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Abstract

A classical result of Erdős and, independently, of Bondy and Simonovits [3] says that the maximum

number of edges in an n-vertex graph not containing C2k, the cycle of length 2k, is O(n1+1/k). Simonovits

established a corresponding supersaturation result for C2k’s, showing that there exist positive constants C, c

depending only on k such that every n-vertex graph G with e(G)� Cn1+1/k contains at least c(e(G)/v(G))2k

copies of C2k, this number of copies tightly achieved by the random graph (up to a multiplicative constant).

In this paper we extend Simonovits’ result to a supersaturation result of r-uniform linear cycles of even

length in r-uniform linear hypergraphs. Our proof is self-contained and includes the r = 2 case. As an

auxiliary tool, we develop a reduction lemma from general host graphs to almost-regular host graphs that

can be used for other supersaturation problems, and may therefore be of independent interest.

2020 MSC Codes: 05C65, 05D05

1. Introduction

One of the central problems in extremal graph theory is the Turán problem, where, for a fixed
graph H and fixed n, we wish to determine the maximum number of edges an n-vertex graph can
have without creating a copy of H as a subgraph. This number is called the Turán number of H
and is denoted by ex(n,H). The celebrated Erdős–Stone–Simonovits [6] theorem says that

ex(n,H)=
(

1−
1

χ(H)− 1

)

n2 + o(n2),

where χ(H) is the chromatic number of the graph H. This solves the Turán problem asymptot-
ically for all non-bipartite graphs H. However, asymptotic results or exact results are known for
only a handful of bipartite graphs. While the Turán problem asks for the threshold on the num-
ber of edges on n vertices that guarantees at least one copy of H, it is natural to ask what is the
minimum number of copies of H guaranteed in a host graph once its number of edges exceeds
ex(n,H). Such problems are referred to as supersaturation problems. When H is non-bipartite, we
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know the correct order of magnitude of the answer. LetH be a graph with χ(H)= p� 3 and v(H)
vertices. A simple averaging argument (see e.g. Lemma 2.1 in [17]) can be used to show that for
any ε > 0 there exist δ, n0 > 0 such that if G is a graph on n� n0 vertices with

e(G)�

(

1−
1

p− 1
+ ε

)(

n

2

)

,

then G contains at least δ
( n
v(H)

)

copies of H. This count is tight up to a multiplicative constant, as

shown by the random graph of the same edge density as G. The threshold on the number of edges
on G for which the count is valid is also asymptotically best possible, as shown by the Turán graph
Tn,p−1, which is defined as the balanced blowup of the complete graph on (p− 1) vertices. For
the supersaturation problem for bipartite graphs, Erdős and Simonovits [9] and also separately
Simonovits [26] made the following conjecture in the 1980s.

Conjecture 1 ([9, 26]). Let H be a bipartite graph with v vertices and e edges. Suppose that
ex(n,H)=O(n2−α) for some real 0< α < 1. Then there exist α′ � α and constants C, c> 0 such
that if G is an n-vertex graph with

e(G)� Cn2−α′
(1.1)

edges, then G contains at least c(e(G))e/n2e−v copies of H.

The Erdős–Rényi random graph G(n, p) with p= e(G)/
(n
2

)

shows that if Conjecture 1 is true
then it is best possible up to a multiplicative constant. Simonovits [26] made a weaker conjecture
that for every bipartite graph H with v vertices and e edges, there exist reals α, C, c> 0 such that
every n-vertex graph G with e(G)> Cn2−α contains at least c(e(G))e/n2e−v copies of H. A slight
reformulation of this conjecture (with c replaced by 1 and the number of copies of H replaced by
the number of homomorphic copies of H) was made by Sidorenko [24, 25]. Note that this weak-
ened version and Sidorenko’s conjecture focus on the counting statement eventually being true
when the host graph becomes very dense. When we study these conjectures, we are therefore con-
cerned with host graphs with�(n2−c) edges where c is as small as we want. On the contrary, works
on Conjecture 1 typically aim at finding the best possible threshold beyond which the counting
statement holds and hence the host graphs we work with are (much) sparser. In fact, Erdős and
Simonovits [9] made two conjectures even stronger than Conjecture 1 by replacing condition (1.1)
with e(G)� C · ex(n,H) and e(G)� (1+ ε)ex(n,H), respectively. At this stage, resolving these
stronger versions seems hopeless since the exact value or even just the order of magnitude of
ex(n,H) is only known for very few bipartite graphs H.

Now we turn our attention to the main focus of this paper, that is, the supersaturation of linear
cycles of even length in linear r-uniform hypergraphs, or in short, r-graphs. First let us give the
background for r = 2. A classical result of Erdős (unpublished) and of Bondy and Simonovits

[3] establishes that ex(n, C2k)=O(n1+1/k). The explicit upper bound that Bondy and Simonovits

gave was ex(n, C2k)� 100kn1+1/k. This upper bound was later improved by Verstraëte to 8(k−
1)n1+1/k for sufficiently large n, by Pikhurko [21] to (k− 1)n1+1/k +O(n), and by Bukh and Jiang

[4] to 80
√
k log kn1+1/k +O(n). Erdős and Simonovits conjectured that ex(n, C2k)= �(n1+1/k)

also holds. This is known to be true for k= 2, 3, 5.
For supersaturation of even cycles, it was mentioned in [9] that Simonovits proved

Conjecture 1 with α = α′ = 1− 1/k. The proof was not published at the time but is expected to
appear in an upcoming paper of Faudree and Simonovits [13]. Very recently, Morris and Saxton
[20] developed a balanced version of the supersaturation result for even cycles, which they use to
obtain a sharp result on the number ofC2k-free graphs via the container method. SinceMorris and
Saxton require a balanced version of supersaturation where the collection of C2k’s they obtain are,
informally speaking, uniformly distributed, their proof is quite involved. In this paper we extend
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the result by Simonovits to a supersaturation result of even linear cycles in linear r-graphs, for all
r� 2. Our proof is self-contained and includes the r = 2 case.

Before stating our main result, we need a few definitions. An r-graph G is called linear if any
two edges share at most one vertex. For instance, all 2-graphs are linear. The linear Turán number
of an r-graphH, denoted by ex�(n,H), is defined to be the maximum number of edges an n-vertex
linear r-graph can have without having a copy of H. The study of linear Turán numbers of linear
r-graphs is motivated in part by their similarity to the Turán numbers of 2-graphs. Also, such
studies were implicit in some classical extremal hypergraph problems, such as the famous (6, 3)-
problem (see [2] and [23]), which is asymptotically equivalent to determining the linear Turán
number of a linear 3-cycle. The (6, 3)-problem asks for the maximum size of an n-vertex 3-graph
in which no six vertices span three or more edges. Note that the usual Turán number ex(n,H) of
a linear r-graph H and the linear Turán number ex�(n,H) of H are typically very different. The

former is already at least
(n−1
r−1

)

as long as H contains two disjoint edges, while the latter is O(n2).

An r-uniform linear cycle C
(r)
m of length m is obtained from a 2-uniform m-cycle v1v2 . . . vmv1

by extending each vivi+1 (indices taken modulo m) with an (r − 2)-tuple Ii such that the tuples
Ii are pairwise disjoint for distinct indices. Collier-Cartaino, Graber and Jiang [5] extended the
aforementioned result of Bondy and Simonovits on even cycles in 2-graphs to linear cycles in
linear r-graphs. They showed that for all r� 3 andm� 4,

ex�(n, C
(r)
m )=O(n1+1/�m/2�).

For even linear cycles, their result also works for uniformity r = 2. In the case r = 3, it is known
that the upper bound above is sharp when m= 5, 7, 9, 13 (see [11]). It is interesting to note that
when r� 3, the linear Turán number of an odd linear cycle resembles that of an even linear cycle,
which is very different from the situation for r = 2.

Our main result is the supersaturation version of the linear Turán result for linear cycles, but
only for even linear cycles.

Theorem 1.1. Given k, r� 2, there exist constants C = C(k, r) and c= c(k, r) such that if G is an

n-vertex linear r-graph with e(G)� Cn1+1/k, then G contains at least c(e(G)/n)2k copies of C
(r)
2k
.

It is not hard to see that this lower bound on the number of copies of linear cycles is tight, up
to a multiplicative constant. Indeed, for r = 2, in the Erdős–Rényi graph G(n, p), in expectation

there are �(p2kn2k) 2k-cycles. For r� 3, one may consider random subgraphs of almost complete
partial Steiner systems. An (n, λ, r, q)-Steiner system is defined to be an r-graph on n vertices such
that every q-tuple is in exactly λ r-edges. A partial (n, λ, r, q)-Steiner system is defined to be an
r-graph on n vertices such that every q-tuple is in at most λ r-edges. Rödl [22] proved that for all
n there are partial (n, 1, r, q)-Steiner systems with

(1− o(1))

(

n

q

)/(

r

q

)

edges. (Note that this is also implied by a recent solution of the existence conjecture by Keevash
[18], while the q= 2 case was proved much earlier by Wilson [28, 29, 30].) By taking random
subgraphs of such partial Steiner systems with λ = 1 and q= 2, one can show that for every n and
0� e�

(n
2

)

there is a linear r-graph G on n vertices and e(G)= e in which the number of copies of

the linear cycles of length 2k is O((e/n)2k) (see Proposition 2.1).
Our Theorem 1.1 includes r = 2 as a special case and has a much simpler proof than that of

Morris and Saxton of their stronger version of supersaturation. We use an approach developed
by Faudree and Simonovits [12] in the study of the Turán numbers of theta graphs, which in
its original form is not well suited for effective counting of C2k’s. So we adapt their approach to
facilitate counting. The proofs are greatly simplified via a reduction tool which allows us to reduce
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the supersaturation problem in a general host r-graph to one which has some regularity property.
This regularization tool is an analogue of a regularization theorem of Erdős and Simonovits for
the Turán problem and can be used for supersaturation problems in general. We refer the reader
to Section 3 for the precise statement (see Theorem 3.3).

We organize the rest of the paper roughly as follows. In Section 2 we present notation and
definitions. In Section 3 we develop our reduction results. In Section 4 we give an overview of the
proof for r = 2. In Sections 5 and 6 we give proofs of the r = 2 and r� 3 cases of Theorem 1.1,
respectively. Even though we could have proved Theorem 1.1 for general r directly, we feel that
proving the r = 2 case first helps to illustrate the main ideas. However, we will give two slightly
different proofs for r = 2 and r� 3, modulo the reduction mentioned earlier. Both of these proofs
could be written for all r� 2. The proof we present for r = 2 is more constructive and gives a
better bound on constants. The proof we present for r� 3 follows the approach of Faudree and
Simonovits more closely and is perhaps more intuitive and easier to follow for some readers. In
Section 7 we give some concluding remarks.

2. Notation and definitions

For an r-graph G, we let v(G) and e(G) denote its number of vertices and edges, respectively. Let

(G), δ(G) denote the maximum and minimum degree of G, respectively. If S is a subset of V(G),
then we use G− S to denote the graph obtained from G by deleting the vertices in S as well as
edges of G that contain at least one vertex in S. Given a vertex v ∈V(G), the link of v in G, denoted
by LG(v), is defined to be

LG(v)= {I ∈ [V(G)](r−1) | I ∪ {v} ∈ E(G)},

recalling that [V(G)](r−1) refers to the family of all (r − 1)-subsets of V(G).
Given a real q� 1, we say that an r-graph G is q-almost-regular if 
(G)� qδ(G) holds. Given

positive constants C, γ , we say that an r-graph G is (C, γ )-dense if e(G)� C(v(G))γ .
We let tH(G) denote the number of copies of an r-graph H in an r-graph G. Given a 2-graph

F, the r-expansion of F is the r-graph obtained by replacing each edge e of F with e∪ Ie, where Ie
is an (r − 2)-tuple of new vertices, such that the Ie’s are pairwise disjoint for distinct edges e. Note

that F(2) = F. If G is an r-expansion of a 2-graph F, then we call F a skeleton of G. So, for example,

the linear r-cycle, C
(r)
m is the r-expansion of the 2-uniform m-cycle. Now we define the notion of

supersaturation of expansions in linear r-graphs.

Definition 2. Given a 2-graph F with v vertices and e edges, r� 2 and c a positive real, we say that

a linear r-graph G c-supersaturates F(r) if

tF(r)(G)� c
(e(G))e

(v(G))2e−v
.

Note that for r = 2 this definition is the usual supersaturation for 2-graphs (as in Conjecture 1),
that is, a graph G c-supersaturates another graph F with e edges and v vertices if

tF(G)� c
(e(G))e

(v(G))2e−v
.

As we have discussed earlier, for 2-graphs the bound on the number of copies of F(r) = F in
Definition 2 is achieved up to a multiplicative constant by the random graph of the same edge
density. For general r� 3, the bound is tight as well, obtained by random subgraphs of appropri-
ate edge density in almost complete partial Steiner systems. The proof of this is quite standard but
we include it here for brevity.
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Proposition 2.1. Let F be a 2-uniform graph with v vertices, e edges and no isolated vertices. Let
r� 2. For all n sufficiently large and all 0< E� n2/4r2 there exists an n-vertex linear r-graph G

with e(G)� E and O(Ee/n2e−v) copies of F(r).

Proof. Since F has no isolated vertex wemust have v� 2e. By our earlier discussion we know there
exist almost complete r-uniform Steiner systems, that is, we can find an n-vertex linear r-graph

G with e(G)� n2/2r2. If v= 2e then the bound we are trying to prove on the number of F(r) is

O(Ee), which holds trivially. So we may assume v< 2e. Note that the number of copies of F(r) in
G is at most nv. This is because there are at most nv injections σ from V(F) to V(G), and since G
is linear for each uv ∈ E(F) there is at most one edge of G containing {σ (u), σ (v)}.

Now, let p= 2E/e(G). Let H be a random subgraph of G obtained by picking each edge of
G independently with probability p. Let X denote the number of edges in H and let Y denote the

number of copies of F(r) inH. ThenE[X]= 2E andE[Y]� nvpe < Ee/n2e−v. If Ee/n2e−v < E, then
by linearity of expectation, we have E[X − Y]=E[X]−E[Y]� E. So there is a subgraph H of G

with X − Y � E. By deleting one edge from each copy of F(r) inH, we get a subgraph G′ ofH with

at least E edges and no copy of F(r). Hence we may assume that Ee/n2e−v > E, from which we get

E[X]= 2E= �(n2−(v−2)/(e−1))= �(nα) for some α > 0

(here we use v< 2e). Using the Chernoff bound (Lemma 3.4), one can show that P[X < E]<
1/2 for sufficiently large n. Also, by Markov’s inequality, P[Y > 2E[Y]]< 1/2. So with positive

probability, H has at least E edges and contains at most O(Ee/n2e−v) copies of F(r).

Let us remark that the bound given in Definition 2 is specific to the setting where the host graph
is linear and embedded graphs is an expansion. In a different setting, the supersaturation problem
typically becomes very different and the expected optimal count is expected to be different. In fact,

as mentioned in the Introduction, the thresholds for forcing even just one copy of F(r) can be very
different depending on whether or not we require the host graph to be linear.

An r-graph G is r-partite if there exists a partition of V(G) into r subsets A1, . . . ,Ar such that
each edge of G contains exactly one vertex from each Ai. We call (A1, . . . ,Ar) an r-partition of
G. Given an r-partite r-graph G with an r-partition (A1, . . . ,Ar) and 1� i< j� r, we define the
(i, j)-projection of G, denoted by Pi,j(G), to be a 2-graph with edge set

E(Pi,j(G))= {e∩ (Ai ∪Aj) | e ∈ E(G)}.
We call a 2-graph H a 2-projection of G if H = Pi,j(G) for some 1� i< j� r. The following
proposition follows immediately from the definition of Pi,j(G) and the linearity of G.

Proposition 2.2. Let G be a linear r-partite r-graph with an r-partition (A1, . . . ,Ar). Let 1�
i< j� r. Then the mapping f : E(G)→ E(Pi,j(G)) defined by f (e)= e∩ (Ai ∪Aj) is bijective. In
particular, e(G)= e(Pi,j(G)).

Next we give the following slightly technical definition of what we call projection-restricted
supersaturation in linear r-partite r-graphs. In the next section we show that we can obtain the

supersaturation of an expansion F(r) in linear r-graphs from projection-restricted supersaturation
in linear r-graphs which have an almost-regular 2-projection.

Definition 3. Given a 2-graph F with v vertices and e edges, r� 2 and c a positive real. For a linear,

r-partite r-graph G and any 2-projection of it, say P, we say that (G, P) c-supersaturates F(r) if

tF(r)(G)� c
(e(P))e

(v(P))2e−v
.

Note that for 2-graphs, Definition 3 coincides with Definition 2.
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3. Reduction results

Erdős and Simonovits [7] proved the following ‘regularization’ theorem for 2-graphs.

Theorem 3.1 ([7]). Let 0< α < 1 be a real and q= 20 · 2(1/α)2 . There exists n0 = n0(α) such that
if G is a (1, 1+ α)-dense graph on n� n0 vertices then there exists a q-almost-regular subgraph of

G, say G′, which is (2/5, 1+ α)-dense such that v(G′)> nα(1−α)/(1+α).

Theorem 3.1 is a useful tool for the Turán problem for H. Indeed, given a dense enough G, we
may first find an almost-regular subgraph G′ that has similar density to G and look for a copy of
H in G′. This theorem itself is not sufficient for establishing supersaturation results for 2-graphs
since we aim to force many copies of H in G. By going into G′, we might lose many copies of H.
What we probably need is the existence of a collection of dense enough almost-regular subgraphs
of G which together supply the number of copies ofH that we need. Indeed, this is the rough idea
behind the following lemma, which may be viewed as some kind of extension of Theorem 3.1. For
any s, t integers, t� s� 1, and a graph H, we define

f (H, s, t)=
(e(H))s

(v(H))t
.

Lemma 3.2. Let α be a real and s, t integers, where 0< α < 1 and t� s� 1, then there exist positive
reals C0 = C0(α, s, t) and q= q3.2(α, s, t) such that the following holds. For every C� C0, if G is a
(C, 1+ α)-dense graph then it contains a collection of edge-disjoint subgraphs G1, . . . ,Gm satisfying

(1) for all i ∈ [m], Gi is q-almost-regular and ( 14C, 1+ α)-dense,

(2)
∑m

i=1 f (Gi, s, t)�
1
4s f (G, s, t).

Proof. While we specify the choice of q explicitly, we do not do so for C0. We assume C0 is
sufficiently large as a function of α, s and t. Let

p=
⌈

2max{4/α,(2s+t)/(t−s+1)}⌉

and q= 8p. By the definition of p, we have

pα
� 16 and pt−s+1

� 22s+t . (3.1)

Suppose G has n vertices. Let us partition V(G) into p sets A1, . . . ,Ap of almost equal sizes,
i.e. each of size �n/p� or �n/p�, such that A1 contains vertices of the highest degrees in G. For
convenience, we will drop the ceilings and floors in our arguments as doing so does not affect the
arguments except for the slight changes to constants.

We now prove our statement by induction on n. When n< q the claim holds trivially, since
either G itself is q-almost-regular or no (C, 1+ α)-dense graph on n< q vertices exists. For the
induction step, we consider two cases.

Case 1. The number of edges in G with at least one endpoint in A1 is at most e(G)/2.

Let d = d(G) be the average degree of G. By our definition of A1, for each vertex v ∈V(G) \A1,
we have dG(v)� pd; otherwise

∑

u∈A1
dG(u)> pd(n/p)= nd, a contradiction. Let G′ =G−A1.

Then


(G′)� pd,

and e(G′)� e(G)/2, by initial assumptions. By iteratively deleting vertices whose degree becomes
less than d/8, we obtain a subgraph G′′ ⊆G′ with

e(G′′)� e(G′)−
nd

8
�

e(G)

4
and δ(G′′)�

d

8
.
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Since 
(G′′)�
(G′)� pd and δ(G′′)� d/8, G′′ is 8p-almost-regular, that is, G′′ is q-almost-
regular. Also,

e(G′′)�
1

4
e(G)�

1

4
C[ v(G)]1+α

�
1

4
C[ v(G′′)]1+α .

Thus, G′′ is ( 14C, 1+ α)-dense. Now

f (G′′, s, t)=
[e(G′′)]s

[ v(G′′)]t
�

[ e(G)/4]s

[ v(G)]t
�

1

4s
[ e(G)]s

[ v(G)]t
=

1

4s
f (G, s, t).

So the claim holds by letting our collection of subgraphs be {G′′}.
Case 2. The number of edges in G with at least one endpoint in A1 is more than 1

2 e(G).

For each i= 2, . . . , p, let Gi =G[A1 ∪Ai], ni = v(Gi) and ei = e(Gi). Then, for each i ∈
{2, . . . , p}, ni = 2n/p. Also,

p
∑

i=2

ei �
e(G)

2
.

Let I = {2, . . . , p}. Define

I1 = {i ∈ I : ei � Cn1+α
i } and I2 = I \ I1.

Recall that pα � 16. By the definition of I2 and the fact that ni = 2n/p for each i ∈ [p], we have

∑

i∈I2

ei �
C

p1+α

∑

i∈I2

(2n)1+α
�

C|I2|21+αn1+α

p1+α
�

4Cn1+α

pα
�

C

4
n1+α

�
e(G)

4
.

Hence
∑

i∈I1

ei �
e(G)

4
. (3.2)

For each i ∈ I1 since ei � Cn1+α
i and ni < n, by the induction hypothesis, Gi contains a collection

of edge-disjoint subgraphs G1
i , . . . ,G

mi
i each of which is q-almost-regular and ( 14C, 1+ α)-dense

such that
mi
∑

j=1

f (G
j
i, s, t)�

1

4s
f (Gi, s, t).

Hence

∑

i∈I1

mi
∑

j=1

f (G
j
i, s, t)�

1

4s

∑

i∈I1

f (Gi, s, t)=
1

4s

∑

i∈I1

esi
nti

=
pt

4s(2n)t

∑

i∈I1

esi . (3.3)

Hence, by (3.2), (3.3), pt−s+1 � 22s+t , and the convexity of the function xs, we have

∑

i∈I1

mi
∑

j=1

f (G
j
i, s, t)�

pt

4s(2n)t

(
∑

i∈I1
ei)

s

|I1|s−1
�

pt−s+1

42s2t
es

nt
�

1

4s
f (G, s, t).

Hence the claims holds by letting {Gj
i : i ∈ I1, 1� j�mi} be our collection of subgraphs ofG. This

completes Case 2 and the proof.

Now we are ready to state our main result of the section. Informally, it says that we can

obtain the supersaturation of an expansion F(r) in linear r-graphs from projection-restricted
supersaturation in linear r-graphs which have an almost-regular 2-projection.
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Theorem 3.3. Let α ∈ (0, 1) be a real and r� 2. Let F be a graph with v vertices and e edges,
where e� v. There exists a real q= q(α, F)� 1 such that the following holds. Suppose C, c> 0 are
constants such that, for every linear r-partite r-graph G that has a (C, 1+ α)-dense and q-almost-

regular 2-projection P, (G, P) c-supersaturates F(r). Then there exist C′, c′ such that every linear

r-partite r-graph that is (C′, 1+ α)-dense c′-supersaturates F(r).

Proof. Let s= e, t = 2e− v. By our assumption, t� s� 1. We show that the theorem holds for q
to be chosen as q3.2(α, s, t), derived from Lemma 3.2 applied with constant α, s and t. Finally, let

C′ = 4C, c′ =
cr2e−v

24e−v
.

Let G be an r-partite r-graph on n vertices such that e(G)� 4Cn1+α . Suppose G has an r-partition
(A1,A2, . . . ,Ar), such that |A1|� |A2|� . . . |Ar|. It follows that |A1 ∪A2|� 2n/r, and H =
P1,2(G) is a (4C, 1+ α)-dense graph. By Lemma 3.2, there exists a collection of edge-disjoint
subgraphs H1, . . . ,Hm of H, each of which is (C, 1+ α)-dense and q-almost-regular, such that

m
∑

i=1

f (Hi, s, t)�
1

4s
f (H, s, t).

For each i ∈ [m], let Gi be the subgraph of G such that P1,2(Gi)=Hi. For each i ∈ [m], since Hi is
(C, 1+ α)-dense and q-almost-regular, by the hypothesis of the theorem, (Gi,Hi) c-supersaturates

F(r). That is,

tF(r)(Gi)� c
(e(Hi))

s

(v(Hi))t
= cf (Hi, s, t).

Since the Hi’s are edge-disjoint, the Gi’s are also edge-disjoint (i.e. there is no edge contained in
two different Gi’s). Thus we have

tF(r)(G)�

m
∑

i=1

tF(r)(Gi)

� c

m
∑

i=1

f (Hi, s, t)

�
c

4s
f (H, s, t)

=
c

4e
·

(e(H))e

(v(H))2e−v

�
cr2e−v

24e−v
·
(e(G))e

n2e−v
.

Theorem 3.3 says that to establish supersaturation of F(r) in an n-vertex linear r-partite r-graph
G, we may assume G has a dense enough almost-regular 2-projection P. Our next lemma can be
used to show that we may further assume P to have edge density exactly �(v(P)1+α), where α is

any fixed real for which ex(n, F(r))=O(n1+α). The proof uses random sampling and the classical
Chernoff bound, which we state here for completeness.

Lemma 3.4 (Corollary 2.3 of [16]). Given a binomially distributed variable X ∈ BIN (n, p)we have

P(|X −E[X]|� aE[X])� 2e−(a2/3)E[X], as long as 0< a� 3/2.

Lemma 3.5. Let r� 2 be an integer. Let α ∈ (0, 1) be a real. Let F be a graph with v vertices and
e edges, where e� v. There is a constant m0 =m0(α) such that the following holds for all M�m0.
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Suppose D, q, c> 0 are reals where q� 1 such that, for every linear r-partite r-graph G′ that has a
2-projection P′ on m�M vertices satisfying Dmα � δ(P′)�
(P′)� 3qDmα , we have that (G′, P′)
c-supersaturates F(r). Then, for every linear r-partite r-graph G that has a (qD, 1+ α)-dense and

q-almost-regular 2-projection P on at least M vertices, (G, P) c/2e+1-supersaturates F(r).

Proof. The choice ofm0 will be given implicitly in the proof. LetG be a linear r-partite graph with
an r-partition (A1,A2, . . . ,Ar), where without loss of generality P = P1,2(G) is (qD, 1+ α)-dense,
q-almost-regular, and has m= v(P)�M vertices. The idea is to sample randomly a subgraph G′

of G with an appropriate edge probability, count F(r) in G′, and then use it to bound the count of

F(r) in G. Now let δ(P), 
(P) and d denote the minimum, maximum and average degrees in P,
respectively. Then

d =
2 e(P)

v(P)
�

2qDm1+α

m
= 2qDmα .

Since P is q-almost-regular, we have δ(P)� d/q� 2Dmα .
Let p= 2Dmα/δ(P) and let G′ be a random subgraph of G, obtained by including each edge of

G in G′ independently with probability p. Then

E[ e(G′)]= p e(G) and E[tF(r)(G
′)]= tF(r)(G) · pe,

E[dG′(v)]= pdG(v) for all v ∈V(G′)v ∈V(G′).

SinceG is linear and P is a 2-projection, for each v ∈V(P)=A1 ∪A2 we have dG(v)= dP(v). Since
P is q-almost-regular, 
(P)/δ(P)� q. So, for each v ∈A1 ∪A2, we have

E[dG′(v)]= pdG(v)= pdP(v)�
2Dmα

δ(P)

(P)� 2qDmα ,

and similarly E[dG′(v)]� 2Dmα .
Now random variables dG′(v) and e(G′) have binomial distributions. Hence, using Markov’s

inequality and Chernoff ’s inequality, one can show that

P[tF(r)(G
′)> 2tF(r)(G) · pe]<

1

2
,

P[ e(G′)<
p

2
e(G)]<

1

4

and

P[∃v ∈A1 ∪A2 such that dG′(v)<Dmα or dG′(v)> 3qDmα]< 1/4.

In some of the inequalities above, we used Chernoff (and the union bound for the last one).
The desired inequalities hold when m is large enough as a function of α, which is guaranteed
by choosingm0 to be large enough. So there exists a subgraph G′ of G satisfying

e(G′)�
p

2
e(G), tF(r)(G

′)� 2tF(r)(G) · pe, (3.4)

and that for each v ∈A1 ∪A2

Dmα
� dG′(v)� 3qDmα . (3.5)

Now let P′ = P1,2(G
′). Since there is a bijection between E(G′) and E(P′), for each v ∈V(P), we

have dP′(v)= dG′(v). By (3.5), for each v ∈V(P′)=A1 ∪A2, we have

Dmα
� dP′(v)� 3qDmα .

Thus, by the hypothesis of our theorem, (G′, P′) c-supersaturates F(r). By (3.4), we have

tF(r)(G)�
1

2pe
tF(r)(G

′)�
c

2pe
·
(e(G′))e

m2e−v
�

c

2pe
·
pe(e(G))e

2em2e−v
=

c

2e+1
·
(e(G))e

m2e−v
.
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Applying Theorem 3.3 and Lemma 3.5 we obtain the following reduction tool for supersatura-

tion of expansions. In this paper we use it on C
(r)
2k
.

Corollary 3.6. Let r� 2 be an integer and α ∈ (0, 1) a real. Let F be a graph with v vertices and
e edges, where e� v. Let q= q3.3(α, F) be given as in Theorem 3.3 and m0 =m0(α) be given as
in Lemma 3.5. Suppose there exist reals D, λ,M, c> 0, where λ� 3q,M�m0, such that, for every
linear r-partite r-graph G that has a 2-projection P on m�M vertices satisfying Dmα � δ(P)�


(P)� λDmα , we have that (G, P) c-supersaturates F(r). Then there exist C′, c′ such that every

(C′, 1+ α)-dense linear r-graph G c′-supersaturates F(r).

Proof. Suppose there exist reals D, λ > 0, where λ� 3q, such that, for every linear r-partite r-
graph G that has a 2-projection P on m�M vertices satisfying Dmα � δ(P)�
(P)� λDmα , we

have that (G, P) c-supersaturates F(r). By Lemma 3.5, there exists a constant c3.5 such that, for every
linear r-partite r-graph G that has a (qD, 1+ α)-dense q-almost-regular 2-projection P on at least

M vertices, (G, P) c3.5-supersaturates F
(r). Set C =max{qD,M}. Then, for every linear r-partite

r-graph G that has a (C, 1+ α)-dense q-almost-regular 2-projection P, we have that (G, P) c3.5-

supersaturates F(r) (as P must have at least C�M vertices). Applying Theorem 3.3 with the C
above and c= c3.5, there exist constant C

′
3.3 and c′3.3 such that every linear r-partite r-graph that is

(C′
3.3, 1+ α)-dense c′3.3-supersaturates F

(r).
Let C′ = (rr/r!)C′

3.3. Let G be a linear (C′, 1+ α)-dense r-graph. By a well-known fact, G con-
tains an r-partite subgraph G′ with e(G′)� (r!/rr) e(G). Clearly, G′ is (C′

3.3, 1+ α)-dense. By our

discussion above, G′ c′3.3-supersaturates F
(r). Hence G c′3.3-supersaturates F

(r).

Corollary 3.7. Let r, k� 2 be integers. There exist constants mk, qk depending only on k such that
the following holds. Suppose there are reals D, λ,M, c> 0, where λ� qkD and M�mk, such that,
for every n-vertex linear r-partite r-graph G that has a 2-projection P on m�M vertices satisfying

Dm1/k � δ(P)�
(P)� λDm1/k, we have t
C
(r)
2k

(G)� cm2. Then there exist constants C′, c′ such that

every n-vertex linear r-graph G with e(G)� C′n1+1/k satisfies t
C
(r)
2k

(G)� c′(e(G)/n)2k.

4. Overview of the proof of Theorem 1.1

In this short section, we give a brief outline of the proof strategy for r = 2. The strategy for r� 3
is similar and relies on establishing some coloured version of the r = 2 case. See Section 6 for
details. By Corollary 3.7, to prove Theorem 1.1 for r = 2, it suffices to prove that every almost-

regular n-vertex bipartite graph with average degree �(n1/k) contains at least �(n2) linear cycles
of length 2k. Suppose we are given an n-vertex almost-regular bipartite graph G with average

degree�(n1/k). The key ingredient is to show that for each vertex x, there exists a j= j(x) ∈ [k− 1]
such that the number of C2k’s containing some vertex that lies in the jth distance classes from x

is at least �(n1+j/k). Suppose we have established that. Then, for some t ∈ [k− 1], there are �(n)

different vertices x in G with j(x)= t. Since 
(G)=O(n1/k) by almost-regularity, any vertex in

G lies in the jth distance class of at most O(nt/k) different vertices x. Hence G contains at least

�(n · n1+t/k/nt/k)= �(n2) distinct C2k’s and we are done.
To establish the above-mentioned key ingredient, we adapt the Faudree–Simonovits method

as follows. From each vertex x we use breadth-first search (BFS) to obtain the distance classes
L0 = {x}, L1, L2, . . . . Using the minimum degree assumption, we can find the smallest i ∈ [k− 1]
such that the subgraph G[Li ∪ Li+1] of G induced by Li ∪ Li+1 has average degree at least some

given constant, depending on k and i. The choice of i together with the condition δ(G)= �(n1/k)
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also ensures that |Li| = �(ni/k) and e(G[Li ∪ Li+1])= �(n(i+1)/k). Let T be a BFS tree rooted at x
with vertex set L0 ∪ L1 ∪ · · · ∪ Li. We divide vertices in Li+1 into L

+
i+1 and L−

i+1, where the former
consists of those in Li+1 that send edges in G to many components of T − x (i.e. many different
subtrees of T under x) and the latter consists of the rest of Li+1. If most of the edges of G[Li ∪
Li+1] go into L

+
i+1, we build many paths of length 2k− 2i in G[Li ∪ Li+1] whose two ends lie in Li

and under different children of x in T. These paths then extend to different C2k’s going through
x. If most edges of G[Li ∪ Li+1] go into L−

i+1, then we do some cleaning to find vertex-disjoint
subgraphs of G[Li ∪ Li+1] which together capture at least a constant proportion of the edges of
G[Li ∪ Li+1] such that each is attached to a different component of T − x. Since the height of
these components of T − x, viewed as subtrees rooted at children of x, is one shorter than that of
T, we can apply some form of induction to show that these subgraphs together with the different
subtrees of T that they are attached to collectively supply the needed collection of C2k’s.

Let us now describe a variant of this method, which avoids induction (on the height of a BFS
tree) and appears more versatile. The key to the Faudree–Simonovits method is that any path of
length p in G[Li ∪ L+

i+1] that starts in some vertex a in Li and ends in some vertex b in L+
i+1 can

be extended at b to end at a vertex c in Li so that a and c lie under different children of x in T.
This allows us to round out the path into a cycle through x of length p+ 2i+ 1, as the paths in
T from a and c to x are internally disjoint. The useful feature of a vertex v in L+

i+1 is that it is
well-linked to x by some measure. A variant to the Faudree–Simonovits method is to locate for
each vertex v in Li+1 some vertex r(v) in T (which may not be x itself) that v is well-linked to,
which we may call the ‘local root’ for v (see Lemma 5.1 for details). Then we partition Li+1 based
on the level r(v) lies in over all v ∈ Li+1. This new approach has the advantage that even if T is
replaced with some non-tree structure, we will still be able to extend a path in G[Li ∪ Li+1] to a
cycle through a local root in a well-controlled way. Indeed, in [5], this variant is key to establishing

that ex�(n, C
(r)
2k+1

)=O(n1+1/k).
In our proof of Theorem 1.1 we will use the Faudree–Simonovits inductive approach for r� 3

and the ‘local root’ approach for r = 2. As we mentioned before, one could prove Theorem 1.1 in
its generality using one of the two approaches.

5. Supersaturation of even cycles in graphs

5.1 Preliminary lemmas

Lemma 5.1. Let T be a tree of height h with a root x. For each v ∈V(T), let Tv be the subtree of T
rooted at v. Let b be a positive integer. Let S be a set of at least bh+ 1 vertices in T. Then there exists
a vertex y at distance i from x, for some 0� i� h− 1, such that |V(Ty)∩ S|� |S| − ib and that for
any child z of y in T, |V(Tz)∩ S|� |V(Ty)∩ S| − b.

Proof. We define a sequence of vertices as follows. Let x0 = x. Among all the children of x0, let
x1 be one such that Tx1 contains the maximum number of vertices in S. Among all the children
of x1, let x2 be one that contains the maximum number of vertices in S, and so on. Suppose the
sequence we define this way is x0, x1, . . . , xp, where p� h and |V(Txp)∩ S| = 1. Since |V(Tx0)∩
S|� bh+ 1 and |V(Txp)∩ S| = 1, there must exist a smallest index 0� i< p such that |V(Txi+1)∩
S|� |V(Txi)∩ S| − b. Let y= xi. Then y satisfies the claim.

Given a bipartite graph G with a bipartition (A, B), we will use dA(G) and dB(G) to denote the
average degree in G of vertices in A and in B, respectively. Also, we will use δA(G) and δB(G) to
denote the minimum degree inG of vertices inA and in B, respectively. When the graphG is clear,
we will drop G from the notation above and write dA, dB, δA, δB, respectively.
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Lemma 5.2. Given a bipartite graph G with a bipartition (A, B), there exists a subgraph G′ of G with

a bipartition (A′, B′) where A′ ⊆A, B′ ⊆ B such that e(G′)� 1
2 e(G) and that δA′(G′)� 1

4dA(G) and

δB′(G′)� 1
4dB(G).

Proof. Let dA = dA(G) and dB = dB(G). Let us iteratively delete any vertex in A whose degree

becomes less than 1
4dA and any vertex in B whose degree becomes less than 1

4dB. We continue
until we no longer have such vertices or run out of vertices. Let G′ denote the remaining graph.
Let A′ denote the set of remaining vertices in A and B′ the set of remaining vertices in B. The
number of edges removed in the process is at most

1

4
dA|A| +

1

4
dB|B|�

1

4
e(G)+

1

4
e(G)=

e(G)

2
.

HenceG′ is non-empty. By the procedure, each vertex inA′ has degree at least 1
4dA and each vertex

in B′ has degree at least 1
4dB in G′.

We also need the following crude bound on the number of paths of a given length in an asym-
metric bipartite graph. Even though sharper estimates exist in the literature, the lemma suffices
for our purposes and is self-contained.

Lemma 5.3. Let p be a positive integer. Let G be a bipartite graph with a bipartition (A, B). Let
dA, dB denote the average degrees of vertices in A and in B, respectively. Suppose dA, dB � 8p. Then
the number of paths of length 2p+ 1 in G is at least

1

26p+1
e(G)(dAdB)

p.

Proof. By Lemma 5.2, G contains a subgraph G′ with a bipartition (A′, B′) such that e(G′)�
1
2 e(G) and that δA′(G′)� 1

4dA, δB′(G′)� 1
4dB. Consider growing a (2p− 1)-path v1v2 . . . v2p

where v1 ∈A, v2p ∈ B. There are e(G′) ways to pick v1v2. Then there are at least
∏p

i=1 (δB′ −
i)(δA′ − i) ways to pick the remaining vertices one by one. Since δA′ � 1

4dA � 2p and δB′ � 1
4dB �

2p, we have δA′ − i� 1
2dA′ � 1

8dA and δB′ − i� 1
2dB′ � 1

8dB for all i ∈ [p]. Hence the number of
(2p+ 1)-paths in G is at least

1

2
e(G) ·

1

26p
(dAdB)

p =
1

26p+1
e(G)(dAdB)

p.

5.2 Proof of Theorem 1.1 for r= 2

Lemma 5.4. Let h, k be positive integers where h� k. Let G be a graph. Let T be a tree of height h
in G with a root x. For each i ∈ [h], let Li be the set of vertices at distance i from x in T. Let W be
a set of vertices in V(G) \V(T). Let F denote the bipartite subgraph of G containing all the edges of
G between Lh and W. Let dL, dW be the average degree in F of vertices in Lh and in W, respectively.
Suppose dL, dW � 16k2. Then there exists j ∈ [h] such that the number of C2k’s in G that contain

some vertex in Lj is at least αk|Lh|d
k−h+j
L d

k−h+j−1
W , where

αk =
1

26k

(

1

2k

)2k−2

.

Proof. For each vertex y in T, let Ty denote the subtree of T rooted at y. We clean up F to get a
subgraph F′ of F as follows. First we delete vertices w inW with dF(w)� kh. LetW′ denote the set
of remaining vertices in W. Let w ∈W′. Applying Lemma 5.1 to T and S=NF(w), we conclude
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that there exists some vertex r(w) ∈ Lj for some j ∈ [h− 1] such that there are at least |NF(w)| − kj
members of NF(w) that lie in Tr(w). Furthermore, for any child z of r(w) in T, there are at least
k members of NF(w)∩V(Tr(w)) that lie outside Tz. To form F′, we include edges between w and
NF(w)∩V(Tr(w)) for each w ∈W′. By our assumptions, in forming F′ from F we have deleted at
most kh edges incident to each w ∈W. Hence

e(F′)� e(F)− kh|W|.

For each j ∈ [h− 1], let Wj = {w ∈W′ : r(w) ∈ Lj} and let Fj be the subgraph of F′ induced by
Lh ∪Wj. Let us choose an j ∈ [h− 1] such that e(Fj) is maximum. Then (as h� k)

e(Fj)�
1

h
e(F′)�

1

k
e(F′)�

1

k
(e(F)− kh|W|)�

1

2k
e(F), (5.1)

where the last inequality follows from the fact that e(F)= dW |W|� 16k2|W|� 2kh|W|.
Suppose Lj = {z1, z2, . . . , zt}. For each e ∈ [t], let Se = Lh ∩V(Tze). By our definition of F′ and

Fj, in Fj each w ∈Wj has edges to precisely one Se. LetNe =NFj(Se). ThenN1, . . . ,Nt partitionWj

and Fj is the vertex-disjoint union of Fj[Se ∪Ne], for e ∈ [t]. Letm= k− (h− j).

Claim 1. Every (2m− 1)-path P in Fj extends to a C2k in G that contains a vertex in Lj.

Proof of claim. Consider any (2m− 1)-path P in Fj. By our discussion, P ⊆ Fj[Se ∪Ne] for some
e ∈ [t]. Suppose Q= v1v2 . . . v2m, where v1 ∈ Se and v2m ∈Ne. Then r(v2)= r(v2m)= ze. Let a
denote the child of ze in Tze such that v1 lies under a. Since r(v2m)= ze, by definition, v2m has
at least k neighbours in Tze that lies outside Ta. Among them, at least one, say u, lies outside V(P).
Let Q,Q′ denote the unique (v1, ze)-path and the unique (u, ze)-path in Tze , respectively. Since v1
and u lie under different children of ze, V(Q)∩V(Q′)= {ze}. Now P ∪ v2mu∪Q∪Q′ is a cycle of
length 2m− 1+ 1+ 2(k−m)= 2k in G that contains ze.

By Claim 1 the number of C2k’s in G that contain a vertex in Lj is at least the number of
(2m− 1)-paths in Fj. To complete our proof, it suffices to find a corresponding lower bound on
the number of (2m− 1)-paths in Fj. For convenience, let A= Lh and B=Wj. Let dA, dB denote
the average degrees in Fj of vertices in A and B, respectively. By (5.1),

dA �
1

2k
dL � 8k� 8m and dB �

1

2k
dW � 8k� 8m.

By Lemma 5.3 with p=m− 1, the number of (2m− 1)-paths in Fj is at least

1

26(m−1)+1
e(Fj)[dAdB]

m−1
�

1

26m

(

1

2k

)2m−2

e(Fj)d
m−1
L dm−1

W

� αk|Lh|dmL d
m−1
W

= αk|Lh|d
k−h+j
L d

k−h+j−1
W ,

where

α =
1

26k

(

1

2k

)2k−2

.

This completes our proof.

In the next theorem, we use Lemma 5.4 to quickly obtain the desired lower bound on the

number of C2k’s in almost-regular n-vertex graphs whose number of edges is �(n1+1/k).
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Theorem 5.5. Let k� 2 be an integer. Let D, λ > 0 be constants where D� 64k2 and λ� 1. Let

n0 = (8λ)k. Let G be an n-vertex bipartite graph, n� n0 such that, for each v ∈V(G), Dn1/k �

d(v)� λDn1/k. Then there exists a positive constant β = β(D, λ, k) such that tC2k
(G)� βn2.

Proof. For each x ∈V(G), let Li(x) denote the set of vertices at distance i from x. Let h(x) be the
minimum i� k− 1 such that |Li+1(x)|/|Li(x)| < n1/k. Clearly h(x) exists or else we run out of
vertices. Let h= h(x). Let T be a BFS tree rooted at x that includes L0(x), L1(x), . . . , Lh(x). By our
assumption,

|Lh(x)|� nh/k and |Lh+1(x)| < n1/k|Lh(x)|.

Recall that |Li+1(x)|/|Li(x)|� n1/k for all i= 0, 1, . . . , h− 1. Since n� n0 � (8λ)k, n1/k � 8λ. By
our assumption,

|V(T) \ Lh(x)|� |Lh|
h−1
∑

i=1

(

1

8λ

)i

�
1

4λ
|Lh(x)|.

Let F be the bipartite subgraph ofG consisting of all the edges ofG between Lh(x) and Lh+1(x). The

total number of edges of G incident to Lh(x) is at least Dn
1/k|Lh(x)|/2. Among them, the number

of edges that are incident to V(T) \ Lh(x) is at most

(1/4λ)λDn1/k|Lh(x)| = (1/4)Dn1/k|Lh(x)|.

Hence

e(F)� (1/4)Dn1/k|Lh(x)|.

Let dA, dB denote the average degrees in F of vertices in Lh(x) and Lh+1(x), respectively. Then

dA � (1/4)Dn1/k � 16k2n1/k � 16k2,

and

dB � (1/4)Dn1/k|Lh(x)|/|Lh+1(x)|� (1/4)D� 16k2.

By Lemma 5.4, there exists a j ∈ [h− 1] such that the number of C2k’s in G that contain a vertex in
Lj(x) is at least

αk|Lh|d
k−h+j
A � αkn

h/k(n1/k)k−h+j = αkn
1+j/k.

Let us denote this j value by j(x). For each t ∈ [h− 1], let St = {x ∈V(G) : j(x)= t}. By the pigeon-
hole principle, for some t ∈ [h− 1], we have |St|� n/(h− 1). Let us fix such a t. By our discussion,

for each x ∈ St , the number of C2k’s that contain a vertex in Lt(Tx) is at least αkn
1+t/k. On the other

hand, a vertex y lies in Lt(Tx) for at most [λDn1/k]t different x. Hence the number of distinct C2k’s
in G is at least

|St|αkn
1+t/k/λtDtnt/k � (αk/kλ

kDk)n2.

The claim holds by setting β = αk/kλ
kDk.

Proof of the r = 2 case of Theorem 1.1. Theorem 5.5 applies as long as D� 64k2, λ� 1, and

n0 � (8λ)k. To apply Corollary 3.7, we set D=max{64k2,mk}, λ = qkD and Mk = (8λ)k, where
mk, qk are as given in Corollary 3.7. The claim follows readily from Corollary 3.7.
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6. Supersaturation of even linear cycles in linear hypergraphs

6.1 Notation and preliminary results

Let H be a graph and S be a set of vertices, where possibly S∩V(H) �= ∅. Let ϕ be any colouring
of the edges of H using non-empty subsets of S. Given any subgraph F of H, we let

C (F)=
⋃

e∈E(F)
ϕ(e),

and call it the colour set of F under ϕ. We say that ϕ is strongly proper on H if, for any e, e′ ∈ E(H)
that share a vertex, we have ϕ(e)∩ ϕ(e′)= ∅. We say that ϕ is rainbow on F (or that F is rainbow
under ϕ) if, for every two edges e, e′ in F, we have ϕ(e)∩ ϕ(e′)= ∅ and that C (F) is disjoint from
V(F). Note that if ϕ uses (r − 2)-subsets of S and F is rainbow under ϕ, then F ∪ C (F) forms an
r-expansion of F. Observe that if G is an r-partite linear r-graph with an r-partition (A1, . . . ,Ar),
then the natural colouring ϕ of Pi,j(G), where, for all f ∈ E(Pi,j(G)), ϕ(f ) is the unique (r − 2)-tuple
If for which f ∪ If ∈ E(G), is strongly proper on Pi,j(G) by the linearity of G.

LetG be an r-graph and v ∈V(G). Recall the definition of LG(v) from the Introduction. For any
subset S⊆V(G), we let LG(v)|S denote the restriction of the link of v to S, that is,

LG(v)|S = {I ⊆ S | I ∈ LG(v)}.

We give a very crude analogue of Lemma 5.3, this time counting rainbow paths of a given
length in an asymmetric bipartite graph.

Lemma 6.1. Let p,m be positive integers and H be a bipartite graph with a bipartition (A, B). Let
ϕ be a strongly proper edge-colouring of H using m-sets. If δA, δB � 4p(m+ 1) then the number of
rainbow paths of length 2p+ 1 in H is at least

1

22p
e(H)(δAδB)

p.

Proof. Consider growing a rainbow path P = v1v2 . . . v2p+2 where v1 ∈A and v2p+2 ∈ B. There
are e(H) choices for v1v2. In general, suppose the subpath Pt = v1v2 . . . vt has been grown, where
2� t� 2p+ 1. If vt ∈A then we let vt+1 be a neighbour of vt in B such that {vt+1} ∪ ϕ(vtvt+1)
is disjoint from (V(Pt) \ {vt})∪ C (Pt). If vt ∈ B, vt+1 is defined symmetrically. Assume first that
vt ∈A. Note that

|(V(Pt) \ {vt})∪ C (Pt))|� t − 1+ (t − 1)m� 2p(m+ 1).

Since ϕ is strongly proper, the set {u∪ ϕ(u) : u ∈NH(vt)} is an (m+ 1)-uniform matching of size
dH(vt). At most 2p(m+ 1) of these members contain a vertex in (V(Pt) \ {vt})∪ C (Pt). So there

are at least dH(vt)− 2p(m+ 1)� δA − 2p(m+ 1)� 1
2δA choices for vt+1. Similarly, if vt ∈ B, there

are at least 1
2δB choices for vt+1. Hence the number of ways to grow P is at least

e(H)

(

1

2
δA

)p(1

2
δB

)p

=
1

22p
e(H)(δAδB)

p.

Lemma 6.2 (splitting lemma). Suppose we are given D ∈R
+, γ ∈ (0, 1) and integers k, r� 2. There

exists n0 = n6.2(D, k, r, γ ) such that, for all n� n0, if G is a linear r-partite r-graph such that two of its
r-partition classes, say A and B, satisfy that |A∪ B| = n and that |LG(v)|�Dnγ for each v ∈A∪ B,
then there exists a partition of V(G) into S1, S2, . . . , Sk such that, for every v ∈A∪ B and every
i ∈ [k], we have

|LG(v)|Si |�
Dnγ

2kr−1
.
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Proof. Let us independently assign each vertex x in V(G) a colour from [k] chosen uniformly at
random. Let Si be the vertices of assigned colour i. For a vertex v ∈A∪ B, we let Xi(v) denote the
number of edges (which are (r − 1)-sets) in LG(v) that are completely contained in Si. For each
I ∈ LG(v),

P[I ⊆ Si]=
1

kr−1
.

SinceG is linear, edges in LG(v) are pairwise disjoint. Hence the events {I ⊆ Si} are independent for
different I ∈ LG(v)’s. Therefore Xi(v) has the binomial distribution BIN (dG(v), 1/k

r−1). Writing d
for dG(v), we have E(Xi(v))= d/kr−1. By the Chernoff bound,

P

[

Xi(v)<
d

2kr−1

]

� P

[∣

∣

∣

∣

Xi(v)−
d

kr−1

∣

∣

∣

∣

>
d

2kr−1

]

< 2e−d/(12kr−1) < 2e−Dnγ /(12kr−1).

Therefore the probability that the event {Xi(v)< d/2kr−1} occurs, for some vertex v ∈A∪ B
and some i ∈ [k], is less than

kn · 2e−Dnγ /(12kr−1) < 1,

when n2 is large enough and n� n2. Thus there exists some colouring which guarantees that every
vertex v ∈A∪ B satisfies

|LG(v)|Si |�
d

2kr−1
�

Dnγ

2kr−1
.

Before we establish supersaturation of C
(r)
2k
’s in linear r-partite r-graphs that have an almost-

regular 2-projection with the right density, we need another lemma. Given an r-graph G, where
r� 2, and S⊆V(G), S is a vertex cover of G if S contains at least one vertex of each edge of G.

Lemma 6.3. Let r� 2. Let G be an r-graph and S a vertex cover of G. There exist a subset S′ ⊆ S
and a subgraph G′ ⊆G such that e(G′)� (r/2r) e(G) and that, for all e ∈ E(G′), |e∩ S′| = 1.

Proof. Let S′ be a random subset of S obtained by including each vertex of S randomly and inde-
pendently with probability 1/2. Let e be any edge of G. Suppose |e∩ S| =m. Then 1�m� r. The
probability that exactly one of these m vertices of e∩ S is chosen for S′ is m/2m � r/2r . So the
expected number of edges of G that meet S′ in exactly one vertex is at least (r/2r) e(G). So there
exists S′ ⊆ S such that at least (r/2r) e(G) of the edges meet S′ in exactly one vertex. Let G′ be the
subgraph of G consisting of these edges.

6.2 Rainbow rooted trees

We now introduce the following adaptation of the BFS tree to linear hypergraphs.

Definition 4 (maximal rooted rainbow tree). Given r� 3, let G be a linear r-partite r-graph
with two of its partition classes being A and B, and let t� 0 be an integer. Suppose there exists
a partition of V(G) into S1, S2, . . . , St such that, for every v ∈A∪ B and for every i ∈ [t],

LG(v)|Si �= ∅ (6.1)

For every x ∈A∪ B, we define a tree Tx, rooted at x and of height t, together with a colouring ϕ of
its edges by (r − 2)-sets as follows. We define the tree by defining its levels Li iteratively. The Li’s
will alternate between being completely inside A and being completely inside B. Without loss of
generality, suppose x ∈A. The tree Tx is defined symmetrically if x ∈ B.
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(1) Let L0 = {x}.
(2) Having defined Li, we define Li+1 as follows. Without loss of generality, suppose Li ⊆A.

Let F =
⋃

v∈Li LG(v)|Si+1 . Since G is r-partite with A, B being two partite sets and Li ⊆A,
V(F) is disjoint from A and each edge of F contains exactly one vertex in B. LetMi+1 be a
maximum matching in F. By condition (6.1),Mi+1 is non-empty. Define

Li+1 =Mi+1|B = {b ∈ B | ∃I ∈Mi+1 such that b ∈ I}.

It remains to define how the vertices of Li are connected to Li+1. For each b ∈ Li+1, there
exists a unique Ib ∈Mi+1 which contains b, and due to linearity ofG there is a unique v ∈ Li
such that Ib ∪ {v} ∈ E(G). We add the edge vb to Tx and let ϕ(vb)= Ib \ {b}.

(3) Repeat step (2) until all vertices of G are exhausted or i> t.

Proposition 6.4. Under the assumptions of Definition 4, Tx is a tree of height t rooted at x that is
rainbow under the assigned colouring ϕ. In particular, if P is a path in Tx then P ∪ C (P) is a linear
path of the same length in G with P being its skeleton.

Proof. It is clear from the definition that Tx is a height t tree rooted at x. We now show that
Tx is rainbow under c. By the way we define Tx and c, C (Tx)∩V(Tx)= ∅. Let e, e′ be any two
edges in Tx. Suppose e joins a vertex in Li to Li+1 and e′ joins a vertex in Li′ to Li′+1. If i �= i′, then
ϕ(e)∩ ϕ(e′)= ∅, since ϕ(e)⊆ Si+1 and ϕ(e′)⊆ Si′+1 and Si+1 ∩ Si′+1 = ∅. If i= i′, then e⊆ I and
e′ ⊆ I′ for two different members I, I′ ∈Mi+1. SinceMi+1 is a matching, ϕ(e)∩ ϕ(e′)= ∅. So Tx is
rainbow under c.

The second statement follows immediately from our discussion in Section 6.1 that a rainbow
subgraph F together with its colours forms an expansion of F.

We are now ready to prove the following analogue of Lemma 5.4. As mentioned in the
Introduction, we will give a proof slightly different from that of Lemma 5.4. Instead of using
Lemma 5.1, we will use the strong/weak level notion used by Faudree and Simonovits [12] in the
study of theta graphs. Note that we could also prove Lemma 6.5 using Lemma 5.1 and Lemma 6.1,
but we think that the Faudree–Simonovits approach is more intuitive and less technical for the
hypergraph case.

Lemma 6.5. Let i, k,m be integers where k� i+ 1� 1, m� 1. Let b, d be reals satisfying b, d�
16i(2m+ 2)k. Let Tx be a tree of height i rooted at x. For each j= 0, . . . , i, let Lj be the set of vertices
in Tx at distance j from x. Let W be some set of vertices disjoint from V(T) and let H be a bipartite
graph with bipartition (Li,W) such that

e(H)�max{d|Li|, b|W|}.

Suppose c is an edge-colouring of G= Tx ∪H such that c is rainbow on Tx and strongly proper on
H and that C (G)∩V(G)= ∅ and C (Tx)∩ C (H)= ∅. Then there exist 0� q� i and some positive

real ai = ai(i, k) such that there are at least ai(bd)
k−i−1+q e(H) rainbow C2k’s in G that contain a

vertex in Lq.

Proof. We proceed by induction on the height i of the tree. It holds vacuously for i= 0. For all
i� 1 we prove the result by splitting the argument into two cases, and we use induction in only
one of the cases. It is important to point out that when i= 1 we are in Case 1 and thus need not
use the vacuous case of i= 0 as our induction hypothesis.

Let x1, x2, . . . , xp denote the children of x in Tx. For each j ∈ [p], let T(xj) be the subtree of Tx

rooted at xj. For each j ∈ [p], we define the jth sector to be Sj = Li ∩V(T(xj)). Note that since Tx is
a tree, the Sj’s are pairwise disjoint. For a vertex v ∈ Li, we let S(v) denote the sector that v lies in.
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We say that a sector Sj is dominant for a vertex w ∈W if

|NH(w)∩ Sj| >max

{

|NH(w)| − 2km,
|NH(w)|

2

}

.

We say that w ∈W is strong if it has no dominant sector and weak otherwise. Note that, by our
definition, if w ∈W has a dominant sector then there is only one such dominant sector for w.

Let Ws be the set of strong vertices and letWw be the set of weak vertices, respectively. Let Hs

denote the subgraph ofH induced by Li andWs, and letHw denote the subgraph ofH induced by
Li and Ww. The argument splits into two cases, depending on whether the majority of the edges
ofH lie inHs or inHw. In the first case we build the necessary number of rainbow 2k-cycles going
through the vertex x (so in the outcome of the theorem we have j= 0 as x ∈ L0). In the second case
we use induction to find rainbow 2k-cycles in T(xj)’s for many j.

Case 1.

e(Hs)� e(H)/2. (6.2)

Let davg(Li) and davg(Ws) denote the average degrees inH for vertices in Li andWs respectively.
Then by (6.2), we have davg(Li)� d/2, davg(Ws)� b/2. By Lemma 5.2, there is a subgraph H′ of
Hs with bipartition (A, B), A⊆ Li, B⊆Ws, such that

e(H′)�
e(Hs)

2
�

e(H)

4
, δA(H

′)�
davg(Li)

4
�

d

8
, δB(H

′)�
davg(Ws)

4
�

b

8
. (6.3)

Since b, d� 16i(2m+ 2)k, clearly b/8, d/8� (4m+ 4)k� (4m+ 4)(k− i− 1). Since c is strongly
proper onH, by Lemma 6.1 with p= k− i− 1, the number of rainbow paths of length 2(k− i)− 1
in H′ is at least

1

22(k−i−1)
e(H′)(δA(H

′)δB(H
′))k−i−1

�
1

25(k−i−1)+2
e(H)(bd)k−i−1.

Claim 2. Every rainbow path P = v1v2 . . . v2(k−i) of length 2(k− i)− 1 extends to a rainbow C2k

in G that contains x.

Proof of claim. By symmetry, we may assume that v1 ∈A, v2(k−i) ∈ B. For convenience, let t =
2(k− i). It suffices to show that there exists u ∈NH(vt) (note that u lies in Li but does not neces-
sarily lie inA) such that P ∪ vtu is a rainbow path inH and that S(v1) �= S(u). Indeed, suppose such
a u exists. Then, since S(v1) �= S(u), the unique path Q1 in Tx from v1 to x and the unique path
Q2 from u to x intersect only at x. Since Tx is rainbow, Q1 ∪Q2 is rainbow. By our assumption,
C (Tx)∩ C (H)= ∅. Thus P,Q1,Q2 together form a rainbow C2k in G.

Now we show that such a u exists. Since vt ∈Ws, by definition, |NH(vt) \ S(v1)|� 2km. Since
ϕ is a strongly proper edge-colouring usingm-sets, {w∪ ϕ(w) : w ∈NH(vt) \ S(v1)} is an (m+ 1)-
uniform matching of size |NH(vt) \ S(v1)|� 2km. Since clearly |V(P)∪ C (P)| < 2km, there exists
u ∈NH(vt) \ S(v1) such that (w∪ ϕ(w))∩ (V(P)∪ C (P))= ∅. It is easy to see that P ∪ vtu is a
rainbow path in H. Also, u /∈ S(v1) by choice.

Case 2. e(Hw)� e(H)/2.

In this case we have

e(Hw)�
d

2
|Li|, e(Hw)�

b

2
|W|. (6.4)

Recall that x1, . . . , xp are the children of the root x and for each j ∈ [p], Sj =V(T(xj))∩ Li. For
each j ∈ [p], let Wj be the set of vertices in Ww whose dominant sector is Sj. Now we run the
following ‘cleaning’ procedure. For every vertex y ∈Ww we only keep those edges in Hw joining y
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to vertices in its dominant sector. Let H′′ denote the resulting subgraph of Hw. By the definition
ofWw, every vertex y ∈Ww satisfies

dH′′(y)� |NH(y)| − 2km.

Hence

e(H′′)� e(Hw)− 2km|Ww|.
Since b� 8km, by (6.4) e(Hw)� 4km|W|. Therefore

e(H′′)�
1

2
e(Hw)�

1

4
e(H). (6.5)

For each j ∈ [p], let Hj denote the subgraph of H′′ induced by Sj ∪Wj. Note that the Hj’s are
pairwise vertex-disjoint. We want to apply induction to those T(xj)∪Hj where Hj is relatively
dense from both partite sets. For that purpose we partition the index set [p] as follows. Let

I1 =
{

j ∈ [p] : e(Hj)�
d

16
|Sj|

}

, I2 =
{

i ∈ [p] : e(Hj)�
b

16
|Wj|

}

, I3 = [p] \ (I1 ∪ I2).

By the definition and disjointness of the Hj’s, we have

∑

j∈I1∪I2

e(Hj)�
d

16
|Li| +

b

16
|W|�

1

8
e(H).

Hence
∑

j∈I3

e(Hj)�
1

8
e(H). (6.6)

For each j ∈ I3, by definition, we have

e(Hj)�
d

16
|Sj| and e(Hj)�

b

16
|Wj|.

Since T(xj) has height i− 1 and d/16, b/16> (16)i−1(2m+ 2)k, by the induction hypothesis with
d, b replaced with d/16 and b/16 respectively, there exists q= q(j) such that the number of
rainbow 2k-cycles in T(xj)∪Hj that contain a vertex in level q(j) of T(xj) is at least

ai−1

(

bd

162

)k−(i−1)−1+q(j)

e(Hj)= ai−1

(

bd

162

)k−i+q(j)

e(Hj).

For each t = 0, . . . , i− 2, let I3,t = {j ∈ I3 : q(j)= t}. By the pigeonhole principle, there exists
t ∈ {0, . . . , i− 2} such that

∑

j∈I3,t

e(Hj)�
1

i− 1

∑

j∈I3

e(Hj)�
1

8k
e(H).

Let us fix such a t. By our earlier discussion and the fact that vertices in level t of each T(xj) for
j ∈ I3,t lie in level t + 1 of Tx, the number of rainbow 2k-cycles in G that contain a vertex from
Lt+1 is at least

∑

j∈I3,t

ai−1

(

bd

162

)k−i+t

e(Hj)� ai(bd)
k−i−1+(t+1) e(H),

with the choice of

ai =
ai−1

28(k−i+l)+3k
.

Hence in this case the lemma holds for q= t + 1.
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6.3 Proof of the r� 3 case of Theorem 1.1

We are finally ready to prove the supersaturation statement of C
(r)
2k

for linear r-partite r-graphs
G that have a 2-projection on two parts A, B that is almost-regular and have a number of edges

exactly �(|A∪ B|1+1/k). By Corollary 3.7 this would imply Theorem 1.1 for all r� 3. For this we
first define an adequate partition V(G) into S1, . . . , Sk. From each vertex x we define the maximal
rainbow tree Tx rooted at x relative to the partition (S1, . . . , Sk). Then we apply Lemma 6.5 to find
many rainbow 2k-cycles containing a vertex from some fixed level of Tx, which corresponds to
linear 2k-cycles in G. Summing over all x and eliminating overcount, we get a lower bound on the
number of 2k-cycles in G.

Theorem 6.6. Let k, r� 2 be integers. Let D be a constant such that D� 2r+1rkr(16)k. There exist
n0 such that if G is a linear r-partite r-graph with an r-partition A1, . . . ,Ar such that |A1 ∪A2| =
n� n0 and for every v ∈A1 ∪A2,

Dn1/k � |LG(v)|� λDn1/k,

where λ� 1 is a real, then there exists α = α(k, r, λ) such that t
C
(r)
2k

(G)� αn2.

Proof. The choice of α will be specified at the end of the proof. We will choose n0 to be large
enough that n0 � n6.2(D, k, r, 1/k), where n6.2 is specified in Lemma 6.2. Let S1, S2, . . . , Sk be a
partition obtained by applying Lemma 6.2 to G. In particular, for each x ∈A1 ∪A2 and j ∈ [k], we
have

|LG(x)|Sj |�
Dn1/k

2kr−1
. (6.7)

For each x ∈A1 ∪A2, let Tx be a maximal rainbow tree of height k rooted at x relative to the
partition S1, . . . , Sk, as described in Definition 4. The proof is similar to that of Theorem 5.5. For
each x, we find an i ∈ [k] such that

(i) there exists some setW′ and a bipartite subgraphHx induced by Li andW
′ which has high

average degree from both partite sets;
(ii) the colouring c on Tx is extended to also include a strongly proper edge-colouring of Hx

such that C (Hx)∩ C (Tx)= ∅.

We then use Lemma 6.5 to find many rainbow 2k-cycles that contain some vertex in some fixed
level of Tx. Below are the details.

Fix x and write T for Tx. For j= 0, . . . , k, let Lj be defined as in Definition 4 and let ϕ be the

assigned edge-colouring of T given in Definition 4. Since |L1|�Dn1/k > n1/k and |Lk|� n, there

exists a smallest i ∈ [k− 1] such that, for all 1� j� i, |Lj| > nj/k but

|Li+1|� n(i+1)/k.

Let T′ be the subtree of T induced by
⋃i

j=0 Lj. Let F =
⋃

v∈Li LG(v)|Si+1 . Since Si+1 is disjoint

from S1 ∪ · · · ∪ Si and since Li ⊆A1 whereA1 is a partite set in an r-partition ofG, we haveV(F)∩
V(T′)= ∅. By the construction of T, |Li+1| is equal to the size of a maximummatching in F. Since
F is an (r − 1)-graph, we have τ (F)� (r − 1)α′(F), where τ (F) and α′(F) denote the vertex cover
number and matching number of F, respectively. LetW be a minimum vertex cover of F. Then

|W|� (r − 1)|Li+1|� (r − 1)n(i+1)/k.

By Lemma 6.3, there existW′ ⊆W and F′ ⊆ F such that

e(F′)�
r − 1

2r−1
e(F) and |e∩W′| = 1 for all e ∈ e(F′).
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We define a bipartite graph Hx between Li andW′ and extend the edge-colouring ϕ restricted
on T′ to an edge-colouring of T′ ∪Hx as follows. We go through the edges of F′ one by one.
For each e ∈ E(F′), since G is linear, there is a unique v ∈ Li such that v∪ e ∈ E(G). Also by our
definition of F′, e∩W′ has exactly one vertex w. We include vw in Hx and let ϕ(vw)= e \ {w}. By
the linearity of G and our discussion so far, each edge of F′ yields a different edge of Hx. There is
a bijection between E(F′) and E(Hx). Moreover, C (Hx)∩ C (T′)= ∅, since colours used onHx are
(r − 2)-sets in Si+1 while C (T′)⊆ S1 ∪ · · · ∪ Si.

Since G is linear and r� 3, for all v, v′ ∈ Li we have LG(v)|Si+1 ∩ LG(v
′)|Si+1 = ∅. By (6.7),

e(F)=
∑

v∈Li

|LG(v)∩ Si+1|�
Dn1/k

2kr−1
|Li|.

Hence we have

e(Hx)= e(F′)�
r − 1

2r−1
e(F)�

D(r − 1)

2rkr−1
n1/k|Li|. (6.8)

Also, by our choice of i, |Li+1|� n1/k|Li|. Recall also that |W′|� |W|� (r − 1)|Li+1|. Hence

e(Hx)�
D(r − 1)

2rkr−1
|Li+1|�

D

2rkr−1
|W|�

D

2rkr−1
|W′|. (6.9)

Let

b=
D

2rkr−1
and d =

D(r − 1)

2rkr−1
n1/k.

Since D� 2r+1rkr(16)k, we have d > b� (2(r − 2)+ 2)k(16)k. So T′ andHx satisfy the conditions
of Lemma 6.5 with constants b, d and m= r − 2. By Lemma 6.5, there exists some q= q(x) with
0� q� i and some ai = ai(i, k)> 0 such that there are at least

ai(bd)
k−i−1+qe(Hx)

rainbow C2k’s in T′ ∪Hx that contain some vertex in level Lq of T
′. Now |Li|� ni/k by definition,

e(Hx)��(n(i+1)/k) by (6.8). Also, d = �(n1/k). Hence the number of rainbow C2k’s in T′ ∪Hx

that contain some vertex in Lq is at least

βn(k−i−1+q)/k · n(i+1)/k = βn(k+q)/k for some β = β(k, r)> 0.

So inG there are at least βn(k+q)/k different linear 2k-cycles each of whose skeletons contains some
vertex in Lq.

For each t ∈ [k− 1], let St = {x ∈V(G) | q(x)= t}. By the pigeonhole principle, for some t ∈
[k− 1], |St|� n/(k− 1). Let us fix such a t. Let M denote the number of triples (C, x, y), where
x ∈ St , C is a linear 2k-cycle in G whose skeleton contains a vertex in Lt(Tx) and y is a vertex on
the skeleton of C that lies in Lt(Tx). Let µ denote the number of different linear 2k-cycles C in
G that are involved in these triples. By our discussion above, for each x ∈ St , there are at least

βn(k+q)/k different C. For each such C there is at least one y. So

M� |St|βn(k+t)/k > (β/k)n2+t/k. (6.10)

On the other hand, for each of the µ linear 2k-cycles C involved, there are at most 2k dif-

ferent choices of y. For fixed y, there are at most (λDn1/k)t choices of x since such an x is at
distance at most t from y in the (1, 2)-projection P1,2(G) ofG, which has maximum degree at most

λDn1/k. So

M�µ(2k)(λDn1/k)t . (6.11)
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Combining (6.10) and (6.11) and solving for µ, we get

µ�
β

2k2(λD)t
n2.

Let

α =
β

2k2(λD)k
.

Then α is a function of k, r, λ and we have t
C
(r)
2k

(G)�µ� αn2.

We are now ready to prove the r� 3 case of Theorem 1.1.

Proof of the r� 3 case of Theorem 1.1. First note that Theorem 6.6 can be rephrased by say-
ing that if G is linear r-partite r-graph that has a 2-projection P on at least m� n0 vertices

such that Dm1/k � δ(P)�
(P)� λDm1/k, then t
C
(r)
2k

(G)� αm2. The statement holds as long as

D� 2r+1rkr(16)k, λ� 1 andm� n0. To apply Corollary 3.7, we set

D=max{2r+1rkr(16)k,mk}, λ = qkD and M =max{n0,mk},

wheremk, qk are as given in Corollary 3.7. The claim follows readily from Corollary 3.7.

7. Concluding remarks

First we would like to mention that the reduction to proving the supersaturation of C2k for

n-vertex host graphs G with density exactly at �(n1+1/k) is crucial to establishing our general

theorem. For graphs G with density much higher than n1+1/k, the bound resulting directly from

BFS is worse than the optimal c(e(G)/v(G))2k. One reason is that the subgraph of G induced by
the early levels of a BFS tree is potentially much denser than a tree. In this case, if we use the BFS
structure we may lose many C2k’s in counting.

For all integers k, p� 2, the theta graph �p,k is the graph consisting of p internally dis-
joint paths of length k sharing the same endpoints. Faudree and Simonovits [12] showed that

ex(n,�p,k)=O(n1+1/k). The method of our paper can be used to establish the supersaturation

of the r-expansion �
(r)
p,k

(where r� 2) of �p,k in linear r-graphs. When r = 2 this establishes the

truth of Conjecture 1 for H = �p,k with α = α′ = 1− 1/k. Again, the lower bound is tight up to
a multiplicative constant, obtained by taking a random graph of an almost complete Steiner sys-
tem. Since the arguments are essentially the same, we have not included the results involving theta
graphs in this paper.

It would be very interesting to establish the supersaturation of odd linear cycles in linear

r-graphs, for r� 3. Toward this end, in [5] it is shown that when r� 3 we have ex�(n, C
(r)
2k+1

)=
O(n1+1/k), which is very different from the 2-uniform case, where for all sufficiently large n
it is known that ex(n, C2k+1)= �n/2��n/2�. The proof of this theorem is much more involved
than its counterpart for even linear cycles. It is unclear if a supersaturation statement similar to

Theorem 1.1 holds for C
(r)
2k+1

. At least, our methods do not readily give this. We raise it as an open
question.

Question 5. Let k, r be integers where k� 2, r� 3. Do there exist positive constants C and c

depending only on k and r such that every n-vertex linear r-graphGwith e(G)� Cn1+1/k contains

at least c(e(G)/v(G))2k+1 copies of C
(r)
2k+1

?
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Very recently, Balogh, Narayanan and Skokan [1] obtained a balanced supersaturation result
for linear cycles of all lengths in general r-graphs. Note that this is a different setting from ours, as
in our case host graphs are linear, and hence are sparse, while they are working with dense ones.
As Morris and Saxton did for even cycles in graphs, Balogh, Narayanan and Skokan used their

supersaturation result to obtain a bound on the number of of n-vertex C
(r)
m -free r-graphs. It would

be interesting to obtain such a balanced version of supersaturation for even linear cycles in linear
r-graphs.
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[11] Ergemlidze, B., Győri, E. and Methuku, A. (2019) Asymptotics for Turán numbers of cycles in 3-uniform linear

hypergraphs. J. Combin. Theory Ser. A 163 163–181.

[12] Faudree, R. and Simonovits, M. (1983) On a class of degenerate extremal graph problems. Combinatorica 3 83–93.

[13] Faudree, R. and Simonovits, M. Cycle-supersaturated graphs. In preparation.

[14] Füredi, Z. and Jiang, T. (2014) Hypergraph Turán numbers of linear cycles. J. Combin. Theory Ser. A 123 252–270.

[15] Füredi, Z. and Simonovits, M. (2013) The history of the degenerate (bipartite) extremal graph problems. In Erdős
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