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Abstract—Object detection is a critical aspect of computer
vision, particularly for unmanned aerial vehicles, commonly
known as drones. Drones depend on object detection to perform
various tasks such as surveillance or search and rescue. However,
drones face challenges such as limited computation and small
object detection, which requires high accuracy within tight
timeframes. The emergence of edge computing allows real-time
processing, balancing accuracy and latency by offloading tasks to
more powerful edge servers. However, efficient resource allocation
remains a challenge. This paper presents results from real-world
experiments that explore the trade-offs among latency, accuracy,
and energy consumption in UAV object detection. Notably, the
experiments demonstrate that offloading can reduce latency,
particularly for tasks demanding high levels of accuracy. These
results can inform offloading and resource allocation decisions.

Index Terms—Edge computing, offloading, UAV

I. INTRODUCTION

Object detection has gained significant attention in recent
years due to its diverse applications across various domains,
making it a fundamental task in computer vision [1]. For ex-
ample, the development of unmanned aerial vehicles (UAVs),
commonly known as drones, has made object detection a vital
aspect of enabling autonomous capabilities in aerial platforms.
The integration of object detection techniques with drone
technology has brought about significant changes in various
fields such as surveillance, search and rescue, environmental
monitoring, and infrastructure inspection, among others. How-
ever, drones have their own challenges, such as having low
computational capacities, energy constraints, and having small
objects in the images. Considering those constraints, higher
accuracies are aimed at with limited time [2].

With the deployment of 5G networks and the introduction
of edge computing, a new computing paradigm arises: making
computing services closer to the user at the network. Although
cloud servers have more powerful computing, offloading to
a cloud server has higher latency, which makes some timely
critical tasks that require very small latencies impossible [3].
The use of edge computing reduces the distance data is
required to travel in case of offloading. This latency drop
makes offloading an option in real-time processing besides
onboard processing. The other advantage of offloading is
the ability to use more complex models to achieve higher
accuracies. This trade-off involves the need to efficiently
solve resource allocation and decision-making problems. In
the literature, various reinforcement learning approaches have
been proposed, often relying on assumptions and simulation
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Fig. 1: System model.

results (e.g. [4]-[10]). However, a notable gap exists in the lack
of real-world analysis. To address this gap, in this work, we
conduct real-world experiments to see the trade-offs between
system metrics such as latency, accuracy and energy. The other
contribution is that we evaluate each image in the dataset, one
by one, and under the system conditions that exist when the
image arrives. As such, these results are expected to be useful
for allocating resources and making decisions on whether to
offload to edge servers or to execute the task on-board.

The rest of the paper is organized as follows. We present
the system model in Section II. Afterward, we present our
experiment setup, experiment results and analysis in Section
IIT and we present our conclusions in the last section, Section
Iv.

II. SYSTEM MODEL

Drones are used in edge computing in two ways. They
can be mobile edge servers or mobile “users”. If they are
mobile edge servers, they need to have high computational
power, and other users offload their tasks onto the drones.
On the other hand, they can be users themselves and offload
their tasks to another device with higher computational power.
We consider a system where drones are users, and we have
edge servers with fixed locations, as shown in Figure 1.
Therefore, there are two options for drones: process onboard
or offload. Each drone has to make a decision on each arriving
task considering the system’s current situation, computational
power, and computational load. The decision-making algo-
rithm considers the processing time, accuracy, or resource
usage such as energy and makes its decision. Two decisions
that can be made by a UAV are shown in Figure 2. We consider
object detection as the task and use two different models
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with different parameter sizes to evaluate the trade-offs among
processing time, accuracy, and resource usage. In this work,
we perform real-world experiments to see possible outcomes.
Through these experiments, we figure out which method might
be better for certain situations. For example, one method might
be quicker but less accurate, while another might be slower but
more accurate. We want to see how they compare in different
situations so that when it comes time to make decisions, we
will have a better understanding of what might work best.

III. EXPERIMENTS
A. Experimental Setup

To obtain results, we employ a drone equipped with sensing
capabilities and an edge server boasting considerable compu-
tational power. This setup allows for efficient data processing
and analysis in real-time, enabling various applications such as
surveillance, mapping, or environmental monitoring. To ensure
that our results are applicable to a broader range, we utilize a
real-world dataset. Details are as follows:

« Dataset: Visdrone test set [11] consists of aerial imagery
captured by the drone. The dataset has 16 different
video clips consisting of a total of 6,333 frames from
various places with ground truths. Using these frames,
we simulate a camera and feed a drone.

« Devices:

— UAV: Jetson Orin Nano Developer Kit is used as a
computation device that has a 1024-core NVIDIA
Ampere architecture GPU with 32 Tensor Cores and
a 6-core ARM CPU with 8 GB RAM. The developer
kit has 40 TOPS Al performances and it provides
significantly powerful Al capabilities at low cost.

— Edge Server: 12-core Intel(R) Core(TM) 19-7920X
CPU @ 2.90GHz, 128 GB RAM and 4 x NVIDIA
GeForce RTX 2080 Ti 12 GB GPU.

o Model Selection: We utilize various You Only Look
Once (YOLO) [12] models in this process. YOLO is a
widely used system for detecting objects in real time,
which employs a single neural network to directly predict
bounding boxes and class probabilities from full images in
one evaluation. YOLO version 8 has five different models
with different parameter sizes and the following is the
order of the parameters listed in increasing size: n, s, m,
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1, x. An increase in parameter size may increase inference
time and accuracy. After testing five of them, we observe
that the inference time for 1 and x is higher than for m,
whereas their accuracy is similar. Likewise, we observe
the same relationship between s and n. Therefore, we
pick n and m as our two options. n represents the simple
model, while m represents the complex model.
Offloading: To overcome bandwidth limitations, we uti-
lize resizing and JPEG compression [13] while offloading
images from the UAV to the edge server. The reason
behind resizing is that ML models mostly need a spe-
cific image size and do resizing automatically. Therefore,
resizing before compression and transmission helps us
to reduce compression/decompression latency and trans-
mission latency without changing the output. By resizing
data, the process of transmission is accelerated by ap-
proximately 70%. After resizing images to YOLO input
size, we apply compression. Compression reduces the
number of packets that are transmitted by around 1/6th of
their original amount with only 5% compression loss. To
achieve low latency, we also utilize The User Datagram
Protocol (UDP) to offload images. Figure 3 depicts the
system we use for offloading. We have an edge server
and it is connected to a router using an Ethernet cable.
The router receives packets from the UAV wirelessly and
sends them to the edge server.

Ethernet Wireless
Connection <(Fonnection
Wi-Fi 6 Router

UAV equipped
with Jetson

Edge Server

Fig. 3: Connections for offloading.

o Performance Metrics:

— Latency: We consider latency for each image or
video frame. The latency has two parts: inference
time and offloading time if applicable. Inference time
is the time required to execute an object detection
model. Offloading time is the time spent on all the
operations required for offloading. If the decision
is onboard processing, then offloading time is zero.
In the case of offloading, we have to consider the
sum of resizing, compression/decompression, and
transmission time when the image is offloaded to
the edge server.In that case, operations start on UAV
and end at the edge server. To have accurate time
measurement, we synchronize all devices’ clocks
using Network Time Protocol (NTP). Using NTP,
we are able to use timestamps from different devices
while preserving measurement precision.

— Accuracy: We evaluate accuracy performance using
mean average precision (mAP) and mean average



recall (mAR) [14]. To better understand mAP and

mAR, we first review some related concepts. Preci-

sion, Recall, and Intersection over Union (IoU) are
fundamental metrics used in evaluating the perfor-
mance of object detection systems.

* Precision measures the accuracy of the positive
predictions made by the model. In object detec-
tion, precision represents the ratio of correctly
detected objects to all detected objects:

. True Positives
Precision =

True Positives + False Positives

* Recall, also known as sensitivity or true positive
rate, measures the completeness of the positive
predictions made by the model. In object de-
tection, recall represents the ratio of correctly
detected objects to all ground truth objects:

True Positives
Recall =

True Positives + False Negatives

* IoU is a measure of the overlap between the
predicted bounding box and the ground truth
bounding box. It is calculated as the ratio of the
intersection area to the union area:

Area of Overlap
IoU = —F—
¢ Area of Union

IoU is often used as a criterion for determining
whether a predicted bounding box is considered a
true positive detection.

* The Precision-Recall (PR) curve is a graphical
representation of the trade-off between precision
and recall for a given classification model.

After that, Average Precision (AP) and Average Re-

call (AR) are calculated for each object class. AP

measures the area under the precision-recall curve.

It is calculated by averaging the precision values

obtained at different recall levels:

2 k=1 (P(k) - AR(K))

‘max

AP =

where:

% P(k) is the precision at the k-th point,

x AR(k) is the change in recall from k — 1 to k,
* Rmax 18 the maximum recall value.

Average Recall measures the average recall obtained
at different precision levels. It is calculated by aver-
aging the recall values at different precision levels:

A = ShalR8)- APG)

where:
x R(k) is the recall at the k-th point,
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x AP(k) is the change in precision from k& — 1 to
k,
* Ppax 1 the maximum precision value.

These metrics provide insights into a model’s per-
formance in terms of precision and recall, which are
crucial for tasks like object detection and information
retrieval. In this way, we can penalize the absence
of object detection and redundant detections. After
obtaining AP and AR, mAP and mAR are calculated
by averaging AP and AR values obtained for each
class, respectively. We use different thresholds for
mAP and mAR. They can be explained as follows:
mAP,; is the mAP obtained by averaging over all
IoU thresholds from 0.5 to 0.95 with step size
0.05. mAPy 5 and mAPy 75 are at thresholds 0.5 and
0.75, respectively. mARx—x represents the average
maximum recall score for k detections per image,
calculated over various IoU thresholds and classes.
We have scores for each & in 1,10, 100.

— Energy Consumption: The third metric is the energy
consumed. Similar to latency, we have two energy
components — the energy consumption for offloading
and the energy consumption for inference. We are
able to measure the power consumption of a system
in real-time with Python libraries as software. We
measure instantaneous power consumption at regular
intervals. We noticed that setting this interval too
small caused instability in measurements. Therefore,
we use 0.1 second as our power measurement inter-
val. We are interested in the active power consumed
for task execution and do not want to include the
standby power, which is the power consumed by
the system when it is not being actively used. To
measure the standby power, we observe the system
for a dedicated period of time without executing any
additional tasks. During this period, we measure the
power consumption of the system at regular intervals
for 2 minutes to determine the average standby
power. We measure the average standby power for
each model-dataset pair. After that, we continue to
measure power periodically and asynchronously from
model inference. After each inference is done, we
use the last power measurement value as the power
consumption of the corresponding inference. We es-
timate the energy used for inference by assuming that
the power consumption is constant during inference,
i.e., by multiplying the difference between standby
and inference powers with the inference time.

B. Experimental Results and Analysis

We run our experiments 20 times to minimize the effect of
noise. We calculated the mean and standard deviation of these
20 samples. For every frame, we have calculated the mean
and standard deviation of each metric based on 20 samples
of experimental output. To enhance the presentation of our
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(c) Image with YOLOVS8-n predictions.
Fig. 4: Example frame from video uav0000077_00720_v.

(b) Image with ground truth boxes.
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(d) Image with YOLOv8-m predictions.

TABLE I: Average results on set uav0000077_00720_v (780 images, image size ~ 3MB).

‘ Device Model TI E T TO EO mAPan mAP0,5 mAP0,75 mARmax:l mARmax:lo mARmax:l()()
UAV YOLOv8n 2939  60.38 0 0 11.76 17.74 12.97 5.14 12.82 12.95
§ UAV YOLOv8m  67.36  237.27 0 0 20.82 32.12 22.58 7.82 21.95 22.24
= | Edge Server  YOLOv8n 596 29311 2622 582 11.44 17.22 12.71 5.09 12.32 12.46
Edge Server YOLOv8m  9.62  579.21 26.15 5.64 20.10 30.92 21.75 7.24 21.24 21.55
2 UAV YOLOv8&n 3.63 11.25 0 0 0 0 0 0 0 0
& UAV YOLOv8m  4.84 21.38 0 0 0 0 0 0 0 0
< | Edge Server  YOLOv8n 0.32 23.18 2.17 0.9 0 0 0 0 0 0
@ | Edge Server YOLOv8m  0.32 32.34 1.91 0.9 0 0 0 0 0 0

Device: The device on which the task is being run

Ty: Single image inference latency in milliseconds

Er: Energy used for single image inference in millijoules
To: Single image offloading latency in milliseconds

Eo: Energy used for offloading a single image in millijoules

findings, we computed the average of our experimental results
and verified our analysis using sample frames from it. The
average results of our experiments for two sets are displayed
in Table I and Table II. Sample frames are exhibited in Figure
4 and Figure 5, while Figure 4a and Figure 5a showcase the
original images. Figure 5a presents smaller objects in pixels
than Figure 4a.

Having smaller objects directly affects the output mAP and
mAR scores because YOLOVS is trained with relatively larger
objects. It is visually seen that for both groups, YOLOv8n
misses some detections that YOLOv8m is able to detect.
Yolov8m misses some small objects, especially in Figure 5.
However, for mid-size objects, YOLOv8m returns sufficient
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output, shown in Figure 4d. When the average results are
evaluated, in all cases, YOLOv8m has an mAP score that
is almost more than double that of YOLOv8n, but it has
a relatively longer inference time and higher energy con-
sumption. The set uav0000077_00720_v has mid-size objects
and the set uav0000188_00000_v has smaller objects. When
switching from YOLOv8n to YOLOv8m, mAP scores doubled
and tripled for the set with midsize objects and the set with
small-size objects, respectively. That is, as the object size
decreases, the ratio of mAP scores between the complex and
simple models increases. We see a similar but more sharp
increase in the ratio of mAR scores between the complex
and simple models. The reason behind that is mAP reflects

Authorized licensed use limited to: The George Washington University. Downloaded on September 25,2024 at 13:49:37 UTC from IEEE Xplore. Restrictions apply.



&

(c) Image with YOLOVS8-n predictions.

car 1.00

motor mak

car 1.00°
~pede:

motor 1.00

people 1.00
car 1.00
A

person 0.27 car 0.35

car 0.35
=

(d) Image with YOLOv8-m predictions.

Fig. 5: Example frame from video uav0000188_00000_v.

TABLE II: Average results on set uav0000188_00000_v (260 images, image size ~ 1.5MB).

\ Device Model Tr Er To Eo mAP,; mAPys mAPp75 mARpax=1 MARpax=10 MARpax=100
UAV YOLOv8n  28.53  63.61 0 0 1.72 3.92 1.13 0.63 1.99 2.00
§ UAV YOLOv8m  65.84 261.19 0 0 5.09 9.11 4.57 2.55 5.39 5.68
= | Edge Server  YOLOv8&n 574 29146 2523 5.3 1.82 3.94 1.32 0.68 2.09 2.10
Edge Server YOLOv8m  9.50  632.77 2533 6.24 4.99 8.85 4.56 2.45 532 5.58
Z UAV YOLOv8n 3.37 11.38 0 0 0 0 0 0 0 0
=} UAV YOLOv8m  4.45 20.84 0 0 0 0 0 0 0 0
< | Edge Server  YOLOv8n 0.32 18.27 2.35 0.7 0 0 0 0 0 0
@ | Edge Server YOLOv8m  0.21 27.42 2.16 0.7 0 0 0 0 0 0

Device: The device on which the task is being run

Ty: Single image inference latency in milliseconds

Device: The device on which the task is being run

Er: Energy used for single image inference in millijoules
To: Single image offloading latency in milliseconds

FEo: Energy used for offloading a single image in millijoules

the model’s success in detecting objects, while mAR reflects
the model’s success in retrieving all the relevant objects. If
the model is not powerful enough to perform well with small
objects, it may miss some detections, which will penalize the
mAR score more severely. Therefore, the use of a complex
model is a must when the task is to detect small objects. In
our case, if higher accuracy is needed, the YOLOv8m model
is required but the rise in on-board latency causes a negative
impact on the real-time processing capability of UAVs. To
cope with that, offloading is necessary to continue real-time
processing by sacrificing more energy. The other important
point is that the UAV is busy for the whole time period for on-
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board processing, but it is busy only for about 10 milliseconds
when offloading is chosen, which is for resizing, compression
and transmission. That is, selectively offloading images may
be an option to continue real-time processing when a UAV
has more than one camera. It is important to note that the
output of object detection remains the same for the same input
image and model combination. However, lossy compression
can impact object detection performance. We observe this
effect on mAP and mAR scores when comparing UAV and
edge servers for the same dataset and model combination.
Although the difference is negligible, we do not notice any
change in the detected object count. The difference in mAP
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and mAR scores results from slight variations in bounding box
coordinates. Note that mAP( ;s is always lower than mAP s
because as the IoU threshold increases, the criteria for a correct
detection become stricter. This results in fewer true positives,
lower precision, and lower mAP scores. Similarly, the mAR
score increases with the maximum number of detections
allowed since more detections lead to capturing more true
positive instances, thereby increasing recall. However, due to
the limited number of objects in each image, increasing the
maximum detection has no effect after a certain point. This
can be observed by comparing mAR,x=10 and mARax=100-

As a result, there are many decision possibilities. If the
objects being detected are large in size, the task is the detection
of only closer objects or the task deadline is very tight, running
YOLOV8n on-board might be considered. However, running
YOLOvV8m on-board is not suggested because offloading the
task has lower latency unless there is an energy constraint and
time is generous. On the other hand, offloading for running
YOLOv8m may be the decision when high-accuracy results are
required; detecting farther objects or detecting objects moving
away is desired, such as surveillance tasks. The reason is
that there is a decrease in performance as the size of objects
decreases. Similarly, running YOLOv8n on an edge server is
not preferred because it has higher energy consumption and
latency than running on-board unless the UAV needs to run
more than one task at the same time and energy is constrained.
Note that energy constraints on model usage can be negligible
for UAVs since the energy consumption while inference or
offloading for UAVs is significantly lower than the energy
required for hovering [15]. However, it is possible that a single
UAV may need to run multiple inferences at the same time.
In such cases, it is advisable to run YOLOv8m on an edge
server. The reason behind this is that even though running
YOLOV8m on an edge server requires minimal additional
resources, it provides high accuracy. When we consider the
case with multiple UAVs connected to a single edge server,
offloading may not be an option for all UAVs, even if the
edge server may serve multiple UAVs, because of the edge
server’s capacity. It may be suggested to offload processing
when the UAV is farther from the object and perform on-
board processing when it is closer to the object, based on the
relationship between object size and model size.

IV. CONCLUSION

In conclusion, UAVs have many crucial tasks such as search
and rescue, surveillance, and infrastructure inspection, but they
face challenges such as limited computation and limited time.
Edge computing offers higher computational power with low
latency, which may make offloading an option considering
the system’s needs. This paper presents experiments exploring
trade-offs in UAV object detection latency, accuracy, and
energy consumption to see possible outcomes of decision-
making. The experiments demonstrate that offloading can
reduce latency when it comes to tasks that require higher
accuracy. However, there is no general and precise decision
between on-board processing and offloading. Algorithms that
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take into account the objective and the most recent information
of a system are necessary for decision-making. Future work
should focus on developing adaptive algorithms that can dy-
namically switch between on-board processing and offloading
based on real-time analysis of the UAV’s operational context
and objectives. This includes investigating machine learning
models that predict the optimal computation mode by consid-
ering factors such as network conditions, task complexity, and
energy constraints.
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