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Abstract 23 

Popular evapotranspiration (ET) partitioning methods make assumptions that might not be well-24 

suited to dryland ecosystems, such as high sensitivity of plant water-use efficiency (WUE) to 25 

vapor pressure deficit (VPD). Our objectives were to (1) create an ET partitioning model that can 26 

produce fine-scale estimates of transpiration (T) in drylands, and (2) use this approach to 27 

evaluate how climate controls T and WUE across ecosystem types and timescales along a 28 

dryland aridity gradient. We developed a novel, semi-mechanistic ET partitioning method using 29 

a Bayesian approach that constrains abiotic evaporation using process-based models, and loosely 30 

constrains time-varying WUE within an autoregressive framework. We used this method to 31 

estimate daily T and weekly WUE across seven dryland ecosystem types and found that T 32 

dominates ET across the aridity gradient. Then, we applied cross-wavelet coherence analysis to 33 

evaluate the temporal coherence between focal response variables (WUE and T/ET) and 34 

environmental variables. At yearly scales, we found that WUE at less arid, higher elevation sites 35 

was primarily limited by atmospheric moisture demand, and WUE at more arid, lower elevation 36 

sites was primarily limited by moisture supply. At sub-yearly timescales, WUE and VPD were 37 

sporadically correlated. Hence, ecosystem-scale dryland WUE is not always sensitive to changes 38 

in VPD at short timescales, despite this being a common assumption in many ET partitioning 39 

models. This new ET partitioning method can be used in dryland ecosystems to better understand 40 

how climate influences physically and biologically driven water fluxes. 41 

Plain Language Summary 42 

We developed a new model to better understand how plants use and lose water in drylands and 43 

applied it to seven dryland sites. Our model partitions evapotranspiration— the total water lost to 44 

the atmosphere from the Earth’s surface— into its components. Evapotranspiration consists of 45 

both evaporation from wet surfaces, such as wet soil, and the water lost from plants when they 46 

photosynthesize. Currently, models assume a strong relationship between the efficiency with 47 

which plants use water (“water-use efficiency”) and the dryness of the atmosphere, but this 48 

violates what we know about how plants function in drylands. For example, in drylands many 49 

plants are adapted to very dry conditions and their water use can be less sensitive to increasing 50 

atmospheric dryness compared to plants from wet environments. Using this new model, we 51 

found that plant water-use efficiency is only correlated with atmospheric dryness some of the 52 

time and that evapotranspiration is primary controlled by water lost from plants. This model 53 

allows us to better understand the importance of timescale and ecosystem type in governing plant 54 

water-use dynamics and more accurately assess the potential impact of changing climate 55 

conditions on dryland water fluxes and ecosystem processes.56 



manuscript submitted to AGU JGR: Biogeosciences 

 

1 Introduction 57 

On an ecosystem scale, quantifying the importance of plants in governing evaporative 58 

water loss remains challenging. Towards addressing this challenge, eddy covariance flux towers 59 

offer a powerful methodology for quantifying the magnitude and variability in ecosystem water 60 

and energy fluxes in addition to carbon fluxes (Baldocchi, 2014). Flux towers provide NEE (i.e., 61 

net ecosystem exchange, or the net CO2 flux) and evapotranspiration (i.e., ET, or the loss of 62 

water from an ecosystem to the atmosphere) data products. While there are well-tested methods 63 

that partition NEE into its components (i.e., gross primary productivity [GPP] and ecosystem 64 

respiration), and that have been integrated into standard flux tower data processing (Desai et al., 65 

2008; Reichstein et al., 2005), accurate and widely applicable methods for partitioning ET into 66 

evaporation and transpiration are still being developed (Baldocchi, 2020; Stoy et al., 2019). 67 

However, understanding ET and its components is essential to evaluating the contribution of 68 

plants to ecosystem water fluxes and for improving land surface models. 69 

ET consists of two distinct evaporative processes: the abiotic process of evaporation (E) 70 

and the biotic process of transpiration (T). From an atmospheric perspective, T and E both 71 

describe the physical process by which liquid water changes to water vapor (Miralles et al., 72 

2020). From an ecosystem perspective, T differs from E in that T is regulated by plant biological 73 

processes. In particular, T is affected by leaf-level physiology and is linked to GPP through plant 74 

stomatal conductance, which controls both plant photosynthesis and plant water loss. The 75 

magnitude of T is governed by soil water availability and plant responses to environmental 76 

variables, such as stomata closing in response to high vapor pressure deficit (VPD) or opening in 77 

response to increased soil moisture availability (Beer et al., 2009). 78 

Partitioning flux tower estimates of ET into E and T can help connect individual plant 79 

adaptive strategies to ecosystem-level water balance across ecosystem types. However, 80 

estimating E and T can be complicated because the relative importance of environmental drivers 81 

can differ between E and T (Sun et al., 2019). Moreover, the timescales over which 82 

environmental drivers influence E and T likely vary. By representing partitioned ET as the 83 

contribution of T to ET (i.e., T/ET) we can assess the influences of climatic and biological 84 

drivers on ecosystem water fluxes (Gan & Liu, 2020; Tarin et al., 2020) and better understand 85 

the processes giving rise to temporal and spatial variation in these fluxes. Several studies have 86 

evaluated patterns of T/ET over different timescales (e.g., following rain pulses, seasonally, or 87 

annually), but the results are somewhat inconsistent (Moran et al., 2009). For example, global 88 

T/ET estimates vary between 24% to 90% depending on the ET partitioning method used (Wei et 89 

al., 2017). 90 

In recent years, there have been notable advances in developing models that partition ET 91 

using flux tower data that can be applied to a broad range of ecosystem types (Eichelmann et al., 92 

2022; Li et al., 2019; Nelson et al., 2018; Pérez-Priego et al., 2018; Scanlon et al., 2019; Scott & 93 

Biederman, 2017; Zahn et al., 2022; Zhou et al., 2016). However, previous ET partitioning 94 

models have various potential issues when applied to dryland ecosystems. For example, they 95 

estimate water-use efficiency (WUE) using only dry periods (Nelson et al., 2018; Zhou et al., 96 

2016), assume plants maximize carbon gain per unit water lost (Pérez-Priego et al., 2018; Zhou 97 

et al., 2016), or do not produce daily estimates or E, T, or WUE (Scott & Biederman, 2017) (see 98 

Table 1). Due to these limitations, a flux tower-based ET partitioning approach is needed that 99 

can be confidently applied to dryland ecosystems. 100 
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Plant WUE, the ratio of 101 

carbon gained to water lost during 102 

photosynthesis, connects the water 103 

and carbon cycles. Constraining 104 

WUE has been the main focus of 105 

improving ET partitioning models 106 

(Niu et al., 2011). Some flux-based 107 

ET partitioning models—such as the 108 

models introduced in Pérez-Priego et 109 

al. (2018) and Zhou et al. (2016)—110 

use theories of stomatal behavior 111 

related to leaf-level (intrinsic) WUE 112 

to estimate WUE at the ecosystem 113 

scale. Essentially, these methods 114 

assume that plants maximize carbon 115 

gain per unit water lost; i.e., they 116 

assume stomata are sensitive to VPD 117 

and will close rapidly in response to 118 

increasing VPD to avoid further 119 

drops in plant water potential (Jarvis 120 

& McNaughton, 1986). However, it 121 

is unclear what conditions need to be 122 

met at the ecosystem scale for this 123 

assumption to hold (Stoy et al., 124 

2019), as plant communities have a 125 

range of adaptive strategies related to 126 

water use and water stress (Dong et 127 

al., 2020; Engelbrecht et al., 2007; 128 

Maherali et al., 2004). The 129 

relationship between plant carbon 130 

gain and water loss can vary across 131 

spatial and temporal scales (Feng et 132 

al., 2022; Gomarasca et al., 2023; Lin 133 

et al., 2018). Moreover, the 134 

assumption of stomatal sensitivity to 135 

VPD may not be appropriate when 136 

considering ecosystems such as 137 

drylands, which support plants that 138 

vary greatly along the iso/anisohydry 139 

continuum, or that are strongly 140 

anisohydric (i.e., stomata are 141 

relatively insensitive to changes in 142 

VPD) (Guo et al., 2020; Ogle et al., 143 

2012). 144 

To address these limitations, we developed the Dynamic Evapotranspiration Partitioning 145 

Approach for Rapid Timescales (DEPART), a semi-mechanistic ET partitioning approach. 146 

Table 1 

Summary of existing eddy covariance flux tower ET 

partitioning methods. 

Approach and 

source 

Assumptions potentially 

not suited to drylands 

uWUE  

(Zhou et al., 2016) 

 

 

WUE is calculated during 

dry periods when T/ET ≈ 1. 

WUE is optimized 

according to changes in 

VPD. 

Scott and Biederman 

(Scott & Biederman, 

2017) 

Suited to drylands, but only 

applicable to monthly 

timescales. E is invariant 

across years per month. 

Transpiration 

Estimation Algorithm 

(TEA) 

(Nelson et al., 2018) 

WUE is calculated during 

dry periods when T/ET ≈ 1. 

Perez-Priego 

(Perez-Priego et al., 

2018) 

WUE is optimized 

according to changes in 

VPD. 

Conductance 

Partitioning  

(Li et al., 2019) 

Intercepted E is negligible; 

understory T is negligible; 

canopy conductance is 

proportional to GPP. 

 

Flux-Variance 

Partitioning (FVS) 

(Scanlon et al., 2019, 

2019; Skaggs et al., 

2018) 

Leaves are the only main 

source/sink for CO2 and 

H2O fluxes. Requires prior 

knowledge of plant WUE 

or assumes optimality. 

 

Conditional Eddy 

Covariance (Zahn et 

al., 2022) 

Assumes scalar similarity 

of turbulence.  

Eichelmann 

(Eichelmann et al., 

2022) 

Nighttime water fluxes are 

exclusively E. 
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Essentially, DEPART partitions ET by constraining E, a primarily abiotic process, rather than 147 

constraining WUE using physiological theories, and therefore forgoing stomata sensitivity 148 

assumptions. DEPART uses a Bayesian framework to utilize the underlying principles and 149 

structure of the linear model presented in Scott and Biederman (2017). DEPART, however, is 150 

applied at much faster time-scales representative of the temporal dynamics of E and T, facilitated 151 

by a modeling framework that integrates constraints on E and WUE. Thus, DEPART can inform 152 

our current understanding of underlying plant water-use processes in water-limited ecosystems.  153 

Using this new model, DEPART, we asked: (1) how does T/ET and WUE vary across 154 

dryland ecosystem types and (2) how does the relationship between T/ET and WUE versus 155 

environmental variables vary at different temporal scales across dryland ecosystem types? To 156 

address these questions, we used the DEPART framework to estimate E and T at daily scales and 157 

WUE at weekly scales over multiple years across seven dryland ecosystem types. We then used 158 

cross-wavelet coherence analysis to evaluate the temporal relationships between T/ET and 159 

environmental variables and between WUE and environmental variables. 160 

2 Methods 161 

Table 2 

Summary of eddy covariance sites used in this study. 

 Site Vegetation type Elevation 

(m) 

MAP 

(mm) 

MAT 

(C) 

% 

Sand 

% 

Clay 

Low 

elevation 

US-Seg Desert grassland 1622 273 13.67 88.67 4.32 

US-Ses Desert shrubland 1593 273 13.72 74.46 6.29 

Mid 

elevation 

US-Wjs Juniper savanna 1931 361 15.2 87 2.55 

US-Mpj Piñon-juniper 

woodland 

2196 385 10.5 56.74 9.51 

High 

elevation 

US-Vcp Ponderosa pine 

woodland 

2500 550 9.8 71.48 5.24 

US-Vcm Burned subalpine 

mixed conifer forest 

3000 646 6.4 72.35 3.55 

US-Vcs Unburned subalpine 

mixed conifer forest 

2752 551 4.6 79.64 2.51 

Note. In 2013, a fire burned US-Vcm, and we only use the data from 2014 onwards. It is worth 

noting that since this is a recovering mixed conifer forest, US-Vcm is primarily dominated by 

elderberry shrubs during this period. 
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2.1 Eddy Covariance Flux Data 162 

In this study, we used eddy covariance flux tower data from the New Mexico Elevation 163 

Gradient (NMEG), a network of seven Ameriflux sites spanning an elevation and aridity gradient 164 

in New Mexico (USA) that offer long-term measurements (~2008-2020) of carbon, water, and 165 

energy fluxes in dominant ecosystem types present in the southwestern USA (Table 2). Briefly, 166 

these NMEG sites include a desert grassland (US-Seg), desert shrubland (US-Ses), juniper 167 

savannah (US-Wjs), piñon-juniper woodland (US-Mpj), ponderosa pine forest (US-Vcp), burned 168 

mixed conifer forest (US-Vcm), and unburned mixed conifer forest (US-Vcs). The strategic 169 

distribution of NMEG sites (Table 2) allows us to ask questions using flux towers across 170 

multiple biomes (Anderson-Teixeira et al., 2011). All sites have sandy loam soils. Detailed site 171 

descriptions can be found in Anderson-Teixeira et al. (2011) and Samuels‐Crow et al. (2020). 172 

Site data were processed from freely available datasets at daily resolution from the 173 

Ameriflux website (https://ameriflux.lbl.gov/); these data include ET, estimated GPP partitioned 174 

from NEE (Reichstein et al., 2005), and meteorological measurements. While we recognize that 175 

GPP is not measured directly and estimated via NEE partitioning algorithms, we assume that the 176 

GPP estimates are fairly accurate given that the partitioning approaches have been repeatedly 177 

tested, refined, and generally accepted by the flux community. Volumetric soil water content 178 

(SWC) data were collected every 30 minutes using probes (Campbell Scientific CS610 at US-179 

Mpj; Campbell Scientific CS616 at all other sites) across four pits at each site and processed 180 

following Rüdiger et al. (2010), then averaged to daily values.  181 

2.2 Soil Water Content Gap-Filling 182 

 At flux tower sites, SWC data can be missing for various reasons, including sensor 183 

malfunctions or interference from animals and weather (Baldocchi et al., 2001). Across sites, 184 

daily SWC data gaps ranged from 2.14% to 21.60% of all daily SWC data, with average gap 185 

sizes varying from 15 to 36 days. To fill gaps in the daily SWC data to better estimate soil E, we 186 

applied a simple systematic gap-filling approach. To gap-fill missing SWC, we linearly 187 

interpolated SWC sequentially for days in which there were no precipitation events, using the 188 

SWC values reported at the start and end of the gap. The SOILWAT2 model was used to 189 

estimate missing SWC during gap periods that received precipitation. SOILWAT2 is a process-190 

based, multiple soil layer simulation model of ecosystem water balance that has been validated in 191 

several dryland ecosystems (Bradford et al., 2014, 2020; Bradford & Lauenroth, 2006; 192 

Schlaepfer et al., 2017). Daily SWC values simulated by SOILWAT2 were linearly regressed 193 

against known flux tower site SWC, and the linear equation was used to correct for magnitude 194 

discrepancies in the SOILWAT2 SWC data. The adjusted SOILWAT2 values were used to gap-195 

fill the missing SWC data when linear interpolation would be less appropriate, such as after a 196 

large precipitation pulse. To test the gap-filling approach, we artificially introduced gaps into the 197 

observed data and applied the technique to see how closely the simulated data matched the 198 

observed data that were removed. The R2 (coefficient of determination) values from a regression 199 

of observed on simulated data ranged from 0.71 (US-Vcm) to 0.88 (US-Ses). 200 

2.3 Soil Property Analysis 201 

 When considering E, soil texture is particularly important because it controls the surface 202 

area available for water particles to bond to and the amount of pore space that could store water 203 

(Komatsu, 2003; Lee & Pielke, 1992). To determine soil texture properties for each site, we 204 

https://ameriflux.lbl.gov/
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collected site-specific soil samples from each NMEG tower site in the summer of 2021. We 205 

collected soil samples from 0-5 cm from 1-3 holes (3 holes each at US-Seg, US-Vcp, US-Vcm, 206 

and US-Vcs and 1 hole each at US-Ses, US-Wjs, and US-Mpj). From these separate samples, we 207 

determined the percentages of sand, silt, and clay using the hydrometer technique (Garcia 208 

Coronado et al., 2008), which was then used to calculate the soil clay and sand percentages and 209 

soil field capacity for each sample. This information improved soil model parameters affecting 210 

soil E and accounted for landscape heterogeneity within each flux tower footprint (see section 211 

2.4). 212 

2.4 The DEPART Model for ET Partitioning 213 

The DEPART model structure builds on the framework developed by Scott and 214 

Biederman (2017). Briefly, the original Scott and Biederman approach predicts monthly T and E 215 

based on a regression of monthly values of ET on GPP obtained for multiple years, where the 216 

intercept in this regression, 𝐸′, is interpreted as the physical-based evaporation term for a given 217 

month. The DEPART model, however, can be applied at finer temporal scales (daily to weekly) 218 

by constraining 𝐸′ with process-based, nonlinear evaporation equations. While the DEPART 219 

method is structurally similar to the approach of Scott and Biederman (2017), the latter method 220 

assumes 𝐸′= E is invariant across years for each month. The DEPART E estimate, however, can 221 

vary by day, so 𝐸′= E without assuming a lack of variance in E. 222 

Incorporation of these additional models and data (constraints on 𝐸′ and WUE) are 223 

accommodated within a Bayesian framework. Consequently, WUEDEPART, a key term in the 224 

model, is allowed to vary with time, and we allow WUEDEPART to vary at weekly scales to 225 

capture the influence of rainy periods. The modeled WUEDEPART does not rely on the concept 226 

that plants maximize carbon gain per unit water lost or that WUE is tightly coupled to VPD, and 227 

it does not require previous knowledge of plant stomatal physiological responses. 228 

DEPART uses daily carbon (GPP) and water (ET) fluxes from eddy covariance flux 229 

towers to partition ET, based on linear regressions of ET versus GPP where, for each day, d, and 230 

week, w, associated with each day, w(d): 231 

 𝐸𝑇𝑑 = 𝑚𝑤(𝑑)𝐺𝑃𝑃𝑑 + 𝐸𝑑
′  (1) 

where the slope, 𝑚, represents the inverse of the weekly WUE. Here, 𝐸𝑑
′ , is the intercept that 232 

denotes ET when GPP = 0, representing the condition when plants are inactive (i.e., GPP = 0, so 233 

expect T = 0). Note that equation 1 is distinct from Scott and Biederman (2017) because ET, 234 

GPP, and E are allowed to vary by day and the slope is allowed to vary by week. Following 235 

equation 1, daily transpiration, Td, is estimated as, 236 

 𝑇𝑑 = 𝑚𝑤(𝑑)𝐺𝑃𝑃𝑑 (2) 

Therefore, 𝑚 represents an inverse WUE index such that 1/m = WUEDEPART, which is expected 237 

to roughly match weekly estimates of GPP/T. WUEDEPART—and hence, m = 1/WUEDEPART in 238 

equations (1) and (2)—is loosely constrained by a stochastic autoregressive model that assigns a 239 

hierarchical prior to each weekly WUEDEPART value, given the prior week’s WUEDEPART value 240 

such that: 241 

 𝑊𝑈𝐸𝑤
𝐷𝐸𝑃𝐴𝑅𝑇 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑊𝑈𝐸𝑤−1

𝐷𝐸𝑃𝐴𝑅𝑇 , 𝜎𝑊𝑈𝐸
2 ) (3) 
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Again, w indicates the week. Within the Bayesian framework, the standard deviation, 𝜎𝑊𝑈𝐸 , is 242 

assigned a uniform prior such that 𝜎𝑊𝑈𝐸~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,20). Essentially, the estimated 243 

WUEDEPART varies around the WUEDEPART of the previous week with some unknown variance, 244 

and all weekly WUEDEPART values and the unknown variance are estimated by fitting the full 245 

DEPART model to the eddy flux tower data. In other words, WUE is a stochastic quantity in 246 

DEPART, and it is estimated to “optimize” the relationship in equation 1. Thus, a novel aspect of 247 

DEPART is that WUEDEPART is stochastic and its temporal variation is weakly constrained by the 248 

above autoregressive model and equation 1. 249 

Unique to the DEPART model, both 𝐸′ and WUEDEPART are constrained, but to differing 250 

degrees. In contrast to the weak constraints on weekly WUEDEPART, daily 𝐸′ is relatively tightly 251 

constrained by mechanistic equations for physical-based soil and intercepted E based on models 252 

in the Community Land Model (CLM) versions 3.5 and 4.5 (Oleson et al., 2013), succinctly 253 

summarized in Merlin et al. (2016). In particular, DEPART models soil E as a mixture of two 254 

common equations. The first is based on the soil surface resistance (rss) and α formulations used 255 

in CLM 3.5, which give the following for LE, the latent energy: 256 

 
𝐿𝐸(𝑟𝑠𝑠, 𝛼) =

𝜌𝐶𝑝

𝛾
∙

𝛼𝑒𝑠𝑎𝑡(𝑇𝑠𝑜𝑖𝑙) − 𝑒𝑎

𝑟𝑎ℎ + 𝑟𝑠𝑠
 

(4) 

And the second is based on the β and α formulations used in CLM 4.5: 257 

 
𝐿𝐸(𝛽, 𝛼) = 𝛽 ∙

𝜌𝐶𝑝

𝛾
∙

𝛼𝑒𝑠𝑎𝑡(𝑇𝑠𝑜𝑖𝑙) − 𝑒𝑎

𝑟𝑎ℎ
 

(5) 

For simplicity of presentation, we avoid subscripting with d in equations (4) and (5), but LE does 258 

vary by day, d, because several terms vary by day, including: the density of air (𝜌), saturated 259 

vapor pressure in the soil (esat), soil temperature (Tsoil), saturated air vapor pressure (ea), 260 

aerodynamic resistance to heat transfer (rah), and resistance to the diffusion of vapor in large soil 261 

pores (rss). Time invariant terms include the psychrometric constant (𝛾) and the specific heat of 262 

air (Cp). β and α are time-varying wetness coefficients constrained between 0 and 1, where β 263 

scales potential evaporation down to actual evaporation, and α scales the saturated vapor 264 

pressure down to the actual vapor pressure at the soil surface. Briefly, rss, β, and α are 265 

determined using expressions derived from thermodynamics; all three terms depend on 266 

pedotransfer functions that rely on sand and clay fractions. We calculated these quantities using 267 

formulations from the literature, as done in Merlin et al. (2016); see the supporting information 268 

for details. 269 

 In summary, LE from equations (4) and (5) can be converted to soil E by dividing each 270 

LE term by the latent heat of vaporization (λ), converting from units of W/m2 to mm/s. Thus, the 271 

daily soil evaporative flux is computed as: 272 

 
𝐸𝑑

𝑆𝑜𝑖𝑙 =
86400

λ
(𝑤 ∙ 𝐿𝐸𝑑(𝑟𝑠𝑠, 𝛼) + (1 − 𝑤) ∙ 𝐿𝐸𝑑(𝛽, 𝛼)) 

(6) 

Where w is the unknown mixture weight; within the Bayesian framework, w is assigned a 273 

uniform prior, w ~ Uniform(0, 1). We used a temperature dependent λ, so that λ =274 

(2.501 − 0.00237 ∙ 𝑇air) ∙ 106, and 86400 converts seconds to days. 275 

The DEPART framework treats certain soil property parameters as stochastic quantities 276 

to account for site-specific heterogeneity, accomplished by assigning these parameters relatively 277 

informative priors based on values expected to be representative of each site. We informed the 278 
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variance of these stochastic quantities using the approximate standard deviation of field-based 279 

estimates calculated within each site. These parameters—which are excluded here but were used 280 

to calculate rss, β, and α—were the Clapp and Hornberger parameter, soil field capacity, residual 281 

soil moisture, soil moisture at saturation, and the parameterized air entry pressure. We allowed 282 

the von Karman constant, a constant for the logarithmic wind profile in the surface layer, to vary 283 

according to a uniform distribution on the interval (0.35, 0.42), consistent with past literature 284 

(Foken, 2006). 285 

The DEPART framework models daily canopy intercepted E as: 286 

 𝐸𝑑
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑 = P𝑑(1 − 𝑒𝑥𝑝(−𝑘 ∙ 𝐿𝐴𝐼𝑑)) (7) 

where P is the sum of same-day and previous-day precipitation, k is a decay parameter that is 287 

assigned a moderately informative prior based on a normal distribution with a moderate variance, 288 

k ~ Normal(0.5, 10) (Li et al., 2019), and LAI is leaf area index. We estimated daily LAI using 289 

the Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index data product for 290 

AmeriFlux sites (ORNL DAAC, 2018). LAI from MODIS is only available every 8 days, so we 291 

linearly interpolated values to fill the gaps within each 8-day period. The total evaporative flux 292 

from leaf and soil surfaces in equation (1), 𝐸′, is given as the sum of the soil evaporation term, 293 

ESoil from equation (6), and intercepted evaporation, EIntercepted from equation (7).  294 

This approach should provide more realistic estimates of daily E, reflecting the direct 295 

influence of rain events, and thus improve estimates of daily T and weekly WUE (WUEDEPART). 296 

These shorter timescales (daily and weekly) should better capture the E, T, ET, and WUE 297 

responses to precipitation inputs in semiarid sites relative to the original (monthly scale) 298 

applications of the Scott and Biederman model. We ran this model in R (R Core Team, 2020) 299 

with the rjags package (Plummer, 2019) and the PostJAGS package (Fell, 2019) using Northern 300 

Arizona University’s High Performance Computing resources. 301 

2.6 Model Evaluation 302 

To evaluate model fit, we compared R2 values from a regression of DEPART predicted 303 

ET versus the observed ET for each site. To evaluate the contribution of T to ET, we also 304 

calculated T/ET values at annual timescales. Since T/ET is expected to be high in many 305 

ecosystem types (Wei et al., 2017), many studies use ET as a proxy for T (e.g., De Kauwe et al. 306 

[2019], Dralle et al. [2020],  Emmerich [2007], Fisher et al. [2017]). However, a high T/ET does 307 

not necessarily mean T is highly correlated with ET, in which case using ET as a proxy for T 308 

would not be appropriate. Following this, to test whether T or E controls the pattern of ET, we 309 

also evaluated correlations between T and ET and between E and ET to assess if ET could be 310 

used as a suitable proxy for T at our study sites. 311 

At the US-Mpj site only, we then compared T estimates from DEPART with T estimates 312 

from whole-tree sap flux from a previous study (Morillas et al., 2017) and to T estimates 313 

obtained from the Pérez-Priego et al. (2018) ET partitioning method. We only applied the Pérez-314 

Priego et al. (2018) method at one site because it is fairly computationally intensive, and we 315 

picked US-Mpj to enable comparisons with sap flux data from Morillas et al. (2017). In this 316 

comparison, we considered correlations between sap flow T, Pérez-Priego T, and DEPART T, 317 

and the differences in how correlated T was to ET for each method over the time period in which 318 

all methods could be applied (2008-2012). Calculating the correlations between T estimates and 319 

comparing T/ET across methods helped us assess differences in the magnitude of T, while 320 
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comparing correlations between T and ET helped us assess differences in the pattern of T 321 

compared to the bulk water flux. 322 

Morillas et al. (2017) used 10 trees within the US-Mpj tower footprint to estimate T 323 

calculated from sap flow. Because the Morillas et al. (2017) study does not upscale T estimates 324 

to account for understory vegetation or the true boundaries of the tower footprint, we believe this 325 

T estimate to be only partially comparable to our own, and the magnitudes will likely differ. 326 

Still, the comparison could be useful when evaluating overall temporal patterns in T.  327 

Like other popular ET partitioning methods (e.g., Table 1), the Pérez-Priego method 328 

makes assumptions about plant stomatal behavior that are not always well-suited to drylands. 329 

Therefore, the Pérez-Priego method may not be entirely reliable at the sites tested here, and this 330 

comparison should not be overvalued. We chose to compare our model to the Pérez-Priego 331 

Table 3 

Summary of DEPART model results across sites, including model fit (R2), posterior means 

and 95% CIs for the average annual growing season T/ET and WUE values, and 

correlations (r) between T and E versus ET. 

Gradient Site Model 

Fit 

(R2) 

T/ET 2.5% 

CI 

97.5

% CI 

WUE 2.5% 

CI 

97.5

% CI 

T vs. 

ET 

(r) 

E vs. 

ET  

(r) 

Low 

elevation, 

most arid 

US-

Seg 

0.61 0.88 0.86 0.89 1.57 1.45 1.74 0.41 0.33 

US-

Ses 

0.51 0.84 0.82 0.85 1.37 1.25 1.48 0.22 0.30 

Mid 

elevation 

US-

Wjs 

0.70 0.94 0.93 0.94 2.02 1.96 2.09 0.61 0.17 

US-

Mpj 

0.63 0.87 0.73 0.90 2.40 2.07 7.37 0.51 0.18 

High 

elevation, 

less arid 

US-

Vcp 

0.81 0.96 0.95 0.96 2.74 2.65 2.83 0.74 0.07 

US-

Vcm 

0.83 0.88 0.84 0.91 1.05 0.99 1.12 0.71 0.08 

US-

Vcs 

0.91 0.96 0.95 0.97 2.11 1.97 2.25 0.72 0.05 

Note. Here we define “annual growing season” as average values during spring, summer, 

and fall. Winter is excluded from these averages, since plants are inactive. R2 values are 

computed using linear regressions. “CI” columns indicate credible intervals. 
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method, however, over other promising ET partitioning methods due to its simple-to-replicate 332 

documentation, and its thoroughness of incorporating optimality principles, which we are 333 

interested in testing here. Comparisons between T values were made using Spearman rank 334 

correlations to reduce the influence of outliers. 335 

We also compared average monthly T/ET estimates from DEPART to monthly Scott and 336 

Biederman T/ET estimates for all NMEG sites, since the Scott and Biederman method was 337 

developed specifically for drylands where ET and GPP are tightly correlated. 338 

2.7 Cross-wavelet Coherence Analysis 339 

Application of the DEPART model to the daily ET and GPP data at each site results in 340 

predicted timeseries of weekly WUEDEPART and daily T/ET. Using these timeseries, we analyzed 341 

the relationship between response variables WUEDEPART and T/ET versus environmental 342 

variables (i.e., VPD, precipitation [P], SWC, and air temperature [Tair]) using cross-wavelet 343 

coherence analysis with a complex Morlet wavelet convolution (Grinsted et al., 2004; Torrence 344 

& Compo, 1998). Cross-wavelet coherence analysis allowed us to explore the relationship 345 

between variables across varying timescales by transforming a one-dimensional timeseries into 346 

two-dimensional time-frequency space. For example, we tested the weekly to yearly temporal 347 

coherence (R2) between each response variable and multiple environmental variables, including 348 

lagged correlations, across all weeks in the timeseries. We then averaged the temporal 349 

coherences across all periods of time to summarize the correlations between the two variables as 350 

described in Samuels-Crow et al. (2018). To more intuitively represent in-phase (positively 351 

correlated) and anti-phase (negatively correlated) relationships, we modified the resulting R2 352 

values by multiplying R2 values of anti-phase relationships by -1 to create a “temporal coherence 353 
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index”. This temporal coherence index can be either negative or positive; negative values 354 

represent anti-phase relationships and positive values represent in-phase relationships. 355 

3 Results 356 

3.1 Model Fit 357 

The R2 between daily estimated and observed ET varied from 0.51 to 0.81 across the 358 

elevation gradient (Table 3). Generally, the DEPART model performed better at the higher 359 

elevation, less arid sites than the lower elevation, more arid sites. 360 

3.2 Comparison with Other ET Partitioning Methods 361 

Excluding winter periods, and only including years that the DEPART model and the 362 

Pérez-Priego model could be compared to sapflow-based T estimates (2008-2012), the DEPART 363 

model estimated that T makes up the majority (90%) of ET at the US-Mpj site, but the Pérez-364 

 
Figure 1. Comparison between average monthly T/ET (+/- standard deviation) using 

different partitioning methods (top panel). Pérez-Priego and sapflow derived T/ET 

(averaged over 2008-2012) are shown in the top panel for the US-Mpj site. DEPART T/ET 

and Scott and Biederman T/ET are averages over all available years of data for each site.  

When the Scott and Biederman T/ET is greater than 1, this indicates that the intercept in the 

ET versus GPP regression is negative, and the Scott and Biederman method may not be 

applicable. The bottom panel shows boxplots for all monthly DEPART T/ET estimates, 

where each overlayed point represents a monthly T/ET value. 
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Priego method estimated a much 365 

lower contribution (60%). The 366 

sapflow method resulted in the 367 

lowest contribution of T to ET 368 

(28%). 369 

The correlation between 370 

the Pérez-Priego T estimates and 371 

the sapflow-based T estimates was 372 

slightly higher than the correlation 373 

between DEPART T estimates and 374 

the sapflow-based T estimates (r = 375 

0.71 and r = 0.58, respectively). T 376 

estimates from DEPART and the 377 

Pérez-Priego model were also 378 

somewhat correlated with each 379 

other (r = 0.53) for the time 380 

periods both models could be 381 

applied (2008-2016). 382 

The T estimates from 383 

DEPART were the most highly 384 

correlated with ET (r = 0.78) out 385 

of all three approaches, while the 386 

Pérez-Priego T estimates were the 387 

least correlated with ET (r = 0.41). 388 

The sapflow-based T estimates 389 

had an intermediate correlation 390 

with ET (r = 0.48).  391 

After removing all days 392 

with rain events, T estimates from 393 

DEPART were more highly 394 

correlated with ET (r = 0.84 395 

without rain events versus r = 0.78 396 

with rain events). The same was 397 

true for the the Pérez-Priego T 398 

estimates (r = 0.49 versus r = 399 

0.41) and sapflow-based T 400 

estimates (r = 0.55 versus r = 401 

0.48). Additionally, during dry 402 

periods, T estimates from 403 

DEPART made up a larger fraction of ET (96% without rain events versus 90% with rain 404 

events), which also occurred for the Pérez-Priego T estimates (65% versus 60%) and sapflow-405 

based T estimates (31% versus 28%). These results are consistent with the expectation that 406 

dryland ecosystems have greater T/ET during dry periods (and greater E/ET occurring on days 407 

with rain). 408 

The comparison between monthly estimates of T/ET from DEPART and the Scott and 409 

Biederman approach showed that the latter agreed more with DEPART at lower elevation, more 410 

 
Figure 2. DEPART estimates of daily T and E fluxes 

and weekly WUE, along with observed daily P at 

representative low- (US-Ses), mid- (US-Mpj), and high-

elevation (US-Vcs) sites during 2017. Symbols represent 

posterior means; error bars and shaded regions represent 

95% credible intervals. 
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arid sites compared to higher 411 

elevation, less arid sites 412 

(Figure 1). The lower 413 

elevation, more arid sites 414 

also had more variable 415 

monthly T/ET. For sites 416 

associated with a relatively 417 

high R2 from a regression of 418 

ET versus GPP (Figure S2), 419 

there is greater agreement 420 

between the DEPART and 421 

Scott and Biederman T/ET 422 

estimates. At the US-Mpj 423 

site, all ET partitioning 424 

methods are in disagreement. 425 

3.3 Modeled T, E, and WUE 426 

Across Sites 427 

The DEPART model 428 

suggests that T dominated 429 

ET across the aridity gradient 430 

(annual growing season 431 

T/ET generally ranged from 432 

0.75 to 0.93), and T and E 433 

became temporally staggered 434 

around episodic precipitation 435 

events in which E peaks 436 

faster than T (Figure 2), 437 

which is consistent with 438 

previous dryland ET 439 

partitioning studies (Sun et 440 

al., 2019). Regardless of the 441 

overall contribution of T to ET at each site, E was more correlated with ET at lower elevation, 442 

more arid sites, and T was more correlated with ET at higher elevation, less arid sites (Table 2). 443 

Annual growing season WUEDEPART ranged from 0.97 to 2.44 g C/mm H2O across sites 444 

and years, although WUEDEPART generally showed a more distinct separation across seasons 445 

(spring, summer, and fall) at the higher elevation, less arid sites compared to the lower elevation, 446 

more arid sites (Figure 3). 447 

3.4 Cross-wavelet Coherence Analysis 448 

In general, the cross-wavelet coherence results show that the lower elevation, more arid 449 

sites are supply-driven and the higher elevation, less arid sites are demand-driven. For example, 450 

VPD and temperature (important at high elevation sites) influence the magnitude of 451 

 
Figure 3. The top panel shows weekly WUEDEPART estimated 

by the DEPART model. The WUEDEPART presented here is an 

estimate of GPP/T. Large outliers occur outside of the 

growing season (early Spring and late Fall), when GPP and T 

are both very small. The bottom panel shows the relationship 

between WUEDEPART and VPD by site. 
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atmospheric demand for moisture whereas soil moisture (important at low elevation sites) 452 

influences the magnitude of moisture supply (Grossiord et al., 2020). 453 

The cross-wavelet coherence also showed that the relationship between WUEDEPART and 454 

VPD (Figure 4 and Figure 5) varied across sites and timescales. At the less arid sites, 455 

WUEDEPART and VPD were consistently in-phase (i.e., positively correlated) at the yearly 456 

timescale, but WUEDEPART and VPD were only occasionally correlated at the sub-monthly 457 

timescale. In contrast, WUEDEPART and VPD were anti-phase (i.e., negatively correlated) at the 458 

yearly timescale at the woody plant-dominated low- and mid-elevation sites. The lowest 459 

elevation site (US-Seg, desert grassland) did not support a strong relationship between 460 

WUEDEPART and VPD at the yearly timescale, although there was sometimes a strong anti-phase 461 

relationship at the seasonal timescale.  462 

In general, we found that WUEDEPART at higher elevation, less arid sites was more 463 

consistently correlated with environmental variables associated with the atmospheric demand for 464 

moisture (e.g., VPD, Tair) at yearly timescales. At lower elevation, more arid sites, WUEDEPART 465 

was more consistently correlated with indices of water availability (e.g., SWC, P) at weekly and 466 

seasonal timescales (Figure 5; Figure S3). At the lower elevation sites, WUEDEPART and SWC 467 

had a strong relationship and were generally in-phase at the monthly to yearly timescales (Figure 468 

5). The same was true for WUEDEPART and P at the lower elevation sites, but the relationship 469 

between WUEDEPART and P was also anti-phase at sub-monthly timescales. 470 

According to the cross-wavelet coherence results for T/ET versus key environmental 471 

variables (see Figure 5 and Figure S3), T/ET had the strongest relationships with variables 472 

 
Figure 4. Cross-wavelet coherence plots for weekly WUEDEPART versus VPD at the desert 

grassland site (US-Seg) (left) and ponderosa pine site (US-Vcp) (right). The colors represent the 

temporal coherence (R2). Warmer colors represent time periods when there is significant 

interrelation between WUEDEPART and VPD. Colder colors represent time periods when there is 

less dependence between WUEDEPART and VPD. Arrow direction represents whether a variable is 

leading or lagging. Arrows point to the right when the timeseries are in phase (the variables move 

in the same direction) and to the left when they are anti-phase (the variables move in opposite 

directions). Arrows pointing to the right-down or left-up indicate that VPD is leading, while 

arrows pointing to the right-up or left-down indicate that WUEDEPART is leading. 
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indicating the availability of water (e.g., SWC, P), and weaker relationships with variables 473 

associated with the atmospheric demand for moisture and seasonality (e.g., VPD and Tair). The 474 

weak relationship between T/ET versus VPD and Tair is likely because T and E are correlated 475 

with these drivers on similar timescales, and so T/ET appears independent of these drivers. 476 

However, the combination of in-phase and anti-phase relationships between T/ET versus SWC 477 

and P show that T and ET respond to the presence of water on distinct timescales. For example, 478 

T/ET and P are typically anti-phase at daily to monthly timescales and in-phase at seasonal 479 

timescales (Figure 5; Figure S3), likely due to high E after large water pulses during episodic 480 

rain events. In other 481 

words, E is more strongly 482 

controlled by P compared 483 

to T at daily timescales, 484 

but T is more strongly 485 

controlled by P compared 486 

to E at seasonal to yearly 487 

timescales. In contrast, 488 

T/ET and SWC are 489 

mostly in-phase across 490 

daily to seasonal 491 

timescales. However, the 492 

T/ET versus SWC 493 

relationship becomes 494 

anti-phase at yearly 495 

timescales at the more 496 

arid sites, showing a 497 

juxtaposition between the 498 

timescales over which P 499 

or SWC are related to 500 

T/ET. 501 

4 Discussion 502 

To overcome the 503 

challenges of previous 504 

ET partitioning methods, 505 

we built a novel ET 506 

partitioning approach to 507 

produce estimates of 508 

daily E and T and weekly 509 

WUEDEPART across 510 

semiarid ecosystem 511 

types. We then used these 512 

estimates to evaluate the 513 

spatiotemporal variability 514 

 
Figure 5. A summary of the cross-wavelet coherence results for 

(a) WUE and (b) T/ET versus multiple environmental variables at 

the desert grassland site (US-Seg) and ponderosa pine site (US-

Vcp). Plots show the average temporal coherence index values 

(y-axis) across the entire timeseries for each temporal scale (x-

axis). This is essentially taking the horizontal average of the 

values in the graphs shown in Figure 4 for every temporal scale, 

but only includes the time periods when WUE or T/ET are 

lagging. Note that here, the temporal coherence index is a 

modified temporal coherence where positive values indicate the 

series are in phase (equivalent to arrows pointing right in Figure 

4) and negative values mean the series are anti-phase (arrows 

pointing left in Figure 4). The whiskers indicate the standard 

deviation of temporal coherence index values. The colors 

correspond to the temporal coherence, such that blue represents 

less dependence between WUEDEPART or T/ET and environmental 

variables. Values over 0.7 or under -0.7 (gray dashed lines) 

correspond to strong temporal coherence. 
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in T/ET and WUEDEPART, and to determine the relationships between T/ET and WUEDEPART 515 

versus environmental variables across timescales. 516 

4.1 T/ET and WUE Across Sites 517 

The contribution of T to ET has been controversial in semiarid ecosystems, and T/ET 518 

estimates from previous synthesis studies have varied depending on the method used (Sun et al., 519 

2019; Wei et al., 2017). Here, we found high T/ET across an aridity gradient in the southwestern 520 

USA (Table 3). However, there was notable year-to-year variability in monthly T/ET at the two 521 

driest sites, which is consistent with previous dryland literature (Reynolds et al., 2000). 522 

Generally, after an episodic precipitation event, E increased immediately and peaked quickly, 523 

whereas T increased and peaked more slowly, likely due to lags associated with plant water 524 

uptake (Gardner, 1991; Kramer, 1938). Because of these lags, E can still reach or surpass T 525 

during certain times of the growing season at the more arid sites (Cavanaugh et al., 2011; Scott et 526 

al., 2006) (Figure 2).  527 

The high T/ET values estimated by DEPART are quite different from previous studies 528 

that have found values generally spanning 40-70% in drylands (Cavanaugh et al., 2011; Nelson 529 

et al., 2020; Pérez-Priego et al., 2018; Scott et al., 2006, 2021; Scott & Biederman, 2017). 530 

However, previous meta-analyses have found inconsistent T/ET estimates across ecosystem 531 

types (Miralles et al., 2011; Sun et al., 2019; Wei et al., 2017). The high T/ET in this study aligns 532 

most closely with catchment-scale isotopic ET partitioning studies (Jasechko et al., 2013) but not 533 

with stand-level sapflow studies, which typically estimate lower T/ET compared to isotopic 534 

studies (Schlesinger & Jasechko, 2014). While there are biases to consider in all ET partitioning 535 

approaches, sapflow-based stand-level studies could be underestimating T/ET because they often 536 

neglect understory vegetation and assume the dynamics of the instrumented plants represent a 537 

larger area. At the same time, isotope-based studies may yield biased estimates of T/ET when 538 

hydrologic decoupling is a concern (Brooks, Renée et al., 2010; Schlesinger & Jasechko, 2014). 539 

It is worth noting that T/ET averages reported in synthesis studies are frequently composed of 540 

estimates from different methodologies with different assumptions. 541 

In support of high T/ET in semiarid ecosystems, consider Figure 6. In 2011 at the US-542 

Mpj site, from the beginning of April until the end of June, there were almost no precipitation 543 

inputs and shallow SWC remained very low. Figure 6 shows that the higher-than-average 544 

DEPART T/ET estimates hover near 100%, while the sapflow-based estimates from a previous 545 

study oscillate around 50%. In this deep-rooted piñon-juniper ecosystem at the end of June, 546 

following three months of almost no precipitation, how could 50% of ET be attributed to soil 547 

evaporation, E? A large contribution of T (e.g., T/ET close to 1) would seem reasonable in this 548 

scenario, which is likely associated with exceptionally dry surface soils, where little / no water is 549 

available for direct evaporation, but trees likely have access to deeper water sources protected 550 

from evaporation. High dryland T/ET is also consistent with the idea that a dry shallow soil 551 

surface can act as a boundary layer that prevents further evaporation from occurring (Yamanaka 552 

& Yonetani, 1999). It follows that ET from drylands can have high T/ET, except immediately 553 

following rain events that result in moist surface soils. At the same time, the high DEPART T/ET 554 

(Figure 6) values that closely follow precipitation inputs are likely overestimated around rain 555 

events, as modeled E may be decreasing too rapidly after a rain event. Other studies have shown 556 

that E may decrease after precipitation inputs according to a decay function and at a rate that 557 

varies with soil textural properties (Li et al., 2019). Considering this, further improvements on 558 



manuscript submitted to AGU JGR: Biogeosciences 

 

the physical E models (such as those included in Lehmann et al., 2018 or Or et al., 2013) likely 559 

could improve DEPART estimates. 560 

Eddy flux towers do not provide direct measurement of T or E, which makes it 561 

challenging to assess the performance of flux tower-based ET partitioning models (Stoy et al., 562 

2019). However, in Table 1 we highlighted why other flux tower-based ET partitioning 563 

approaches may not be best suited for semiarid ecosystems, such as our study sites. Briefly, 564 

many flux tower-based ET partitioning methods (including both data-driven and process-based 565 

methods) may underestimate T in semiarid ecosystems by overestimating WUE. Many of these 566 

methods consider estimating WUE to be the primary barrier to estimating T. However, it is more 567 

accurate to consider this problem circular, as we are attempting for solve for two unknowns (i.e., 568 

WUE and T). For instance, as a community we want to partition ET using an estimate of WUE 569 

(GPP/T) along with some estimate of GPP from NPP partitioning approaches. At the same time, 570 

it is difficult to estimate GPP/T without partitioning ET. Many ET partitioning methods (Nelson 571 

et al., 2018; Pérez-Priego et al., 2018; Zhou et al., 2016) get around this by calculating T and 572 

GPP/T simultaneously by assuming GPP/ET = GPP/T during dry periods to estimate 573 

transpirational WUE (GPP/T) for all (both wet and dry) periods. This assumption likely 574 

introduces biases into the WUE and T calculations, as past studies have shown that various WUE 575 

indices are expected to be lower during wet periods compared to dry periods in semiarid 576 

ecosystems, including transpirational WUE (Donovan & Ehleringer, 1992), intrinsic WUE 577 

(Lázaro-Nogal et al., 2015), and ecosystem WUE (Guoju et al., 2013; Tarin et al., 2020). Note 578 

that overestimating WUE (GPP/T) forces T in the denominator to be lower, so it follows that a 579 

higher WUE is equivalent to lower T and lower T/ET estimates. By ignoring wet periods, the 580 

Pérez-Priego method and others may overestimate true transpirational WUE when dryland plants 581 

are stimulated by precipitation pulses. DEPART, which does not ignore rainy periods, produces 582 

higher T/ET estimates compared to the Pérez-Priego method and others (Nelson et al., 2020). 583 
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DEPART represents a departure from the assumption that WUE is constant across rainy and dry 584 

periods, and is perhaps more applicable to ecosystems with dynamic WUE. 585 

The DEPART results also show variability in WUEDEPART between wet and dry periods, 586 

although there was greater seasonal variation in estimated WUEDEPART at the tree-dominated 587 

sites (US-Wjs, US-Mpj, 588 

US-Vcp, and US-Vcs) 589 

than the shrub- and grass-590 

dominated sites (US-Seg, 591 

US-Ses, and US-Vcm) 592 

(Figure 3). Regardless, 593 

WUEDEPART was 594 

generally lowest during 595 

the middle of the growing 596 

season around 597 

precipitation pulses 598 

(Figure 2). This further 599 

supports that ET 600 

partitioning methods that 601 

calculate WUE based on 602 

periods without 603 

precipitation (Nelson et 604 

al., 2018; Pérez-Priego et 605 

al., 2018; Zhou et al., 606 

2016) or that even assume 607 

WUE is constant (Scott & 608 

Biederman, 2017; Zhou et 609 

al., 2016) should be used 610 

with caution in ecosystems that are heavily influenced by episodic precipitation pulses. 611 

Regardless of the overall contribution of T to ET at each site, E was more strongly 612 

correlated with ET at lower elevation, more arid sites, while T was more strongly correlated with 613 

ET at higher elevation, less arid sites (Table 3). This has implications for studies that use ET as a 614 

proxy for T in drylands: even if T makes up a majority of ET at a particular site, temporal 615 

changes (patterns) in ET could be more indicative of changes in E rather than changes in T (such 616 

as at the shrubland site, US-Ses; Table 3). For example, studies that use ET as a proxy for T to 617 

test the relationship between plant water-use and environmental variables (De Kauwe et al., 618 

2019; Kropp et al., 2017) may be testing something closer to the relationship between abiotic 619 

water flux patterns (e.g., E) and environmental variables. In other words, E can control the 620 

variability in ET even when T makes up the majority in ET, so partitioning ET is still useful even 621 

when T is high. 622 

4.2 Temporal Scale, WUE, and T/ET 623 

Different conclusions about how environmental drivers affect plant water-use across 624 

different scales are not necessarily contradictory. Rather, these conclusions are representative of 625 

how spatial and temporal scale affect plant observations (Jarvis & McNaughton, 1986). Here we 626 

demonstrate the importance of observing WUEDEPART and T/ET dynamics over varying temporal 627 

scales. Specifically, the cross-wavelet coherence results indicate that temporal coherence 628 

 
Figure 6. An example of DEPART T/ET (black line) and sapflow 

T/ET (gray line) at US-Mpj during a dry growing season (2011). 

The red vertical line indicates the onset of the monsoon rainy 

season. From April until the end of June, there is almost no 

precipitation (blue bars) and shallow SWC (dashed blue line) is 

very low. 

 

 



manuscript submitted to AGU JGR: Biogeosciences 

 

between WUEDEPART and T/ET and different potential drivers depends on the temporal scale the 629 

relationship is observed over. Previous studies have found inconsistent results with regards to the 630 

influence of VPD versus SWC on plant water dynamics (Kwon et al., 2018; Lévesque et al., 631 

2014; Schultz & Stoll, 2010), and the effects of VPD and SWC on T can be difficult to 632 

disentangle (Novick et al., 2016). The temporal coherences in our study suggest that the lower 633 

elevation, more arid sites are more limited by shallow SWC (supply driven), and higher elevation 634 

sites are more limited by VPD (demand driven). However, at the more arid sites this coupling 635 

occurred at shorter timescales compared to the less arid sites (Figure 5). At the less arid sites 636 

(where VPD was often important), deep SWC was also sometimes important over longer 637 

timescales, likely due to the role of deep roots in these taller statured ecosystems (Novick et al., 638 

2016). Following this, seemingly contradictory results about the potential influence of VPD 639 

versus SWC on plant water dynamics could be due to temporal variations in ecosystem-specific 640 

processes. 641 

Temporal scale is also important for understanding the relationship between T/ET and 642 

environmental variables. For example, previous studies found a low correlation between T/ET 643 

and potentially important environmental variables across ecosystem types (Nelson et al., 2020; 644 

Sun et al., 2019). We also found that T/ET had low temporal coherence with many 645 

environmental variables, or inconsistent relationships with those variables over different 646 

timescales. This low temporal coherence is likely because T and E share similar environmental 647 

drivers, so the ratio T/ET does not change much despite potentially large changes in T and E. 648 

However, although T and E respond to similar drivers, they respond to those drivers over varying 649 

timescales. Specifically, T responds more slowly than E to changes in water supply (Kerhoulas et 650 

al., 2013), so there was higher coherence between T/ET and water supply-associated variables 651 

(i.e., P and SWC) across longer timescales. 652 

The temporal coherence between WUEDEPART and potential environmental drivers is 653 

generally consistent with past literature focused on intrinsic WUE (Grossiord et al., 2020), but is 654 

not consistent with literature representing ecosystem WUE calculated as GPP/ET (Stoy et al., 655 

2019). This supports the idea that WUEDEPART is representative of biological WUE at the 656 

ecosystem scale with less dilution from abiotic variables such as E. For example, it is known that 657 

the relationship between intrinsic WUE and VPD is nonlinear; i.e., WUE increases with VPD up 658 

to a point but decreases thereafter, for very high values of VPD (Zhang et al., 2019). Using the 659 

NMEG’s natural aridity gradient, the WUEDEPART cross-wavelet coherence results show this 660 

hyperbolic pattern (e.g., WUEDEPART and VPD have a positive relationship at less arid sites but a 661 

negative relationship at more arid sites). This nonlinear relationship is also true within sites at the 662 

weekly timescale over the entire study period (Figure 3), with the exception of two high 663 

elevation sites (US-Vcp and US-Vcm) that more closely match the relationship found for 664 

GPP/ET and VPD in Stoy et al. (2019), although this could be due to the smaller range of VPD 665 

experienced at those sites. 666 

Besides VPD, WUEDEPART is likely controlled by multiple other environmental drivers, 667 

and the relationship between WUE and these drivers likely depends on plant functional type 668 

(Grossiord et al., 2020). For example, it is known that soil moisture can modulate the 669 

relationship between WUE and VPD (Novick et al., 2016), depending on plant physiological 670 

strategy (Ambika & Mishra, 2021; W. Zhang et al., 2023). The inconsistent relationship between 671 

WUEDEPART and VPD at the sub-yearly timescale (Figure 4 and Figure 5) suggests that 672 

implementing assumptions of stomatal optimality—which result in assuming strong coupling of 673 

WUE and VPD—may be inappropriate for partitioning ET in semiarid ecosystems at certain 674 
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timescales. Only considering the effects of VPD on WUE could be especially inappropriate in 675 

more arid ecosystems such as the desert grassland (US-Seg) and shrubland (US-Ses) studied 676 

here, where SWC is more frequently important than VPD. This study shows that the patterns 677 

between WUE and environmental variables are inconsistent within sites, and future research 678 

should aim to determine the conditions under which biological WUE (such as WUEDEPART) 679 

exhibits expected (e.g., optimal) and unexpected behavior at the ecosystem scale. 680 

Many previous ET partitioning methods are tied to assumptions of optimality that only 681 

consider VPD. The cross-wavelet coherence results show that the timescales of optimality (e.g., 682 

for responses of WUEDEPART and T/ET to VPD) in drylands may not be consistent or intuitive, 683 

and thus model applications that use optimality theory should be used with caution. WUEDEPART 684 

and T/ET had high temporal coherence with other variables that influence the magnitude of 685 

moisture supply, such as SWC and P, so WUEDEPART and T/ET patterns are likely controlled by 686 

site-dependent environmental variables. For example, at the more arid sites, WUEDEPART is likely 687 

more strongly tied to P and SWC due to growing season rain pulse dynamics (Feldman et al., 688 

2021; Loik et al., 2004). In contrast, the less arid, higher elevation sites contain more plant 689 

species known to be isohydric (Anderson-Teixeira et al., 2011; Samuels‐Crow et al., 2020), such 690 

as Pinus ponderosa (at the US-Vcp site), and we might expect T and WUE to be more tightly 691 

coupled to VPD at these sites. 692 

It is worth noting that WUE links plant water loss to plant carbon uptake, the latter of 693 

which can also change in response to environmental conditions (Ehleringer & Cerling, 1995). 694 

Historically, the effects of VPD on WUE are explained by the effects of VPD on the intercellular 695 

CO2 concentration (Ci). Because the effects of VPD on Ci were found to be similar to the effects 696 

of VPD on stomatal conductance, it has become common to lump these two processes together 697 

when evaluating the effects of environmental variables on WUE (Grossiord et al., 2020). 698 

However, stomatal conductance has a wide variety of responses to environmental variables 699 

depending on plant strategy. For example, abscisic acid mediates stomatal conductance in 700 

response to low SWC, and can complicate stomatal responsiveness to VPD (Kriedemann et al., 701 

1972; Rogiers et al., 2012). It could be that at more arid sites, the differences in WUEDEPART 702 

patterns are indicative of a divergence of leaf-derived Ci responses to VPD and root-driven 703 

stomatal responses to low SWC. In other words, stomata in more arid ecosystems can exhibit 704 

more anisohydric behaviors in response to VPD but could still respond to abscisic acid. 705 

4.3 ET Partitioning Model Limitations 706 

Because the ET partitioning methods developed thus far are not in consensus, it is 707 

beneficial to explore the underlying assumptions of each model to determine which ET 708 

partitioning method is best suited to a particular site (Table 1). As a semi-mechanistic 709 

framework, DEPART represents an alternative to previous process-based ET partitioning 710 

methods that make assumptions about plant water-use traits (Pérez-Priego et al., 2018) and more 711 

data-driven, empirical approaches (Nelson et al., 2018). However, the process-based component 712 

of DEPART is abiotic in its assumptions (i.e., the soil evaporation equations). Because we are 713 

allowing certain parameters in these abiotic equations to vary stochastically, we intend to allow 714 

sufficient flexibility in these parameters to account for the inaccuracies of the specific process-715 

based formulation or limitations of field data used to inform parameters in the equations. For 716 

example, DEPART is limited by the availability of SWC data and knowledge of soil textural 717 

properties. While SWC data are typically available as a flux tower site data product, knowledge 718 

of sand and clay fractions is less common. However, soil textural properties can also be sourced 719 
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from global data products such as SoilGrids2.0 (Poggio et al., 2021). Still, the process-based 720 

evaporation equations likely do not capture the full heterogeneity of the flux tower footprint, and 721 

do not account for variables such as vegetation cover. Merlin et al. (2016) found that a soil 722 

evaporation model, similar to the models used in DEPART, produced E estimates that were 723 

moderately correlated with observed E (average R2 = 0.57) for sites with percent clay that align 724 

with the percent clay ranges measured at our study sites. Therefore, DEPART would likely 725 

benefit from the inclusion of better performing evaporation models and there is likely more room 726 

for improvement in constraining evaporation to partition ET. 727 

5 Conclusion 728 

This study presents a fine-scale ET partitioning framework suitable for future application 729 

in water-limited ecosystems with flashy E/ET dynamics, which has rarely been addressed in past 730 

ET partitioning literature. The results obtained from the DEPART framework improved our 731 

understanding of the contribution of T and E to ET in semiarid ecosystems by revealing the 732 

timescales at which T/ET and WUEDEPART have significant relationships with environmental 733 

variables. By estimating intrinsic WUEDEPART at the ecosystem scale, along a semiarid aridity 734 

gradient, we found that WUEDEPART is driven by moisture supply in more arid ecosystems and 735 

moisture demand in less arid ecosystems. DEPART is a reproducible ET partitioning method that 736 

can be applied at many flux tower sites. Thus, this study complements a suite of recent ET 737 

partitioning studies by introducing a new approach that can be applied to drylands. 738 

Acknowledgments 739 

This research was supported by NSF Hydrologic Sciences award EAR1834699 to K.S‐C., K.O., 740 

and M.L., a DOE Ameriflux Management Project award to M.L., a USGS-NSF Internship 741 

Program supplement to award EAR1834699, a NASA FINESST award 80NSSC22K1443 to 742 

E.R. and K.O., and the Interns-to-Scholars program at Northern Arizona University. We would 743 

also like to thank Bilal Aslam and Andrew Richardson for providing significant manuscript 744 

feedback, Michael Fell for his R functions for summarizing Bayesian output, and Selena Pearson 745 

and Portia Irey for assisting with the soil texture lab analyses. Any use of trade, firm, or product 746 

names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 747 

Open Research 748 

All code, models, and data files for the gap-filled flux tower site data, soil texture data, and 749 

model output used for the analyses in this paper can be found on Zenodo (Reich et al., 2023a). 750 

Code and models can also be found in the Github repository and on Zenodo: 751 

https://github.com/egreich/A-semi-mechanistic-model-for-partitioning-evapotranspiration (Reich 752 

et al., 2023b).753 



manuscript submitted to AGU JGR: Biogeosciences 

 

References 754 

Ambika, A. K., & Mishra, V. (2021). Modulation of Compound Extremes of Low Soil Moisture 755 

and High Vapor Pressure Deficit by Irrigation in India. Journal of Geophysical Research: 756 

Atmospheres, 126(7), e2021JD034529. https://doi.org/10.1029/2021JD034529 757 

Anderson-Teixeira, K. J., Delong, J. P., Fox, A. M., Brese, D. A., & Litvak, M. E. (2011). 758 

Differential responses of production and respiration to temperature and moisture drive the 759 

carbon balance across a climatic gradient in New Mexico: CARBON BALANCE 760 

ACROSS NM ELEVATIONAL GRADIENT. Global Change Biology, 17(1), 410–424. 761 

https://doi.org/10.1111/j.1365-2486.2010.02269.x 762 

Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the 763 

atmosphere – the state and future of the eddy covariance method. Global Change 764 

Biology, 20(12), 3600–3609. https://doi.org/10.1111/gcb.12649 765 

Baldocchi, D. (2020). How eddy covariance flux measurements have contributed to our 766 

understanding of Global Change Biology. Global Change Biology, 26(1), 242–260. 767 

https://doi.org/10.1111/gcb.14807 768 

Baldocchi, D., FAlge, Ev., Gu, L., Olson, R., & al,  et. (2001). FLUXNET: A new tool to study 769 

the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and 770 

energy flux densities. Bulletin of the American Meteorological Society, 82(11), 2415–771 

2434. 772 

Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D., et al. (2009). Temporal 773 

and among-site variability of inherent water use efficiency at the ecosystem level. Global 774 

Biogeochemical Cycles, 23(2). https://doi.org/10.1029/2008GB003233 775 



manuscript submitted to AGU JGR: Biogeosciences 

 

Bradford, J. B., & Lauenroth, W. K. (2006). Controls over invasion of Bromus tectorum: The 776 

importance of climate, soil, disturbance and seed availability. Journal of Vegetation 777 

Science, 17(6), 693–704. https://doi.org/10.1111/j.1654-1103.2006.tb02493.x 778 

Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K., & Burke, I. C. (2014). Shifts in plant 779 

functional types have time-dependent and regionally variable impacts on dryland 780 

ecosystem water balance. Journal of Ecology, 102(6), 1408–1418. 781 

https://doi.org/10.1111/1365-2745.12289 782 

Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K., & Palmquist, K. A. (2020). Robust 783 

ecological drought projections for drylands in the 21st century. Global Change Biology, 784 

26(7), 3906–3919. https://doi.org/10.1111/gcb.15075 785 

Brooks, Renée, J., Barnard, H. R., Coulombe, R., & McDonnell, J. J. (2010). Ecohydrologic 786 

separation of water between trees and streams in a Mediterranean climate. Nature 787 

Geoscience, 3(2), 100–104. https://doi.org/10.1038/ngeo722 788 

Cavanaugh, M. L., Kurc, S. A., & Scott, R. L. (2011). Evapotranspiration partitioning in 789 

semiarid shrubland ecosystems: a two-site evaluation of soil moisture control on 790 

transpiration. Ecohydrology, 4(5), 671–681. https://doi.org/10.1002/eco.157 791 

Daac, O. (2017). MODIS and VIIRS Land Products Fixed Sites Subsetting and Visualization 792 

Tool. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1567 793 

De Kauwe, M. G., Medlyn, B. E., Pitman, A. J., Drake, J. E., Ukkola, A., Griebel, A., et al. 794 

(2019). Examining the evidence for decoupling between photosynthesis and transpiration 795 

during heat extremes. Biogeosciences, 16(4), 903–916. https://doi.org/10.5194/bg-16-796 

903-2019 797 



manuscript submitted to AGU JGR: Biogeosciences 

 

Desai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D. Y., Barr, A., et al. 798 

(2008). Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. 799 

Agricultural and Forest Meteorology, 148(6), 821–838. 800 

https://doi.org/10.1016/j.agrformet.2007.11.012 801 

Dong, N., Prentice, I. C., Wright, I. J., Evans, B. J., Togashi, H. F., Caddy-Retalic, S., et al. 802 

(2020). Components of leaf-trait variation along environmental gradients. New 803 

Phytologist, 228(1), 82–94. https://doi.org/10.1111/nph.16558 804 

Donovan, L. A., & Ehleringer, J. R. (1992). Contrasting Water-Use Patterns Among Size and 805 

Life-History Classes of a Semi-Arid Shrub. Functional Ecology, 6(4), 482–488. 806 

https://doi.org/10.2307/2389287 807 

Dralle, D. N., Hahm, W. J., Rempe, D. M., Karst, N., Anderegg, L. D. L., Thompson, S. E., et al. 808 

(2020). Plants as sensors: vegetation response to rainfall predicts root-zone water storage 809 

capacity in Mediterranean-type climates. Environmental Research Letters, 15(10), 810 

104074. https://doi.org/10.1088/1748-9326/abb10b 811 

Ehleringer, J. R., & Cerling, T. E. (1995). Atmospheric CO2 and the ratio of intercellular to 812 

ambient CO2 concentrations in plants. Tree Physiology, 15(2), 105–111. 813 

https://doi.org/10.1093/treephys/15.2.105 814 

Eichelmann, E., Mantoani, M. C., Chamberlain, S. D., Hemes, K. S., Oikawa, P. Y., Szutu, D., et 815 

al. (2022). A novel approach to partitioning evapotranspiration into evaporation and 816 

transpiration in flooded ecosystems. Global Change Biology, 28(3). 817 

https://doi.org/10.1111/gcb.15974 818 



manuscript submitted to AGU JGR: Biogeosciences 

 

Emmerich, W. E. (2007). Ecosystem Water Use Efficiency in a Semiarid Shrubland and 819 

Grassland Community. Rangeland Ecology & Management / Journal of Range 820 

Management Archives, 60(5), 464–470. 821 

Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L., & 822 

Hubbell, S. P. (2007). Drought sensitivity shapes species distribution patterns in tropical 823 

forests. Nature, 447(7140), 80–82. https://doi.org/10.1038/nature05747 824 

Feldman, A. F., Chulakadabba, A., Gianotti, D. J. S., & Entekhabi, D. (2021). Landscape-Scale 825 

Plant Water Content and Carbon Flux Behavior Following Moisture Pulses: From 826 

Dryland to Mesic Environments. Water Resources Research, 57(1), e2020WR027592. 827 

https://doi.org/10.1029/2020WR027592 828 

Fell, M. (2019). PostJAGS. R. Retrieved from https://github.com/fellmk/PostJAGS (Original 829 

work published September 12, 2018) 830 

Feng, X., Lu, Y., Jiang, M., Katul, G., Manzoni, S., Mrad, A., & Vico, G. (2022). Instantaneous 831 

stomatal optimization results in suboptimal carbon gain due to legacy effects. Plant, Cell 832 

& Environment, 45(11), 3189–3204. https://doi.org/10.1111/pce.14427 833 

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., et al. (2017). The 834 

future of evapotranspiration: Global requirements for ecosystem functioning, carbon and 835 

climate feedbacks, agricultural management, and water resources. Water Resources 836 

Research, 53(4), 2618–2626. https://doi.org/10.1002/2016WR020175 837 

Foken, T. (2006). 50 Years of the Monin–Obukhov Similarity Theory. Boundary-Layer 838 

Meteorology, 119(3), 431–447. https://doi.org/10.1007/s10546-006-9048-6 839 



manuscript submitted to AGU JGR: Biogeosciences 

 

Gan, G., & Liu, Y. (2020). Inferring transpiration from evapotranspiration: A transpiration 840 

indicator using the Priestley-Taylor coefficient of wet environment. Ecological 841 

Indicators, 110, 105853. https://doi.org/10.1016/j.ecolind.2019.105853 842 

Garcia Coronado, J., Medina Gonzalez, H., & Nunnez Acosta, D. (2008). Hydrometer method: 843 

influence of the times of readings in the determination of the size distribution of particles 844 

in soil of Havana. Retrieved from https://www.osti.gov/etdeweb/biblio/22244942 845 

Gardner, W. R. (1991). Modeling water uptake by roots. Irrigation Science, 12(3), 109–114. 846 

https://doi.org/10.1007/BF00192281 847 

Gomarasca, U., Migliavacca, M., Kattge, J., Nelson, J. A., Niinemets, Ü., Wirth, C., et al. (2023). 848 

Leaf-level coordination principles propagate to the ecosystem scale. Nature 849 

Communications, 14(1), 3948. https://doi.org/10.1038/s41467-023-39572-5 850 

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform 851 

and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 852 

11(5/6), 561–566. https://doi.org/10.5194/npg-11-561-2004 853 

Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., et 854 

al. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 855 

1550–1566. https://doi.org/10.1111/nph.16485 856 

Guo, J. S., Hultine, K. R., Koch, G. W., Kropp, H., & Ogle, K. (2020). Temporal shifts in 857 

iso/anisohydry revealed from daily observations of plant water potential in a dominant 858 

desert shrub. New Phytologist, 225(2), 713–726. https://doi.org/10.1111/nph.16196 859 

Guoju, X., Fengju, Z., Zhengji, Q., Yubi, Y., Runyuan, W., & Juying, H. (2013). Response to 860 

climate change for potato water use efficiency in semi-arid areas of China. Agricultural 861 

Water Management, 127, 119–123. https://doi.org/10.1016/j.agwat.2013.06.004 862 



manuscript submitted to AGU JGR: Biogeosciences 

 

Jarvis, P. G., & McNaughton, K. G. (1986). Stomatal Control of Transpiration: Scaling Up from 863 

Leaf to Region. In A. MacFadyen & E. D. Ford (Eds.), Advances in Ecological Research 864 

(Vol. 15, pp. 1–49). Academic Press. https://doi.org/10.1016/S0065-2504(08)60119-1 865 

Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013). Terrestrial 866 

water fluxes dominated by transpiration. Nature, 496(7445), 347–350. 867 

https://doi.org/10.1038/nature11983 868 

Kerhoulas, L. P., Kolb, T. E., & Koch, G. W. (2013). Tree size, stand density, and the source of 869 

water used across seasons by ponderosa pine in northern Arizona. Forest Ecology and 870 

Management, 289, 425–433. https://doi.org/10.1016/j.foreco.2012.10.036 871 

Komatsu, T. S. (2003). Toward a Robust Phenomenological Expression of Evaporation 872 

Efficiency for Unsaturated Soil Surfaces. Journal of Applied Meteorology, 42(9), 1330–873 

1334. https://doi.org/10.1175/1520-0450(2003)042<1330:TARPEO>2.0.CO;2 874 

Kramer, P. J. (1938). Root Resistance as a Cause of the Absorption Lag. American Journal of 875 

Botany, 25(2), 110–113. https://doi.org/10.2307/2436856 876 

Kriedemann, P. E., Loveys, B. R., Fuller, G. L., & Leopold, A. C. (1972). Abscisic Acid and 877 

Stomatal Regulation 1. Plant Physiology, 49(5), 842–847. 878 

https://doi.org/10.1104/pp.49.5.842 879 

Kropp, H., Ogle, K., Vivoni, E. R., & Hultine, K. R. (2017). The Sensitivity of 880 

Evapotranspiration to Inter-Specific Plant Neighbor Interactions: Implications for 881 

Models. Ecosystems, 20(7), 1311–1323. https://doi.org/10.1007/s10021-017-0112-5 882 

Kwon, H., Law, B. E., Thomas, C. K., & Johnson, B. G. (2018). The influence of hydrological 883 

variability on inherent water use efficiency in forests of contrasting composition, age, and 884 



manuscript submitted to AGU JGR: Biogeosciences 

 

precipitation regimes in the Pacific Northwest. Agricultural and Forest Meteorology, 885 

249, 488–500. https://doi.org/10.1016/j.agrformet.2017.08.006 886 

Lázaro-Nogal, A., Matesanz, S., Godoy, A., Pérez-Trautman, F., Gianoli, E., & Valladares, F. 887 

(2015). Environmental heterogeneity leads to higher plasticity in dry-edge populations of 888 

a semi-arid Chilean shrub: insights into climate change responses. Journal of Ecology, 889 

103(2), 338–350. 890 

Lee, T. J., & Pielke, R. A. (1992). Estimating the Soil Surface Specific Humidity. Journal of 891 

Applied Meteorology, 31(5), 480–484. https://doi.org/10.1175/1520-892 

0450(1992)031<0480:ETSSSH>2.0.CO;2 893 

Lehmann, P., Merlin, O., Gentine, P., & Or, D. (2018). Soil Texture Effects on Surface 894 

Resistance to Bare-Soil Evaporation. Geophysical Research Letters, 45(19), 10,398-895 

10,405. https://doi.org/10.1029/2018GL078803 896 

Lévesque, M., Siegwolf, R., Saurer, M., Eilmann, B., & Rigling, A. (2014). Increased water-use 897 

efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New 898 

Phytologist, 203(1), 94–109. https://doi.org/10.1111/nph.12772 899 

Li, X., Gentine, P., Lin, C., Zhou, S., Sun, Z., Zheng, Y., et al. (2019). A simple and objective 900 

method to partition evapotranspiration into transpiration and evaporation at eddy-901 

covariance sites. Agricultural and Forest Meteorology, 265, 171–182. 902 

https://doi.org/10.1016/j.agrformet.2018.11.017 903 

Lin, C., Gentine, P., Huang, Y., Guan, K., Kimm, H., & Zhou, S. (2018). Diel ecosystem 904 

conductance response to vapor pressure deficit is suboptimal and independent of soil 905 

moisture. Agricultural and Forest Meteorology, 250–251, 24–34. 906 

https://doi.org/10.1016/j.agrformet.2017.12.078 907 



manuscript submitted to AGU JGR: Biogeosciences 

 

Loik, M. E., Breshears, D. D., Lauenroth, W. K., & Belnap, J. (2004). A multi-scale perspective 908 

of water pulses in dryland ecosystems: climatology and ecohydrology of the western 909 

USA. Oecologia, 141(2), 269–281. https://doi.org/10.1007/s00442-004-1570-y 910 

Maherali, H., Pockman, W. T., & Jackson, R. B. (2004). Adaptive Variation in the Vulnerability 911 

of Woody Plants to Xylem Cavitation. Ecology, 85(8), 2184–2199. 912 

https://doi.org/10.1890/02-0538 913 

Merlin, O., Stefan, V. G., Amazirh, A., Chanzy, A., Ceschia, E., Er‐Raki, S., et al. (2016). 914 

Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using 915 

a meta-analysis approach. Water Resources Research, 52(5), 3663–3684. 916 

https://doi.org/10.1002/2015WR018233 917 

Miralles, D. G., De Jeu, R. a. M., Gash, J. H., Holmes, T. R. H., & Dolman, A. J. (2011). 918 

Magnitude and variability of land evaporation and its components at the global scale. 919 

Hydrology and Earth System Sciences, 15(3), 967–981. https://doi.org/10.5194/hess-15-920 

967-2011 921 

Miralles, D. G., Brutsaert, W., Dolman, A. J., & Gash, J. H. (2020). On the Use of the Term 922 

“Evapotranspiration.” Water Resources Research, 56(11), e2020WR028055. 923 

https://doi.org/10.1029/2020WR028055 924 

Moran, M. S., Scott, R. L., Keefer, T. O., Emmerich, W. E., Hernandez, M., Nearing, G. S., et al. 925 

(2009). Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems 926 

using time series of soil surface temperature. Agricultural and Forest Meteorology, 927 

149(1), 59–72. https://doi.org/10.1016/j.agrformet.2008.07.004 928 

Morillas, L., Pangle, R. E., Maurer, G. E., Pockman, W. T., McDowell, N., Huang, C.-W., et al. 929 

(2017). Tree Mortality Decreases Water Availability and Ecosystem Resilience to 930 



manuscript submitted to AGU JGR: Biogeosciences 

 

Drought in Piñon-Juniper Woodlands in the Southwestern U.S.: Tree Mortality in 931 

Semiarid Biomes. Journal of Geophysical Research: Biogeosciences, 122(12), 3343–932 

3361. https://doi.org/10.1002/2017JG004095 933 

Nelson, J. A., Carvalhais, N., Cuntz, M., Delpierre, N., Knauer, J., Ogée, J., et al. (2018). 934 

Coupling Water and Carbon Fluxes to Constrain Estimates of Transpiration: The TEA 935 

Algorithm. Journal of Geophysical Research: Biogeosciences, 123(12), 3617–3632. 936 

https://doi.org/10.1029/2018JG004727 937 

Nelson, J. A., Pérez‐Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken, P. D., et al. (2020). 938 

Ecosystem transpiration and evaporation: Insights from three water flux partitioning 939 

methods across FLUXNET sites. Global Change Biology, 26(12), 6916–6930. 940 

https://doi.org/10.1111/gcb.15314 941 

Niu, S., Xing, X., Zhang, Z., Xia, J., Zhou, X., Song, B., et al. (2011). Water-use efficiency in 942 

response to climate change: from leaf to ecosystem in a temperate steppe. Global Change 943 

Biology, 17(2), 1073–1082. https://doi.org/10.1111/j.1365-2486.2010.02280.x 944 

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., et al. (2016). 945 

The increasing importance of atmospheric demand for ecosystem water and carbon 946 

fluxes. Nature Climate Change, 6(11), 1023–1027. https://doi.org/10.1038/nclimate3114 947 

Ogle, K., Lucas, R. W., Bentley, L. P., Cable, J. M., Barron-Gafford, G. A., Griffith, A., et al. 948 

(2012). Differential daytime and night-time stomatal behavior in plants from North 949 

American deserts. New Phytologist, 194(2), 464–476. https://doi.org/10.1111/j.1469-950 

8137.2012.04068.x 951 



manuscript submitted to AGU JGR: Biogeosciences 

 

Oleson, K., Lawrence, M., Bonan, B., Drewniak, B., Huang, M., Koven, D., et al. (2013). 952 

Technical description of version 4.5 of the Community Land Model (CLM). 953 

https://doi.org/10.5065/D6RR1W7M 954 

Or, D., Lehmann, P., Shahraeeni, E., & Shokri, N. (2013). Advances in Soil Evaporation 955 

Physics—A Review. Vadose Zone Journal, 12(4), vzj2012.0163. 956 

https://doi.org/10.2136/vzj2012.0163 957 

Pérez-Priego, O., Katul, G., Reichstein, M., El-Madany, T. S., Ahrens, B., Carrara, A., et al. 958 

(2018). Partitioning Eddy Covariance Water Flux Components Using Physiological and 959 

Micrometeorological Approaches. Journal of Geophysical Research: Biogeosciences, 960 

123(10), 3353–3370. https://doi.org/10.1029/2018JG004637 961 

Plummer, M. (2019). rjags: Bayesian Graphical Models using MCMC (Version 4-10). Retrieved 962 

from https://CRAN.R-project.org/package=rjags 963 

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & 964 

Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with 965 

quantified spatial uncertainty. SOIL, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-966 

2021 967 

R Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, 968 

Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-969 

project.org/ 970 

Reich, E., Samuels-Crow, K., Bradford, J., Litvak, M., Schlaepfer, D., & Ogle, K. (2023a). A 971 

semi-mechanistic model for partitioning evapotranspiration reveals scale-dependent 972 

moisture supply and demand controls water-use efficiency - all data, output, code, models 973 

[Data set]. https://doi.org/10.5281/zenodo.8213094 974 



manuscript submitted to AGU JGR: Biogeosciences 

 

Reich, E., Samuels-Crow, K., Bradford, J., Litvak, M., Schlaepfer, D., & Ogle, K. (2023b, 975 

November 20). egreich/A-semi-mechanistic-model-for-partitioning-evapotranspiration: 976 

jgr-biogeo_pub (Version v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.10161267 977 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., et al. (2005). On 978 

the separation of net ecosystem exchange into assimilation and ecosystem respiration: 979 

review and improved algorithm. Global Change Biology, 11(9), 1424–1439. 980 

https://doi.org/10.1111/j.1365-2486.2005.001002.x 981 

Reynolds, J. F., Kemp, P. R., & Tenhunen, J. D. (2000). Effects of long-term rainfall variability 982 

on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling 983 

analysis. Plant Ecology, 150(1), 145–159. https://doi.org/10.1023/A:1026530522612 984 

Rogiers, S. Y., Greer, D. H., Hatfield, J. M., Hutton, R. J., Clarke, S. J., Hutchinson, P. A., & 985 

Somers, A. (2012). Stomatal response of an anisohydric grapevine cultivar to evaporative 986 

demand, available soil moisture and abscisic acid. Tree Physiology, 32(3), 249–261. 987 

https://doi.org/10.1093/treephys/tpr131 988 

Rüdiger, C., Western, A. W., Walker, J. P., Smith, A. B., Kalma, J. D., & Willgoose, G. R. 989 

(2010). Towards a general equation for frequency domain reflectometers. Journal of 990 

Hydrology, 383(3), 319–329. https://doi.org/10.1016/j.jhydrol.2009.12.046 991 

Samuels-Crow, K. E., Ryan, E., Pendall, E., & Ogle, K. (2018). Temporal Coupling of 992 

Subsurface and Surface Soil CO2 Fluxes: Insights From a Nonsteady State Model and 993 

Cross-Wavelet Coherence Analysis. Journal of Geophysical Research: Biogeosciences, 994 

123(4), 1406–1424. https://doi.org/10.1002/2017JG004207 995 

Samuels‐Crow, K. E., Ogle, K., & Litvak, M. E. (2020). Atmosphere-Soil Interactions Govern 996 

Ecosystem Flux Sensitivity to Environmental Conditions in Semiarid Woody Ecosystems 997 



manuscript submitted to AGU JGR: Biogeosciences 

 

Over Varying Timescales. Journal of Geophysical Research: Biogeosciences, 125(8), 998 

e2019JG005554. https://doi.org/10.1029/2019JG005554 999 

Scanlon, T. M., Schmidt, D. F., & Skaggs, T. H. (2019). Correlation-based flux partitioning of 1000 

water vapor and carbon dioxide fluxes: Method simplification and estimation of canopy 1001 

water use efficiency. Agricultural and Forest Meteorology, 279, 107732. 1002 

https://doi.org/10.1016/j.agrformet.2019.107732 1003 

Schlaepfer, D. R., Bradford, J. B., Lauenroth, W. K., Munson, S. M., Tietjen, B., Hall, S. A., et 1004 

al. (2017). Climate change reduces extent of temperate drylands and intensifies drought 1005 

in deep soils. Nature Communications, 8(1), 14196. 1006 

https://doi.org/10.1038/ncomms14196 1007 

Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural 1008 

and Forest Meteorology, 189–190, 115–117. 1009 

https://doi.org/10.1016/j.agrformet.2014.01.011 1010 

Schultz, H. r., & Stoll, M. (2010). Some critical issues in environmental physiology of 1011 

grapevines: future challenges and current limitations. Australian Journal of Grape and 1012 

Wine Research, 16(s1), 4–24. https://doi.org/10.1111/j.1755-0238.2009.00074.x 1013 

Scott, R. L., & Biederman, J. A. (2017). Partitioning evapotranspiration using long-term carbon 1014 

dioxide and water vapor fluxes: New Approach to ET Partitioning. Geophysical Research 1015 

Letters, 44(13), 6833–6840. https://doi.org/10.1002/2017GL074324 1016 

Scott, R. L., Huxman, T. E., Cable, W. L., & Emmerich, W. E. (2006). Partitioning of 1017 

evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert 1018 

shrubland. Hydrological Processes, 20(15), 3227–3243. https://doi.org/10.1002/hyp.6329 1019 



manuscript submitted to AGU JGR: Biogeosciences 

 

Scott, R. L., Knowles, J. F., Nelson, J. A., Gentine, P., Li, X., Barron-Gafford, G., et al. (2021). 1020 

Water Availability Impacts on Evapotranspiration Partitioning. Agricultural and Forest 1021 

Meteorology, 297, 108251. https://doi.org/10.1016/j.agrformet.2020.108251 1022 

Stoy, P. C., El-Madany, T. S., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., et al. (2019). 1023 

Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and 1024 

transpiration into opportunities. Biogeosciences, 16(19), 3747–3775. 1025 

https://doi.org/10.5194/bg-16-3747-2019 1026 

Sun, X., Wilcox, B. P., & Zou, C. B. (2019). Evapotranspiration partitioning in dryland 1027 

ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–1028 

136. https://doi.org/10.1016/j.jhydrol.2019.06.022 1029 

Tarin, T., Nolan, R. H., Medlyn, B. E., Cleverly, J., & Eamus, D. (2020). Water-use efficiency in 1030 

a semi-arid woodland with high rainfall variability. Global Change Biology, 26(2), 496–1031 

508. https://doi.org/10.1111/gcb.14866 1032 

Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the 1033 

American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-1034 

0477(1998)079<0061:APGTWA>2.0.CO;2 1035 

Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., & Lee, X. (2017). Revisiting 1036 

the contribution of transpiration to global terrestrial evapotranspiration. Geophysical 1037 

Research Letters, 44(6), 2792–2801. https://doi.org/10.1002/2016GL072235 1038 

Yamanaka, T., & Yonetani, T. (1999). Dynamics of the evaporation zone in dry sandy soils. 1039 

Journal of Hydrology, 217(1), 135–148. https://doi.org/10.1016/S0022-1694(99)00021-9 1040 

Zahn, E., Bou-Zeid, E., Good, S. P., Katul, G. G., Thomas, C. K., Ghannam, K., et al. (2022). 1041 

Direct partitioning of eddy-covariance water and carbon dioxide fluxes into ground and 1042 



manuscript submitted to AGU JGR: Biogeosciences 

 

plant components. Agricultural and Forest Meteorology, 315, 108790. 1043 

https://doi.org/10.1016/j.agrformet.2021.108790 1044 

Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P., & Novick, K. A. 1045 

(2019). Response of ecosystem intrinsic water use efficiency and gross primary 1046 

productivity to rising vapor pressure deficit. Environmental Research Letters, 14(7), 1047 

074023. https://doi.org/10.1088/1748-9326/ab2603 1048 

Zhang, W., Koch, J., Wei, F., Zeng, Z., Fang, Z., & Fensholt, R. (2023). Soil Moisture and 1049 

Atmospheric Aridity Impact Spatio-Temporal Changes in Evapotranspiration at a Global 1050 

Scale. Journal of Geophysical Research: Atmospheres, 128(8), e2022JD038046. 1051 

https://doi.org/10.1029/2022JD038046 1052 

Zhou, S., Yu, B., Zhang, Y., Huang, Y., & Wang, G. (2016). Partitioning evapotranspiration 1053 

based on the concept of underlying water use efficiency. Water Resources Research, 1054 

52(2), 1160–1175. https://doi.org/10.1002/2015WR017766 1055 

 1056 

References From the Supporting Information 1057 

Albergel, C., Balsamo, G., de Rosnay, P., Muñoz-Sabater, J., & Boussetta, S. (2012). A bare 1058 

ground evaporation revision in the ECMWF land-surface scheme: evaluation of its 1059 

impact using ground soil moisture and satellite microwave data. Hydrology and Earth 1060 

System Sciences, 16(10), 3607–3620. https://doi.org/10.5194/hess-16-3607-2012 1061 

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (2000). Crop evapotranspiration: guidelines 1062 

for computing crop water requirements (repr). Rome: Food and Agriculture Organization 1063 

of the United Nations. 1064 



manuscript submitted to AGU JGR: Biogeosciences 

 

Bolton, D. (1980). The Computation of Equivalent Potential Temperature. Monthly Weather 1065 

Review, 108(7), 1046–1053. https://doi.org/10.1175/1520-1066 

0493(1980)108<1046:TCOEPT>2.0.CO;2 1067 

Brisson, N., & Perrier, A. (1991). A semiempirical model of bare soil evaporation for crop 1068 

simulation models. Water Resources Research, 27(5), 719–727. 1069 

https://doi.org/10.1029/91WR00075 1070 

Choudhury, B. J., Reginato, R. J., & Idso, S. B. (1986). An analysis of infrared temperature 1071 

observations over wheat and calculation of latent heat flux. Agricultural and Forest 1072 

Meteorology, 37(1), 75–88. https://doi.org/10.1016/0168-1923(86)90029-8 1073 

Clapp, R. B., & Hornberger, G. M. (1978). Empirical equations for some soil hydraulic 1074 

properties. Water Resources Research, 14(4), 601–604. 1075 

https://doi.org/10.1029/WR014i004p00601 1076 

Cosby, B. J., Hornberger, G. M., Clapp, R. B., & Ginn, T. R. (1984). A Statistical Exploration of 1077 

the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. 1078 

Water Resources Research, 20(6), 682–690. https://doi.org/10.1029/WR020i006p00682 1079 

Foken, T. (2006). 50 Years of the Monin–Obukhov Similarity Theory. Boundary-Layer 1080 

Meteorology, 119(3), 431–447. https://doi.org/10.1007/s10546-006-9048-6 1081 

Lee, T. J., & Pielke, R. A. (1992). Estimating the Soil Surface Specific Humidity. Journal of 1082 

Applied Meteorology, 31(5), 480–484. https://doi.org/10.1175/1520-1083 

0450(1992)031<0480:ETSSSH>2.0.CO;2 1084 

Merlin, O., Stefan, V. G., Amazirh, A., Chanzy, A., Ceschia, E., Er‐Raki, S., et al. (2016). 1085 

Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using 1086 



manuscript submitted to AGU JGR: Biogeosciences 

 

a meta-analysis approach. Water Resources Research, 52(5), 3663–3684. 1087 

https://doi.org/10.1002/2015WR018233 1088 

Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of 1089 

the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst., 24(151), 163–187. 1090 

Oleson, K., Lawrence, M., Bonan, B., Drewniak, B., Huang, M., Koven, D., et al. (2013). 1091 

Technical description of version 4.5 of the Community Land Model (CLM). 1092 

https://doi.org/10.5065/D6RR1W7M 1093 

Philip, J. R., & De Vries, D. A. (1957). Moisture movement in porous materials under 1094 

temperature gradients. Eos, Transactions American Geophysical Union, 38(2), 222–232. 1095 

https://doi.org/10.1029/TR038i002p00222 1096 

Sakaguchi, K., & Zeng, X. (2009). Effects of soil wetness, plant litter, and under-canopy 1097 

atmospheric stability on ground evaporation in the Community Land Model (CLM3.5). 1098 

Journal of Geophysical Research: Atmospheres, 114(D1). 1099 

https://doi.org/10.1029/2008JD010834 1100 

Sellers, P. J., Heiser, M. D., & Hall, F. G. (1992). Relations between surface conductance and 1101 

spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales. Journal of 1102 

Geophysical Research: Atmospheres, 97(D17), 19033–19059. 1103 

https://doi.org/10.1029/92JD01096 1104 

Stefan, V. G., Merlin, O., Er-Raki, S., Escorihuela, M.-J., & Khabba, S. (2015). Consistency 1105 

between In Situ, Model-Derived and High-Resolution-Image-Based Soil Temperature 1106 

Endmembers: Towards a Robust Data-Based Model for Multi-Resolution Monitoring of 1107 

Crop Evapotranspiration. Remote Sensing, 7(8), 10444–10479. 1108 

https://doi.org/10.3390/rs70810444 1109 



manuscript submitted to AGU JGR: Biogeosciences 

 

Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., et al. (2016). Contrasting 1110 

responses of water use efficiency to drought across global terrestrial ecosystems. 1111 

Scientific Reports, 6(1), 23284. https://doi.org/10.1038/srep23284 1112 

 1113 

 1114 

 1115 


