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Abstract—Convolutional neural networks (CNNs) are a foun-
dational model architecture utilized to perform a wide variety
of visual tasks. On image classification tasks CNNs achieve high
performance, however model accuracy degrades quickly when
inputs are perturbed by distortions such as additive noise or
blurring. This drop in performance partly arises from incorrect
detection of local features by convolutional layers. In this work,
we develop a neuroscience-inspired unsupervised Sleep Replay
Consolidation (SRC) algorithm for improving convolutional fil-
ter’s robustness to perturbations. We demonstrate that sleep-
based optimization improves the quality of convolutional layers
by the selective modification of spatial gradients across filters. We
further show that, compared to other approaches such as fine-
tuning, a single sleep phase improves robustness across different
types of distortions in a data efficient manner.

Index Terms—cnn, convolution, sleep, generalization, robust-
ness

I. INTRODUCTION

Over the past few decades, computer science has made

remarkable advancements in the development of models ca-

pable of performing intricate visual tasks. Deep learning, in

particular, has played a pivotal role in driving this progress,

with convolutional neural networks (CNNs) emerging as a sig-

nificant breakthrough. Inspired by the structural characteristics

of the human visual system [8], CNNs owe their success to

the introduction of convolutional layers by Lecun et al. [14],

[15]. By combining convolutional and feedforward layers,

deep networks have achieved state-of-the-art performance for

classification and generative tasks [23].

However, despite their proven usefulness, convolutional

filters still suffer from significant limitations. While the human

visual system excels at accurately performing image-based

tasks, even in the presence of substantial perturbations, CNNs

trained using backpropagation-based methods are highly sen-

sitive to distortions [4]. The impressive performance of these

networks quickly degrade when models operate in real-life

applications and dynamic uncontrolled environments modify
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inputs with perturbations such as additive noise, blur, or

other distortions (e.g., lighting, image quality, background,

contrast, and perspective) [3]. This decrease in performance

could be attributed to the perturbations degrading the quality

of features that the convolutional layers are able to extract.

Since the convolutional layers are trained on unperturbed

(clean) images, they are unable to extract useful features

from distorted ones. Most existing methods for improving the

robustness of convolutional filters often involve explicit fine-

tuning on predefined sets of perturbations or data augmenta-

tions [27], [30]. However, such supervised approaches require

prior knowledge of the specific deformations or extensive

training. These techniques face challenges when limited data

is available for fine-tuning or when unforeseen and untrained
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Fig. 1: Example images from MNIST (a) and CIFAR-10 (b) shown over
distortion types (Gaussian noise (GN), Gaussian blur (GB), Salt & pepper
(SP), and Speckle (SE)) with varying magnitude. Rows determine distortion
type while columns display increasing intensity (Int.) magnitude from left to
right.



distortions are encountered in real-world scenarios, this leads

to a lack of generalization to out-of-distribution examples.

In contrast, biological systems have leveraged other mecha-

nisms to improve memory representation and increase gener-

alizability. Sleep has long been known to enhance learning

in situations with limited experience, facilitate continuous

learning, generalize knowledge acquired during wakefulness,

and enable backward and forward transfer of knowledge [2],

[11], [12], [16], [18], [28]. This functionality is prevalent and

highly stereotyped in a variety of species ranging from insects

[5], [17], [31] to mammals [2], [18]. Two crucial compo-

nents are believed to underlie the role of sleep in memory

consolidation: the spontaneous replay of memory traces in

the absence of external input and local unsupervised synaptic

plasticity that modifies synaptic weights [22], [29]. Previous

studies have demonstrated that applying sleep-like process-

ing, Sleep Replay Consolidation (SRC), to fully connected

feedforward networks can enhance continual learning during

sequential task training [25] and improve model robustness

and generalizability [24].

While several other biologically inspired approaches to

enhance network generalizability to visual distortions exist,

they often suffer from increased computational cost [26],

lack dynamism [6], or require gathering expensive neural

recordings or other hard to acquire data [7], [19]. To address

these limitations, we present a novel approach that implements

SRC in exclusively convolutional layers, thereby extending

the previous work by making SRC applicable to all segments

of the CNN architecture. Importantly, our method provides a

dynamic solution that does not increase inference computation

costs.

SRC is implemented by converting the CNN to a spiking

neural network (SNN) and simulating unsupervised replay in

SNN. This involves (a) replacing the ReLU activation function

with a Heaviside function to gain a notion of spikes, (b)

introducing input noise reflective of the training data to induce

network activity, (c) applying local Hebbian-type plasticity

rules to convolutional layers to modify synapses based on

spiking patterns. We evaluate our method using two well-

known image classification data sets, MNIST and CIFAR-10,

and incorporate standard distortions commonly encountered

in both machine learning and real-world environments. These

distortions include Gaussian blur, Additive Gaussian noise,

Salt & pepper, and Speckle, with varying intensities. Figure

1 illustrates the diverse range of distortions used for evalua-

tion. Our findings demonstrate that sleep-based optimization

enhances the structure of convolutional blocks, enabling CNNs

to improve their performance on distorted data.

A. Main contributions

• We develop an unsupervised sleep-like optimization al-

gorithm, Sleep Replay Consolidation (SRC), for convolu-

tional networks to improve robustness and generalization

to noisy inputs.

• Our biologically inspired approach is computationally

efficient, does not increase inference cost, and does not

require prior knowledge of the type of input perturba-

tion while providing improvements across different types

of distortions. In contrast, other biologically motivated

methods are costly and fine tuning approaches only

improve performance on pre-defined augmentations.

• We identify that SRC modifies CNN filters through

selective gradient expansion focusing CNN attention to

the critical image features that result in improved gener-

alization.

II. METHODS

A. Data and Distortions

We tested SRC on two standard image classification data

sets, MNIST [15] and CIFAR10 [13]. MNIST consists of

60,000 28x28 monochromatic hand written digits (0-9) while

CIFAR-10 contains 60,000 32x32 color images of 10 classes

(cars, birds, ships, etc). We applied a variety of common

distortions (as used in [4], [6], [19], [26], [27], [30]) to these

data sets and tested model performance across a variety of

intensities. Certain distortions, such as brightening / darkening,

yielded minuscule degradation in performance causing any

potential benefits to be masked; we therefore only selected

distortions that caused a significant decline in accuracy for

the baseline model. All distorted values were clamped at the

minimum and maximum pixel values to keep inputs in a

reasonable range. Our final set of distortions is detailed below:

• Gaussian blur (GB): Involves convolving the input image

with a Gaussian kernel, varying σ values are used to

modify intensity. This type of distortion can be introduced

when items present in the image are in motion.

• Additive Gaussian noise (GN): Noise drawn from a

Gaussian distribution is added pixel-wise to the input

image.

• Salt and pepper (SP): Also known as impulse noise,

randomly selects input image pixels and sets it to either

the minimum or maximum possible input value, the

frequency of pixels selected controls the intensity. This

type of input noise can arise in digital images taken by

cameras with faulty sensors.

• Speckle (SE): A pixel-wise multiplicative noise where a

random value is drawn from a Gaussian distribution and

multiplied with the original pixel value to generate the

new input values. Speckle noise is commonly a result of

wave interference in images that are generated through

the emission of specific frequencies of light, such as

ultrasound and/or radar.

Visualizations of all distortions are shown in Figure 1.

B. Models

In an effort to generate interpretable results, we used

smaller, more simple models with the goal of improving trans-

parency and understandability of the underlying mechanisms.

For MNIST we used a four layer CNN consisting of two

convolutional and two feedforward layers. Both convolutional

layers leveraged 3x3 filters with a stride of one, no padding,

and a ReLU activation, each filter bank had 1/10 input



channels and 10/20 output channels respectively. After each

convolution there was a maxpool with a window size and stride

of two. The feedforward layers received an input that matched

the output size of the convolutional layers (500) followed by

a hidden layer of size 64 with an output size of 10. The

hidden layer leveraged a ReLU activation function and dropout

during training with a rate of 0.5. The CIFAR model was of

a similar structure with the only differences being the number

of channels in the convolutional layers which was increased to

3/50 and 50/50 and the size of the feedforward portion of the

network receiving a 1800 dimensional vector as an input with

a 1200 dimensional hidden layer, the output was kept to 10

units. All layers present, both feedforward and convolutional,

omitted bias terms to allow for a standard conversion to a

spiking neural network [1], this did not notably impact the

overall performance of these networks. Model parameters are

summarized in Table I.

MNIST CIFAR-10

Conv Channels 1. 10, 20 3, 50, 50
Filter Size / Stride 3x3 / 1 3x3 / 1

Maxpool Size / Stride 2 / 2 2 / 2
FF Layer Dims 500, 64, 10 1800, 1200, 10

Dropout 0.5 0.3

TABLE I: Network parameters

C. Sleep Replay Consolidation (SRC)

In short, SRC is applied by first converting a CNN to an

SNN using a standard transformation [1], followed by simu-

lated replay, during which unsupervised synaptic modifications

occur. The altered SNN is then converted back into a CNN

where the updated weights can be used in the conventional

CNN forward pass.

In the SNN conversion, original network structure is pre-

served. A membrane potential (voltage) is simulated for each

node in the network. Voltage is comprised of a running sum of

inputs determined by presynaptic activity combined with the

input weights and is subject to decay, effectively simulating

dynamics of a leaky integrate and fire neuron. The ReLU

activation is swapped for a Heaviside function to develop

a notion of spikes. Once a neuron’s membrane potential

surpasses the given threshold, the neuron emits a spike and

the voltage is reset to 0. To ensure that activity propagated

across layers, layer wise scale factors to synaptic weights are

generated in accordance with the Data-Based Normalization

technique specified in [1] and multiplied by a hyperparameter

coefficient. These modifications are applied to convolutional

layer neurons, successfully converting CNN to SNN, while

preserving network architecture and synaptic weight structure.

During the sleep phase, the SNN’s activity is driven by

randomly distributed Poisson spiking input with firing rates

determined by the average values of each input pixel ac-

tivation from the training data set. Hebbian style learning

rules are applied to modify the weights: a weight is increased

between two nodes when both pre- and post-synaptic nodes

are activated and a weight is decreased when the post-synaptic

node is activated but the pre-synaptic node is not. After this

Algorithm 1 : Sleep Replay Consolidation

1: procedure SLEEP(nn, I, scales, thresholds) ▷ I is input
2: Initialize v (voltage) = 0 vectors for all neurons
3: for t← 1 to Ts do ▷ Ts - Time step duration of sleep
4: S← 0s
5: S(1)← Convert input I to Poisson-distributed spiking activity
6: S = ForwardPass(S, v,W, scales, thresholds)
7: W = BackwardPass(S,W)
8: end for

9: end procedure

10: procedure FORWARDPASS(S, v,W, scales, threshold)
11: for l← 2 to n do ▷ n - number of layers
12: ³← scales(l − 1)
13: ´ ← threshold(l)
14: v(l)← ¼v(l) + (³ ∗W(l, l − 1) ∗ S(l − 1)) ▷ W(l,l-1) - weights
15: ▷ ¼ - decay rate
16: S(l)i ← 1 ∀ i where v(l)i > ´ ▷ Propagate spikes
17: v(l)i ← 0 ∀ i where v(l)i > ´ ▷ Reset spiking voltages
18: end for

19: return S
20: end procedure

21: procedure BACKWARD PASS(S,W )
22: for l← 2 to n do ▷ n - number of layers
23: if isConvolutionalLayer(l) then

24: F ← getConvolutionalFilters(l) ▷ All filters in layer l
25: for f in F do ▷ Loop over all filters
26: Lf ← getFilterActivations(f ) ▷ Pre/post activations for f
27: for (lf−, lf+) in Lf do ▷ For all input/output filters
28: S(lf−)←getSpikes(f−). ▷ Presynaptic activity
29: S(lf+)←getSpikes(f+). ▷ Postsynaptic activity
30: W(f)i,j

←







W(f)i,j + inc ∀i, j where S(lf+)j = 1 & S(lf−
)i = 1

W(f)i,j − dec ∀i, j where S(lf+)j = 1 & S(lf−
)i = 0

W(f)i,j Otherwise

31: ▷ Conv STDP
32: end for

33: end for

34: else

35: W(l, l − 1)i,j

←







W(l, l − 1)i,j + inc ∀i, j where S(l)j = 1 & S(l − 1)i = 1

W(l, l − 1)i,j + dec ∀i, j where S(l)j = 1 & S(l − 1)i = 0

W(l, l − 1)i,j Otherwise

36: ▷ Linear STDP
37: end if

38: end for

39: return W
40: end procedure

MNIST CIFAR

No. of Time Steps (Ts) 222 10
Weight Multiplier (scales coefficient) 2.78 46.81

Voltage Thresholds (thresholds) [4.15, 9.47] [7.00, 23.96]
Decay Rate (¼) 0.99 0.94

Synaptic Increase (inc) 3.87 ∗ 10−4 6.52 ∗ 10−4

Synaptic Decrease (dec) −3.13 ∗ 10−4 −1.98 ∗ 10−4

Dt 0.001 0.001
Max Firing Rate 328.89 64.62

TABLE II: Hyperparameters used for SRC. Corresponding variable names as
used in Algorithm 1 are within parentheses. Dt and the Max Firing Rate are
used to generate input for the sleep stage.

unsupervised sleep period has been executed, the CNN model

is restored by eliminating the simulated voltage, removing

scale factors, and restoring the original activation functions.

A pseudo code description of SRC is shown in Algorithm 1.

This approach can be directly applied to a fully connected

network (as in [25]) since it produces one-to-one mapping

from any pair of pre and post activations to the corresponding

weights. However, implementing this to convolutional layers
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Fig. 2: MNIST (a-c) and CIFAR-10 (d-g) accuracy vs distortion intensity for Gaussian Noise, Blur, Salt & Pepper, and Speckle. Lines / shaded regions
correspond to mean / standard deviation across trials. Note that the application of SRC notably improves performance on distorted inputs over baseline model.

is more complicated. Because of parameter sharing, a single

weight may take part in multiple synaptic events. Thus, based

on the network activity, we have an option of updating the

same set of weights multiple times during a single iteration

of SRC. Our implementation therefore accumulates synaptic

updates over all activations that are associated to a given

convolutional weight for every iteration.

The SRC hyperparameters were selected through the use of

a standard python Genetic Algorithm implementation tasked

to optimize mean validation performance over the Blur and

Salt & Pepper distortions for a single trial. The optimal hyper

parameters were used across trials to ensure no overfitting

occurred, all the parameters are presented in Table II.

D. Experimental Design

All models underwent a standard training protocol. The

naive MNIST / CIFAR model was trained for 50 epochs with

a learning rate of 0.01 / 0.3 on the undistorted data set until

a steady performance was reached. A binary cross entropy

loss function along with a standard stochastic gradient decent

optimizer was used to alter model parameters. Following

baseline training the model underwent periods of SRC and

subsequent Feedforward Fitting (Described in Section III-B).

Each experiment below was repeated for 10 trials, each of 10

trials received a unique random seed causing differences in

model weight initialization, training sample order, and SRC

input noise generation.

III. RESULTS

A. SRC improves model performance on distorted data

Our initial set of experiments sought to explore whether

SRC was capable of improving CNN generalizability over a

variety of distortions for the MNIST and CIFAR-10 data sets.

Ten trials (see Methods) were run using the baseline CNN

model comprised of two convolutional and two feedforward

layers. This model was trained on clean unperturbed images

until a plateaued mean performance of roughly 95% (MNIST)

and 70% (CIFAR-10) accuracy on the undistorted data set.

The baseline model was tested across a variety of distor-

tions, specifically additive Gaussian noise, Gaussian blur, Salt

& Pepper, and Speckle (Speckle noise was excluded from

MNIST as maximum intensity minimally degraded baseline

performance) with results displayed in Figure 2. There was

a direct and clear correlation between distortion intensity and

baseline model performance (Figure 2a-g blue line). Increasing

distortion intensity led to a significant drop in accuracy,

sometimes to chance (see Figure 2b,d,f for intensities (6, 0.6,

0.6) respectively), as the substantial image distortions destroy

convolutional feature representations which in turn causes the

decision making layers to predict incorrectly.

After establishing the baseline, SRC was applied exclu-

sively to the convolutional layers, as described above, and

performance was tested again. We found clear improvement in

overall model performance across a wide array of perturbation

intensities (see Figure 2; note that the gray line is above the

blue line in all cases except for (e)). Particularly for larger

distortion values, SRC was capable of improving performance

up to roughly 15% for MNIST (Figure 2a, difference between

gray and blue) and 10% for CIFAR 10 (Figure 2g, difference

between gray and blue). Since SRC weight modifications

were only present in convolutional layers, the performance

improvements suggest that filter robustness was increased as

a result of SRC.

Overall SRC was able to improve performance across most

distortion types. However, we found reduced generalizability

to the blur distortion, especially for CIFAR 10 (Figure 2e).

Although undesirable, it is in line with a variety of biologically

inspired works where the given method is not always applica-

ble to all perturbations [19], [6]. While other distortions are



MNIST CIFAR-10

7272 3434 2525 2222 3030 1717 1313 1919 1515 1414 4040 2929 2222 2727

5757 2121 1616 1515 4545 2727 1717 3232 2323 1919 5454 4545 3636 3131

6969 3131 2424 2222 4444 2323 1515 2828 1919 1616 5454 4141 3030 3232

7171 3333 2525 2222 3030 1616 1212 1919 1414 1313 4040 2929 2222 2727

7272 3434 2525 2323 3030 1616 1313 1919 1515 1313 4040 3030 2323 2727

7070 6565 5959 5252 4040 2222 1515 2727 1919 1616 4949 3939 3131 3939

6969 4242 2828 2424 6161 5252 3939 5656 4949 4444 6464 6060 5555 5050

7171 4242 2828 2525 6565 5656 4242 5353 4545 4040 6464 5858 5151 4949

6969 6363 5656 4949 6464 5555 4242 5555 4747 4242 6565 6262 5757 5656

0.6

U
n
d
is

to
rt

e
d

A
v
e
ra

g
e

Dataset

Blur

2 4 6

SP

0.2 0.4

GN

0.2 0.4 0.6

SE

0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0
Baseline

SRC

SRC + FFF

Grad Exp

Grad Exp + FFF

FT Blur

FT GN

FT SP

FT All

9696 7979 2424 1414 8686 5858 3333 7676 5454 4343 5656

9393 8484 3232 1414 8787 7272 4545 8585 7070 5959 6464

9696 8181 2626 1313 9090 7373 4444 8585 6969 5757 6363

9696 7979 2424 1313 8585 5656 3131 7474 5252 4141 5555

9696 7777 2323 1212 8585 5555 3131 7474 5252 4141 5555

9797 9696 8787 7676 7979 4949 2828 7171 4949 3939 6767

9898 9090 3232 1818 9797 9292 7474 9696 9292 8787 7878

9898 8888 3434 1818 9797 9393 7777 9696 9292 8787 7878

9898 9696 8686 7676 9797 9393 7676 9696 9393 8888 9090

U
n
d
is

to
rt

e
d

A
v
e
ra

g
e

Dataset

Blur

2 4 6

SP

0.2 0.4

GN

0.2 0.4 0.60.6

Fig. 3: Model performance on MNIST and CIFAR-10 with varying types and degrees of distortion. The unsupervised SRC phase significantly improved model
performance on distorted inputs compared to the baseline while other naive unsupervised approaches (Gradient Expansion) fell short. Although fine-tuning
on distortions can enhance performance, it requires extra data and can lack broad generalization.

comprised of pixel-wise perturbations, blurring by definition

works on a greater spatial distance which makes it unique.

SRC was able to slightly improve MNIST accuracy across

greater blur intensities, suggesting that parameter modification

may improve performance for blur distortion. It is important

to note, the increase in robustness was achieved through a

completely unsupervised learning technique which had no

information about what specific types of distortions may be

used for future testing.

B. Feedforward Fitting (FFF) recovers undistorted perfor-

mance

While we found a clear improvement in performance on

heavily distorted inputs following SRC, we also observed a

drop in accuracy for minimally distorted and clean inputs

on the order of 1.5% and 10% for MNIST and CIFAR-10

respectively (Figure 2a-g gray below blue for small distortion

intensities). Although there may be circumstances where a

general model that performs across a wide array of distortions

is preferable to a model that performs well narrowly on

clean inputs, clearly conserving undistorted performance is

desirable. We hypothesised the drop in clean performance

may result from a “miss-match” between convolutional and

feedforward layers since only convolutional layers were mod-

ified by SRC. To test this, an additional training stage was

implemented referred to below as Feedforward Fitting (FFF).

Here the feedforward head of the network undergoes minimal

training on the undistorted training data set; labels along with

features extracted by the frozen convolutional weights are used

to perform backpropagation on the feedforward layers only.

This process thereby adjusts the decision making head of the

network to the newly developed feature extractors formed after

SRC.

FFF was applied until training set performance was satu-

rated which took 1 / 5 epochs with a learning rate of 0.01 / 0.1

for MNIST / CIFAR. This regained lost performance on the

minimally distorted data sets (Figure 2a-g, note orange line

near blue line for low distortion values) while significantly

maintaining the performance gained for higher distortions

(Figure 2a-g orange line near gray line for higher distortion

values).

C. Fine-tuning Comparisons

The classic machine learning approach to gain model perfor-

mance on new data distributions is fine-tuning (FT). Although

this is an effective paradigm, it requires foresight of specific

potential data perturbations and additional time to train the

model. Nevertheless, it represents an ideal accuracy and is

used as a benchmark. To compare our unsupervised SRC

to this standard supervised method, we developed fine-tuned

models each specializing in a specific distortion with one

model specializing on all distortions. These fine-tuned models

were first initialized using weights from the model trained on

undistorted data. They then underwent 10 additional epochs

of training (with learning rates of 0.05 / 0.15 for MNIST /

CIFAR-10) using the specialized data set comprised of the

undistorted data combined with varying levels of distortion

from their expertise. The average accuracy across 10 trials for

the fine-tuned models along with baseline, SRC, and SRC +

FFF models is presented in Figure 3.

As anticipated, each fine-tuned network demonstrated out-

standing performance on their respective perturbation, estab-

lishing a theoretical performance ceiling for these models

on the corresponding distortions (Figure 3). We intuitively

predicted fine-tuning on a specific distortion would lead to

improved performance on that corresponding perturbation

while showing no significant increase, or even a decline, in

performance on other distortions. This pattern was evident

for the MNIST model fine-tuned on blur which achieved

optimal blur performance ranging from 96% - 76% across

corresponding blur intensities 2 to 6, while performance on

different distortions was below the baseline (Figure 3 left).

Interestingly, when the MNIST model was fine-tuned on GN

or SP, we observed a remarkable degree of transfer learning



to other distortions; all fine-tuned models for CIFAR-10 also

demonstrated this high degree of transfer (Figure 3 right).

The reason behind substantial transfer learning in these ex-

periments was not immediately clear as other studies have

suggested that this should not typically be the case [10].

While a certain degree of transfer learning between similar

distortions might be expected, such as GN and SP (refer to

Figure 1 for visualizations), the transfer between dissimilar

distortions could be attributed to the simplicity of our data

sets or the small size of our models which may act as a form

of regularization.

Overall we found the fine-tuned models to be top performers

in their respective domains, with the model fine-tuned on all

distortions achieving the highest overall average accuracy. We

also saw transfer learning proportional to degree of similarity

between the trained and tested distortion types. SRC was

able to outperform fine-tuned models on untrained distortions

where little transfer learning was observed. When a high

degree of transfer learning was present, the fine-tuned models

outperformed SRC (e.g., fine-tuning on SP, GN and SE led to

higher performance compare to SRC or SRC + FFF across

distortions). However, it is important to note that the fine

tuned models required a significantly higher degree of training.

Specialized models were trained for an additional 10 epochs on

a fine-tuning data set that contained seven times the number of

training examples as in the original training set (one partition

undistorted and 6 partitions of varying degrees of distortions).

In contrast, SRC was able to increase generalizability with no

additional data, highlighting the fact that SRC may also be

a more efficient approach to increase model robustness when

specifics of anticipated distortions are unknown.

D. Gradient Expansion

To gain insight as to why SRC is capable of improving

model performance, we performed a weight analysis on the

convolutional filters. Examining the spatial gradient of convo-

lutional filters is often used as a metric for filter quality [9],

[20], by inspecting the quality of filters across all convolutional

blocks in the network we can determine the quality of the

CNN. We developed a measure that is computed by simply

taking the pixel-wise spatial gradient (for all filters in a given

layer) and fitting a Gaussian probability distribution to their

values, thereby obtaining a probabilistic representation for the

filter gradients in each convolutional layer. We can examine

the properties of this distribution, for instance the variance, to

understand the estimated quality of convolutional blocks. A

Baseline Baseline + SRC Baseline + GradExp

MNIST (C1) 7.21 ∗ 10−2 1.47 ∗ 10−1 2.72 ∗ 10−1

MNIST (C2) 1.06 ∗ 10−2 4.36 ∗ 10−2 4.18 ∗ 10−2

CIRAR (C1) 1.48 ∗ 10−1 1.71 ∗ 10−1 1.83 ∗ 10−1

CIFAR (C2) 9.75 ∗ 10−3 1.04 ∗ 10−2 1.03 ∗ 10−2

TABLE III: The mean standard deviation of spatial gradient variance across
models. C1 and C2 refer to the results for the first and second convolution
layer, respectively. We observe that both the SRC and GradExp models
increase variance of the spatial gradient, however these changes are accom-
panied by a performance increase only in the SRC model.

narrow distribution would imply many repeated filters while a

wider distribution would suggest a large variety of filters - this

variability could enable rich feature extraction and therefore

be beneficial for classification.

We noted that sleep increases the variance of the convolu-

tional filter’s spatial gradient distribution across layers (com-

pare first two columns in Table III). This can be interpreted

as SRC producing more diverse and robust feature extractors

through local activation patterns within the network and offers

a possible explanation as to why sleep-like replay is capable

of improving model performance across distortions.

Baseline / SRC GradExp / SRC

MNIST (C1) 1.4984 ∗ 10−1 3.1373 ∗ 10−2

MNIST (C2) 3.0821 ∗ 10−1 7.6575 ∗ 10−3

CIRAR (C1) 6.4440 ∗ 10−3 2.8431 ∗ 10−4

CIFAR (C2) 8.7511 ∗ 10−4 2.5147 ∗ 10−5

TABLE IV: KL divergence values between the baseline & SRC models
(left column), and the Gradient Expansion (GradExp) & SRC models (right
column). C1 and C2 refer to results for the first and second convolution layer
respectively. Note that distributions on the right are much more similar than
distributions on the left, displaying that the spatial gradient distributions of
SRC and GradExp are similar - while both being different from the baseline.

To test if simply increasing the variance of filter spatial gra-

dient magnitudes would increase performance, we artificially

expanded the spatial gradients of the convolutional filters from

the baseline model to approximate distribution of those in the

SRC model (compare columns 1 and 3 in Table III). Thus, we

choose a set of hyperparameters {α1, ..., αL} (see Table V for

selected values), and increase the absolute value of all filter

elements by that amount (Eq. 1). To account for layer specific

weight statistics, we choose different αl values for each layer

to approximate changes observed following SRC:

W (l) =

{

W (l) + αl, if W (l) ≥ 0

W (l)− αl, otherwise
(1)

To ensure that these generated Gradient Expansion (Grad-

Exp) models have different spatial gradient distributions from

our baseline model yet are similar to SRC models, we

measured the KL divergence of the convolutional filter’s

spatial gradient distributions for baseline vs. SRC and SRC

vs. GradExp models (Table IV). We found a relatively high KL

divergence between baseline and SRC (left column), signifying

SRC is meaningfully modifying filters, and a relatively low

divergence between SRC and GradExp models (right column)

thereby verifying that our artificially generated spatial gradi-

ents are statistically similar to those achieved through SRC.

Two versions of the gradient expanded model were tested

across distortion intensities for both MNIST and CIFAR-10.

The first expanded convolutional filter gradients exclusively,

the second applied Feedforward Fitting (FFF) to the network

head (utilizing the same hyperparameters described in Section

III-B) following filter gradient expansion to allow the decision

layers to acclimate to the new feature extractors. Average

MNIST and CIFAR-10 accuracy of these models across 10

trials is shown in Figure 3. Both variants of this model

show no improvement over baseline (less than 1%) on any
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Fig. 4: Grad-CAM visualizations for MNIST (a) and CIFAR-10 (b) that display SRC improves attention quality over baseline model.

MNIST, Trial 1 - 10

(C1) [ 0.70 0.21 0.32 0.11 0.43 0.31 0.34 0.34 0.19 0.11 ]
(C2) [ 0.11 0.09 0.09 0.10 0.08 0.14 0.08 0.07 0.12 0.11 ]

CIFAR, Trial 1 - 10

(C1) [ 0.035 0.050 0.050 0.080 0.070 0.060 0.075 0.060 0.065 0.040 ]
(C2) [ 0.005 0.005 0.004 0.003 0.003 0.005 0.005 0.004 0.004 0.004 ]

TABLE V: Hyperparameters (αl) for Gradient Expansion as described in
Section III-D. We list values used for each of the 10 random trials. C1 and
C2 refer to results for the first and second convolution layer respectively.

distortion intensity for either data set. This demonstrates that

a general increase of the filter gradients is not sufficient

to create robust filters resistant to input perturbations. This

further suggests that SRC enables selective increases in the

magnitude of convolutional spatial gradients. Additionally, the

fact that applying FFF following gradient expansion does not

increase performance shows that further feedforward training

on equivalent quality convolutional filters is futile. Only if

the feedforward head is allowed to train on higher quality

convolutional blocks, like the ones developed in SRC, is there

an improvement in distorted and undistorted performance.

E. Model attention and Grad-CAM analysis

To gain a deeper qualitative and quantitative understanding

of how SRC impacts the network, analysis was developed

using Gradient-weighted Class Activation Mapping (Grad-

CAM) [21]. Grad-CAM is a visualization technique that

creates an attention map for a given input to identify what the

network focuses on. It operates by supplying an image as input

and performing a forward pass followed by the calculation

of gradients with respect to a given output label. Gradient

values are then used to weight final convolutional activations

(which maintain their spatial relevance), the intuition being

more important features will have higher gradient values. This

approach develops a notion of what input regions the network

is attending to.

Generally speaking, we were able to observe improvements

in attention as a result of SRC, some of the best examples

from both MNIST and CIFAR-10 are displayed in Figure

4 panels a and b, respectively. The results were particularly

dramatic for MNIST. Given the original input image (Figure

4a, 1 st and 4 th column), the baseline model often attends

to seemingly random pixels even on clear images (Figure 4a,

1 st row, 2nd column). However, after SRC, model attention

overlapped with the original input image significantly better

(Figure 4a 3rd and 6
th column). Importantly, SRC significantly

enhanced attention on perturbed images. In the presence of

noise the baseline model would often attend to noisy pixels

or attention would be disrupted away from the original digit.

Following SRC, the model was able to cut through the noise

and the attention heat map took the shape of the original

digit, implying the network is focusing on relevant features

as opposed to irrelevant noise. A similar result was obtained

for CIFAR-10 (Figure 4b) although the improvement was

less consistent, some images displayed no improvement while

others displayed clear benefit.

In an attempt to quantify attention improvements, we

constructed a rudimentary metric that was compatible with

the MNIST data set. The metric consisted of developing a

pixel wise mask of the original digit (1’s were assigned to

input locations with nonzero pixel values and 0’s everywhere

else) followed by a cosine similarity between the mask and

the attention vector output by Grad-CAM. Values close to

1 indicate a large overlap between the clean input image

and the network’s attention while values near 0 signify a

misplaced network focus. This metric was averaged across

all trials for every distortion / intensity combination for each

model with the results displayed in Table VI. The overlap of

attention and the original undistorted input digit is significantly

higher for the model that underwent SRC when compared to

the baseline or GradExp models. This implies the nontrivial

selective filter gradient enhancement provided by SRC was

able to improve convolutional filter quality and focus, even

in the presence of meaningful perturbation; thereby increasing

model performance.



Model Baseline SRC SRC + FFF Grad Exp Grad Exp + FFF

Attention
Overlap 0.145 0.229 0.193 0.146 0.150

TABLE VI: Grad-CAM Attention Overlap Metric. It can be seen that the
SRC increases attention overlap with the ground truth image over baseline.
Gradient Expansion models also increase accurate attention but without the
performance benefit seen with SRC.

IV. CONCLUSION

In this work we developed a biologically inspired sleep-

like optimization stage, termed the Sleep Replay Consolidation

(SRC) algorithm, and showed it is compatible with CNNs

and capable of improving convolutional filter quality thereby

increasing model performance on distorted data sets. We

examined SRC on standard image classification data sets,

MNIST and CIFAR-10, and found that it substantially im-

proves performance for moderate to high levels of distortion

intensity. We further identified mechanisms of improvement as

related to non-linear selective expansion of the convolutional

filter’s spatial gradient distribution across layers. Our study,

combined with previous work [24], [25], suggests that sleep-

like unsupervised replay may provide multiple benefits to

different classes of ANNs, including improving continual

learning, generalization and adversarial robustness.
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GÖTSCH, M., AND MENZEL, R. Context odor presentation during sleep
enhances memory in honeybees. Current biology : CB 25, 21 (November
2015), 2869—2874.


