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Abstract

Previous research has shown that attention can be guided via past experiences and learned
regularities of target and/or distractor location. It has also been suggested that expectations
surrounding salient distractors can potentially make them easier to suppress, thereby improving
performance. Here, we ask: could the learned relevance of a distracting cue affect our ability to
suppress it and protect against feature interference errors? Participants performed a delayed
estimation task reporting the color of a target item, with a salient distractor cue appearing at a
nontarget item’s location on some trials. Critically, the experiment was split into two contexts
presented in separate halves of the experiment, which differed based on whether the target and
distracting cue could appear at the same location. In the “0 percent match” context, none of the
trials had the salient cue appear at the target location; i.e., no ‘valid’ trials; whereas in the “50
percent match” context, 50 percent of distractor-present trials had the salient cue appear at the
target location, increasing its potential relevance. We used a probabilistic mixture model to
estimate generic performance measures (guess rate and standard deviation) as well as feature
interference measures (swap rate and mean shift) for each condition. We found a significant
difference in swap rates (misreporting the color of the item at the salient distractor location
instead of the target color) between the two contexts depended on the order they were
experienced. These results suggest that the learned relevance of a distractor cue can affect how
likely participants were to be captured by a salient distractor and its resulting impact on target
feature perception, and that statistical regularities relating to the relevance of salient items can

affect the perception and encoding of stimulus features.



Introduction

The ability to intentionally direct our attention is crucial for day-to-day tasks and enables
us to focus on what is most important at a given time, but that does not always mean we are
veridically encoding everything that we see. For example, a daily task such as driving to work
requires attention to be focused on the road ahead while also shifting attention to passing cars
and ignoring distractors such as getting a phone call. Attention can be conceptually described as
a multi-level system of weights and balances that leads to us to prioritize certain stimuli more
than others (Narhi-Martinez, Dube, & Golomb, 2023), which will result in some stimuli either
being processed poorly or not at all. Thus, the distracting phone call — or a car weaving into our
lane — may alternatively capture our attention or not even be noticed at all depending on our
attentional state in that moment.

Attention is important in not only determining how likely we are to perceive something,
but it also has a role in feature-binding (Reynolds & Desimone, 1999; Treisman & Gelade, 1980)
and has been theorized to be the ‘glue’ that binds features together to make cohesive objects.
Recent studies have found that when spatial attention is unstable there is a higher chance of
making feature-binding errors (Dowd & Golomb, 2019; Golomb, 2015; Golomb et al., 2014).
One example of a feature-binding error is color swaps: when asked to report the color of an item
at a target location, subjects sometimes mistakenly report the color of an item at a distractor
location instead of the target’s color.

Swap errors have been found to be particularly prevalent in the context of attentional
capture by salient distractors (Chen et al., 2019). Chen and colleagues (2019) revealed the
impacts of attentional capture on feature perception and recall by presenting participants with a

brief (50ms) array of four colored items, one of which was highlighted with a thick border as the



target, and comparing three conditions: neutral (no salient distractor cue), valid (salient cue
appears surrounding the same stimulus as the target probe), and invalid (salient cue appears
surrounding a nontarget stimulus). Probabilistic mixture modeling (Bays et al., 2009; Wilken &
Ma, 2004; Zhang & Luck, 2008) of the participants’ responses along a continuous color wheel
revealed a significant amount of swapping errors in the invalid condition due to the salient
distractor capturing the attention on invalid trials, thus disrupting the feature encoding of that
target color. Interestingly, participants made these large swapping errors with high confidence,
seemingly unaware they were reporting a distractor color instead of the target color (Chen et al.,
2019).

A follow-up study by Narhi-Martinez et al. (2023) investigated how these swap errors
might be impacted by learned spatial suppression elicited via a predictable salient distractor
location. Previous studies have shown that we exploit learned target and/or distractor regularities
to use attention more efficiently (Chun, 2005; Chun & Jiang, 1998; Ferrante et al., 2018; Geng &
Behrmann, 2005; Jiang, 2018). Additionally, it has been found that previous experience with
distractors plays a large role in our ability to successfully suppress them (Cunningham & Egeth,
2016; Goschy et al., 2014; Leber et al., 2016; Noonan et al., 2016; Wang & Theeuwes, 2018).
Narhi-Martinez et al. (2023) showed that participants were significantly less likely to make swap
errors when the salient distractor was in a highly likely location compared to a less likely
location.

Interestingly, however, Narhi-Martinez et al. (2023) also found a lower baseline swap
rate; even when the salient distractor appeared in a less likely location, the proportion of swap
errors was, on average, half of what had been measured in Chen et al. (2019). The two studies

shared largely similar designs, though one difference was that the “valid” trial condition was



eliminated in the Narhi-Martinez et al. (2023) design to increase statistical power for the critical
distractor location likelihood manipulation. Is it possible that the participants’ overall distractor
processing could have differed during the experiment relative to Chen et al. (2019) because the
distractor never appeared around the same location as the target? In other words, the lack of the
“valid” condition could have made the salient cue more irrelevant compared to the one used in
Chen et al. (2019), and therefore potentially easier to suppress overall. It has been found that
when a repeated distractor becomes expected or irrelevant, the distractor is potentially no longer
classified as a distractor during processing (Sawaki & Katayama, 2006; van Moorselaar et al.,
2021; van Moorselaar & Slagter, 2019). Are we able to implicitly learn the current relevance of a
distractor, ultimately changing our processing of that distractor and reducing feature-binding
errors? Although the prior studies have examined how learned distractor expectations affect
processing, there has not been a study that directly compared multiple contexts in which the
distractor relevancy differs within a single session.

In the current, preregistered study, we manipulate the relevance of the salient distractor
cue in separate halves of the experiment, in which the salient cue did or did not appear at the
same location as the target probe (valid trials), respectively. By comparing these different
contexts in which the relevance of the salient cue differed, we aimed to test how the learned
relevancy of the distractor might influence feature binding errors, and if participants could
update that relevancy when a new context is introduced.

We reasoned that in contexts when valid trials are present, the relevance of the salient cue
could be higher, since the salient cue may be helpful in some of the trials due to its ability to
assist in directing the participants’ attention to the target location. We hypothesized that

participants may consequently have a harder time suppressing the salient cue when it appears



around a distractor, thus leading to a higher amount of swapping errors compared to contexts
when there are no valid trials and the salient cue may be more easily suppressed because it never
guides attention to the target location. We investigated whether feature-binding errors differ in
these contexts, and further, whether the order of contexts experienced matters, such that
participants might either dynamically update learned relevance when the context changes, or

persist based on the original learned context.

Methods

This experiment was preregistered on the Open Science Framework (https://osf.io/rgc3a/)

before the start of data collection. The preregistration explains the motivation for the experiment,
sample size, exclusion criteria, methods. We deviated from the preregistration in one way: while
we initially planned 122 trials per condition as stated in the preregistration, we increased this to
144 trials per condition to ensure sufficient data to model. Analyses that were not listed in the

preregistration but included in this paper are declared as exploratory.

Sample Size:

We included 56 participants in this experiment. This sample size was chosen to have
sufficient power to detect a within-participant difference in swap rates between the invalid
conditions in each of the two contexts, if present. Power analyses were conducted on the datasets
from Chen et al. (2019) and Narhi-Martinez et al. (2023). The “swap rate” measure is defined as
the difference in the probability of misreporting the color of the salient distractor compared to a

misreport of a control nontarget’s color. In Chen et al. (2019), the average effect size of the swap


https://osf.io/rgc3a/

rate between the invalid conditions in both experiments that were conducted was d = 0.643. A
priori power analyses using G*Power (Faul et al., 2007) on this averaged effect size (utilizing
two-tailed, paired-samples t-tests, an alpha of .05, and a power of 80%) resulted in an estimation
of 17 participants needed to detect significant swap-errors when valid trials are present. In Narhi-
Martinez et al. (2023), they compared swap rates in two “invalid” conditions: when the distractor
appeared in a highly likely location and when the distractor appeared in a less likely location.
The effect size for swap errors in the latter condition (our best estimate for the no-valid context)
was d = .510; resulting in a power analysis estimation of 33 participants needed to detect swap
errors in this condition. Because we are interested in a difference between invalid conditions, we
also conducted another power analysis on the Narhi-Martinez data for the difference in swap
rates across those two conditions (effect size of d = 0.403). A priori analysis on this effect size
resulted in an estimation of at least 51 participants. To be conservative and facilitate
counterbalancing of block order, we pre-registered our sample size at 56 participants.

Our sample included 25 male and 31 female participants (mean age: 19.52), and every
participant reported having normal or corrected-to-normal color vision and visual acuity. As
stated in our preregistration, participants were excluded and replaced if (1) they did not have at
least 80 trials per condition in which they successfully maintained fixation to include in the
mixture models; (2) their performance on the task was very poor even on Neutral trials (standard
deviation parameter greater than 80 or pT less than 0.5; see Analyses below); or (3) the
probability of reporting a nontarget (S or /%) on Invalid trials was greater than 0.5, suggesting
they may have misunderstood the task. Fifteen additional participants completed the experiment
and were excluded and replaced because they did not meet criteria #1, and 1 additional

participant was excluded and replaced for criterial #2.



Setup:

Each participant was seated and placed their head against a chin and forehead rest 60cm
away from the monitor. The 62cm LCD monitor’s resolution was adjusted to display a 4x3
presentation window (resolution: 1280x960, refresh rate: 200Hz) and was color calibrated with a
Minolta CS-100 colorimeter. Stimuli were generated using MATLAB (Mathworks) and the
Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) on a Windows

computer. Eye position was recorded using an Eyelink 1000 eye-tracker (SR Research).

Procedure:

The design for this experiment (Figure 1) was similar to Chen et al. (2019). Each trial
began with the participant fixating on the center of the screen at a black cross on a grey
background (RGB [127.5, 127.5, 127.5]). Once the participant fixated for 700ms within 2°
(visual degrees) of the cross, four thin white framed squares appeared for 300ms, and the cross
turned into a black dot. If participants did not maintain fixation on the cross and dot for the entire
1000ms, the cross would reappear on the screen, and they would keep repeating the process until
they could maintain fixation for the entire 1000ms.

Four colored squares then appeared for 50ms, each sized 2° x 2°, equally spaced at an
eccentricity of 4° from the center of the screen. The colors presented varied on each trial. The
color of the upper left square was chosen randomly from 180 different color values, spaced along
a color wheel in CIE L*a*b* color space with L* = 60, a* = 22, b* = -1, and radius = 50. The
colored squares in the upper right and lower left were then randomly assigned on each trial to be

+90° and -90° along the color wheel from the color in the upper left square. The lower right



square was always colored 180° away in color space from the color in the upper left square. In
each trial, one colored square had a thick, white border around it, indicating it as the target. In
some of the trials, four white dots (‘salient cue’) also appeared around one of the squares. This
stimulus was chosen because previous studies have shown that when the distractor is similar to
the target (white border around one square), attentional capture is the greater compared to when
the distractor is not similar to the target (Folk et al., 1992, 2002; Folk & Remington, 1998).
Trials could be either valid (target and salient cue highlight same location), invalid (salient cue
highlights different location than target), or neutral (no salient cue present). After the items were
removed from the screen, there was a 100ms delay, followed by a 200ms mask, before the color
wheel (diameter = 6.5°, width = 1°) appeared on the screen along with a post cue to remind
participants of the target location. The participant then used the mouse to click the color on the
color wheel that they believed was in the target location.

Two different contexts differing in the relevance of the salient cue were tested in separate
halves of the experiment: a “0 percent match” context (0 percent of trials had the salient cue
appear at the target location; i.e., 0 valid trials) and a “50 percent match” context (50 percent of
distractor-present trials had the salient cue appear at the target location; i.e. 1/3 of total trials
were valid). For the 0 percent match context, participants completed 144 trials of the neutral
condition and 144 trials of the invalid condition, randomly intermixed. For the 50 percent match
context, participants completed 144 trials of the neutral condition, 144 trials of the invalid
condition, and 144 trials of the valid condition, randomly intermixed. There were 12 blocks total
in the experiment (6 for each context), with 48 trials per block for the 0 percent match and 72
trials per block in the 50 percent match context. Participants were assigned to one of two order

groups: Half of the participants performed the 0 percent match blocks in the first half of the



experiment and the 50 percent match blocks in the second half (0% = 50% group), and the other
participants performed the task in the opposite order (50% > 0% group).

Participants were given instructions (fixate at the center of the screen and report the color
of the square that had the thick white border around it) and 10 practice trials (excluded from
analyses) at the start of the experiment to make sure they understood the task and were able to
successfully fixate at the center of the screen. The salient cue was not mentioned in the
instructions nor was the concept of the differing contexts in each half of the experiment. This
information was omitted from instructions with the intention of creating an environment where
the participants would incidentally learn the relationship of the distractor to the target and
minimizing explicit consideration of the salient cue in a top-down manner. At the end of the
experiment, there were exit questions that participants filled out which asked questions regarding

how they thought the task was and their overall performance.
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Figure 1. Experimental procedure (not drawn to scale). For every trial, participants were shown 4 colored squares
and asked to report the color of the square that had a thick white frame around it (target location). The “0 percent
match” context included neutral (top) and invalid (middle) trials, while the “50 percent match” context included
neutral, invalid, and valid (bottom) trials.

Analyses
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Any trials during which the participant broke fixation (gaze deviated more than 2 visual
degrees from the central fixation cue) were discarded and not analyzed. On invalid trials, we
only analyzed trials in which the salient distractor was adjacent to the target (2/3 of invalid
trials), as in Chen et al (2019) and Narhi-Martinez et al. (2023). Color report errors were
calculated for each trial, aligned so that the correct target color was 0° error, the salient distractor
item’s color was aligned to +90°, and the control (non-salient) nontarget location was -90°. Thus,
positively signed errors mean color errors shifted ‘towards’ the distractor and negatively signed
errors ‘away’ from the distractor. On neutral and valid trials, there was no salient distractor, so
the two control nontargets adjacent to the target were assigned +90° or -90° at random to avoid
any directional biases.

A probabilistic mixture model (see formula below) was used to fit the distribution of
response errors for each of the 5 conditions (Neutral, Invalid, and Valid for 50% match context
and Neutral and Invalid for 0% match context) for each participant. A Markov chain Monte
Carlo method using MemToolbox (Suchow et al., 2013) was utilized to calculate the best-fitting

parameter estimates.

1
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The error between the target and reported colors was represented by 8 which is the
difference in degrees between target color and reported color. Probability of reporting the target
(pT) was represented by 1 - 1 - B2 —y. ¢ is the von Mises distribution with mean y and
concentration k parameters. The variables k and y estimated the precision and guess rate,
respectively, and were used to assess the overall performance of a participant for each condition.
For the invalid condition, the 1 - B2 difference was utilized to measure the rate of swapping

errors, where 1 was the probability of misreporting the salient distractor item’s color and 52> was
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the probability of misreporting the control nontarget color. The variable u was used to measure
mean shift of the target distribution, if shifted from 0°. These measures were calculated for each
condition and individual participant. The parameter estimates were analyzed in JASP software
(Version 0.16.03) and MATLAB (MathWorks) using repeated measures ANOVA, paired
samples t-tests, and one sample t-tests, frequentist and Bayesian.

To ensure that the premise of attentional capture by an unpredictable salient distractor
was achieved, we first compare the above measures between our neutral and invalid conditions
within each context. The main comparison of interest is a within-subject analysis comparing
systematic feature binding errors, particularly swap rates (£1 - f2) and mean shifts induced by the
salient distractor in the invalid condition, between the two contexts. We then perform between-

subjects analyses examining potential effects of context order and learning.

Results

Generic Performance Indicators:

Our generic performance analyses included measuring the guess rate and standard
deviation (SD = m) for each of the conditions in both contexts (Figure 2). Paired-sample t-
tests showed that the invalid condition guess rate was significantly higher than the neutral
condition guess rate within 0 percent context, t(55) = -4.232, p <.001, d = 0.566, BF1o = 248 as
well as the in the 50 percent match context, t(55) = -4.001, p <.001, d = 0.535, BF1o=1.23 X
10%. There was also a significantly higher guess rate in the invalid condition compared to the
valid condition in the 50 percent match context, t(55) =-5.094, p <.001, d = 0.681, BFio = 3.98

x 10°. For standard deviation, the invalid condition had a marginally higher standard deviation
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compared to the neutral condition in the 0 percent match context, t(55) =-1.938, p = 0.058, d =
0.259, BF10o= 0.829. In the 50 percent match context, the invalid condition standard deviation
was significantly higher than the neutral condition, t(55) =-3.125, p=0.003,d = 0.418, BF0 =
10.8, as well as valid condition, t(55) = 4.699, p < .001, d = 0.628, BFip = 1.08 x 103. The
standard deviation for the neutral condition was marginally higher than the valid condition in the
50 percent match context, t(55) = 1.681, p = 0.098, d = 0.225, BF1o = 0.545. These results
parallel those reported in Chen et al (2019) and Narhi-Martinez et al. (2023).

When comparing the guess rate and standard deviation for the invalid trials across
contexts, there were no significant differences for guess rate: t(55)=1.011, p=0.317,d = 0.135,
BF10=10.237, nor standard deviation: t(55) = -0.152, p = 0.879, d = 0.020, BF 1o = 0.148,
suggesting that the difference in relevance of the salient cue between the two contexts did not

affect general performance.

” */I o & 1: fl
n L
% “| D

Figure 2. General performance indicators. Probabilistic mixture model results for guess rate (left) and standard
deviation (right). The error bars represent SEM, *: p < 0.05, +: p<0.10, N =56
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Systematic Feature Binding Errors:

Our main question of interest concerned potential differences in systematic feature
binding errors induced by the salient distractor cue under the different contexts. We first
examined swap errors (Figure 3A), assessed by the probability of misreporting the color of the
salient distractor item (f31) relative to the probability of misreporting the color of the control
nontarget item (f32). A paired-sample t-test showed that there was a significant difference
between f1 and S, for invalid trials in the 0 percent match context, t(55) = 4.065, p <.001,d =
0.543, BFip = 1.49 x 10?, and in the 50 percent match context, t(55) = 5.453, p <.001, d = 0.729,
BF 10 = 1.34 x 10* In other words, participants made significant swap errors in both contexts.

In order to compare the amount of swap errors across contexts, the swap rate (f1 - 52)
was calculated for each participant in the two contexts (Figure 3B). We found a marginally
higher swap rate in the 50 match context compared to the 0 match context, t(55) =-1.808, p =
0.076, d = 0.242, BF1o = 0.667. This difference was in the predicted direction — such that the
salient distractor would be harder to ignore and produce more feature interference when it
sometimes overlaps with the target location compared to when it is purely distracting — though
the difference between contexts was not statistically significant, at least when ignoring potential
order effects (see next section).

The mean shift parameter was also analyzed between the invalid conditions of each
context to examine potential repulsion or attraction errors induced by the salient distractor
(Figure 3C). The mean shift in the invalid condition was not significantly different from zero in
either condition: 0 percent match context: t(55) = -0.683, p = 0.498, d =-0.079, BF1o = 0.182; 50
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percent match context: t(55) =-0.594, p = 0.555, d =-0.079, BFio = 0.173. A paired-sample t-test
found no significant difference between the mean shifts in the invalid conditions across contexts,

t(55) =-0.073, p=0.942, d = 0.010, BF1o = 0.146.
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Figure 3. Systematic feature binding errors. (A) Probabilistic mixture model results for swap errors, plotting the
probability of misreporting the color of the item at the salient distractor location (1) and the probability of
misreporting the color of the item at the control nontarget location (f2). (B) Distractor-induced swap rates (S1 - 52)
for the invalid conditions. (C) Probabilistic mixture model results for mean shift parameter (). Positively-signed
shifts indicate attraction towards the color of the item at the salient distractor location and negatively-signed shifts
indicate repulsion away from the color of the item at the salient distractor location. The error bars represent SEM, *:
p<0.05 t=p<0.10,N=56

Context Order Effects:
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We next investigated whether the order of which context was presented first affected
participants’ ability to suppress the salient distractor and protect the target from feature
interference. Because the mean shift results were negligible, we focus the subsequent analyses on
the swap rate measure. We first report the results of a pre-registered analysis between the two
groups of participants (0% = 50% group vs. 50% = 0% group) comparing their first and second
halves of the experiment. We predicted that there may be a difference in the amount of swap
errors depending on the order the contexts were experienced. In other words, if participants
persisted in the behavior associated with their initial context exposure, results from their second
half of the experiment might mimic the first half, ignoring the context change. Such a pattern
would weaken the overall context effects reported above. On the other hand, if participants
rapidly adapt to the new contingencies in the second half, their performance should only vary
with context, with no order or group effects, such that their swap rate for the invalid trials might
always be slightly higher in the 50 percent match context compared to the 0 percent match
context. It is also possible the results could reflect additional possibilities, for example, that
participants from both groups get better over time due to practice and exposure, and swap rate
for the first half of the experiment would always be higher compared to the swap rate for the
second half of the experiment (such that context differences may be most evident between
groups in the first half of the experiment), or even that the change from one context to another
triggers a more salient effect (such that context differences may be most evident between groups
in the second half of the experiment).

Figure 4 shows the results of this context order analysis, with invalid condition swap
rates broken down by the order of which context a participant saw first. A repeated measures

ANOVA comparing swap rates by context (0% match vs. 50% match) and group (between-
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subjects factor; 0% = 50% group vs. 50% = 0% group) revealed no significant main effect for
group, F(1,54) = 0.894, p = 0.349, > = 0.014, group model BF o = 0.518, but a significant
context x group interaction, F(1,54) = 6.115, p=0.017, n?> = 0.016, with strongest evidence for
the context + group + context x group model BF10 = 1.361 compared to the null model.
Consistent with the overall comparison above, we also found a marginal main effect of context,
F(1,54) = 3.573, p = 0.064, n?> = 0.009, context model BF1o = 0.814. These results suggest that
the order in which the contexts were experienced did impact the amount of swapping for each
context. As can be seen in Figure 4, participants who started with the 50 percent match context
made significantly fewer swap errors in the subsequent half of the experiment where they
experienced the 0 percent match context, t(27) = 2.672, p=0.013, d = 0.505, BF1o = 3.790.
However, when the 0 percent match context was experienced first, the swap rates in the second
half of the experiment (50 percent match context) were not significantly different relative to the
first half, t(27) = 0.504, p = 0.618, d = 0.095, BF1o = 0.225. When comparing the second half of
the experiment across groups, there was a marginal difference in swap rates, t(27) = -1.856, p =
0.074, d =0.351, BF10 = 0.900. We further explore this finding in the exploratory block-by-block
timecourse section below.

We also conducted similar ANOV As on the mean shift, guess rate, and standard
deviation parameters, as pre-registered, to determine if the context order influenced any of these

measures. We found no significant main effects or interactions for any of these measures (Table

1).
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Figure 4. Context order effects. Swap rates in the invalid conditions broken down by participant group, based on the

order that participants experienced each context. The error bars represent SEM, N = 56 (N=28 per group).
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Source Cases df F p n?

Swap Rate Invalid Conditions by Group

Within Subjects Context 1 3.573 0.064 0.009
Context * Group First 1 6.115 0.017 0.016
Residuals 54

Between Subjects Group First 1 0.894 0.349 0.014
Residuals 54

Mean Shift Invalid Conditions by Group

Within Subjects Context 1 0.005 0.942 5.173e-5
Context * Group First 1 3.021e-5 0.996 2.974e-7
Residuals 54

Between Subjects Group First 1 0.039 0.844 3.404¢e-4
Residuals 54

Guess Rate Invalid Conditions by Group

Within Subjects Context 1 1.049 0.310 0.003
Context * Group First 1 2.476 0.121 0.007
Residuals 54

Between Subjects Group First 1 0.095 0.760 0.001
Residuals 54

Standard Deviation Invalid Conditions by Group

Within Subjects Context 1 0.024 0.878 8.065¢e-5
Context * Group First 1 2.314 0.134 0.008
Residuals 54

Between Subjects Group First 1 0.018 0.893 2.742e-4
Residuals 54

Table 1. ANOVA results examining context order effects for each of the different measures on invalid trials.
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Exploratory Block-by-Block Timecourse Analysis

In order to better understand how the pattern of swapping rates may have changed during
and across each half of the experiment, we conducted an exploratory block-by-block analysis of
swap rates for the 12 total blocks (6 in each half of the experiment). Each block did not have a
sufficient number of trials to run a mixture model on individual participants, so for this
exploratory analysis we aggregated the data from all participants in each group into two ‘super
subjects’ and modeled the errors by block. We calculated the swap rate in each of the blocks for
each of the two groups of participants. Figure SA shows the block-by-block timecourse of swap
rates for the group of participants that experienced the 0% match context in the first six blocks
followed by the 50% context in the second six blocks. Figure 5B shows the block-by-block
timecourse of swap rates for the group that experienced the contexts in the opposite order.

A few interesting patterns emerge. First, the swap rate decreased rapidly over the first six
blocks in both groups. There was a significant negative correlation between block number and
swap rate for both the group that experienced the 0% match context first and the group that
experienced the 50% match context first, r(4) = -0.962, p = 0.002, and r(4) =-0.901, p = 0.014,
respectively. These results suggest that swapping errors reduced over time within both contexts
during the first half of the experiment, presumably due to practice effects and/or accumulated
exposures to the salient distractor.

Strikingly, the swap errors show different temporal patterns in the second half of the
experiment for the two groups. For the group that experienced the 0 percent match context first
(no valid trials), when they switch to the new 50 percent match context where the salient cue is
sometimes overlapping with the target (valid), swap rates on invalid trials increase over blocks 7-

8 and then remained consistently higher throughout this latter half of the experiment (no
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significant correlation between block number and swap rate: r(4) =-0.216, p = 0.680). On the
other hand, for the group that experienced the 50 percent match context first, when they switch to
the 0 percent match context containing no valid trials, there was a brief initial boost in swap
errors in block 7, followed by a rapid decrease and sustained lower swap rate over the course of
the second half, r(4) =-0.429, p = 0.396. Although this analysis is exploratory, it suggests that
participants may have been sensitive to the change in contexts, such that overall, there were
fewer swapping errors when the 0 percent match came second, compared to when the 50 percent

match came second.
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Figure 5. Exploratory block-by-block timecourse analysis on swap rates for invalid trials, broken down by group.
(A) Block-by-block swap rate for the group of participants who experienced the 0 percent match context first. (B)
Block-by-block swap rate for the group of participants who experienced the 50 percent match context first. Mixture
model parameters for this analysis were fit on aggregate subject data (N=28 for each group).
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Exit Question Results:

We also had participants answer exit questions after they were done with the experiment.
The first question asked, “Did you notice white dots sometimes flash around one of the colored
squares?” 18/56 participants reported that they did not notice, meaning that they were not
consciously aware that a distractor was present in some trials. A context x awareness ANOVA
conducted on swap rates (1 - f52) in the invalid conditions found no significant main effect for
context, F(1,54) = 1.888, p = 0.175, n? = 0.006, context model BF 1o = 0.809, nor for awareness,
F(1,54) = 0.156, p = 0.694, n?> = 0.002, awareness model BF 9 = 0.411. There was no significant
interaction between the two factors, F(1,54) = 0.759, p = 0.387, n*= 0.002, context + awareness
+ context x awareness model BFjo= 0.142. These results suggest that the swap rates in the
invalid conditions were not affected by whether the participant was consciously aware of the
salient distractor.

The second question asked, “Did you find that the first or second half of the experiment
easier?”. After taking into account which context-order group they were assigned to, we found
that 33/56 participants felt that the 0 percent match context was easier, consistent with the overall
trend for fewer swap errors in this context. However, the pattern of swap errors did not
significantly differ across groups. A context x response group ANOVA conducted on swap rates
(B1 - B2) in the invalid conditions found no significant main effect of response group, F(1,54) =
0.970, p = 0.329, > = 0.015, response group model BF o = 0.534. Additionally, no significant
interaction between the two factors, F(1,54) = 0.019, p = 0.891, n* = 5.593 e-5, context +

response group + context x response group model BFio = 0.120.
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Discussion

Many previous studies have examined how visual distractors affect attention, commonly
focusing on different aspects of attentional capture, including the ubiquitous finding that when a
salient distractor is present, reaction times slow down and higher error rates occur compared to
when there was no distractor present (Folk et al., 1992, 2002; Luck et al., 2021; Theeuwes, 1996;
Theeuwes & Burger, 1998; Yantis & Jonides, 1984). More recently, it has been demonstrated
that attentional capture can also lead to perceptual errors such as feature swapping and repulsion
(Chen et al., 2019).

An important focus of the attentional capture literature has been understanding how and
when distractors can be suppressed (Geng et al., 2019; Geng, 2014; van Moorselaar & Slagter,
2019; Wang & Theeuwes, 2018). In particular, learned statistical regularities — such as learning a
certain location is more likely to contain a distractor — can aid in the ability of a person to
suppress a salient object (Failing & Theeuwes, 2020; Huang et al., 2021, 2022; Kong et al.,
2020; Leber et al., 2016; Wang et al., 2019). Indeed, learned spatial suppression can also protect
against feature interference, with fewer swap errors evoked by a salient distractor in a high-
probability location than a low-probability location (Narhi-Martinez et al., 2023).

One proposed idea as to why participants are able to suppress distractors is due to their
ability to learn and expect the salient distractor over time, thus potentially changing the way the
distractor is processed (van Moorselaar & Slagter, 2019). More frequent distractors — regardless
of spatial regularities — also become easier to ignore compared to contexts where the distractors

are more rare (Geng et al., 2019; Geyer et al., 2006; Won & Geng, 2020). In the current study,
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we focused on another type of learned regularity affecting the relevance of a distracting cue:
whether the salient distractor ever overlaps with the target location.

We examined how the learned reliability/relevance of a salient cue would affect the
amount of feature errors made within different relevancy contexts. In the current study the two
contexts (0 percent match and 50 percent match) allowed participants to learn two different
relevancies of the salient cue, asking whether this learned relevance would impact the extent to
which the distractor induced feature binding errors. The 0 percent match context represented the
low relevance salient cue due to the absence of any target-distractor overlap, while the 50 percent
match context represented the higher relevance salient cue, because there was the possibility of
overlap between the distractor and target, such that in some trials the salient distractor appeared
in the same location as the target, drawing attention towards the participant’s goal in a potentially
helpful way. We predicted that this greater relevance in the 50 percent match context might lead
to a higher swap rate compared to the 0 percent match context due to participants being less
likely to suppress the salient cue in the former.

Our results showed that in both contexts, the salient distractor captured attention,
resulting in worse overall performance on the invalid (distractor present) trials compared to
neutral (distractor absent) trials, measured by the general performance indicators of precision and
guess rate. On invalid trials in both contexts, participants also exhibited swap errors: a
significantly higher probability of misreporting the non-target color that appeared at the location
where the salient cue was compared to a control nontarget, replicating the overall trend as seen in
Chen et al. (2019) and Narhi-Martinez et al. (2023).

Importantly, the two contexts differed only in the presence or absence of an additional

“valid” condition. This contextual manipulation did not seem to influence the general
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performance measures, with no significant difference in precision and guess rate on the invalid
trials across the two contexts, suggesting that general performance was not affected when the
relevance of a salient cue was altered. When looking at the systematic feature errors for the
invalid conditions in each of the contexts, we found a slightly higher swap rate in the 50 percent
match context compared to the 0 percent match context, though this difference was not
statistically significant.

Our pre-registered follow-up analyses did, however, find that the order in which the
contexts were experienced had a significant effect on swap rates. We designed this study such
that the relevance of the salient cue changed halfway through the experiment, meaning that
participants had the opportunity to update their perceived relevance of the salient cue. Previous
studies have shown that the processing of a repeated distractor/salient cue can be altered when it
becomes expected or irrelevant (Sawaki & Katayama, 2006; van Moorselaar et al., 2021; van
Moorselaar & Slagter, 2019). Our results showed that when participants experienced the 50
percent match context first (higher relevance distractor), swap rates were significantly reduced in
the second half of the experiment during the 0 percent match condition. However, when
participants experienced the 0 percent match context first, the rate of swap errors did not change
in the second half of the experiment during the 50 percent match condition. In pre-registering
this analysis, we had aimed to distinguish between two main hypothetical patterns: that
participants would be sensitive to the current context, updating with the change in context, or
that participants would persist in the behavior associated with the original context, failing to
update to the change in context. Instead we found a more complicated pattern, where there seems
to be some interaction between context sensitivity and overall time in the task. It is not surprising

that performance would improve over time and swap errors would reduce with distractor
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exposure regardless of context, and indeed the exploratory block-by-block analysis shows an
expected effect of time in the first half of the experiment. What was less expected was that
instead of an initial effect of relevance context in the first half of the experiment, the differences
across relevance contexts only emerged in the second half of the experiment, after the switch.
There could be a few possible accounts for this pattern of results. One explanation is that
the difference in relevance context only became salient to the participants after the switch from
one context to another. In other words, salient distractors caused similar initial rates of swap
errors in the invalid condition in both contexts, but when the salient distractor becomes relatively
more relevant (0% > 50%), the distractor interferes more after that change in context compared
to when the salient distractor becomes relatively less relevant (50% = 0%), Another
explanation could be that context played a higher role in the second half of the experiment
because distractor relevance simply takes more time to learn. Motivated by the large difference
in baseline swap rates between Chen et. al (2019) and Narhi-Martinez et al. (2023), we designed
the current study under the assumption that 6 blocks would be sufficient to detect differences in
learned relevance context. However, if learned distractor relevance did not fully account for that
difference across experiments, it is possible that more exposure time is needed to fully detect
these context effects. Future studies may be better able to disentangle these possibilities by
collecting datasets with additional exposure conditions, such as no-update groups (0% = 0% or
50% -> 50%), or manipulations varying the relevance more finely (e.g. 0%, 25%, 50% match
contexts) to compare effects of relative vs absolute differences in relevance context.
Regardless, our findings highlight the idea that both relevance context and order can play a factor

in the magnitude of systematic feature errors participants make.
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Interestingly, although our results suggest an intriguing potential effect of relevance and
context order, we only found a marginal difference between the two contexts overall, and the rate
of swapping errors in the 50 percent match context was substantially less than in Chen et al.
(2019). We also did not find evidence of feature repulsion in the 50 percent match context,
though repulsion errors were reliable across both experiments in Chen et al. (2019). This
suggests that the relevance of the distractor can influence feature interference, but it is not the
only factor that does so, and there are likely other reasons for the differences across studies.
Indeed, it can be difficult to isolate reasons for differences found across studies, especially when
studies are run on different participants at different points in time. Some additional differences
between Chen et al. (2019) and the current study’s 50 percent match context include different
groups of participants (e.g., pre- vs. post-pandemic), the type of monitor used (CRT vs. LCD),
the amount of trials in each condition, etc. The feature interference errors found in both contexts
of the current study more closely mimic Narhi-Martinez et al. (2023), which collected data
within a more similar time period as the current study and used an identical testing environment.
Thus, the differences in magnitude of feature interference reported in Narhi-Martinez et al.
(2023) and Chen et al (2019) are unlikely to have been solely driven by the different distractor
relevance contexts, although this could have been one of the contributing factors. We conclude
that the degree of feature interference induced by a salient distractor may be influenced by
multiple factors, some still unknown, and as such it is particularly important to conduct within-
subject comparisons, or at least between-subject comparisons where the groups are drawn from
the same subject pool at the same point in time on the same computers, as in the current study.
That said, it is also important to emphasize that the existence of these feature interference errors

— particularly swap errors — is consistently replicable across studies, even if the magnitude varies.
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In conclusion, the current study investigated how the relevance of a distracting cue
impacts the magnitude of systematic feature errors that we can make. Within the real world,
there are copious salient cues with differing levels of relevance to our goals that, if repeated
enough times, can be learned about and potentially used to our advantage (consciously or
otherwise). Our results indicate that when a salient distractor is present to capture attention away
from our goal, the learned relevance of that salient cue may be an important factor in how much
we can suppress it. In other words, that learned relevancy of salient items could potentially
change the way they are processed and impact the suppression of later salient distractors. Our
results indicate that the ordering of salient cue context plays a key role in determining the swap
rate, potentially via relative changes in context, indicating that the previous and current learned

relevancies of a salient cue can interact to contribute to our processing of targets and distractors.
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