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Key Points:

e A new evapotranspiration partitioning model (DEPART) was developed using eddy
covariance flux tower measurements in a Bayesian framework

e This method produces daily estimates of transpiration and weekly estimates of plant
water-use efficiency at the ecosystem scale

e This method reveals water-use efficiency is limited by moisture supply in more arid
climates and moisture demand in less arid climates
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Abstract

Popular evapotranspiration (ET) partitioning methods make assumptions that might not be well-
suited to dryland ecosystems, such as high sensitivity of plant water-use efficiency (WUE) to
vapor pressure deficit (VPD). Our objectives were to (1) create an ET partitioning model that can
produce fine-scale estimates of transpiration (T) in drylands, and (2) use this approach to
evaluate how climate controls T and WUE across ecosystem types and timescales along a
dryland aridity gradient. We developed a novel, semi-mechanistic ET partitioning method using
a Bayesian approach that constrains abiotic evaporation using process-based models, and loosely
constrains time-varying WUE within an autoregressive framework. We used this method to
estimate daily T and weekly WUE across seven dryland ecosystem types and found that T
dominates ET across the aridity gradient. Then, we applied cross-wavelet coherence analysis to
evaluate the temporal coherence between focal response variables (WUE and T/ET) and
environmental variables. At yearly scales, we found that WUE at less arid, higher elevation sites
was primarily limited by atmospheric moisture demand, and WUE at more arid, lower elevation
sites was primarily limited by moisture supply. At sub-yearly timescales, WUE and VPD were
sporadically correlated. Hence, ecosystem-scale dryland WUE is not always sensitive to changes
in VPD at short timescales, despite this being a common assumption in many ET partitioning
models. This new ET partitioning method can be used in dryland ecosystems to better understand
how climate influences physically and biologically driven water fluxes.

Plain Language Summary

We developed a new model to better understand how plants use and lose water in drylands and
applied it to seven dryland sites. Our model partitions evapotranspiration— the total water lost to
the atmosphere from the Earth’s surface— into its components. Evapotranspiration consists of
both evaporation from wet surfaces, such as wet soil, and the water lost from plants when they
photosynthesize. Currently, models assume a strong relationship between the efficiency with
which plants use water (“water-use efficiency”) and the dryness of the atmosphere, but this
violates what we know about how plants function in drylands. For example, in drylands many
plants are adapted to very dry conditions and their water use can be less sensitive to increasing
atmospheric dryness compared to plants from wet environments. Using this new model, we
found that plant water-use efficiency is only correlated with atmospheric dryness some of the
time and that evapotranspiration is primary controlled by water lost from plants. This model
allows us to better understand the importance of timescale and ecosystem type in governing plant
water-use dynamics and more accurately assess the potential impact of changing climate
conditions on dryland water fluxes and ecosystem processes.
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1 Introduction

On an ecosystem scale, quantifying the importance of plants in governing evaporative
water loss remains challenging. Towards addressing this challenge, eddy covariance flux towers
offer a powerful methodology for quantifying the magnitude and variability in ecosystem water
and energy fluxes in addition to carbon fluxes (Baldocchi, 2014). Flux towers provide NEE (i.e.,
net ecosystem exchange, or the net CO; flux) and evapotranspiration (i.e., ET, or the loss of
water from an ecosystem to the atmosphere) data products. While there are well-tested methods
that partition NEE into its components (i.e., gross primary productivity [GPP] and ecosystem
respiration), and that have been integrated into standard flux tower data processing (Desai et al.,
2008; Reichstein et al., 2005), accurate and widely applicable methods for partitioning ET into
evaporation and transpiration are still being developed (Baldocchi, 2020; Stoy et al., 2019).
However, understanding ET and its components is essential to evaluating the contribution of
plants to ecosystem water fluxes and for improving land surface models.

ET consists of two distinct evaporative processes: the abiotic process of evaporation (E)
and the biotic process of transpiration (T). From an atmospheric perspective, T and E both
describe the physical process by which liquid water changes to water vapor (Miralles et al.,
2020). From an ecosystem perspective, T differs from E in that T is regulated by plant biological
processes. In particular, T is affected by leaf-level physiology and is linked to GPP through plant
stomatal conductance, which controls both plant photosynthesis and plant water loss. The
magnitude of T is governed by soil water availability and plant responses to environmental
variables, such as stomata closing in response to high vapor pressure deficit (VPD) or opening in
response to increased soil moisture availability (Beer et al., 2009).

Partitioning flux tower estimates of ET into E and T can help connect individual plant
adaptive strategies to ecosystem-level water balance across ecosystem types. However,
estimating E and T can be complicated because the relative importance of environmental drivers
can differ between E and T (Sun et al., 2019). Moreover, the timescales over which
environmental drivers influence E and T likely vary. By representing partitioned ET as the
contribution of T to ET (i.e., T/ET) we can assess the influences of climatic and biological
drivers on ecosystem water fluxes (Gan & Liu, 2020; Tarin et al., 2020) and better understand
the processes giving rise to temporal and spatial variation in these fluxes. Several studies have
evaluated patterns of T/ET over different timescales (e.g., following rain pulses, seasonally, or
annually), but the results are somewhat inconsistent (Moran et al., 2009). For example, global
T/ET estimates vary between 24% to 90% depending on the ET partitioning method used (Wei et
al., 2017).

In recent years, there have been notable advances in developing models that partition ET
using flux tower data that can be applied to a broad range of ecosystem types (Eichelmann et al.,
2022; Li et al., 2019; Nelson et al., 2018; Pérez-Priego et al., 2018; Scanlon et al., 2019; Scott &
Biederman, 2017; Zahn et al., 2022; Zhou et al., 2016). However, previous ET partitioning
models have various potential issues when applied to dryland ecosystems. For example, they
estimate water-use efficiency (WUE) using only dry periods (Nelson et al., 2018; Zhou et al.,
2016), assume plants maximize carbon gain per unit water lost (Pérez-Priego et al., 2018; Zhou
et al., 2016), or do not produce daily estimates or E, T, or WUE (Scott & Biederman, 2017) (see
Table 1). Due to these limitations, a flux tower-based ET partitioning approach is needed that
can be confidently applied to dryland ecosystems.
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Table 1
Summary of existing eddy covariance flux tower ET
partitioning methods.
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145 To address these limitations, we developed the Dynamic Evapotranspiration Partitioning
146 Approach for Rapid Timescales (DEPART), a semi-mechanistic ET partitioning approach.
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Table 2
Summary of eddy covariance sites used in this study.
Site Vegetation type Elevation MAP MAT % %
(m) (mm) (°C) Sand  Clay
Low US-Seg  Desert grassland 1622 273 13.67 88.67 4.32
elevation
US-Ses Desert shrubland 1593 273 13.72 7446  6.29
Mid US-Wjs  Juniper savanna 1931 361 15.2 87 2.55
elevation
US-Mpj  Pifion-juniper 2196 385 10.5 56.74  9.51
woodland
High US-Vcp  Ponderosa pine 2500 550 9.8 71.48 524
elevation woodland
US-Vem  Burned subalpine 3000 646 6.4 72.35  3.55
mixed conifer forest
US-Ves  Unburned subalpine 2752 551 4.6 79.64  2.51
mixed conifer forest

Note. In 2013, a fire burned US-Vem, and we only use the data from 2014 onwards. It is worth
noting that since this is a recovering mixed conifer forest, US-Vem is primarily dominated by
elderberry shrubs during this period.

Essentially, DEPART partitions ET by constraining E, a primarily abiotic process, rather than
constraining WUE using physiological theories, and therefore forgoing stomata sensitivity
assumptions. DEPART uses a Bayesian framework to utilize the underlying principles and
structure of the linear model presented in Scott and Biederman (2017). DEPART, however, is
applied at much faster time-scales representative of the temporal dynamics of E and T, facilitated
by a modeling framework that integrates constraints on E and WUE. Thus, DEPART can inform
our current understanding of underlying plant water-use processes in water-limited ecosystems.

Using this new model, DEPART, we asked: (1) how does T/ET and WUE vary across
dryland ecosystem types and (2) how does the relationship between T/ET and WUE versus
environmental variables vary at different temporal scales across dryland ecosystem types? To
address these questions, we used the DEPART framework to estimate E and T at daily scales and
WUE at weekly scales over multiple years across seven dryland ecosystem types. We then used
cross-wavelet coherence analysis to evaluate the temporal relationships between T/ET and
environmental variables and between WUE and environmental variables.

2 Methods



162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201

202
203
204

manuscript submitted to AGU JGR: Biogeosciences

2.1 Eddy Covariance Flux Data

In this study, we used eddy covariance flux tower data from the New Mexico Elevation
Gradient (NMEG), a network of seven Ameriflux sites spanning an elevation and aridity gradient
in New Mexico (USA) that offer long-term measurements (~2008-2020) of carbon, water, and
energy fluxes in dominant ecosystem types present in the southwestern USA (Table 2). Briefly,
these NMEG sites include a desert grassland (US-Seg), desert shrubland (US-Ses), juniper
savannah (US-Wjs), pifion-juniper woodland (US-Mpj), ponderosa pine forest (US-Vcp), burned
mixed conifer forest (US-Vem), and unburned mixed conifer forest (US-Vcs). The strategic
distribution of NMEG sites (Table 2) allows us to ask questions using flux towers across
multiple biomes (Anderson-Teixeira et al., 2011). All sites have sandy loam soils. Detailed site
descriptions can be found in Anderson-Teixeira et al. (2011) and Samuels-Crow et al. (2020).

Site data were processed from freely available datasets at daily resolution from the
Ameriflux website (https://ameriflux.1bl.gov/); these data include ET, estimated GPP partitioned
from NEE (Reichstein et al., 2005), and meteorological measurements. While we recognize that
GPP is not measured directly and estimated via NEE partitioning algorithms, we assume that the
GPP estimates are fairly accurate given that the partitioning approaches have been repeatedly
tested, refined, and generally accepted by the flux community. Volumetric soil water content
(SWC) data were collected every 30 minutes using probes (Campbell Scientific CS610 at US-
Mpj; Campbell Scientific CS616 at all other sites) across four pits at each site and processed
following Riidiger et al. (2010), then averaged to daily values.

2.2 Soil Water Content Gap-Filling

At flux tower sites, SWC data can be missing for various reasons, including sensor
malfunctions or interference from animals and weather (Baldocchi et al., 2001). Across sites,
daily SWC data gaps ranged from 2.14% to 21.60% of all daily SWC data, with average gap
sizes varying from 15 to 36 days. To fill gaps in the daily SWC data to better estimate soil E, we
applied a simple systematic gap-filling approach. To gap-fill missing SWC, we linearly
interpolated SWC sequentially for days in which there were no precipitation events, using the
SWC values reported at the start and end of the gap. The SOILWAT2 model was used to
estimate missing SWC during gap periods that received precipitation. SOILWAT?2 is a process-
based, multiple soil layer simulation model of ecosystem water balance that has been validated in
several dryland ecosystems (Bradford et al., 2014, 2020; Bradford & Lauenroth, 2006;
Schlaepfer et al., 2017). Daily SWC values simulated by SOILWAT2 were linearly regressed
against known flux tower site SWC, and the linear equation was used to correct for magnitude
discrepancies in the SOILWAT2 SWC data. The adjusted SOILWAT?2 values were used to gap-
fill the missing SWC data when linear interpolation would be less appropriate, such as after a
large precipitation pulse. To test the gap-filling approach, we artificially introduced gaps into the
observed data and applied the technique to see how closely the simulated data matched the
observed data that were removed. The R? (coefficient of determination) values from a regression
of observed on simulated data ranged from 0.71 (US-Vcm) to 0.88 (US-Ses).

2.3 Soil Property Analysis

When considering E, soil texture is particularly important because it controls the surface
area available for water particles to bond to and the amount of pore space that could store water
(Komatsu, 2003; Lee & Pielke, 1992). To determine soil texture properties for each site, we
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collected site-specific soil samples from each NMEG tower site in the summer of 2021. We
collected soil samples from 0-5 cm from 1-3 holes (3 holes each at US-Seg, US-Vcp, US-Vem,
and US-Vc¢s and 1 hole each at US-Ses, US-Wjs, and US-Mpj). From these separate samples, we
determined the percentages of sand, silt, and clay using the hydrometer technique (Garcia
Coronado et al., 2008), which was then used to calculate the soil clay and sand percentages and
soil field capacity for each sample. This information improved soil model parameters affecting
soil E and accounted for landscape heterogeneity within each flux tower footprint (see section
2.4).

2.4 The DEPART Model for ET Partitioning

The DEPART model structure builds on the framework developed by Scott and
Biederman (2017). Briefly, the original Scott and Biederman approach predicts monthly T and E
based on a regression of monthly values of ET on GPP obtained for multiple years, where the
intercept in this regression, E’, is interpreted as the physical-based evaporation term for a given
month. The DEPART model, however, can be applied at finer temporal scales (daily to weekly)
by constraining E’ with process-based, nonlinear evaporation equations. While the DEPART
method is structurally similar to the approach of Scott and Biederman (2017), the latter method
assumes E'= E is invariant across years for each month. The DEPART E estimate, however, can
vary by day, so E'= E without assuming a lack of variance in E.

Incorporation of these additional models and data (constraints on E’ and WUE) are
accommodated within a Bayesian framework. Consequently, WUEPEPART 4 key term in the
model, is allowed to vary with time, and we allow WUEPEPART o vary at weekly scales to
capture the influence of rainy periods. The modeled WUEPEPART does not rely on the concept
that plants maximize carbon gain per unit water lost or that WUE is tightly coupled to VPD, and
it does not require previous knowledge of plant stomatal physiological responses.

DEPART uses daily carbon (GPP) and water (ET) fluxes from eddy covariance flux
towers to partition ET, based on linear regressions of ET versus GPP where, for each day, d, and
week, w, associated with each day, w(d):

ETd = mw(d)GPPd + Etli (1)

where the slope, m, represents the inverse of the weekly WUE. Here, E, is the intercept that
denotes ET when GPP = 0, representing the condition when plants are inactive (i.e., GPP =0, so
expect T = 0). Note that equation 1 is distinct from Scott and Biederman (2017) because ET,
GPP, and E are allowed to vary by day and the slope is allowed to vary by week. Following
equation 1, daily transpiration, 7y, is estimated as,

Td = mw(d) GPPd (2)

Therefore, m represents an inverse WUE index such that 1/m = WUEPEPART which is expected
to roughly match weekly estimates of GPP/T. WUEPEPART _and hence, m = 1/WUEPEPART jn
equations (1) and (2)—is loosely constrained by a stochastic autoregressive model that assigns a
hierarchical prior to each weekly WUEPEPART yalye, given the prior week’s WUEPEPART valye
such that:

WUEEPART ~ Normal(WUERERA, o) @
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Again, w indicates the week. Within the Bayesian framework, the standard deviation, gy, g, 1S
assigned a uniform prior such that gy, ;z~Uniform(0,20). Essentially, the estimated
WUEPEPART yaries around the WUEPEPART of the previous week with some unknown variance,
and all weekly WUEPEPART yalyes and the unknown variance are estimated by fitting the full
DEPART model to the eddy flux tower data. In other words, WUE is a stochastic quantity in
DEPART, and it is estimated to “optimize” the relationship in equation 1. Thus, a novel aspect of
DEPART is that WUEPEPART g stochastic and its temporal variation is weakly constrained by the
above autoregressive model and equation 1.

Unique to the DEPART model, both E’ and WUEPEPART are constrained, but to differing
degrees. In contrast to the weak constraints on weekly WUEPEPART daily E’ is relatively tightly
constrained by mechanistic equations for physical-based soil and intercepted E based on models
in the Community Land Model (CLM) versions 3.5 and 4.5 (Oleson et al., 2013), succinctly
summarized in Merlin et al. (2016). In particular, DEPART models soil E as a mixture of two
common equations. The first is based on the soil surface resistance (7,) and o formulations used
in CLM 3.5, which give the following for LE, the latent energy:

LE (1, ) = PLp ) esqr(Tsoir) — €a @
Y Y e
And the second is based on the B and a formulations used in CLM 4.5:
pCp aesq(Tsoir) — €q )
LE(ﬁ; (Z) = ﬁ . .
14 Tan

For simplicity of presentation, we avoid subscripting with d in equations (4) and (5), but LE does
vary by day, d, because several terms vary by day, including: the density of air (p), saturated
vapor pressure in the soil (esa), soil temperature (75.i1), saturated air vapor pressure (eq),
aerodynamic resistance to heat transfer (74), and resistance to the diffusion of vapor in large soil
pores (7ss). Time invariant terms include the psychrometric constant (y) and the specific heat of
air (Cp). B and o are time-varying wetness coefficients constrained between 0 and 1, where f3
scales potential evaporation down to actual evaporation, and a scales the saturated vapor
pressure down to the actual vapor pressure at the soil surface. Briefly, 7, 3, and o are
determined using expressions derived from thermodynamics; all three terms depend on
pedotransfer functions that rely on sand and clay fractions. We calculated these quantities using
formulations from the literature, as done in Merlin et al. (2016); see the supporting information
for details.

In summary, LE from equations (4) and (5) can be converted to soil E by dividing each
LE term by the latent heat of vaporization (1), converting from units of W/m? to mm/s. Thus, the
daily soil evaporative flux is computed as:

Easoil - @(W “LE;(rys, @) + (1 —w) - LE;(B, @)) (6)

Where w is the unknown mixture weight; within the Bayesian framework, w is assigned a
uniform prior, w ~ Uniform(0, 1). We used a temperature dependent A, so that A =
(2.501 — 0.00237 - T,;,) - 10, and 86400 converts seconds to days.

The DEPART framework treats certain soil property parameters as stochastic quantities
to account for site-specific heterogeneity, accomplished by assigning these parameters relatively
informative priors based on values expected to be representative of each site. We informed the
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variance of these stochastic quantities using the approximate standard deviation of field-based
estimates calculated within each site. These parameters—which are excluded here but were used
to calculate 7y, B, and o—were the Clapp and Hornberger parameter, soil field capacity, residual
soil moisture, soil moisture at saturation, and the parameterized air entry pressure. We allowed
the von Karman constant, a constant for the logarithmic wind profile in the surface layer, to vary
according to a uniform distribution on the interval (0.35, 0.42), consistent with past literature
(Foken, 2006).

The DEPART framework models daily canopy intercepted E as:

E(Ijntercepted = pd(]_ — exp(—k . LAId)) 2

where P is the sum of same-day and previous-day precipitation, & is a decay parameter that is
assigned a moderately informative prior based on a normal distribution with a moderate variance,
k ~ Normal(0.5, 10) (Li et al., 2019), and LAl is leaf area index. We estimated daily LA/ using
the Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index data product for
AmeriFlux sites (ORNL DAAC, 2018). LAl from MODIS is only available every 8 days, so we
linearly interpolated values to fill the gaps within each 8-day period. The total evaporative flux
from leaf and soil surfaces in equation (1), E’, is given as the sum of the soil evaporation term,
ESl from equation (6), and intercepted evaporation, E™¢eP"d from equation (7).

This approach should provide more realistic estimates of daily E, reflecting the direct
influence of rain events, and thus improve estimates of daily T and weekly WUE (WUEPEPART),
These shorter timescales (daily and weekly) should better capture the E, T, ET, and WUE
responses to precipitation inputs in semiarid sites relative to the original (monthly scale)
applications of the Scott and Biederman model. We ran this model in R (R Core Team, 2020)
with the rjags package (Plummer, 2019) and the PostJAGS package (Fell, 2019) using Northern
Arizona University’s High Performance Computing resources.

2.6 Model Evaluation

To evaluate model fit, we compared R? values from a regression of DEPART predicted
ET versus the observed ET for each site. To evaluate the contribution of T to ET, we also
calculated T/ET values at annual timescales. Since T/ET is expected to be high in many
ecosystem types (Wei et al., 2017), many studies use ET as a proxy for T (e.g., De Kauwe et al.
[2019], Dralle et al. [2020], Emmerich [2007], Fisher et al. [2017]). However, a high T/ET does
not necessarily mean T is highly correlated with ET, in which case using ET as a proxy for T
would not be appropriate. Following this, to test whether T or E controls the pattern of ET, we
also evaluated correlations between T and ET and between E and ET to assess if ET could be
used as a suitable proxy for T at our study sites.

At the US-Mpj site only, we then compared T estimates from DEPART with T estimates
from whole-tree sap flux from a previous study (Morillas et al., 2017) and to T estimates
obtained from the Pérez-Priego et al. (2018) ET partitioning method. We only applied the Pérez-
Priego et al. (2018) method at one site because it is fairly computationally intensive, and we
picked US-Mpj to enable comparisons with sap flux data from Morillas et al. (2017). In this
comparison, we considered correlations between sap flow T, Pérez-Priego T, and DEPART T,
and the differences in how correlated T was to ET for each method over the time period in which
all methods could be applied (2008-2012). Calculating the correlations between T estimates and
comparing T/ET across methods helped us assess differences in the magnitude of T, while
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comparing correlations between T and ET helped us assess differences in the pattern of T
compared to the bulk water flux.

Morillas et al. (2017) used 10 trees within the US-Mpj tower footprint to estimate T
calculated from sap flow. Because the Morillas et al. (2017) study does not upscale T estimates
to account for understory vegetation or the true boundaries of the tower footprint, we believe this
T estimate to be only partially comparable to our own, and the magnitudes will likely differ.
Still, the comparison could be useful when evaluating overall temporal patterns in T.

Like other popular ET partitioning methods (e.g., Table 1), the Pérez-Priego method
makes assumptions about plant stomatal behavior that are not always well-suited to drylands.
Therefore, the Pérez-Priego method may not be entirely reliable at the sites tested here, and this
comparison should not be overvalued. We chose to compare our model to the Pérez-Priego

Table 3

Summary of DEPART model results across sites, including model fit (R?), posterior means
and 95% Cls for the average annual growing season T/ET and WUE values, and
correlations (r) between T and E versus ET.

Gradient | Site | Model | T/ET 2.5% 97.5 WUE 2.5% 975 | Tvs. Evs.

Fit CI % CI CI %CI | ET ET
(R?) n @
Low US- | 0.61 0.88 086 089 |157 145 174 (041 0.33
elevation, | Seg
most arid

US- | 0.51 0.84 0.82 0.85 1.37 1.25 148 |0.22 0.30
Ses

Mid US- |0.70 094 093 094 [202 196 209 |061 0.17
elevation | Wjs

US- | 0.63 0.87 073 090 |240 207 7.37 |051 0.18

Mpj
High US- | 0.81 096 095 096 [2.74 265 283 |0.74 0.07
elevation, | Vcp

less arid

US- | 0.83 0.88 0.84 0091 1.05 099 1.12 [0.71 0.08
Vem

US- |0.91 0.96 0.95 097 2.11 1.97 225 [0.72 0.05
Vcs

Note. Here we define “annual growing season” as average values during spring, summer,
and fall. Winter is excluded from these averages, since plants are inactive. R? values are
computed using linear regressions. “CI” columns indicate credible intervals.
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method, however, over other promising ET partitioning methods due to its simple-to-replicate
documentation, and its thoroughness of incorporating optimality principles, which we are
interested in testing here. Comparisons between T values were made using Spearman rank
correlations to reduce the influence of outliers.

We also compared average monthly T/ET estimates from DEPART to monthly Scott and
Biederman T/ET estimates for all NMEG sites, since the Scott and Biederman method was
developed specifically for drylands where ET and GPP are tightly correlated.

2.7 Cross-wavelet Coherence Analysis

Application of the DEPART model to the daily ET and GPP data at each site results in
predicted timeseries of weekly WUEPEPART and daily T/ET. Using these timeseries, we analyzed
the relationship between response variables WUEPEPART and T/ET versus environmental
variables (i.e., VPD, precipitation [P], SWC, and air temperature [Tair]) using cross-wavelet
coherence analysis with a complex Morlet wavelet convolution (Grinsted et al., 2004; Torrence
& Compo, 1998). Cross-wavelet coherence analysis allowed us to explore the relationship
between variables across varying timescales by transforming a one-dimensional timeseries into
two-dimensional time-frequency space. For example, we tested the weekly to yearly temporal
coherence (R?) between each response variable and multiple environmental variables, including
lagged correlations, across all weeks in the timeseries. We then averaged the temporal
coherences across all periods of time to summarize the correlations between the two variables as
described in Samuels-Crow et al. (2018). To more intuitively represent in-phase (positively
correlated) and anti-phase (negatively correlated) relationships, we modified the resulting R?
values by multiplying R? values of anti-phase relationships by -1 to create a “temporal coherence



354
355

356

357

358
359
360

361

362
363
364

manuscript submitted to AGU JGR: Biogeosciences

index”. This temporal coherence index can be either negative or positive; negative values
represent anti-phase relationships and positive values represent in-phase relationships.

3 Results
+ DEPART + Pérez-Priego + Sapflow 4 Scott and Biederman
US-Seg US-Ses US-Wijs US-Mpj US-Vcp US-Vem US-Ves
|_1.0-,_4.‘ . ®» e o9 [ _‘_*4’ ii-’*&‘- *9 b o +4.v|-“_-]- "‘.',4'4-
E T b s o9
F 054 ‘l .
3 1 + !
o0t g s e o
1.04 ) (Y1, T & 3
: %*é%ﬁ ¢¢Q.¢ o P50 ﬁaéaéa Be*ypde
s [JF pi re
0.81 T,
" - Fﬂ -
= 0.6 |
0.4
5 7 9 5 7 9 5 7 9 5 7 9 5 7 9 5 7 9 5 7 9

Month

Figure 1. Comparison between average monthly T/ET (+/- standard deviation) using
different partitioning methods (top panel). Pérez-Priego and sapflow derived T/ET
(averaged over 2008-2012) are shown in the top panel for the US-Mpj site. DEPART T/ET
and Scott and Biederman T/ET are averages over all available years of data for each site.
When the Scott and Biederman T/ET is greater than 1, this indicates that the intercept in the
ET versus GPP regression is negative, and the Scott and Biederman method may not be
applicable. The bottom panel shows boxplots for all monthly DEPART T/ET estimates,
where each overlayed point represents a monthly T/ET value.

3.1 Model Fit

The R? between daily estimated and observed ET varied from 0.51 to 0.81 across the
elevation gradient (Table 3). Generally, the DEPART model performed better at the higher
elevation, less arid sites than the lower elevation, more arid sites.

3.2 Comparison with Other ET Partitioning Methods

Excluding winter periods, and only including years that the DEPART model and the
Pérez-Priego model could be compared to sapflow-based T estimates (2008-2012), the DEPART
model estimated that T makes up the majority (90%) of ET at the US-Mpj site, but the Pérez-
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Priego method estimated a much
lower contribution (60%). The + T+ E+ P + WUE
sapflow method resulted in the

lowest contribution of T to ET ’g 50- -
(28%). =151 &
The correlation between 't' [13'2: &
the Pérez-Priego T estimates and ,f 004
the sapflow-based T estimates was 30
slightly higher than the correlation T 20] <
between DEPART T estimates and E .l o
the sapflow-based T estimates (» = o iy &
0.71 and r = 0.58, respectively). T 0 - -
estimates from DEPART and the € 5 |
Pérez-Priego model were also E ST 1S
somewhat correlated with each W29 ¢4 t,m:ﬂj‘ Te444 l :mfﬂj'“ Et‘ =
other (» = 0.53) for the time 2 ]
periods both models could be
applied (2008-2016). g 301 -
The T estimates from g 207 <
DEPART were the most highly o 101 =
correlated with ET (= 0.78) out 0-
of all three approaches, while the =3
Pérez-Priego T estimates were the E 2 RTTIARRRA I [
least correlated with ET (» = 0.41). W §
The sapflow-based T estimates Qo
. . . = 0
had an intermediate correlation
with ET (r = 0.48). = 5] -
After removing all days £ ¢
with rain events, T estimates from @ 191 @
DEPART were more highly 0 : ; :
correlated with ET (= 0.84 Apr-2017 Jul-2017 Oct-2017
without rain events versus 7 = 0.78 Date
with rain events).’ The Same was Figure 2. DEPART estimates of daily T and E fluxes
true for the ﬂ_le Perez-Prlego_T and weekly WUE, along with observed daily P at
estimates (r = 0.49 versus r = representative low- (US-Ses), mid- (US-Mpj), and high-

0.41) and sapflow-based T
estimates (» = 0.55 versus » =
0.48). Additionally, during dry
periods, T estimates from
DEPART made up a larger fraction of ET (96% without rain events versus 90% with rain
events), which also occurred for the Pérez-Priego T estimates (65% versus 60%) and sapflow-
based T estimates (31% versus 28%). These results are consistent with the expectation that
dryland ecosystems have greater T/ET during dry periods (and greater E/ET occurring on days
with rain).

The comparison between monthly estimates of T/ET from DEPART and the Scott and
Biederman approach showed that the latter agreed more with DEPART at lower elevation, more

elevation (US-Vcs) sites during 2017. Symbols represent
posterior means; error bars and shaded regions represent
95% credible intervals.
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arid sites compared to higher 59

elevation, less arid sites | Summer

(Figure 1). The lower ] Fal ]
elevation, more arid sites | Spring

also had more variable
monthly T/ET. For sites
associated with a relatively
high R? from a regression of
ET versus GPP (Figure S2),
there is greater agreement
between the DEPART and
Scott and Biederman T/ET
estimates. At the US-Mpj
site, all ET partitioning
methods are in disagreement.

WUE (g C / mm H,0)

3.3 Modeled T, E, and WUE
Across Sites

The DEPART model
suggests that T dominated
ET across the aridity gradient
(annual growing season
T/ET 11 d fi 0 v T ———— ———r ———r— —r—r—
0751 093), and Tand B 012301230128 01230128 0123 0123
became temporally staggered VPD (kPa)
around episodic precipitation Figure 3. The top panel shows weekly WUEPEPART estimated

events in which E peaks by the DEPART model. The WUEPEPART presented here is an

faster than T (Figure 2), estimate of GPP/T. Large outliers occur outside of the

which is consistent with growing season (early Spring and late Fall), when GPP and T
previous dryland ET are both very small. The bottom panel shows the relationship

partitioning studies (Sun et between WUEPF*ART and VPD by site.

al., 2019). Regardless of the

overall contribution of T to ET at each site, E was more correlated with ET at lower elevation,

more arid sites, and T was more correlated with ET at higher elevation, less arid sites (Table 2).
Annual growing season WUEPEPART ranged from 0.97 to 2.44 g C/mm H>O across sites

and years, although WUEPEPART generally showed a more distinct separation across seasons

(spring, summer, and fall) at the higher elevation, less arid sites compared to the lower elevation,

more arid sites (Figure 3).

3.4 Cross-wavelet Coherence Analysis

In general, the cross-wavelet coherence results show that the lower elevation, more arid
sites are supply-driven and the higher elevation, less arid sites are demand-driven. For example,
VPD and temperature (important at high elevation sites) influence the magnitude of
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US-Seg: Desert Grassland US-Vep: Ponderosa Pine Forest

2009 2012 2015 2018 2010 2013 2016 2019

Bi-weekly

Seasonal

Scale

150 200 300 400 500 600 100 200 300 400 500 600
Week

Figure 4. Cross-wavelet coherence plots for weekly WUEPEPART versus VPD at the desert
grassland site (US-Seg) (left) and ponderosa pine site (US-Vcp) (right). The colors represent the
temporal coherence (R?). Warmer colors represent time periods when there is significant
interrelation between WUEPEPART and VPD. Colder colors represent time periods when there is
less dependence between WUEPEPART and VPD. Arrow direction represents whether a variable is
leading or lagging. Arrows point to the right when the timeseries are in phase (the variables move
in the same direction) and to the left when they are anti-phase (the variables move in opposite
directions). Arrows pointing to the right-down or left-up indicate that VPD is leading, while
arrows pointing to the right-up or left-down indicate that WUEPEPART i Jeading.

atmospheric demand for moisture whereas soil moisture (important at low elevation sites)
influences the magnitude of moisture supply (Grossiord et al., 2020).

The cross-wavelet coherence also showed that the relationship between WUEPEPART and
VPD (Figure 4 and Figure 5) varied across sites and timescales. At the less arid sites,
WUEPEPART and VPD were consistently in-phase (i.e., positively correlated) at the yearly
timescale, but WUEPEPART and VPD were only occasionally correlated at the sub-monthly
timescale. In contrast, WUEPEPART and VPD were anti-phase (i.e., negatively correlated) at the
yearly timescale at the woody plant-dominated low- and mid-elevation sites. The lowest
elevation site (US-Seg, desert grassland) did not support a strong relationship between
WUEPEPART and VPD at the yearly timescale, although there was sometimes a strong anti-phase
relationship at the seasonal timescale.

In general, we found that WUEPEPART at higher elevation, less arid sites was more
consistently correlated with environmental variables associated with the atmospheric demand for
moisture (e.g., VPD, Tai) at yearly timescales. At lower elevation, more arid sites, WUEPEPART
was more consistently correlated with indices of water availability (e.g., SWC, P) at weekly and
seasonal timescales (Figure 5; Figure S3). At the lower elevation sites, WUEPEPART and SWC
had a strong relationship and were generally in-phase at the monthly to yearly timescales (Figure
5). The same was true for WUEPEPART and P at the lower elevation sites, but the relationship
between WUEPEPART and P was also anti-phase at sub-monthly timescales.

According to the cross-wavelet coherence results for T/ET versus key environmental
variables (see Figure 5 and Figure S3), T/ET had the strongest relationships with variables
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indicating the availability of water (e.g., SWC, P), and weaker relationships with variables
associated with the atmospheric demand for moisture and seasonality (e.g., VPD and Tair). The
weak relationship between T/ET versus VPD and T is likely because T and E are correlated
with these drivers on similar timescales, and so T/ET appears independent of these drivers.
However, the combination of in-phase and anti-phase relationships between T/ET versus SWC
and P show that T and ET respond to the presence of water on distinct timescales. For example,
T/ET and P are typically anti-phase at daily to monthly timescales and in-phase at seasonal
timescales (Figure 5; Figure S3), likely due to high E after large water pulses during episodic

a .
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Figure 5. A summary of the cross-wavelet coherence results for
(a) WUE and (b) T/ET versus multiple environmental variables at
the desert grassland site (US-Seg) and ponderosa pine site (US-
Vcp). Plots show the average temporal coherence index values
(y-axis) across the entire timeseries for each temporal scale (x-
axis). This is essentially taking the horizontal average of the
values in the graphs shown in Figure 4 for every temporal scale,
but only includes the time periods when WUE or T/ET are
lagging. Note that here, the temporal coherence index is a
modified temporal coherence where positive values indicate the
series are in phase (equivalent to arrows pointing right in Figure
4) and negative values mean the series are anti-phase (arrows
pointing left in Figure 4). The whiskers indicate the standard
deviation of temporal coherence index values. The colors
correspond to the temporal coherence, such that blue represents
less dependence between WUEPFPART or T/ET and environmental
variables. Values over 0.7 or under -0.7 (gray dashed lines)
correspond to strong temporal coherence.

rain events. In other
words, E is more strongly
controlled by P compared
to T at daily timescales,
but T is more strongly
controlled by P compared
to E at seasonal to yearly
timescales. In contrast,
T/ET and SWC are
mostly in-phase across
daily to seasonal
timescales. However, the
T/ET versus SWC
relationship becomes
anti-phase at yearly
timescales at the more
arid sites, showing a
juxtaposition between the
timescales over which P
or SWC are related to
T/ET.

4 Discussion

To overcome the
challenges of previous
ET partitioning methods,
we built a novel ET
partitioning approach to
produce estimates of
daily E and T and weekly
WUEPEPART across
semiarid ecosystem
types. We then used these
estimates to evaluate the
spatiotemporal variability
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in T/ET and WUEPEPART "and to determine the relationships between T/ET and WUEPEPART
versus environmental variables across timescales.

4.1 T/ET and WUE Across Sites

The contribution of T to ET has been controversial in semiarid ecosystems, and T/ET
estimates from previous synthesis studies have varied depending on the method used (Sun et al.,
2019; Wei et al., 2017). Here, we found high T/ET across an aridity gradient in the southwestern
USA (Table 3). However, there was notable year-to-year variability in monthly T/ET at the two
driest sites, which is consistent with previous dryland literature (Reynolds et al., 2000).
Generally, after an episodic precipitation event, E increased immediately and peaked quickly,
whereas T increased and peaked more slowly, likely due to lags associated with plant water
uptake (Gardner, 1991; Kramer, 1938). Because of these lags, E can still reach or surpass T
during certain times of the growing season at the more arid sites (Cavanaugh et al., 2011; Scott et
al., 2006) (Figure 2).

The high T/ET values estimated by DEPART are quite different from previous studies
that have found values generally spanning 40-70% in drylands (Cavanaugh et al., 2011; Nelson
et al., 2020; Pérez-Priego et al., 2018; Scott et al., 2006, 2021; Scott & Biederman, 2017).
However, previous meta-analyses have found inconsistent T/ET estimates across ecosystem
types (Miralles et al., 2011; Sun et al., 2019; Wei et al., 2017). The high T/ET in this study aligns
most closely with catchment-scale isotopic ET partitioning studies (Jasechko et al., 2013) but not
with stand-level sapflow studies, which typically estimate lower T/ET compared to isotopic
studies (Schlesinger & Jasechko, 2014). While there are biases to consider in all ET partitioning
approaches, sapflow-based stand-level studies could be underestimating T/ET because they often
neglect understory vegetation and assume the dynamics of the instrumented plants represent a
larger area. At the same time, isotope-based studies may yield biased estimates of T/ET when
hydrologic decoupling is a concern (Brooks, Renée et al., 2010; Schlesinger & Jasechko, 2014).
It is worth noting that T/ET averages reported in synthesis studies are frequently composed of
estimates from different methodologies with different assumptions.

In support of high T/ET in semiarid ecosystems, consider Figure 6. In 2011 at the US-
Mpj site, from the beginning of April until the end of June, there were almost no precipitation
inputs and shallow SWC remained very low. Figure 6 shows that the higher-than-average
DEPART T/ET estimates hover near 100%, while the sapflow-based estimates from a previous
study oscillate around 50%. In this deep-rooted pifion-juniper ecosystem at the end of June,
following three months of almost no precipitation, how could 50% of ET be attributed to soil
evaporation, E? A large contribution of T (e.g., T/ET close to 1) would seem reasonable in this
scenario, which is likely associated with exceptionally dry surface soils, where little / no water is
available for direct evaporation, but trees likely have access to deeper water sources protected
from evaporation. High dryland T/ET is also consistent with the idea that a dry shallow soil
surface can act as a boundary layer that prevents further evaporation from occurring (Yamanaka
& Yonetani, 1999). It follows that ET from drylands can have high T/ET, except immediately
following rain events that result in moist surface soils. At the same time, the high DEPART T/ET
(Figure 6) values that closely follow precipitation inputs are likely overestimated around rain
events, as modeled E may be decreasing too rapidly after a rain event. Other studies have shown
that E may decrease after precipitation inputs according to a decay function and at a rate that
varies with soil textural properties (Li et al., 2019). Considering this, further improvements on
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the physical E models (such as those included in Lehmann et al., 2018 or Or et al., 2013) likely
could improve DEPART estimates.

Eddy flux towers do not provide direct measurement of T or E, which makes it
challenging to assess the performance of flux tower-based ET partitioning models (Stoy et al.,
2019). However, in Table 1 we highlighted why other flux tower-based ET partitioning
approaches may not be best suited for semiarid ecosystems, such as our study sites. Briefly,
many flux tower-based ET partitioning methods (including both data-driven and process-based
methods) may underestimate T in semiarid ecosystems by overestimating WUE. Many of these
methods consider estimating WUE to be the primary barrier to estimating T. However, it is more
accurate to consider this problem circular, as we are attempting for solve for two unknowns (i.e.,
WUE and T). For instance, as a community we want to partition ET using an estimate of WUE
(GPP/T) along with some estimate of GPP from NPP partitioning approaches. At the same time,
it is difficult to estimate GPP/T without partitioning ET. Many ET partitioning methods (Nelson
et al., 2018; Pérez-Priego et al., 2018; Zhou et al., 2016) get around this by calculating T and
GPP/T simultaneously by assuming GPP/ET = GPP/T during dry periods to estimate
transpirational WUE (GPP/T) for all (both wet and dry) periods. This assumption likely
introduces biases into the WUE and T calculations, as past studies have shown that various WUE
indices are expected to be lower during wet periods compared to dry periods in semiarid
ecosystems, including transpirational WUE (Donovan & Ehleringer, 1992), intrinsic WUE
(Lazaro-Nogal et al., 2015), and ecosystem WUE (Guoju et al., 2013; Tarin et al., 2020). Note
that overestimating WUE (GPP/T) forces T in the denominator to be lower, so it follows that a
higher WUE is equivalent to lower T and lower T/ET estimates. By ignoring wet periods, the
Pérez-Priego method and others may overestimate true transpirational WUE when dryland plants
are stimulated by precipitation pulses. DEPART, which does not ignore rainy periods, produces
higher T/ET estimates compared to the Pérez-Priego method and others (Nelson et al., 2020).
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DEPART represents a departure from the assumption that WUE is constant across rainy and dry
periods, and is perhaps more applicable to ecosystems with dynamic WUE.
The DEPART results also show variability in WUEPEPART petween wet and dry periods,
although there was greater seasonal variation in estimated WUEPEPART 4t the tree-dominated
588  sites (US-Wjs, US-Mpj,
US-Vcp, and US-Vcs)
) than the shrub- and grass-
157 150 dominated sites (US-Seg,
US-Ses, and US-Vem)
(Figure 3). Regardless,
«,V\_«_,‘] AL 1003 WUEDEPART was .
W - generally lowest during
the middle of the growing
season around
precipitation pulses
(Figure 2). This further
Ry A NI ' supports that ET
00{ TITTTTRRzeTesases B L 4t 2L -[l] B I Ho partitioning methods that
Apr Jul Ot calculate WUE based on

Date . .
. : periods without
Figure 6. An example of DEPART T/ET (black line) and sapflow precipitation (Nelson et

T/ET (gray line) at US-Mpj during a dry growing season (2011). al., 2018; Pérez-Priego et
The red vertical line indicates the onset of the monsoon rainy al., 201 8f Zhou et al.
season. From April until the end of June, there is almost no 20’1 6) or’that even as’sume
precipitation (blue bars) and shallow SWC (dashed blue line) is WUE is constant (Scott &

very low. Biederman, 2017; Zhou et
610 al., 2016) should be used
with caution in ecosystems that are heavily influenced by episodic precipitation pulses.
Regardless of the overall contribution of T to ET at each site, E was more strongly

correlated with ET at lower elevation, more arid sites, while T was more strongly correlated with
ET at higher elevation, less arid sites (Table 3). This has implications for studies that use ET as a
proxy for T in drylands: even if T makes up a majority of ET at a particular site, temporal
changes (patterns) in ET could be more indicative of changes in E rather than changes in T (such
as at the shrubland site, US-Ses; Table 3). For example, studies that use ET as a proxy for T to
test the relationship between plant water-use and environmental variables (De Kauwe et al.,
2019; Kropp et al., 2017) may be testing something closer to the relationship between abiotic
water flux patterns (e.g., E) and environmental variables. In other words, E can control the
variability in ET even when T makes up the majority in ET, so partitioning ET is still useful even
when T is high.

— DEPART T/ET Sapflow T/ET — shallow SWC B Precip

5
(ww) uoendivald

T/ET or SWC (fraction)
&
=

4.2 Temporal Scale, WUE, and T/ET

Different conclusions about how environmental drivers affect plant water-use across
different scales are not necessarily contradictory. Rather, these conclusions are representative of
how spatial and temporal scale affect plant observations (Jarvis & McNaughton, 1986). Here we
demonstrate the importance of observing WUEPEPART and T/ET dynamics over varying temporal
scales. Specifically, the cross-wavelet coherence results indicate that temporal coherence
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between WUEPEPART and T/ET and different potential drivers depends on the temporal scale the
relationship is observed over. Previous studies have found inconsistent results with regards to the
influence of VPD versus SWC on plant water dynamics (Kwon et al., 2018; Lévesque et al.,
2014; Schultz & Stoll, 2010), and the effects of VPD and SWC on T can be difficult to
disentangle (Novick et al., 2016). The temporal coherences in our study suggest that the lower
elevation, more arid sites are more limited by shallow SWC (supply driven), and higher elevation
sites are more limited by VPD (demand driven). However, at the more arid sites this coupling
occurred at shorter timescales compared to the less arid sites (Figure 5). At the less arid sites
(where VPD was often important), deep SWC was also sometimes important over longer
timescales, likely due to the role of deep roots in these taller statured ecosystems (Novick et al.,
2016). Following this, seemingly contradictory results about the potential influence of VPD
versus SWC on plant water dynamics could be due to temporal variations in ecosystem-specific
processes.

Temporal scale is also important for understanding the relationship between T/ET and
environmental variables. For example, previous studies found a low correlation between T/ET
and potentially important environmental variables across ecosystem types (Nelson et al., 2020;
Sun et al., 2019). We also found that T/ET had low temporal coherence with many
environmental variables, or inconsistent relationships with those variables over different
timescales. This low temporal coherence is likely because T and E share similar environmental
drivers, so the ratio T/ET does not change much despite potentially large changes in T and E.
However, although T and E respond to similar drivers, they respond to those drivers over varying
timescales. Specifically, T responds more slowly than E to changes in water supply (Kerhoulas et
al., 2013), so there was higher coherence between T/ET and water supply-associated variables
(i.e., P and SWC) across longer timescales.

The temporal coherence between WUEPEPART and potential environmental drivers is
generally consistent with past literature focused on intrinsic WUE (Grossiord et al., 2020), but is
not consistent with literature representing ecosystem WUE calculated as GPP/ET (Stoy et al.,
2019). This supports the idea that WUEPEPART g representative of biological WUE at the
ecosystem scale with less dilution from abiotic variables such as E. For example, it is known that
the relationship between intrinsic WUE and VPD is nonlinear; i.e., WUE increases with VPD up
to a point but decreases thereafter, for very high values of VPD (Zhang et al., 2019). Using the
NMEG’s natural aridity gradient, the WUEPEPART cross-wavelet coherence results show this
hyperbolic pattern (e.g., WUEPEPART and VPD have a positive relationship at less arid sites but a
negative relationship at more arid sites). This nonlinear relationship is also true within sites at the
weekly timescale over the entire study period (Figure 3), with the exception of two high
elevation sites (US-Vcp and US-Vem) that more closely match the relationship found for
GPP/ET and VPD in Stoy et al. (2019), although this could be due to the smaller range of VPD
experienced at those sites.

Besides VPD, WUEPEPART jg Jikely controlled by multiple other environmental drivers,
and the relationship between WUE and these drivers likely depends on plant functional type
(Grossiord et al., 2020). For example, it is known that soil moisture can modulate the
relationship between WUE and VPD (Novick et al., 2016), depending on plant physiological
strategy (Ambika & Mishra, 2021; W. Zhang et al., 2023). The inconsistent relationship between
WUEPEPART and VPD at the sub-yearly timescale (Figure 4 and Figure 5) suggests that
implementing assumptions of stomatal optimality—which result in assuming strong coupling of
WUE and VPD—may be inappropriate for partitioning ET in semiarid ecosystems at certain
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timescales. Only considering the effects of VPD on WUE could be especially inappropriate in
more arid ecosystems such as the desert grassland (US-Seg) and shrubland (US-Ses) studied
here, where SWC is more frequently important than VPD. This study shows that the patterns
between WUE and environmental variables are inconsistent within sites, and future research
should aim to determine the conditions under which biological WUE (such as WUEPEPART)
exhibits expected (e.g., optimal) and unexpected behavior at the ecosystem scale.

Many previous ET partitioning methods are tied to assumptions of optimality that only
consider VPD. The cross-wavelet coherence results show that the timescales of optimality (e.g.,
for responses of WUEPEPART and T/ET to VPD) in drylands may not be consistent or intuitive,
and thus model applications that use optimality theory should be used with caution. WUEPEPART
and T/ET had high temporal coherence with other variables that influence the magnitude of
moisture supply, such as SWC and P, so WUEPEPART and T/ET patterns are likely controlled by
site-dependent environmental variables. For example, at the more arid sites, WUEPEPART ig Jikely
more strongly tied to P and SWC due to growing season rain pulse dynamics (Feldman et al.,
2021; Loik et al., 2004). In contrast, the less arid, higher elevation sites contain more plant
species known to be isohydric (Anderson-Teixeira et al., 2011; Samuels-Crow et al., 2020), such
as Pinus ponderosa (at the US-Vcp site), and we might expect T and WUE to be more tightly
coupled to VPD at these sites.

It is worth noting that WUE links plant water loss to plant carbon uptake, the latter of
which can also change in response to environmental conditions (Ehleringer & Cerling, 1995).
Historically, the effects of VPD on WUE are explained by the effects of VPD on the intercellular
CO; concentration (C;). Because the effects of VPD on C; were found to be similar to the effects
of VPD on stomatal conductance, it has become common to lump these two processes together
when evaluating the effects of environmental variables on WUE (Grossiord et al., 2020).
However, stomatal conductance has a wide variety of responses to environmental variables
depending on plant strategy. For example, abscisic acid mediates stomatal conductance in
response to low SWC, and can complicate stomatal responsiveness to VPD (Kriedemann et al.,
1972; Rogiers et al., 2012). It could be that at more arid sites, the differences in WUEPEPART
patterns are indicative of a divergence of leaf-derived C; responses to VPD and root-driven
stomatal responses to low SWC. In other words, stomata in more arid ecosystems can exhibit
more anisohydric behaviors in response to VPD but could still respond to abscisic acid.

4.3 ET Partitioning Model Limitations

Because the ET partitioning methods developed thus far are not in consensus, it is
beneficial to explore the underlying assumptions of each model to determine which ET
partitioning method is best suited to a particular site (Table 1). As a semi-mechanistic
framework, DEPART represents an alternative to previous process-based ET partitioning
methods that make assumptions about plant water-use traits (Pérez-Priego et al., 2018) and more
data-driven, empirical approaches (Nelson et al., 2018). However, the process-based component
of DEPART is abiotic in its assumptions (i.e., the soil evaporation equations). Because we are
allowing certain parameters in these abiotic equations to vary stochastically, we intend to allow
sufficient flexibility in these parameters to account for the inaccuracies of the specific process-
based formulation or limitations of field data used to inform parameters in the equations. For
example, DEPART is limited by the availability of SWC data and knowledge of soil textural
properties. While SWC data are typically available as a flux tower site data product, knowledge
of sand and clay fractions is less common. However, soil textural properties can also be sourced
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from global data products such as SoilGrids2.0 (Poggio et al., 2021). Still, the process-based
evaporation equations likely do not capture the full heterogeneity of the flux tower footprint, and
do not account for variables such as vegetation cover. Merlin et al. (2016) found that a soil
evaporation model, similar to the models used in DEPART, produced E estimates that were
moderately correlated with observed E (average R? = 0.57) for sites with percent clay that align
with the percent clay ranges measured at our study sites. Therefore, DEPART would likely
benefit from the inclusion of better performing evaporation models and there is likely more room
for improvement in constraining evaporation to partition ET.

5 Conclusion

This study presents a fine-scale ET partitioning framework suitable for future application
in water-limited ecosystems with flashy E/ET dynamics, which has rarely been addressed in past
ET partitioning literature. The results obtained from the DEPART framework improved our
understanding of the contribution of T and E to ET in semiarid ecosystems by revealing the
timescales at which T/ET and WUEPEPART have significant relationships with environmental
variables. By estimating intrinsic WUEPEPART at the ecosystem scale, along a semiarid aridity
gradient, we found that WUEPEPART g driven by moisture supply in more arid ecosystems and
moisture demand in less arid ecosystems. DEPART is a reproducible ET partitioning method that
can be applied at many flux tower sites. Thus, this study complements a suite of recent ET
partitioning studies by introducing a new approach that can be applied to drylands.
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