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AbstractÐArtificial neural networks (ANNs) show limited
performance with scarce or imbalanced training data and face
challenges with continuous learning, such as forgetting previously
learned data after new tasks training. In contrast, the human
brain can learn continuously and from just a few examples. This
research explores the impact of ’sleep’ Ð an unsupervised phase
incorporating stochastic network activation with local Hebbian
learning rules Ð on ANNs trained incrementally with limited and
imbalanced datasets, specifically MNIST and Fashion MNIST. We
discovered that introducing a sleep phase significantly enhanced
accuracy in models trained with limited data. When a few
tasks were trained sequentially, sleep replay not only rescued
previously learned information that had been forgotten following
new task training but also often enhanced performance in prior
tasks, especially those trained with limited data. This study
highlights the multifaceted role of sleep replay in augmenting
learning efficiency and facilitating continual learning in ANNs.

Index TermsÐNeural Networks, limited training data, enhance
memory, sleep, continual learning, unsupervised replay

I. INTRODUCTION

Artificial neural networks have demonstrated the ability to

excel beyond human levels in various domains. However, they

encounter difficulties when training data are low, imbalanced,

or presented sequentially where they tend to prioritize new

tasks at the expense of previous tasks, a phenomenon called

catastrophic forgetting [1], [2]. In contrast, humans and ani-

mals possess an extraordinary capacity to learn continuously

from few examples, effortlessly assimilating new information

into their existing knowledge base.

Different methods have been proposed to overcome these

limitations. For low training data scenarios, these include data

augmentation [3], pre-training on other datasets [4] or alterna-

tive architectures such as neural tangent kernel [5]. However,

these approaches do not address the fundamental question of

how to make overparameterized deep learning networks learn

to generalize from small datasets without overfitting.

§∗Equal contribution

Existing approaches to prevent catastrophic forgetting gen-

erally fall under two categories: rehearsal and regularization

methods [6]. Rehearsal methods combine previously learned

data, either stored or generated, with current task data to avoid

forgetting [7]±[12]. Regularization approaches [13], [14] aim

to modify plasticity rules by incorporating additional con-

straints on gradient descent such that important weights from

previously trained tasks are maintained. All these methods

have significant limitations (reviewed in [1], [2]). Importantly,

methods to prevent catastrophic forgetting are not always

compatible with methods aimed at improving low data per-

formance.

The human brain demonstrates the ability to learn contin-

uously and quickly from just a few examples. It has been

suggested that memory replay during biological sleep can

strengthen memories learned during wakefulness [16], [17].

During sleep, neurons are spontaneously active without ex-

ternal input and generate complex patterns of synchronized

activity across brain regions [18], [19]. Two critical compo-

nents which are believed to underlie memory consolidation

during sleep are spontaneous replay of memory traces and

local unsupervised synaptic plasticity that restricts synaptic

changes to relevant memories [16], [20], [21]. During sleep,

replay of recently learned memories along with relevant old

memories [22]±[27] enables the network to form stable orthog-

onal memory representations [24] and reduces competition

TABLE I
NEURAL NETWORK MODEL AND TRAINING PARAMETERS

Model Details

Arch. Size 784, 1200, 1200, 10
Learning Rate (Training / Fine-tune) 0.06 / 0.02

Epochs (Training / Fine-tune) 5 (10, 50) / 1
Dropout 0.25
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Algorithm 1 Sleep Replay Consolidation [15]

1: procedure SLEEP(nn, I, scales, thresholds) ▷ I is input
2: Initialize v (voltage) = 0 vectors for all neurons
3: for t← 1 to Ts do ▷ Ts - Number of time steps during sleep
4: S← 0s
5: S(1)← Convert input I to Poisson-distributed spiking activity
6: S = ForwardPass(S, v,W, scales, thresholds)
7: W = BackwardPass(S,W)
8: end for

9: end procedure

10: procedure FORWARDPASS(S, v,W, scales, threshold)
11: for l← 2 to n do ▷ n - number of layers
12: α← scales(l − 1)
13: β ← threshold(l)
14: v(l)← λv(l) + (α ∗W(l, l − 1) ∗ S(l − 1)) ▷ W(l,l-1) - weights / λ - decay rate
15: S(l)i ← 1 ∀ i where v(l)i > β ▷ Propagate spikes
16: v(l)i ← 0 ∀ i where v(l)i > β ▷ Reset spiking voltages
17:
18: end for

19: return S

20: end procedure

21: procedure BACKWARD PASS(S,W )
22: for l← 2 to n do ▷ n - number of layers

23: W(l, l − 1)i,j ←







W(l, l − 1)i,j + inc ∀ i,j where S(l)j = 1 & S(l − 1)i = 1

W(l, l − 1)i,j − dec ∀ i,j where S(l)j = 1 & S(l − 1)i = 0

W(l, l − 1)i,j else

▷ STDP

24: end for

25: return W

26: end procedure

between memory representations to enable the coexistence

of competing memories within overlapping populations of

neurons [28].

The idea of replay has been explored in machine learning

to enable continual learning (reviewed in [1], [2]). However,

spontaneous unsupervised replay found in the biological brain

is significantly different compared to explicit replay of past

inputs as implemented in machine learning rehearsal methods.

Unlike the standard global optimization methods used in

machine learning (such as backpropagation), local plasticity

allows synaptic changes to affect only relevant memories.

Research from neuroscience [15], [21], [28], [29] suggest

that applying sleep replay principles to ANNs may enhance

memory representations and, consequently, improve the per-

formance of machine learning models trained continuously on

a limited or unbalanced datasets.

In this new study, we apply the previously proposed sleep

replay consolidation (SRC) method [15] to scenarios when

the model is trained sequentially on several tasks with limited

data. We found that sleep-like replay can both improve the

performance of models trained with limited data as well as

rescue previously trained task performance that was damaged

by new training.

II. METHODS

A. Neural Network

We used a fully connected feed-forward neural network

with 2 hidden layers and ReLU nonlinearities consisting of

1200 nodes each, followed by a soft-max classification layer

with 10 output neurons. The model was trained using hidden

layer dropout and a binary cross entropy loss with weights

modified by a standard stochastic gradient descent optimizer.

Each neuron in the network operated without a bias, which

aided in the conversion to a spiking neural network during the

sleep stage [30].

B. Sleep Replay Consolidation (SRC) algorithm

The sleep replay consolidation (SRC) algorithm was imple-

mented as previously described in [15] on the models used in

this work. The intuition behind SRC is that a period of off-

line, noisy activity may reactivate network nodes that represent

tasks trained in awake. If network reactivation is combined

with unsupervised local learning, SRC can then strengthen

necessary and weaken unnecessary pathways in the network.

Even if a model is under-trained there is information regarding

the task encoded in the synaptic weight matrix, SRC can then

augment and enhance this previously existing structure.

SRC consists of first mapping of an ANN to SNN, where

the network’s activation function is replaced by a Heaviside

function (threshold function) and weights are scaled by the

layer-wise activation maximum observed on the previous

training dataset(s), as suggested by [30], to ensure the network

maintains reasonable firing activity. Successive forward passes

are executed where generated spike trains are fed to the

input layer thereby propagating activity (spiking behavior)

across the network. For each input vector, the probability of

assigning a value of 1 (bright or spiking) to a given element

(input pixel) is taken from a Poisson distribution with mean

rate calculated from the average element intensity across all

previously observed training inputs. Thus, e.g., a pixel that

was typically bright in all training inputs would be assigned a

value of 1 more often than a pixel with lower mean intensity.

Following each forward pass, a backward pass is executed

to update synaptic weights. To modify network connectivity
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during sleep we use an unsupervised, simplified Hebbian type

learning rule which is implemented as follows: a weight is

increased between two nodes when both pre- and post-synaptic

nodes are activated (i.e., input exceeds the Heaviside activation

function threshold), a weight is decreased between two nodes

when the post-synaptic node is activated but the pre-synaptic

node is not (in this case, presumably another pre-synaptic node

is responsible for activity in the post-synaptic node). After

running multiple steps of this unsupervised learning during

sleep, the final weights are rescaled back (simply by removing

the original scaling factor), the Heaviside-type activation func-

tion is restored to the ReLU, and testing or further supervised

training on new data is performed. The hyperparameters used

during SRC are listed in Table II and were determined using

a genetic algorithm aimed at maximizing performance on the

validation set (results then generalized to the test set).

TABLE II
HYPERPARAMETERS FOR THE SRC ALGORITHM

MNIST FMNIST

Time Steps 365 267
Dt 0.001 0.001

Max Firing Rate (Input Generation) 211.9 465.5
Alpha Scale (Augments layer-wise scales) 15.5 23.7

Beta [24.3, 5.08, 18.42] [22.60, 14.93, 23.05]
Decay 0.97 0.95

Synaptic Increase 7.49 ∗ 10−4 4.95 ∗ 10−4

Synaptic Decrease −1.87 ∗ 10−4 −2.72 ∗ 10−4

C. Datasets

To evaluate the effects of sleep on under-trained and under-

performing Artificial Neural Networks (ANNs) we leveraged

two datasets: MNIST [31] and Fashion MNIST (FMNIST)

[32]. The MNIST dataset consists of handwritten numbers (0-

9) each belonging to its own class while FMNIST consists of

10 classes of Zalando’s article images. Together the MNIST

and FMNIST datasets are some of the most widely used

datasets in machine learning making them good candidates

to initially investigate sleep’s ability to improve performance

in limited data and imbalanced data contexts. Each dataset

consists of 60,000 training images and 10,000 testing images.

D. Single task training with limited data

To test the effect of sleep on networks trained with limited

data, we trained the neural network on a randomly selected

subset (0.1% - 100%) of the full datasets MNIST and FM-

NIST. Subsequently we applied a sleep replay and fine-tuning

stage to see how performance was impacted. The sleep replay

stage followed the algorithm explained in Section II-B.

We used 5 epochs of training in the main analysis and we

verified results using 10 and 50 epochs of training. The fine-

tuning stage following sleep consisted of a single epoch of

training with a learning rate of 0.02 with all other hyperpa-

rameters remaining the same. The same network architecture

and training parameters were used in all simulations.

During our experiment implementation, we found that

the number of images in each class can vary significantly

when a small fraction of data from MNIST or FMNIST is

extracted randomly. This can inadvertently cause preferen-

tial performance on over-represented classes and diminished

performance on under-represented classes. Therefore, in our

experiments we first ensured that each class contained the

same exact number of images when a portion of data from

MNIST or FMNIST was extracted.

E. Training with limited and imbalanced data

We conducted a second set of experiments to test the effect

of sleep on training data imbalance when the overall dataset

is limited. This is relevant for many real world scenarios

where examples of certain positive or negative classes are not

available due to data acquisition constraints.

In these experiments, we first extracted a subset of images

(10%) from MNIST. Within this limited subset, we explicitly

introduced imbalance by reducing the number of images in

one selected class, keeping the number of images for all

other classes equal and fixed. In this scenario, after the initial

training phase with backpropagation, the ANN became biased

towards classes with more training data at the expense of the

class with reduced data. We then tested whether sleep, as

described in II-B, could recover performance for the reduced

data class.

F. Data Limited Continual Learning

In our third set of experiments, we utilized the MNIST and

FMNIST datasets to examine the influence of SRC on ANN

performance in a data limited continual learning paradigm.

Here we leveraged 2 tasks, the initial task involved distinguish-

ing classes 0-4 while the subsequent task focused on classes

5-9. The datasets were then randomly sub-sampled such that

1% to 20% of the original task data remained and used for

model training.

The ANN underwent sequential training with initial training

on Task 1 (classes 0-4) followed by training on Task 2 (classes

5-9). Each MNIST/FMNIST task training phase consisted

of 3/5 epochs with a learning rate of 0.06 and a Binary

Cross Entropy loss function optimized by Stochastic Gradient

Decent (batch size 64). Following initial Task 1 training, the

model learned to differentiate classes 0-4 while performance

on the untrained Task 2 digits remained poor. After training

the second task, Task 2 performance (classes 5-9) reached a

maximum while Task 1 was catastrophically forgotten. These

two training phases were followed by SRC (Section II-B), after

which the ANN was tested again for both tasks.

The 5 task scenario was trained similarly to the two task

scenario consisting of 3/5 epochs with a learning rate of

0.06 and a Binary Cross Entropy loss function optimized

by Stochastic Gradient Decent (batch size 64) for MNIST

/ FMNIST. Here, each task consisted of differentiating two

classes (e.g., 0 vs 1, 2 vs 3, 4 vs 5, and so forth) with 5% of the

total training data available for the corresponding classes. To

explore the robustness of our approach, models were trained on

five different random task orderings (which were subsequently

renamed to reflect chronological task order) with each task
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Fig. 1. Accuracy on MNIST (A) and FMNIST (B) with mean (lines) and
standard deviation (error bars) across 10 trials. X-axis - log of the relative
amount of data used for training (e.g., 0.01=1% of data). Blue - baseline (after
ANN training); Orange - baseline + sleep; Green - baseline + sleep + fine-
tuning. Note significant gain in accuracy after the sleep phase on low data.
The sleep phase reduced performance on high data but was largely recovered
by fine-tuning.

order tested across five trials differing in randomness (ini-

tialization, training, and SRC) to ensure generalizable results.

Although additional SRC hyperparameters were tuned, single

and multi-task performance improvements were still observed.

III. RESULTS

A. Performance with limited training data

When the network was trained on the full dataset, the

model achieved over 90% accuracy on both the MNIST

and Fashion MNIST datasets. Yet, as illustrated in Fig. 1,

accuracy significantly drops (blue line) when only a fraction

of training data was used. To evaluate the impact of sleep

replay on accuracy, Sleep Replay Consolidation (SRC) was

employed following initial training with limited data. Briefly,

the ANN was trained on limited data then translated to a

Spiking Neural Network (SNN) with an identical architecture

(for details, see the Methods section). This SNN was then

stimulated by Poisson-distributed spiking inputs with mean

firing rates corresponding to mean input element intensity

across all datasets used during the preceding training ses-

sions. During the sleep phase, synaptic weights were adjusted

through local Hebbian-type plasticity: strengths were increased

if presynaptic activity led to a postsynaptic response, and

reduced if postsynaptic activity occurred in the absence of

presynaptic activation. Following the sleep phase, the SNN

was transformed back into an ANN where performance was

reassessed either immediately or after an additional fine-tuning

on the original limited dataset.

We found a significant improvement in accuracy for models

trained with low amounts of data (0.2-10% of the original

dataset) for both MNIST and FMNIST after introducing the

sleep phase (Fig. 1, orange line). We verified these results

using 10 and 50 epochs of training. These long training dura-

tion experiments revealed that while increasing the amount of

training improved baseline performance in data restricted sce-

narios, sleep was still capable of further improving accuracy.

Fig. 2 presents the confusion matrices obtained during the

MNIST experiment, prior to and following the sleep phase. For

these experiments we employed a 3% subset of the MNIST

dataset for training while using the training parameters detailed

in Table I. Following training, the network demonstrated

noteworthy accuracy for only four specific classes, achieving

0.99 for class 0, 0.51 for class 3, 0.71 for class 8, and 0.87

for class 9 (Fig. 2A). The remaining classes were predicted

inaccurately and misclassified as class 0, 8, or 9. Overall,

the prediction accuracy was very low at 0.32. After SRC,

there were significant accuracy improvements for most under-

performing classes. Specifically there was notable class-wise

enhancement for 1, 2, 4, 6 and 7 (Fig. 2B) which led to an

overall improved accuracy of 0.60.

We obtained similar results for FMNIST. Fig. 3 illustrates

the confusion matrices generated using a 3% subset of the

FMNIST dataset. Prior to the sleep phase, the overall accuracy

stood at 0.38, with only classes 0, 6, 8, and 9 being accurately-

classified (Fig. 3A). Following sleep, a notable improvement

was observed in the accuracy of other classes (2,3,4,7) (Fig.

3B), culminating in an overall accuracy of 0.59.

These results suggest that not only does SRC improve per-

formance in low data contexts but it proportionally aids under-

performing classes yielding a more class balanced model.

While performance improved when there was limited train-

ing data, we also observed a slight (10-15%) decrease in

performance when more than approximately 10% of the data

was employed for ANN training. This performance degrada-

tion, however, could be mitigated by introducing a short one

epoch fine tuning phase after sleep using the original (limited)

training data (Fig. 1, green line).

B. Performance with limited and imbalanced data

Next, we systematically tested the effect of SRC in class

imbalanced settings, i.e., in addition to training the network
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Fig. 2. Confusion matrices before and after sleep for MNIST dataset. A 3%
subset of the overall MNIST dataset was used in training. The value in each
cell indicates the fraction of images of a given true label that were classified
as a given predicted label by the model. (A) - before SRC, (B) - after SRC.

on limited data, one selected class was explicitly underrep-

resented. Fig. 4 shows an example of such analysis when we

used a 10% subset of MNIST training data and further limited

the number of images for one selected class during training.

In practice, we developed these datasets by first randomly

selecting a 10% subset of the MNIST dataset and ensuring

each class had the exact same number of images. Then, for one

selected ºimbalancedº class, we further restricted the number

of instances present causing this class to be underrepresented.

The fraction of images in the low data class ranged from

10% to 100% of the original training data subset (i.e. 1% to

10% of the class from the original full MNIST).

Fig. 3. Confusion matrices before and after sleep for FMNIST dataset. A 3%
subset of the overall FMNIST dataset was used in training. The value in each
cell indicates the fraction of images of a given true label that were classified
as a given predicted label by the model. (A) - before SRC, (B) - after SRC.

We found that class-wise model performance was more

robust to data reduction for some classes when compared to

others. For example, digit 0 showed high class-wise accuracy

when more than 70-80% digit 0’s were used for training (i.e.,

more than 7-8% of digit 0’s in the total dataset), while digit

5 had very low performance even when all data were used

(i.e., 10% of 5’s in the total dataset). After SRC, most classes

(except digit 8) showed a positive improvement in class-wise

accuracy (Fig. 4). The magnitude of the gain and the range

of data reduction where the gain was observed were varied

between digits likely because of the different sensitivity to data
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Fig. 4. Imbalanced class accuracy improvement due to sleep. Each row shows
experiments with data reduction for one specific class (shown on the left),
with the percentage of reduction shown on the horizontal axis. Each cell
shows the class-wise accuracy of the underrepresented class before sleep (top
value) and after sleep (bottom value). The color map is based on the change in
accuracy, ∆ = After Sleep - Before Sleep. Reds indicate a positive difference
(improvement), while blues indicate a negative difference (drop in accuracy).
Note, many red squares showing class-wise improvement with only a few
blue squares showing class-wise performance loss.

reduction. Similar results (not shown) were observed with the

FMNIST dataset.

C. Performance during sequential learning tasks with limited

data

We next tested how sleep replay can affect performance of

models trained on sequential data limited tasks. A previous

study [15] reported that SRC can protect older tasks damaged

by the recent training, however, it remains unknown if SRC

can accomplish the same effect when training data are limited.

It is also unknown if the same SRC hyper-parameters can

both protect old tasks’ performance while simultaneously

improving recent under-trained task performance.

To test SRC in a sequential learning paradigm, we created 2

tasks (per dataset) for the MNIST and Fashion MNIST where

the first task consisted of the first 5 classes and the second task

comprised of the last 5. These two tasks (T1 and T2) were

trained sequentially followed by a sleep phase. The amount of

data used to train each task was varied independently in the

range 0-20% of the full datasets.

Fig. 5 shows results for both the MNIST and Fashion

MNIST datasets. After T1 training, network accuracy in-

creased for that task (top left plots in Fig. 5A,B), while

intuitively the untrained T2 performance was zero (middle left

plots in Fig. 5A,B). Subsequent T2 training led to an increase

in T2 performance (middle middle plots in Fig. 5A,B) but T1

suffered from catastrophic forgetting causing T1 performance

to fall to zero, except when T2 training data was very low (top

0.1

0.2

T
1
 A

c
c
u
ra

c
y

Ta
s
k

1
d
a
ta

After Task 1 After Task 2 After Sleep

0.1

0.2

T
2
 A

c
c
u
ra

c
y

Ta
s
k

1
d
a
ta

0.1 0.2

Task 2 data

0.1

0.2

M
e
a
n
 A

c
c
u
ra

c
y

Ta
s
k

1
d
a
ta

0.1 0.2

Task 2 data

0.1 0.2

Task 2 data

0.0

0.2

0.4

0.6

0.8

1.0

0.1

0.2

T
1
 A

c
c
u
ra

c
y

Ta
s
k

1
d
a
ta

After Task 1 After Task 2 After Sleep

0.1

0.2

T
2
 A

c
c
u
ra

c
y

Ta
s
k

1
d
a
ta

0.1 0.2

Task 2 data

0.1

0.2

M
e
a
n
 A

c
c
u
ra

c
y

Ta
s
k

1
d
a
ta

0.1 0.2

Task 2 data

0.1 0.2

Task 2 data

0.0

0.2

0.4

0.6

0.8

1.0

B

A

Fig. 5. Heatmaps showing accuracy changes after each phase of sequential
learning and SRC (columns) on MNIST (A) and FMNIST (B). In each subplot,
X-axis represents amount of T2 training data and Y-axis - amount of T1
training data. The rows show accuracy on T1, T2 and the mean accuracy.

middle plots in Fig. 5A,B). Finally, SRC implemented after T2

training rescued T1, except when the T2 dataset significantly

exceeded the size of the T1 dataset (top right plots in Fig.

5A,B). Following this period of replay, T2 performance was

further increased for MNIST (middle right plot in Fig. 5A)

and slightly decreased for FMNIST (middle right plot in Fig.

5B).

Fig. 6 presents the same results but for the specific case of

equal amounts of training data for T1 and T2 (i.e., diagonal

in Fig. 5) with the Y-axis denoting mean accuracy between

two tasks and X-axis denoting amount of data. Overall, we

observed an increase in the mean accuracy in the range 15-

30% for MNIST and 5-15% for FMNIST with the exact

improvement dependent on the amount of training data.
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Fig. 6. Accuracy for sequential learning tasks on MNIST (A) and FMNIST
(B) with mean (lines) and standard deviation (error bars) across 10 trials. X-
axis - log of the relative amount of data used for training (e.g., 0.01=1% of
data). Blue - baseline (after ANN training); Orange - baseline + sleep; Green
- baseline + sleep + fine-tuning. Note significant gain in overall accuracy after
sleep phase on low data.

To further investigate, we implemented SRC within a multi-

task paradigm. The MNIST and FMNIST datasets were each

divided into 5 subset tasks, models were then trained on

random orders of these tasks either with or without inter-

spersed periods of SRC. Each task consisted of 5% of the

total data available for that corresponding subset. Our findings

again illustrate that sequential training, even on limited data,

invariably leads to complete catastrophic forgetting of prior

tasks (Fig. 7A,B). However, when SRC is strategically inter-

leaved between training sessions, there is a marked recovery

of previously learned tasks and sometimes the most recently

learned task, resulting in a notably elevated mean task per-

formance (Fig. 7C,D). For example, for MNIST data, Task 1

performance is 0.39 after Task 2 training but reaches 0.61 after

subsequent sleep (Fig. 7C). Interestingly, we also found that

sleep has a protective effect that reduced the amount of damage

to old tasks observed immediately after new task training.

For example, compare the effect of Task 2 training on Task

1 accuracy without sleep between training stages (Fig. 7A,

change from 0.78 to 0) and when sleep is applied in between

T1 and T2 training (Fig. 7C, change from 0.82 to 0.39).

D. Network dynamics during SRC

In an attempt to gain further insight as to why SRC was

capable of improving under-trained model performance, we

analyzed the sleep stage for the single task scenario. We first

measured network activity by examining the instantaneous

layer-wise firing rates. It can be observed that all layers,

excluding the output layer, in both the MNIST and FMNIST

networks were highly active (Fig. 8). The lack of output layer

activity along with the previously described Hebbian learning

rules means the output layer received no modifications during

the entirety of SRC, all benefits were therefore due to hidden

layer modifications.

Analysis of individual hidden layer neuron activity revealed

a progressive decay of activity over the course of the sleep

phase (Fig. 9). This was more obvious in the second hidden

layer. Thus, task performance improved by SRC reducing the

overall level of activity in the network thereby forming sparser,

but presumably more contrasting, representations between

tasks.

To confirm this prediction, we next examined the magnitude

of weight modifications. Fig. 10 shows a histogram of the

cumulative weight perturbation each synapse received during

sleep. Although a small number of critical synapses showed

an increase in strength (positive weight deltas) most synapses

decreased their sensitivity (Fig. 10 shows large number of

synapses with negative weight deltas; note log scale in Y-axis).

IV. DISCUSSION

Although artificial neural networks (ANNs) have recently

begun to approach human performance in various tasks, from

intricate games [33] to image classification [34] to language

processing [35], they exhibit several limitations. These include

catastrophic forgetting, lack of generalization, and dependency

on substantial amounts of training data. Catastrophic forgetting

[36]±[38] is the phenomenon where a system cannot learn new

information without losing previously acquired knowledge.

Consequently, even if new data that could enhance a model’s

performance are available, direct training on these new datasets

often results in damage to previously learned information.

Additionally, ANNs may develop bias when training data is

limited and imbalanced, leading to models that are unfairly

prejudiced against certain categories. This poses risks in

sensitive applications like healthcare, where it could result in

misdiagnoses, or in legal settings, where it might contribute to

unequal treatment [39], [40]. Addressing these biases is crucial

for creating fair and reliable AI systems.

Here, we have tested an unsupervised sleep replay consol-

idation (SRC) algorithm on artificial neural networks trained

incrementally with limited and imbalanced datasets. We found

that SRC effectively mitigates catastrophic forgetting and

improves accuracy when only a very small fraction of data is
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Fig. 7. Accuracy for sequential training across 5 tasks on MNIST ((A)) and FMNIST ((B)) datasets, alongside interleaved training and SRC on MNIST ((C))
and FMNIST ((D)). Notably, integrating SRC between task training reduces forgetting and increases average joint task performance.

used for training or when data is class-imbalanced. Effectively,

SRC was able to shift the transition point from ºlowº to

ºhighº accuracy as the amount of training data increases.

The relationship between training data and accuracy has been

widely studied (e.g., [41]), and our study provides evidence

that the transition to high accuracy during learning could be

influenced by spontaneously generated unsupervised replay.

One advantage of SRC is that it is complementary to fine-

tuning and other gradient-based methods and thus can be used

in conjunction with these methods.

Existing methods to prevent catastrophic forgetting gen-

erally fall into two categories: rehearsal and regularization

techniques [6]. Rehearsal methods involve incorporating pre-

viously learned data, either stored or generated, alongside new

inputs during subsequent training sessions to mitigate forget-

ting [7]±[12]. While effective, as the number of previously

learned tasks increases, this approach may necessitate increas-

ingly complex generative networks capable of reproducing all

previously acquired knowledge.

Regularization methods aim to modify plasticity rules,

maintaining important weights from previous tasks by adding

constraints to gradient descent [13]. Notably, the Elastic

Weight Consolidation (EWC), Synaptic Intelligence (SI) and

Orthogonal Weight Modification (OWM) techniques penalize

weight updates for prior tasks [14], [42], [43]. While these

methods show promise in preventing catastrophic forgetting

across various tasks, such as MNIST permutations, Split

MNIST, and Atari games, they may not perform optimally in

class-incremental learning scenarios, where one input class is

learned at a time [9]. OWM has demonstrated greater success

than EWC and SI in class-incremental learning tasks.

Methods to improve network accuracy when training data

are limited include data augmentation [3], pre-training on

other datasets [4] or alternative architectures such as neural

tangent kernel [5]. It is worth noting, that these methods

should be applied independently from those developed to

enable continual learning leading to complex models with

many hyperparameters to be tuned.

SRC has been proposed as an unsupervised method applica-

ble to solving various tasks, including catastrophic forgetting

[15], lack of generalization [44], [45], and low accuracy with

limited training data [46]. However, the advantages of SRC

were reported in independent studies, each using different

sets of hyperparameters tuned to optimize performance for a

specific task. Here, we report that SRC can accomplish several

independent tasks together in the same model and using the

same set of hyperparameters. These results are consistent with

the known role of sleep in memory and learning.

Sleep has been shown to play a critical role in memory

consolidation, generalization, and the transfer of knowledge

in biological systems [17], [47], [48]. During sleep, there is a

reactivation of neurons involved in previously learned activity

[16]. Because sleep reactivation depends on the previously

learned synaptic connectivity matrix, it invokes the same

spatio-temporal patterns of neuronal firing as the patterns

observed during preceding training in the awake state [20].
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Fig. 8. Layer-wise activity during SRC for MNIST (left) and FMNIST
(right). It can be seen that all layers are active except the output layer in
both the MNIST and FMNIST networks implying the benefits of SRC are
due to enhancing the networks ability to extract relevant features.

Thus, sleep reactivation, or replay, would strengthen synapses

involved in a previously learned task. It was reported that

plasticity changes during sleep can increase a brain’s ability to

reduce memory interference [28], to form connections between

memories and to generalize knowledge learned during the

awake state [49], to link semantic categories based on a single

episodic event to enable one-shot learning [50].

Why can noise-driven unsupervised plasticity improve ac-

curacy and successfully recover memories learned during

ANN training, as we report here? In biology, sleep-generated

brain activity, while spontaneous, still mirrors the synaptic

weight structure acquired during training. It was observed in

vivo that similar spatial patterns of neuronal activity occur

both spontaneously and in response to specific stimuli [51].

Although the noisy input in the SRC algorithm may lack

the higher-order structure of the training data, sleep replay

extracts such complex interactions, as these are embedded in

the synaptic weight patterns. This form of spontaneous replay

in the biological brain, as implemented in the SRC algorithm,

differs significantly from the explicit replay of past inputs

common in machine learning rehearsal methods, reviewed in

[1], [2]

Analysis of synaptic weight dynamics revealed that while

SRC increased the strength for a subset of presumably critical

synapses, many others were weakened. This suggests that the

overall increase in accuracy after SRC was a result of sparser

responses. Thus, SRC may be improving feature representa-

tions by causing hidden layer neurons to be less sensitive

to certain stimuli. Intuitively, in a data-limited context, the

training distribution may have many outliers among the small

number of samples, thereby causing the model to pick up

irrelevant features only present in a small percentage of ex-

amples. SRC then selectively suppresses the strength of many

synapses while maintaining a few, thereby reducing irrelevant

feature sensitivity and leading the model to focus on the most

common and therefore predictive features. In multiple task

scenarios, SRC may reduce weights biased towards the most

recent tasks, thus allowing older tasks to be correctly classified

as long as information about these tasks is still present in the

synaptic weights matrix.

In sum, our study sheds light on a potential synaptic weight

dynamics strategy employed by the brain during sleep to

enhance memory performance for continual learning when

training data are limited or imbalanced. Applied to ANNs,
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Fig. 9. MNIST (left) and FMNIST (right) spike rasters for input and hidden
layers (denoted by red lines). While generated input remains at a consistent
level (left of first red lines), hidden layer activity begins high and slightly
decays over the course of sleep (right of first red lines)
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Fig. 10. Weight difference distributions for MNIST (left) and FMNIST
(right). Plots highlight that many synapses decrease in strength implying
performance benefits are a result of suppressing incorrect signals.

sleep-like replay improves performance in a completely un-

supervised manner, requiring no additional data, and can be

applied to pre-trained models.
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