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Abstract 
 
  
Previous research has shown that attention can be guided via past experiences and learned 

regularities of target and/or distractor location. It has also been suggested that expectations 

surrounding salient distractors can potentially make them easier to suppress, thereby improving 

performance. Here, we ask: could the learned relevance of a distracting cue affect our ability to 

suppress it and protect against feature interference errors? Participants performed a delayed 

estimation task reporting the color of a target item, with a salient distractor cue appearing at a 

nontarget item’s location on some trials. Critically, the experiment was split into two contexts 

presented in separate halves of the experiment, which differed based on whether the target and 

distracting cue could appear at the same location. In the “0 percent match” context, none of the 

trials had the salient cue appear at the target location; i.e., no ‘valid’ trials; whereas in the “50 

percent match” context, 50 percent of distractor-present trials had the salient cue appear at the 

target location, increasing its potential relevance. We used a probabilistic mixture model to 

estimate generic performance measures (guess rate and standard deviation) as well as feature 

interference measures (swap rate and mean shift) for each condition. We found a significant 

difference in swap rates (misreporting the color of the item at the salient distractor location 

instead of the target color) between the two contexts depended on the order they were 

experienced. These results suggest that the learned relevance of a distractor cue can affect how 

likely participants were to be captured by a salient distractor and its resulting impact on target 

feature perception, and that statistical regularities relating to the relevance of salient items can 

affect the perception and encoding of stimulus features. 
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Introduction 
 
 The ability to intentionally direct our attention is crucial for day-to-day tasks and enables 

us to focus on what is most important at a given time, but that does not always mean we are 

veridically encoding everything that we see. For example, a daily task such as driving to work 

requires attention to be focused on the road ahead while also shifting attention to passing cars 

and ignoring distractors such as getting a phone call.  Attention can be conceptually described as 

a multi-level system of weights and balances that leads to us to prioritize certain stimuli more 

than others (Narhi-Martinez, Dube, & Golomb, 2023), which will result in some stimuli either 

being processed poorly or not at all. Thus, the distracting phone call – or a car weaving into our 

lane – may alternatively capture our attention or not even be noticed at all depending on our 

attentional state in that moment.  

Attention is important in not only determining how likely we are to perceive something, 

but it also has a role in feature-binding (Reynolds & Desimone, 1999; Treisman & Gelade, 1980) 

and has been theorized to be the ‘glue’ that binds features together to make cohesive objects. 

Recent studies have found that when spatial attention is unstable there is a higher chance of 

making feature-binding errors (Dowd & Golomb, 2019; Golomb, 2015; Golomb et al., 2014). 

One example of a feature-binding error is color swaps: when asked to report the color of an item 

at a target location, subjects sometimes mistakenly report the color of an item at a distractor 

location instead of the target’s color.  

Swap errors have been found to be particularly prevalent in the context of attentional 

capture by salient distractors (Chen et al., 2019). Chen and colleagues (2019) revealed the 

impacts of attentional capture on feature perception and recall by presenting participants with a 

brief (50ms) array of four colored items, one of which was highlighted with a thick border as the 
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target, and comparing three conditions: neutral (no salient distractor cue), valid (salient cue 

appears surrounding the same stimulus as the target probe), and invalid (salient cue appears 

surrounding a nontarget stimulus). Probabilistic mixture modeling (Bays et al., 2009; Wilken & 

Ma, 2004; Zhang & Luck, 2008) of the participants’ responses along a continuous color wheel 

revealed a significant amount of swapping errors in the invalid condition due to the salient 

distractor capturing the attention on invalid trials, thus disrupting the feature encoding of that 

target color. Interestingly, participants made these large swapping errors with high confidence, 

seemingly unaware they were reporting a distractor color instead of the target color (Chen et al., 

2019). 

 A follow-up study by Narhi-Martinez et al. (2023) investigated how these swap errors 

might be impacted by learned spatial suppression elicited via a predictable salient distractor 

location. Previous studies have shown that we exploit learned target and/or distractor regularities 

to use attention more efficiently (Chun, 2005; Chun & Jiang, 1998; Ferrante et al., 2018; Geng & 

Behrmann, 2005; Jiang, 2018). Additionally, it has been found that previous experience with 

distractors plays a large role in our ability to successfully suppress them (Cunningham & Egeth, 

2016; Goschy et al., 2014; Leber et al., 2016; Noonan et al., 2016; Wang & Theeuwes, 2018). 

Narhi-Martinez et al. (2023) showed that participants were significantly less likely to make swap 

errors when the salient distractor was in a highly likely location compared to a less likely 

location.  

Interestingly, however, Narhi-Martinez et al. (2023) also found a lower baseline swap 

rate; even when the salient distractor appeared in a less likely location, the proportion of swap 

errors was, on average, half of what had been measured in Chen et al. (2019). The two studies 

shared largely similar designs, though one difference was that the “valid” trial condition was 
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eliminated in the Narhi-Martinez et al. (2023) design to increase statistical power for the critical 

distractor location likelihood manipulation. Is it possible that the participants’ overall distractor 

processing could have differed during the experiment relative to Chen et al. (2019) because the 

distractor never appeared around the same location as the target? In other words, the lack of the 

“valid” condition could have made the salient cue more irrelevant compared to the one used in 

Chen et al. (2019), and therefore potentially easier to suppress overall. It has been found that 

when a repeated distractor becomes expected or irrelevant, the distractor is potentially no longer 

classified as a distractor during processing (Sawaki & Katayama, 2006; van Moorselaar et al., 

2021; van Moorselaar & Slagter, 2019). Are we able to implicitly learn the current relevance of a 

distractor, ultimately changing our processing of that distractor and reducing feature-binding 

errors? Although the prior studies have examined how learned distractor expectations affect 

processing, there has not been a study that directly compared multiple contexts in which the 

distractor relevancy differs within a single session.  

In the current, preregistered study, we manipulate the relevance of the salient distractor 

cue in separate halves of the experiment, in which the salient cue did or did not appear at the 

same location as the target probe (valid trials), respectively. By comparing these different 

contexts in which the relevance of the salient cue differed, we aimed to test how the learned 

relevancy of the distractor might influence feature binding errors, and if participants could 

update that relevancy when a new context is introduced.  

We reasoned that in contexts when valid trials are present, the relevance of the salient cue 

could be higher, since the salient cue may be helpful in some of the trials due to its ability to 

assist in directing the participants’ attention to the target location. We hypothesized that 

participants may consequently have a harder time suppressing the salient cue when it appears 
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around a distractor, thus leading to a higher amount of swapping errors compared to contexts 

when there are no valid trials and the salient cue may be more easily suppressed because it never 

guides attention to the target location. We investigated whether feature-binding errors differ in 

these contexts, and further, whether the order of contexts experienced matters, such that 

participants might either dynamically update learned relevance when the context changes, or 

persist based on the original learned context. 

 

Methods 
 
 

This experiment was preregistered on the Open Science Framework (https://osf.io/rgc3a/) 

before the start of data collection. The preregistration explains the motivation for the experiment, 

sample size, exclusion criteria, methods. We deviated from the preregistration in one way: while 

we initially planned 122 trials per condition as stated in the preregistration, we increased this to 

144 trials per condition to ensure sufficient data to model. Analyses that were not listed in the 

preregistration but included in this paper are declared as exploratory.  

 

Sample Size: 
 

We included 56 participants in this experiment. This sample size was chosen to have 

sufficient power to detect a within-participant difference in swap rates between the invalid 

conditions in each of the two contexts, if present. Power analyses were conducted on the datasets 

from Chen et al. (2019) and Narhi-Martinez et al. (2023). The “swap rate” measure is defined as 

the difference in the probability of misreporting the color of the salient distractor compared to a 

misreport of a control nontarget’s color. In Chen et al. (2019), the average effect size of the swap 

https://osf.io/rgc3a/
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rate between the invalid conditions in both experiments that were conducted was d = 0.643. A 

priori power analyses using G*Power (Faul et al., 2007) on this averaged effect size (utilizing 

two-tailed, paired-samples t-tests, an alpha of .05, and a power of 80%) resulted in an estimation 

of 17 participants needed to detect significant swap-errors when valid trials are present. In Narhi-

Martinez et al. (2023), they compared swap rates in two “invalid” conditions: when the distractor 

appeared in a highly likely location and when the distractor appeared in a less likely location. 

The effect size for swap errors in the latter condition (our best estimate for the no-valid context) 

was d = .510; resulting in a power analysis estimation of 33 participants needed to detect swap 

errors in this condition. Because we are interested in a difference between invalid conditions, we 

also conducted another power analysis on the Narhi-Martinez data for the difference in swap 

rates across those two conditions (effect size of d = 0.403). A priori analysis on this effect size 

resulted in an estimation of at least 51 participants. To be conservative and facilitate 

counterbalancing of block order, we pre-registered our sample size at 56 participants.  

Our sample included 25 male and 31 female participants (mean age: 19.52), and every 

participant reported having normal or corrected-to-normal color vision and visual acuity. As 

stated in our preregistration, participants were excluded and replaced if (1) they did not have at 

least 80 trials per condition in which they successfully maintained fixation to include in the 

mixture models; (2) their performance on the task was very poor even on Neutral trials (standard 

deviation parameter greater than 80 or pT less than 0.5; see Analyses below); or (3) the 

probability of reporting a nontarget (b1 or b2) on Invalid trials was greater than 0.5, suggesting 

they may have misunderstood the task.  Fifteen additional participants completed the experiment 

and were excluded and replaced because they did not meet criteria #1, and 1 additional 

participant was excluded and replaced for criterial #2. 
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Setup: 
 

Each participant was seated and placed their head against a chin and forehead rest 60cm 

away from the monitor. The 62cm LCD monitor’s resolution was adjusted to display a 4x3 

presentation window (resolution: 1280x960, refresh rate: 200Hz) and was color calibrated with a 

Minolta CS-100 colorimeter. Stimuli were generated using MATLAB (Mathworks) and the 

Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) on a Windows 

computer. Eye position was recorded using an Eyelink 1000 eye-tracker (SR Research). 

 

Procedure: 
 
 The design for this experiment (Figure 1) was similar to Chen et al. (2019). Each trial 

began with the participant fixating on the center of the screen at a black cross on a grey 

background (RGB [127.5, 127.5, 127.5]). Once the participant fixated for 700ms within 2° 

(visual degrees) of the cross, four thin white framed squares appeared for 300ms, and the cross 

turned into a black dot. If participants did not maintain fixation on the cross and dot for the entire 

1000ms, the cross would reappear on the screen, and they would keep repeating the process until 

they could maintain fixation for the entire 1000ms.  

Four colored squares then appeared for 50ms, each sized 2° x 2°, equally spaced at an 

eccentricity of 4° from the center of the screen. The colors presented varied on each trial. The 

color of the upper left square was chosen randomly from 180 different color values, spaced along 

a color wheel in CIE L*a*b* color space with L* = 60, a* = 22, b* = -1, and radius = 50. The 

colored squares in the upper right and lower left were then randomly assigned on each trial to be 

+90° and -90° along the color wheel from the color in the upper left square. The lower right 
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square was always colored 180° away in color space from the color in the upper left square. In 

each trial, one colored square had a thick, white border around it, indicating it as the target. In 

some of the trials, four white dots (‘salient cue’) also appeared around one of the squares. This 

stimulus was chosen because previous studies have shown that when the distractor is similar to 

the target (white border around one square), attentional capture is the greater compared to when 

the distractor is not similar to the target (Folk et al., 1992, 2002; Folk & Remington, 1998). 

Trials could be either valid (target and salient cue highlight same location), invalid (salient cue 

highlights different location than target), or neutral (no salient cue present). After the items were 

removed from the screen, there was a 100ms delay, followed by a 200ms mask, before the color 

wheel (diameter = 6.5°, width = 1°) appeared on the screen along with a post cue to remind 

participants of the target location. The participant then used the mouse to click the color on the 

color wheel that they believed was in the target location.  

Two different contexts differing in the relevance of the salient cue were tested in separate 

halves of the experiment: a “0 percent match” context (0 percent of trials had the salient cue 

appear at the target location; i.e., 0 valid trials) and a “50 percent match” context (50 percent of 

distractor-present trials had the salient cue appear at the target location; i.e. 1/3 of total trials 

were valid). For the 0 percent match context, participants completed 144 trials of the neutral 

condition and 144 trials of the invalid condition, randomly intermixed. For the 50 percent match 

context, participants completed 144 trials of the neutral condition, 144 trials of the invalid 

condition, and 144 trials of the valid condition, randomly intermixed. There were 12 blocks total 

in the experiment (6 for each context), with 48 trials per block for the 0 percent match and 72 

trials per block in the 50 percent match context. Participants were assigned to one of two order 

groups: Half of the participants performed the 0 percent match blocks in the first half of the 
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experiment and the 50 percent match blocks in the second half (0% à 50% group), and the other 

participants performed the task in the opposite order (50% à 0% group).  

Participants were given instructions (fixate at the center of the screen and report the color 

of the square that had the thick white border around it) and 10 practice trials (excluded from 

analyses) at the start of the experiment to make sure they understood the task and were able to 

successfully fixate at the center of the screen. The salient cue was not mentioned in the 

instructions nor was the concept of the differing contexts in each half of the experiment. This 

information was omitted from instructions with the intention of creating an environment where 

the participants would incidentally learn the relationship of the distractor to the target and 

minimizing explicit consideration of the salient cue in a top-down manner. At the end of the 

experiment, there were exit questions that participants filled out which asked questions regarding 

how they thought the task was and their overall performance.  

 

 

 

 

 

 

 

 
Figure 1. Experimental procedure (not drawn to scale). For every trial, participants were shown 4 colored squares 
and asked to report the color of the square that had a thick white frame around it (target location). The “0 percent 
match” context included neutral (top) and invalid (middle) trials, while the “50 percent match” context included 
neutral, invalid, and valid (bottom) trials.   
 
 
Analyses 
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Any trials during which the participant broke fixation (gaze deviated more than 2 visual 

degrees from the central fixation cue) were discarded and not analyzed. On invalid trials, we 

only analyzed trials in which the salient distractor was adjacent to the target (2/3 of invalid 

trials), as in Chen et al (2019) and Narhi-Martinez et al. (2023). Color report errors were 

calculated for each trial, aligned so that the correct target color was 0° error, the salient distractor 

item’s color was aligned to +90°, and the control (non-salient) nontarget location was -90°. Thus, 

positively signed errors mean color errors shifted ‘towards’ the distractor and negatively signed 

errors ‘away’ from the distractor. On neutral and valid trials, there was no salient distractor, so 

the two control nontargets adjacent to the target were assigned +90° or -90° at random to avoid 

any directional biases. 

A probabilistic mixture model (see formula below) was used to fit the distribution of 

response errors for each of the 5 conditions (Neutral, Invalid, and Valid for 50% match context 

and Neutral and Invalid for 0% match context) for each participant. A Markov chain Monte 

Carlo method using MemToolbox (Suchow et al., 2013) was utilized to calculate the best-fitting 

parameter estimates.  

𝑝(𝜃) = (1 −	𝛽! − 𝛽" − 𝛾)𝜙#,% + 𝛽!𝜙&'°,% + 𝛽"𝜙)&'°,% + 𝛾(
1
2𝜋) 

The error between the target and reported colors was represented by 𝜃 which is the 

difference in degrees between target color and reported color. Probability of reporting the target 

(pT) was represented by 1 - 𝛽1 - 𝛽2 – 𝛾. 𝜙	is the von Mises distribution with mean 𝜇 and 

concentration 𝜅 parameters. The variables 𝜅 and 𝛾 estimated the precision and guess rate, 

respectively, and were used to assess the overall performance of a participant for each condition. 

For the invalid condition, the 𝛽1 - 𝛽2 difference was utilized to measure the rate of swapping 

errors, where 𝛽1 was the probability of misreporting the salient distractor item’s color and 𝛽2 was 
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the probability of misreporting the control nontarget color. The variable 𝜇 was used to measure 

mean shift of the target distribution, if shifted from 0°. These measures were calculated for each 

condition and individual participant. The parameter estimates were analyzed in JASP software 

(Version 0.16.03) and MATLAB (MathWorks) using repeated measures ANOVA, paired 

samples t-tests, and one sample t-tests, frequentist and Bayesian.  

To ensure that the premise of attentional capture by an unpredictable salient distractor 

was achieved, we first compare the above measures between our neutral and invalid conditions 

within each context. The main comparison of interest is a within-subject analysis comparing 

systematic feature binding errors, particularly swap rates (𝛽1 - 𝛽2) and mean shifts induced by the 

salient distractor in the invalid condition, between the two contexts. We then perform between-

subjects analyses examining potential effects of context order and learning.  

 

Results 

 

Generic Performance Indicators: 
 

Our generic performance analyses included measuring the guess rate and standard 

deviation (SD = *1/𝑘) for each of the conditions in both contexts (Figure 2). Paired-sample t-

tests showed that the invalid condition guess rate was significantly higher than the neutral 

condition guess rate within 0 percent context, t(55) = -4.232, p < .001, d = 0.566, BF10 = 248 as 

well as the in the 50 percent match context, t(55) = -4.001, p < .001, d = 0.535, BF10 = 1.23 X 

102. There was also a significantly higher guess rate in the invalid condition compared to the 

valid condition in the 50 percent match context, t(55) = -5.094, p < .001, d = 0.681, BF10 = 3.98 

x 103. For standard deviation, the invalid condition had a marginally higher standard deviation 
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compared to the neutral condition in the 0 percent match context, t(55) = -1.938, p = 0.058, d = 

0.259, BF10 = 0.829. In the 50 percent match context, the invalid condition standard deviation 

was significantly higher than the neutral condition, t(55) = -3.125, p = 0.003, d = 0.418, BF10 = 

10.8, as well as valid condition, t(55) = 4.699, p < .001, d = 0.628, BF10 = 1.08 x 103. The 

standard deviation for the neutral condition was marginally higher than the valid condition in the 

50 percent match context, t(55) = 1.681, p = 0.098, d = 0.225, BF10 = 0.545. These results 

parallel those reported in Chen et al (2019) and Narhi-Martinez et al. (2023).  

When comparing the guess rate and standard deviation for the invalid trials across 

contexts, there were no significant differences for guess rate: t(55) = 1.011, p = 0.317, d = 0.135, 

BF10 = 0.237, nor standard deviation: t(55) = -0.152, p = 0.879, d = 0.020, BF10 = 0.148, 

suggesting that the difference in relevance of the salient cue between the two contexts did not 

affect general performance.   

 

 
Figure 2. General performance indicators. Probabilistic mixture model results for guess rate (left) and standard 
deviation (right). The error bars represent SEM, *: p < 0.05, 	†: p < 0.10, N = 56 
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Systematic Feature Binding Errors:  
  

Our main question of interest concerned potential differences in systematic feature 

binding errors induced by the salient distractor cue under the different contexts. We first 

examined swap errors (Figure 3A), assessed by the probability of misreporting the color of the 

salient distractor item (𝛽1) relative to the probability of misreporting the color of the control 

nontarget item (𝛽2). A paired-sample t-test showed that there was a significant difference 

between 𝛽1 and 𝛽2 for invalid trials in the 0 percent match context, t(55) = 4.065, p < .001, d = 

0.543, BF10 = 1.49 x 102, and in the 50 percent match context, t(55) = 5.453, p < .001, d = 0.729, 

BF10 = 1.34 x 104. In other words, participants made significant swap errors in both contexts.  

In order to compare the amount of swap errors across contexts, the swap rate (𝛽1 - 𝛽2) 

was calculated for each participant in the two contexts (Figure 3B). We found a marginally 

higher swap rate in the 50 match context compared to the 0 match context, t(55) = -1.808, p = 

0.076, d = 0.242, BF10 = 0.667. This difference was in the predicted direction – such that the 

salient distractor would be harder to ignore and produce more feature interference when it 

sometimes overlaps with the target location compared to when it is purely distracting – though 

the difference between contexts was not statistically significant, at least when ignoring potential 

order effects (see next section). 

The mean shift parameter was also analyzed between the invalid conditions of each 

context to examine potential repulsion or attraction errors induced by the salient distractor 

(Figure 3C). The mean shift in the invalid condition was not significantly different from zero in 

either condition: 0 percent match context: t(55) = -0.683, p = 0.498, d = -0.079, BF10 = 0.182; 50 
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percent match context: t(55) = -0.594, p = 0.555, d = -0.079, BF10 = 0.173. A paired-sample t-test 

found no significant difference between the mean shifts in the invalid conditions across contexts, 

t(55) = -0.073, p = 0.942, d = 0.010, BF10 = 0.146.  

 

 
Figure 3. Systematic feature binding errors. (A) Probabilistic mixture model results for swap errors, plotting the 
probability of misreporting the color of the item at the salient distractor location (𝛽1) and the probability of 
misreporting the color of the item at the control nontarget location (𝛽2). (B) Distractor-induced swap rates (𝛽1 - 𝛽2)  
for the invalid conditions. (C) Probabilistic mixture model results for mean shift parameter (𝜇). Positively-signed 
shifts indicate attraction towards the color of the item at the salient distractor location and negatively-signed shifts 
indicate repulsion away from the color of the item at the salient distractor location. The error bars represent SEM, *: 
p < 0.05, † = p < 0.10, N = 56 
 
 
Context Order Effects: 
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We next investigated whether the order of which context was presented first affected 

participants’ ability to suppress the salient distractor and protect the target from feature 

interference. Because the mean shift results were negligible, we focus the subsequent analyses on 

the swap rate measure. We first report the results of a pre-registered analysis between the two 

groups of participants (0% à 50% group vs. 50% à 0% group) comparing their first and second 

halves of the experiment. We predicted that there may be a difference in the amount of swap 

errors depending on the order the contexts were experienced. In other words, if participants 

persisted in the behavior associated with their initial context exposure, results from their second 

half of the experiment might mimic the first half, ignoring the context change. Such a pattern 

would weaken the overall context effects reported above. On the other hand, if participants 

rapidly adapt to the new contingencies in the second half, their performance should only vary 

with context, with no order or group effects, such that their swap rate for the invalid trials might 

always be slightly higher in the 50 percent match context compared to the 0 percent match 

context. It is also possible the results could reflect additional possibilities, for example, that 

participants from both groups get better over time due to practice and exposure, and swap rate 

for the first half of the experiment would always be higher compared to the swap rate for the 

second half of the experiment (such that context differences may be most evident between 

groups in the first half of the experiment), or even that the change from one context to another 

triggers a more salient effect (such that context differences may be most evident between groups 

in the second half of the experiment). 

Figure 4 shows the results of this context order analysis, with invalid condition swap 

rates broken down by the order of which context a participant saw first. A repeated measures 

ANOVA comparing swap rates by context (0% match vs. 50% match) and group (between-
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subjects factor; 0% à 50% group vs. 50% à 0% group) revealed no significant main effect for 

group, F(1,54) = 0.894, p = 0.349, η2 = 0.014, group model BF10 = 0.518, but a significant 

context x group interaction, F(1,54) = 6.115, p = 0.017, η2 = 0.016, with strongest evidence for 

the context + group + context x group model BF10 = 1.361 compared to the null model. 

Consistent with the overall comparison above, we also found a marginal main effect of context, 

F(1,54) = 3.573, p = 0.064, η2 = 0.009, context model BF10 = 0.814. These results suggest that 

the order in which the contexts were experienced did impact the amount of swapping for each 

context. As can be seen in Figure 4, participants who started with the 50 percent match context 

made significantly fewer swap errors in the subsequent half of the experiment where they 

experienced the 0 percent match context, t(27) = 2.672, p = 0.013, d = 0.505, BF10 = 3.790. 

However, when the 0 percent match context was experienced first, the swap rates in the second 

half of the experiment (50 percent match context) were not significantly different relative to the 

first half, t(27) = 0.504, p = 0.618, d = 0.095, BF10 = 0.225. When comparing the second half of 

the experiment across groups, there was a marginal difference in swap rates, t(27) = -1.856, p = 

0.074, d = 0.351, BF10 = 0.900. We further explore this finding in the exploratory block-by-block 

timecourse section below. 

We also conducted similar ANOVAs on the mean shift, guess rate, and standard 

deviation parameters, as pre-registered, to determine if the context order influenced any of these 

measures. We found no significant main effects or interactions for any of these measures (Table 

1).  
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Figure 4. Context order effects. Swap rates in the invalid conditions broken down by participant group, based on the 
order that participants experienced each context. The error bars represent SEM, N = 56 (N=28 per group). 
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Table 1. ANOVA results examining context order effects for each of the different measures on invalid trials. 
 
 
 

Source Cases df F p η2 

Swap Rate Invalid Conditions by Group 

Within Subjects Context      1 3.573 0.064 0.009 

 Context * Group First      1  6.115 0.017 0.016 

 Residuals     54    

Between Subjects Group First      1 0.894 0.349 0.014 

 Residuals     54    

Mean Shift Invalid Conditions by Group 

Within Subjects Context      1 0.005 0.942 5.173e-5 

 Context * Group First      1 3.021e-5 0.996 2.974e-7 

 Residuals     54    

Between Subjects Group First      1 0.039 0.844 3.404e-4 

 Residuals     54    

Guess Rate Invalid Conditions by Group 

Within Subjects Context      1 1.049 0.310 0.003 

 Context * Group First      1  2.476 0.121 0.007 

 Residuals     54    

Between Subjects Group First      1 0.095 0.760 0.001 

 Residuals     54    

Standard Deviation Invalid Conditions by Group 

Within Subjects Context 1 0.024 0.878 8.065e-5 

 Context * Group First 1 2.314 0.134 0.008 

 Residuals 54    

Between Subjects Group First 1 0.018 0.893 2.742e-4 

 Residuals 54    
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Exploratory Block-by-Block Timecourse Analysis 

 In order to better understand how the pattern of swapping rates may have changed during 

and across each half of the experiment, we conducted an exploratory block-by-block analysis of 

swap rates for the 12 total blocks (6 in each half of the experiment). Each block did not have a 

sufficient number of trials to run a mixture model on individual participants, so for this 

exploratory analysis we aggregated the data from all participants in each group into two ‘super 

subjects’ and modeled the errors by block. We calculated the swap rate in each of the blocks for 

each of the two groups of participants. Figure 5A shows the block-by-block timecourse of swap 

rates for the group of participants that experienced the 0% match context in the first six blocks 

followed by the 50% context in the second six blocks. Figure 5B shows the block-by-block 

timecourse of swap rates for the group that experienced the contexts in the opposite order. 

 A few interesting patterns emerge. First, the swap rate decreased rapidly over the first six 

blocks in both groups. There was a significant negative correlation between block number and 

swap rate for both the group that experienced the 0% match context first and the group that 

experienced the 50% match context first, r(4) = -0.962, p = 0.002, and r(4) = -0.901, p = 0.014, 

respectively. These results suggest that swapping errors reduced over time within both contexts 

during the first half of the experiment, presumably due to practice effects and/or accumulated 

exposures to the salient distractor.  

Strikingly, the swap errors show different temporal patterns in the second half of the 

experiment for the two groups. For the group that experienced the 0 percent match context first 

(no valid trials), when they switch to the new 50 percent match context where the salient cue is 

sometimes overlapping with the target (valid), swap rates on invalid trials increase over blocks 7-

8 and then remained consistently higher throughout this latter half of the experiment (no 
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significant correlation between block number and swap rate: r(4) = -0.216, p = 0.680). On the 

other hand, for the group that experienced the 50 percent match context first, when they switch to 

the 0 percent match context containing no valid trials, there was a brief initial boost in swap 

errors in block 7, followed by a rapid decrease and sustained lower swap rate over the course of 

the second half, r(4) = -0.429, p = 0.396. Although this analysis is exploratory, it suggests that 

participants may have been sensitive to the change in contexts, such that overall, there were 

fewer swapping errors when the 0 percent match came second, compared to when the 50 percent 

match came second.  

 

 

 
Figure 5. Exploratory block-by-block timecourse analysis on swap rates for invalid trials, broken down by group. 
(A) Block-by-block swap rate for the group of participants who experienced the 0 percent match context first. (B) 
Block-by-block swap rate for the group of participants who experienced the 50 percent match context first. Mixture 
model parameters for this analysis were fit on aggregate subject data (N=28 for each group).  
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Exit Question Results:  

We also had participants answer exit questions after they were done with the experiment. 

The first question asked, “Did you notice white dots sometimes flash around one of the colored 

squares?” 18/56 participants reported that they did not notice, meaning that they were not 

consciously aware that a distractor was present in some trials. A context x awareness ANOVA 

conducted on swap rates (𝛽1 - 𝛽2) in the invalid conditions found no significant main effect for 

context, F(1,54) = 1.888, p = 0.175, η2 = 0.006, context model BF10 = 0.809, nor for awareness, 

F(1,54) = 0.156, p = 0.694, η2 = 0.002, awareness model BF10 = 0.411. There was no significant 

interaction between the two factors, F(1,54) = 0.759, p = 0.387, η2 = 0.002, context + awareness 

+ context x awareness model BF10 = 0.142. These results suggest that the swap rates in the 

invalid conditions were not affected by whether the participant was consciously aware of the 

salient distractor. 

The second question asked, “Did you find that the first or second half of the experiment 

easier?”. After taking into account which context-order group they were assigned to, we found 

that 33/56 participants felt that the 0 percent match context was easier, consistent with the overall 

trend for fewer swap errors in this context. However, the pattern of swap errors did not 

significantly differ across groups. A context x response group ANOVA conducted on swap rates 

(𝛽1 - 𝛽2) in the invalid conditions found no significant main effect of response group, F(1,54) = 

0.970, p = 0.329, η2 = 0.015, response group model BF10 = 0.534. Additionally, no significant 

interaction between the two factors, F(1,54) = 0.019, p = 0.891, η2 = 5.593 e-5, context + 

response group + context x response group model BF10 = 0.120.  
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Discussion 
 

Many previous studies have examined how visual distractors affect attention, commonly 

focusing on different aspects of attentional capture, including the ubiquitous finding that when a 

salient distractor is present, reaction times slow down and higher error rates occur compared to 

when there was no distractor present (Folk et al., 1992, 2002; Luck et al., 2021; Theeuwes, 1996; 

Theeuwes & Burger, 1998; Yantis & Jonides, 1984). More recently, it has been demonstrated 

that attentional capture can also lead to perceptual errors such as feature swapping and repulsion 

(Chen et al., 2019).  

An important focus of the attentional capture literature has been understanding how and 

when distractors can be suppressed (Geng et al., 2019; Geng, 2014; van Moorselaar & Slagter, 

2019; Wang & Theeuwes, 2018). In particular, learned statistical regularities – such as learning a 

certain location is more likely to contain a distractor – can aid in the ability of a person to 

suppress a salient object (Failing & Theeuwes, 2020; Huang et al., 2021, 2022; Kong et al., 

2020; Leber et al., 2016; Wang et al., 2019). Indeed, learned spatial suppression can also protect 

against feature interference, with fewer swap errors evoked by a salient distractor in a high-

probability location than a low-probability location (Narhi-Martinez et al., 2023). 

One proposed idea as to why participants are able to suppress distractors is due to their 

ability to learn and expect the salient distractor over time, thus potentially changing the way the 

distractor is processed (van Moorselaar & Slagter, 2019). More frequent distractors – regardless 

of spatial regularities – also become easier to ignore compared to contexts where the distractors 

are more rare (Geng et al., 2019; Geyer et al., 2006; Won & Geng, 2020). In the current study, 
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we focused on another type of learned regularity affecting the relevance of a distracting cue: 

whether the salient distractor ever overlaps with the target location.   

We examined how the learned reliability/relevance of a salient cue would affect the 

amount of feature errors made within different relevancy contexts. In the current study the two 

contexts (0 percent match and 50 percent match) allowed participants to learn two different 

relevancies of the salient cue, asking whether this learned relevance would impact the extent to 

which the distractor induced feature binding errors. The 0 percent match context represented the 

low relevance salient cue due to the absence of any target-distractor overlap, while the 50 percent 

match context represented the higher relevance salient cue, because there was the possibility of 

overlap between the distractor and target, such that in some trials the salient distractor appeared 

in the same location as the target, drawing attention towards the participant’s goal in a potentially 

helpful way. We predicted that this greater relevance in the 50 percent match context might lead 

to a higher swap rate compared to the 0 percent match context due to participants being less 

likely to suppress the salient cue in the former.  

Our results showed that in both contexts, the salient distractor captured attention, 

resulting in worse overall performance on the invalid (distractor present) trials compared to 

neutral (distractor absent) trials, measured by the general performance indicators of precision and 

guess rate. On invalid trials in both contexts, participants also exhibited swap errors: a 

significantly higher probability of misreporting the non-target color that appeared at the location 

where the salient cue was compared to a control nontarget, replicating the overall trend as seen in 

Chen et al. (2019) and Narhi-Martinez et al. (2023).  

Importantly, the two contexts differed only in the presence or absence of an additional 

“valid” condition. This contextual manipulation did not seem to influence the general 
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performance measures, with no significant difference in precision and guess rate on the invalid 

trials across the two contexts, suggesting that general performance was not affected when the 

relevance of a salient cue was altered. When looking at the systematic feature errors for the 

invalid conditions in each of the contexts, we found a slightly higher swap rate in the 50 percent 

match context compared to the 0 percent match context, though this difference was not 

statistically significant.  

Our pre-registered follow-up analyses did, however, find that the order in which the 

contexts were experienced had a significant effect on swap rates. We designed this study such 

that the relevance of the salient cue changed halfway through the experiment, meaning that 

participants had the opportunity to update their perceived relevance of the salient cue. Previous 

studies have shown that the processing of a repeated distractor/salient cue can be altered when it 

becomes expected or irrelevant (Sawaki & Katayama, 2006; van Moorselaar et al., 2021; van 

Moorselaar & Slagter, 2019). Our results showed that when participants experienced the 50 

percent match context first (higher relevance distractor), swap rates were significantly reduced in 

the second half of the experiment during the 0 percent match condition. However, when 

participants experienced the 0 percent match context first, the rate of swap errors did not change 

in the second half of the experiment during the 50 percent match condition. In pre-registering 

this analysis, we had aimed to distinguish between two main hypothetical patterns: that 

participants would be sensitive to the current context, updating with the change in context, or 

that participants would persist in the behavior associated with the original context, failing to 

update to the change in context. Instead we found a more complicated pattern, where there seems 

to be some interaction between context sensitivity and overall time in the task. It is not surprising 

that performance would improve over time and swap errors would reduce with distractor 
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exposure regardless of context, and indeed the exploratory block-by-block analysis shows an 

expected effect of time in the first half of the experiment. What was less expected was that 

instead of an initial effect of relevance context in the first half of the experiment, the differences 

across relevance contexts only emerged in the second half of the experiment, after the switch.   

There could be a few possible accounts for this pattern of results. One explanation is that 

the difference in relevance context only became salient to the participants after the switch from 

one context to another. In other words, salient distractors caused similar initial rates of swap 

errors in the invalid condition in both contexts, but when the salient distractor becomes relatively 

more relevant (0% à 50%), the distractor interferes more after that change in context compared 

to when the salient distractor becomes relatively less relevant (50% à 0%),  Another 

explanation could be that context played a higher role in the second half of the experiment 

because distractor relevance simply takes more time to learn. Motivated by the large difference 

in baseline swap rates between Chen et. al (2019) and Narhi-Martinez et al. (2023), we designed 

the current study under the assumption that 6 blocks would be sufficient to detect differences in 

learned relevance context. However, if learned distractor relevance did not fully account for that 

difference across experiments, it is possible that more exposure time is needed to fully detect 

these context effects. Future studies may be better able to disentangle these possibilities by 

collecting datasets with additional exposure conditions, such as no-update groups (0% à 0% or 

50% à 50%), or manipulations varying the relevance more finely (e.g. 0%, 25%, 50% match 

contexts) to compare effects of relative vs absolute differences in relevance context.     

Regardless, our findings highlight the idea that both relevance context and order can play a factor 

in the magnitude of systematic feature errors participants make. 
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Interestingly, although our results suggest an intriguing potential effect of relevance and 

context order, we only found a marginal difference between the two contexts overall, and the rate 

of swapping errors in the 50 percent match context was substantially less than in Chen et al. 

(2019). We also did not find evidence of feature repulsion in the 50 percent match context, 

though repulsion errors were reliable across both experiments in Chen et al. (2019). This 

suggests that the relevance of the distractor can influence feature interference, but it is not the 

only factor that does so, and there are likely other reasons for the differences across studies. 

Indeed, it can be difficult to isolate reasons for differences found across studies, especially when 

studies are run on different participants at different points in time. Some additional differences 

between Chen et al. (2019) and the current study’s 50 percent match context include different 

groups of participants (e.g., pre- vs. post-pandemic), the type of monitor used (CRT vs. LCD), 

the amount of trials in each condition, etc.  The feature interference errors found in both contexts 

of the current study more closely mimic Narhi-Martinez et al. (2023), which collected data 

within a more similar time period as the current study and used an identical testing environment. 

Thus, the differences in magnitude of feature interference reported in Narhi-Martinez et al. 

(2023) and Chen et al (2019) are unlikely to have been solely driven by the different distractor 

relevance contexts, although this could have been one of the contributing factors. We conclude 

that the degree of feature interference induced by a salient distractor may be influenced by 

multiple factors, some still unknown, and as such it is particularly important to conduct within-

subject comparisons, or at least between-subject comparisons where the groups are drawn from 

the same subject pool at the same point in time on the same computers, as in the current study. 

That said, it is also important to emphasize that the existence of these feature interference errors 

– particularly swap errors – is consistently replicable across studies, even if the magnitude varies.  
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In conclusion, the current study investigated how the relevance of a distracting cue 

impacts the magnitude of systematic feature errors that we can make. Within the real world, 

there are copious salient cues with differing levels of relevance to our goals that, if repeated 

enough times, can be learned about and potentially used to our advantage (consciously or 

otherwise). Our results indicate that when a salient distractor is present to capture attention away 

from our goal, the learned relevance of that salient cue may be an important factor in how much 

we can suppress it. In other words, that learned relevancy of salient items could potentially 

change the way they are processed and impact the suppression of later salient distractors. Our 

results indicate that the ordering of salient cue context plays a key role in determining the swap 

rate, potentially via relative changes in context, indicating that the previous and current learned 

relevancies of a salient cue can interact to contribute to our processing of targets and distractors.  
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