be required for

local information exchange. Specifically, step (14) requires each

Authorized licensed use limited to: University of Wyoming Libraries. Downloaded on September 26,2024 at 18:05:34 UTC from IEEE Xplore.  Restrictions apply. 



JIANG AND GUO: INCORPORATING CBFS IN DMPC FOR MULTIROBOT COORDINATED CONTROL 553

robot i to acquire the hypotheses x̃ji and the multipliers λji

from all neighbors j ∈ Ni(t), and meanwhile send x̃ij and

λij to all neighbors; step (15) requires each robot to acquire

the optimized trajectory xj from all neighbors and send the

optimized trajectory xi to all neighbors. The ADMM-based

DMPC algorithm performed on each robot is summarized in

Algorithm 1.

During real-time coordinated motion control, Algorithm 1

will be executed by each robot at every time step in a receding

horizon manner, and only the first step of the solved control

sequence will be executed. The real-time coordinated motion

control via DMPC is summarized in Algorithm 2. As an instance

of ADMM framework, Algorithm 1 inherits the convergence

property of ADMM. However, the convergence to the exact

solution of the centralized formulation may require considerable

ADMM iterations, imposing computation and communication

load for real-time control. Therefore, in practice, the iterations

in Algorithm 1 can be terminated if the residual, xj − x̃ij , is

smaller than a predefined tolerance or a maximum number of

iterations is reached.

IV. SIMULATION AND RESULTS

A. Simulation Setup and Parameters

The proposed method was validated in Matlab simulations.

For the problem defined in (11), the following simulation setup

and parameters are chosen. The number of robots N = 5. The

robots’ positions were randomly initialized in an 8-by-8-m

square area. The initial positions of any two robots were at least

2-m apart. The initial robot orientations were randomly selected

from [0, 2π). The communication range limit dc was set to 2.5 m.

The minimal separation distance ds was set to 0.8 m. The robot

control limits were set as umin = −1.2 m/s and umax = 1.2 m/s.

The parameter l in (1) was set to 0.4 m. Simulation update rate

was set to 5 Hz, i.e., ∆t = 0.2 s. All simulation experiments

were run for 120 time steps, i.e., T = 120.

The algorithm parameters were selected as follows. The pre-

diction horizon M = 10. The weights in the objective function

were set as wt = 1, wf = 10, wu = 0.5, respectively. The La-

grangian multipliers λi and λij∀i, j ∈ V, i �= j were initialized

to 0.1. The penalty parameter was chosen as ρ = 0.6. The CBF

parameter ωij and γ were set to −0.5 and 0.8, respectively.

The number of ADMM iterations K was set to 2 to lessen

the computational burden. For all simulation experiments, the

constrained nonlinear programming of the ADMM algorithm

was solved using MATLAB Nonlinear Optimization toolbox

(fmincon). All simulation experiments were run on a computer

with an Intel Core i7-12700 K (3.6 GHz) CPU and a RAM of

16 GB.

B. Simulation Results

An example result of robot trajectories for the multirobot

coordinated control is shown in Fig. 2, along with the robot

positions at t = 0 s, t = 8 s, t = 16 s, and t = 24 s. The dotted

lines represent the communication connection between robots.

We can see that the robots successfully tracked the reference

Fig. 2. Robot trajectories with robot positions at t = 0 s, 8 s, 16 s, and
24 s. The dashed black line represents the reference trajectory and the
dotted lines represent inter-robot communication links.

trajectory (represented by the black dashed line) and kept the

minimal separation distance to their neighbors. Fig. 3(a) shows

the time history of tracking error ‖xi(t)− xr‖ for each robot

and the average tracking error of all robots. One can observe that

all tracking errors converged and the average tracking error, as

shown by the solid black trace, converged to 0.8 m. To verify

that the interrobot collision avoidance is guaranteed, we show

the time history of interrobot distance in Fig. 3(b). It can be seen

that the interrobot distances were all greater than the predefined

minimal separation distance (as shown by the red dashed line) at

all times, indicating that no collision occurred during the control

process. The black dashed line represents the communication

range limit. The time history of robot control inputs is shown in

Fig. 3(c). All robot motor speed control inputs converged to the

speed determined by the reference trajectory after about 14 s.

To show the convergence of the feasibility residual xi − x̃i and

xj − x̃ij of the ADMM algorithm, we define c(t) that measures

the residual at each time step t as

c(t) =
1

M

1

N

N
∑

i=1

M
∑

k=1

(‖xi(t+ k)− x̃i(t+ k)‖2

+
∑

j∈Ni(t)

‖xj(t+ k)− x̃ij(t+ k)‖2). (17)

The residual c(t) was averaged over the number of robots N and

the prediction horizon M , and the residual after two ADMM

iterations (as the maximum ADMM iterations K at each time

step was set to 2) at each time step was recorded. Fig. 3(d) shows

the time history of c(t) on a logarithmic scale. One can see that

the residual converged to 0.046 m2. Our approach optimized

the tracking error [as shown in Fig. 3(a)] while ensuring the

convergence of the feasibility residual.

1) Effect of Parameter γ: We conducted simulations with

varying selections of the parameter γ to show its effect on the

control performance. The parameter was set as γ = 1, γ = 0.8,

γ = 0.5, γ = 0.25, respectively. For each parameter selection,

200 simulation runs with randomized initial robot states were
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Fig. 3. Sample result of the multirobot coordinated control using our DMPC method with CBF constraint for collision avoidance. (a) Tracking error;
(b) inter-robot distance; (c) robot control input; and (d) ADMM feasibility residual c(t) on a logarithmic scale. The red and black dashed lines in
(b) represent the minimal separation distance, ds, and the communication range limit, dc, respectively.

Fig. 4. Statistic results for the comparison between the DMPC method with CBF constraint and the DMPC method with distance constraint for
different parameters selections. (a) and (b) Average tracking error and the deviation energy, respectively, of the DMPC method with CBF constraint.
(c) and (d) Average tracking error and the deviation energy, respectively, of the DMPC with distance constraint. The comparison results show
that our DMPC-CBF method achieved better tracking accuracy than the DMPC-DC method when γ was appropriated selected. The DMPC-DC
method could achieve comparable tracking performance with our method using a larger prediction horizon M . (a) DMPC-CBF. (b) DMPC-CBF.
(c) DMPC-DC. (d) DMPC-DC.

performed to obtain the statistic results. We use two metrics to

evaluate the control performance. The first metric measures the

average tracking error of all robots, i.e.,

ē(t) =
1

N

∑

i∈V

‖xi(t)− xr(t)‖. (18)

The minimization of (18) is enforced by the first two terms in

the objective function (4a). The second metric is the deviation

energy [43] which is defined as

ed(t) =
1

E(t) + 1

∑

i∈V

∑

j∈Ni

(‖pi(t)− pj(t)‖ − ds)
2. (19)

The deviation energy measures how far the interrobot distance

of neighboring robots deviates from the minimal separation

distance ds. It should be noted that keeping the minimal sep-

aration distance is necessary but not sufficient for successfully

minimizing the average tracking error of the group.

The statistical results of average tracking error and deviation

energy with different values of γ are shown in Fig. 4(a) and (b).

Each data point in the statistical results is the average tracking

error or deviation energy of all robots at the final simulation step,

i.e., t = 24 s. The red line in each box marks the median, the

box edges represent the 25th and 75th percentiles, respectively.

The dashed vertical lines extend to the max/min, and the cross

markers are outliers.

We can see from Fig. 4(a) that γ = 1 yielded best tracking

performance. Then, the tracking error increased as γ became

smaller, and deteriorated dramatically when γ = 0.25. From

Fig. 4(b) we observe that the deviation energy increased as γ

decreased from 1 to 0.25. These observations align with the

analysis in Section III that a smaller γ creates a smaller feasible

region, resulting in control inputs that keep the robots apart

with larger interrobot distances. Although γ = 1 yielded the best

tracking performance, it is worth mentioning that it is advised to

choose a slightly smaller value (e.g., γ = 0.8) in practice. This

is because the constraint with γ = 1 explores the boundary of

the safe set S and its forward invariance may be violated due to

uncertainties in real systems.

C. Comparison With Euclidean Distance Constraint

In this subsection, we present the performance compari-

son between our DMPC method with CBF (DMPC-CBF) and

the DMPC method with distance constraint (DMPC-DC). The

DMPC-DC method solves the centralized problem defined in

(4) by decomposing it into subproblems using the same ADMM

decomposition scheme as [13]. Unlike [13], however, the

DMPC-DC for comparison uses Euclidean distance rather than
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separating hyperplane for collision avoidance and does not adopt

spline parameterization for robot trajectories. The equivalent

problem after decomposition for DMPC-DC is similar to (11)

except that the constraint (11e) is replaced by the distance

constraint (4e). As mentioned in Section III-C, the distance

constraint is only incorporated in the ADMM step (15) and is

excluded from step (14).

Since the performance of DMPC-DC and DMPC-CBF is

affected by multiple algorithm parameters, we first compare

the two methods without considering the effect of the ADMM

parameter ρ (which is discussed in Section IV-C1). We imple-

mented the DMPC-DC method with three different values of

prediction horizon M , i.e., M = 10, M = 15, and M = 20
and our DMPC-CBF method with γ = 1, γ = 0.8, γ = 0.5,

and γ = 0.25. The penalty parameter ρ was set to 1 for the

DMPC-DC method and 0.6 for our DMPC-CBF method. The

other parameters were the same for both methods. It should be

noted that we chose different values of ρ for DMPC-DC and

DMPC-CBF, respectively, in order to obtain the best results of

the two methods for comparison. As presented in Section IV-C1,

we found from empirical evaluations that ρ = 1 and ρ = 0.6
yielded best performance for DMPC-DC and DMPC-CBF, re-

spectively, under the metrics (18) and (19) without violating

the safety constraint. The DMPC-DC and DMPC-CBF methods

with each selection of M or γ were simulated 200 times with

varying initial states. The performance was compared using the

metrics defined in (18) and (19).

The statistical results of the DMPC-DC method are shown in

Fig. 4(c) and (d). We observe from Fig. 4(c) that the DMPC-DC

method with a larger prediction horizon M yielded better track-

ing performance. This is because a larger prediction horizon

allows the robots to coordinate their motions for an optimal

configuration that achieves minimum overall tracking error well

ahead of time before collision becomes imminent. As shown

in Fig. 4(d), the deviation energy also tended to decrease when

the prediction horizon became larger. Comparing the average

tracking errors shown in Fig. 4(a) and (c), we can see that

with the same prediction horizon, M = 10, our DMPC-CBF

method outperformed the DMPC-DC method when γ was set

to 0.5 or larger. The DMPC-DC method requires a larger pre-

diction horizon to achieve comparable tracking performance to

our DMPC-CBF method. For example, the DMPC-DC with

M = 15 achieved similar median tracking error to our DMPC-

CBF method with γ = 0.5, but with higher variance. However,

a larger prediction horizonM imposes more computational load

for each MPC computation iteration.

1) Effect of Parameter ρ: To verify the analysis on the effect

of the penalty parameter ρ in Section III-C, we evaluated both

methods with three values of the penalty parameter: ρ = 0.6,

ρ = 0.8, and ρ = 1. For comparison, the centralized MPC (4)

with distance constraint and the centralized MPC (10) with

CBF constraint were implemented as baseline methods. Each

centralized method and decentralized method with a selected

value of ρ was simulated 200 times with random initial states.

We compared their performance using average tracking error,

deviation energy, and success rate, i.e., the percentage of suc-

cessful runs out of 200. A successful run is defined as such that

the minimum separation distance ds is guaranteed during the

entire simulation.

The evaluation results are summarized in Table I, where

the mean tracking error and the mean deviation energy with a

standard deviation of all successful runs are shown. One can see

that both centralized MPC methods yielded similar performance

that outperformed the decentralized methods, DMPC-CBF and

DMPC-DC. Both decentralized methods with ρ = 1 success-

fully ensured the minimum distance ds for all 200 runs and

achieved comparable mean tracking error. When ρ was reduced

to 0.8, the DMPC-DC method only achieved a success rate of

80%, while our DMPC-CBF method still achieved a success rate

of 100%. Moreover, with a smaller value of ρ, the performance

of our DMPC-CBF was improved with a smaller mean tracking

error. When ρwas further reduced to 0.6, none of the DMPC-DC

runs was successful, while our DMPC-CBF method could obtain

further improved tracking performance with a success rate of

98%. The 2% runs of the DPMC-CBF method for ρ = 0.6 were

unsuccessful as violations of the minimum interrobot distance

constraint occurred at some time steps. The violations at those

time steps were a result of large feasibility residuals after the

maximum ADMM iterations were reached. The evaluation re-

sults validate that the traditional DMPC based on ADMM needs

to select an appropriate value forρ such that the robot trajectories

strictly conform to the distance constraint. However, the tracking

performance is sacrificed when choosing a larger ρ to satisfy the

constraint. In contrast, our DMPC-CBF method can obtain better

tracking performance by choosing a smaller ρ with high success

rates of guaranteeing the minimum interrobot distance.

D. Discussion

1) Relation Between CBF Constraint and Distance Con-

straint: With centralized implementation, the MPC method

with CBF constraint yielded similar performance to the MPC

method with distance constraint when the parameter γ ap-

proaches the upper bound of 1 (as indicated by the results in

the last two columns of Table I). Indeed, as explained in [37]

and [41], when γ = 1 the CBF constraint and the distance

constraint are almost the same except that the CBF constraint is

imposed to the next prediction step rather than the current one.

Similar performance of the two methods was also observed in

their decentralized implementation when the penalty parameter

ρ = 1. However, the DMPC-DC method failed to satisfy the

distance constraint when ρ became smaller. Therefore, using

the CBF constraint gains advantages in the DMPC schemes as

it allows us to choose a smaller value of ρ to reduce the primal

optimality gap while ensuring the constraint.

2) Primal Suboptimality: Our DMPC-CBF method under-

performed its centralized counterpart with regard to the tracking

error, as shown in Table I. This is expected considering that

1) a limited number of ADMM iterations was performed per

time step to lessen the computation load, but at the cost of

losing the optimality of the resulting solutions; 2) the modified

CBF condition (9) may make conservative assumption of the

neighboring robots’ movement by selecting a smaller ωij to

ensure the minimal separation distance. As a result, the robots
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TABLE I
PERFORMANCE COMPARISON BETWEEN DMPC-CBF AND DMPC-DC WITH DIFFERENT VALUES OF ρ

tended to keep a larger distance from their neighbors, thus

increasing the overall tracking error of the group. The parameter

ωij determines the robots’ collision avoidance behavior (i.e.,

aggressive or conservative) [44] and needs to be selected to

balance the tradeoff between tracking performance and safety

assurance. Both control performance and safety would benefit

from adjusting ωij adaptively at runtime based on prediction of

neighboring robots’ motion so that an appropriate ωij is always

selected at each time step.

3) Extension to High-Order Dynamics: The proposed

DMPC-CBF method relies on the robot dynamics (1) whose

relative degree [45] with respect to the CBF (6) is one. For

high-order system dynamics, the relative degree of the system

would be greater than one. In this case, the control input ui

does not appear in the CBF condition (8), and thus, safe control

can not be synthesized. To extend our approach to systems

of higher relative degree, the discrete-time high-order CBF

method (a generalization of high-order CBFs for continuous-

time systems [46]) proposed in [47] could be exploited. One

challenge in solving MPC with high-order CBF constraints is

guaranteeing feasibility. Therefore, a feasibility enforcement

method [48] needs to be designed to produce feasible solutions

while satisfying safety constraints.

V. CONCLUSION

In this work, we proposed an ADMM-based DMPC for co-

ordinated motion control of multirobot system with collision

avoidance. Unlike existing DMPC methods that use Euclidean

distance constraints, our method leverages the discrete-time

CBFs method to develop the constraints that confine the robot

control for collision avoidance. The proposed method allows us

to choose a smaller penalty parameter for the ADMM algorithm

to focus more on the primal optimality without violating the

constraints for collision avoidance, and thus improves the per-

formance with respect to the primary control objectives. We val-

idated and evaluated our method in a multirobot cluster flocking

problem and the simulation results show effective coordinated

control that achieves improved control performance and safety

guarantees. In our future work, we will extend our method

to more complex dynamics, such as high-order dynamics, as

discussed in [33] and [48], or general nonlinear dynamics.
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