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Abstract

The performance of artificial neural networks (ANNs) de-
grades when training data are limited or imbalanced. In con-
trast, the human brain can learn quickly from just a few ex-
amples. Here, we investigated the role of sleep in improv-
ing the performance of ANNs trained with limited data on
the MNIST and Fashion MNIST datasets. Sleep was imple-
mented as an unsupervised phase with local Hebbian type
learning rules. We found a significant boost in accuracy af-
ter the sleep phase for models trained with limited data in
the range of 0.5-10% of total MNIST or Fashion MNIST
datasets. When more than 10% of the total data was used,
sleep alone had a slight negative impact on performance, but
this was remedied by fine-tuning on the original data. This
study sheds light on a potential synaptic weight dynamics
strategy employed by the brain during sleep to enhance mem-
ory performance when training data are limited or imbal-
anced.

Introduction

Deep learning methods have shown considerable perfor-
mance when training datasets are large, however, existing
techniques generally fail in low training data conditions.
Additionally, training datasets are often imbalanced, with
some categories occurring more frequently than others, re-
sulting in reduced accuracy for ANNSs. Several methods have
been proposed to overcome these limitations. These include
data augmentation (Shorten and Khoshgoftaar 2019), pre-
training on other datasets (Zhuang et al. 2020) or alterna-
tive architectures such as neural tangent kernel (Arora et al.
2019). However, these approaches do not address the fun-
damental question of how to make overparameterized deep
learning networks learn to generalize from small datasets
without overfitting. In contrast, the human brain demon-
strates the ability to learn quickly from just a few examples.

Sleep has been shown to play an important role in memory
consolidation in biological systems (Stickgold 2005). Two
critical components which are believed to underlie memory
consolidation during sleep are spontaneous replay of mem-
ory traces and local unsupervised synaptic plasticity that
restricts synaptic changes to relevant memories only. Dur-
ing sleep, replay of recently learned memories along with

“These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

23441

relevant old memories enables the network to form stable
long-term memory representations (Rasch and Born 2013)
and reduces competition between memories (Gonzélez et al.
2020; Golden et al. 2022). The idea of replay has been
explored in machine learning to enable continual learning.
However, spontaneous unsupervised replay found in the bi-
ological brain and implemented here is significantly differ-
ent compared to explicit replay of past inputs implemented
in machine learning rehearsal methods (Hayes et al. 2021).

These results from neuroscience suggest that applying
sleep replay principles to ANNs may enhance memory rep-
resentations and, consequently, improve the performance of
machine learning models trained on limited or unbalanced
datasets, as tested in our study.

Algorithm

A fully-connected ANN with two hidden layers was first
trained on a randomly selected subset of MNIST or Fashion
MNIST (FMNIST) datasets using backpropagation. Subse-
quently, the sleep replay consolidation (SRC) algorithm was
implemented as previously described in (Tadros et al. 2022).
Briefly (see Supplementary Material for details), the ANN
trained by limited data was mapped to a spiking neural net-
work (SNN) with the same architecture. The SNN’s activity
was driven by randomly distributed Poisson spiking input
that reflected average inputs observed in the training dataset.
Local Hebbian-type plasticity was implemented to modify
weights during the sleep phase, i.e., synaptic strength was
increased if presynaptic activation was followed by postsy-
naptic activation and reduced if postsynaptic activation oc-
curred without presynaptic activation. After the sleep phase,
the SNN was remapped back to an ANN. In (Tadros et al.
2022) SRC was applied after each new task training to avoid
catastrophic forgetting, here we applied it once after training
with limited data.

Results

When the ANN was trained with the full dataset, it achieved
an accuracy of over 90%. However, when less than 10% of
the data was used during training, accuracy significantly de-
clined (Figure 1, blue line). When 0.5% to 10% of the total
data was used for ANN training, the subsequent application
of SRC resulted in a substantial (20-30%) increase in accu-
racy for both MNIST and Fashion MNIST datasets (Figure
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Figure 1: Accuracy on MNIST (A) and FMNIST (B) with
mean (lines) and standard deviation (error bars) across 10
trials. X-axis - log of the relative amount of data used for
training (e.g., 0.01=1% of data). Blue - baseline (after ANN
training); Orange - baseline + sleep; Green - baseline + sleep
+ fine-tuning. Note significant gain in accuracy after sleep
phase on low data. The sleep phase reduced performance on
high data but was largely recovered by fine-tuning.

1, orange line). Increasing the training duration (number of
epochs), increased performance before sleep but a signifi-
cant performance gain after sleep remained.

Analysis of the confusion matrix (see Supplementary Ma-
terial) revealed that networks trained with limited data can
exhibit biases towards a few classes. For example, when 3%
of the MNIST data was used in training, classes 0, 2, 5, and
6 were all classified as 0. However, after sleep, classes 0, 2,
and 6 were classified correctly. Succinctly, the model exhib-
ited a more balanced response after the application of SRC.

While performance improved when there was limited
training data, we also observed a slight (10-15%) decrease
in performance when more than approximately 10% of the
data was employed for ANN training. We found that this de-
crease in performance could be mitigated by fine-tuning the
ANN after sleep using the original (limited) training data
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(Figure 1, green line). Thus, by incorporating both sleep and
fine-tuning, we were able to maintain performance on mod-
els trained with the full dataset while still achieving perfor-
mance gains on models trained with limited data.

Next, we examined accuracy when a significant class im-
balance was introduced to the training set by selectively re-
ducing the number of training examples used for certain
classes. We found that class-wise model performance was
more robust to data reduction for some classes when com-
pared to others. After SRC, most classes showed a posi-
tive improvement in class-wise accuracy (see Supplemen-
tary Material). Thus, the sleep phase proved effective in in-
creasing model accuracy on underrepresented classes while
preserving accuracy on well-trained classes.

Analysis of synaptic weights revealed that SRC increased
strength for a small fraction of critical synapses, while many
other synapses were weakened (see Supplementary Mate-
rial). This suggests that the overall accuracy increase after
SRC was a result of increasing the sparsity of responses.

Our study sheds light on a potential synaptic weight dy-
namics strategy employed by the brain during sleep to en-
hance memory performance when training data are limited
or imbalanced. Applied to ANNS, sleep-like replay improves
performance in a completely unsupervised manner, requir-
ing no additional data, and can be applied to already trained
models.
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