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Abstract—Artificial neural networks (ANNs) show limited
performance with scarce or imbalanced training data and face
challenges with continuous learning, such as forgetting previously
learned data after new tasks training. In contrast, the human
brain can learn continuously and from just a few examples. This
research explores the impact of ’sleep’ — an unsupervised phase
incorporating stochastic network activation with local Hebbian
learning rules — on ANNs trained incrementally with limited and
imbalanced datasets, specifically MNIST and Fashion MNIST. We
discovered that introducing a sleep phase significantly enhanced
accuracy in models trained with limited data. When a few
tasks were trained sequentially, sleep replay not only rescued
previously learned information that had been forgotten following
new task training but also often enhanced performance in prior
tasks, especially those trained with limited data. This study
highlights the multifaceted role of sleep replay in augmenting
learning efficiency and facilitating continual learning in ANNs.

Index Terms—Neural Networks, limited training data, enhance
memory, sleep, continual learning, unsupervised replay

I. INTRODUCTION

Artificial neural networks have demonstrated the ability to
excel beyond human levels in various domains. However, they
encounter difficulties when training data are low, imbalanced,
or presented sequentially where they tend to prioritize new
tasks at the expense of previous tasks, a phenomenon called
catastrophic forgetting [1], [2]. In contrast, humans and ani-
mals possess an extraordinary capacity to learn continuously
from few examples, effortlessly assimilating new information
into their existing knowledge base.

Different methods have been proposed to overcome these
limitations. For low training data scenarios, these include data
augmentation [3], pre-training on other datasets [4] or alterna-
tive architectures such as neural tangent kernel [5]. However,
these approaches do not address the fundamental question of
how to make overparameterized deep learning networks learn
to generalize from small datasets without overfitting.
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Existing approaches to prevent catastrophic forgetting gen-
erally fall under two categories: rehearsal and regularization
methods [6]. Rehearsal methods combine previously learned
data, either stored or generated, with current task data to avoid
forgetting [7]-[12]. Regularization approaches [13], [14] aim
to modify plasticity rules by incorporating additional con-
straints on gradient descent such that important weights from
previously trained tasks are maintained. All these methods
have significant limitations (reviewed in [1], [2]). Importantly,
methods to prevent catastrophic forgetting are not always
compatible with methods aimed at improving low data per-
formance.

The human brain demonstrates the ability to learn contin-
uously and quickly from just a few examples. It has been
suggested that memory replay during biological sleep can
strengthen memories learned during wakefulness [16], [17].
During sleep, neurons are spontaneously active without ex-
ternal input and generate complex patterns of synchronized
activity across brain regions [18], [19]. Two critical compo-
nents which are believed to underlie memory consolidation
during sleep are spontaneous replay of memory traces and
local unsupervised synaptic plasticity that restricts synaptic
changes to relevant memories [16], [20], [21]. During sleep,
replay of recently learned memories along with relevant old
memories [22]-[27] enables the network to form stable orthog-
onal memory representations [24] and reduces competition

TABLE 1
NEURAL NETWORK MODEL AND TRAINING PARAMETERS

Model Details
Arch. Size

784, 1200, 1200, 10

Learning Rate (Training / Fine-tune) 0.06 / 0.02
Epochs (Training / Fine-tune) 5 (10, 50) / 1
Dropout 0.25
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Algorithm 1 Sleep Replay Consolidation [15]

1: procedure SLEEP(nn, I, scales, thresholds)

2: Initialize v (voltage) = O vectors for all neurons

3: fort< 1toTsdo

4 S < 0s

5: S(1) + Convert input I to Poisson-distributed spiking activity
6: S = ForwardPass(S, v, W, scales, thresholds)

7 ‘W = BackwardPass(S, W)

8: end for

9: end procedure

10: procedure FORWARDPASS(S, v, W, scales, threshold)
11: forl <+ 2tondo

12: o < scales(l — 1)

13: B < threshold(l)

14: v(l) + M) + (a* W(,1 —1)*S(l — 1))

15: S(l); + 1V ¢ where v(l); > S8

16: v(l); < 0V ¢ where v(l); > S8

17:
18: end for
19: return S

20: end procedure
21: procedure BACKWARD PASS(S, W)
22: for !l < 2tondo

> I is input

> T's - Number of time steps during sleep

> n - number of layers

> W(LI-1) - weights / A - decay rate
> Propagate spikes
> Reset spiking voltages

> n - number of layers

W(l,l —1);,; +inc Vijwhere S(l); =1 & S(I—-1); =1

23: W(l,1—1); < {W(l,l —1);,; —dec VijwhereS(l); =1 & S(I—1); =0

W, 1 —1);; else
24:  end for
25: return W
26: end procedure

> STDP

between memory representations to enable the coexistence
of competing memories within overlapping populations of
neurons [28].

The idea of replay has been explored in machine learning
to enable continual learning (reviewed in [1], [2]). However,
spontaneous unsupervised replay found in the biological brain
is significantly different compared to explicit replay of past
inputs as implemented in machine learning rehearsal methods.
Unlike the standard global optimization methods used in
machine learning (such as backpropagation), local plasticity
allows synaptic changes to affect only relevant memories.
Research from neuroscience [15], [21], [28], [29] suggest
that applying sleep replay principles to ANNs may enhance
memory representations and, consequently, improve the per-
formance of machine learning models trained continuously on
a limited or unbalanced datasets.

In this new study, we apply the previously proposed sleep
replay consolidation (SRC) method [15] to scenarios when
the model is trained sequentially on several tasks with limited
data. We found that sleep-like replay can both improve the
performance of models trained with limited data as well as
rescue previously trained task performance that was damaged
by new training.

II. METHODS
A. Neural Network

We used a fully connected feed-forward neural network
with 2 hidden layers and ReLU nonlinearities consisting of
1200 nodes each, followed by a soft-max classification layer
with 10 output neurons. The model was trained using hidden
layer dropout and a binary cross entropy loss with weights
modified by a standard stochastic gradient descent optimizer.

Each neuron in the network operated without a bias, which
aided in the conversion to a spiking neural network during the
sleep stage [30].

B. Sleep Replay Consolidation (SRC) algorithm

The sleep replay consolidation (SRC) algorithm was imple-
mented as previously described in [15] on the models used in
this work. The intuition behind SRC is that a period of off-
line, noisy activity may reactivate network nodes that represent
tasks trained in awake. If network reactivation is combined
with unsupervised local learning, SRC can then strengthen
necessary and weaken unnecessary pathways in the network.
Even if a model is under-trained there is information regarding
the task encoded in the synaptic weight matrix, SRC can then
augment and enhance this previously existing structure.

SRC consists of first mapping of an ANN to SNN, where
the network’s activation function is replaced by a Heaviside
function (threshold function) and weights are scaled by the
layer-wise activation maximum observed on the previous
training dataset(s), as suggested by [30], to ensure the network
maintains reasonable firing activity. Successive forward passes
are executed where generated spike trains are fed to the
input layer thereby propagating activity (spiking behavior)
across the network. For each input vector, the probability of
assigning a value of 1 (bright or spiking) to a given element
(input pixel) is taken from a Poisson distribution with mean
rate calculated from the average element intensity across all
previously observed training inputs. Thus, e.g., a pixel that
was typically bright in all training inputs would be assigned a
value of 1 more often than a pixel with lower mean intensity.
Following each forward pass, a backward pass is executed
to update synaptic weights. To modify network connectivity
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during sleep we use an unsupervised, simplified Hebbian type
learning rule which is implemented as follows: a weight is
increased between two nodes when both pre- and post-synaptic
nodes are activated (i.e., input exceeds the Heaviside activation
function threshold), a weight is decreased between two nodes
when the post-synaptic node is activated but the pre-synaptic
node is not (in this case, presumably another pre-synaptic node
is responsible for activity in the post-synaptic node). After
running multiple steps of this unsupervised learning during
sleep, the final weights are rescaled back (simply by removing
the original scaling factor), the Heaviside-type activation func-
tion is restored to the ReLU, and testing or further supervised
training on new data is performed. The hyperparameters used
during SRC are listed in Table II and were determined using
a genetic algorithm aimed at maximizing performance on the
validation set (results then generalized to the test set).

TABLE II
HYPERPARAMETERS FOR THE SRC ALGORITHM

| MNIST FMNIST
Time Steps 365 267
Dt 0.001 0.001
Max Firing Rate (Input Generation) 2119 465.5
Alpha Scale (Augments layer-wise scales) 155 23.7
Beta [24.3, 5.08, 18.42]  [22.60, 14.93, 23.05]

Decay 0.97 0.95

Synaptic Increase 7.49%107% 4.95% 104

Synaptic Decrease —1.87% 1074 —2.72%10~%

C. Datasets

To evaluate the effects of sleep on under-trained and under-
performing Artificial Neural Networks (ANNs) we leveraged
two datasets: MNIST [31] and Fashion MNIST (FMNIST)
[32]. The MNIST dataset consists of handwritten numbers (0-
9) each belonging to its own class while FMNIST consists of
10 classes of Zalando’s article images. Together the MNIST
and FMNIST datasets are some of the most widely used
datasets in machine learning making them good candidates
to initially investigate sleep’s ability to improve performance
in limited data and imbalanced data contexts. Each dataset
consists of 60,000 training images and 10,000 testing images.

D. Single task training with limited data

To test the effect of sleep on networks trained with limited
data, we trained the neural network on a randomly selected
subset (0.1% - 100%) of the full datasets MNIST and FM-
NIST. Subsequently we applied a sleep replay and fine-tuning
stage to see how performance was impacted. The sleep replay
stage followed the algorithm explained in Section II-B.

We used 5 epochs of training in the main analysis and we
verified results using 10 and 50 epochs of training. The fine-
tuning stage following sleep consisted of a single epoch of
training with a learning rate of 0.02 with all other hyperpa-
rameters remaining the same. The same network architecture
and training parameters were used in all simulations.

During our experiment implementation, we found that
the number of images in each class can vary significantly
when a small fraction of data from MNIST or FMNIST is

extracted randomly. This can inadvertently cause preferen-
tial performance on over-represented classes and diminished
performance on under-represented classes. Therefore, in our
experiments we first ensured that each class contained the
same exact number of images when a portion of data from
MNIST or FMNIST was extracted.

E. Training with limited and imbalanced data

We conducted a second set of experiments to test the effect
of sleep on training data imbalance when the overall dataset
is limited. This is relevant for many real world scenarios
where examples of certain positive or negative classes are not
available due to data acquisition constraints.

In these experiments, we first extracted a subset of images
(10%) from MNIST. Within this limited subset, we explicitly
introduced imbalance by reducing the number of images in
one selected class, keeping the number of images for all
other classes equal and fixed. In this scenario, after the initial
training phase with backpropagation, the ANN became biased
towards classes with more training data at the expense of the
class with reduced data. We then tested whether sleep, as
described in II-B, could recover performance for the reduced
data class.

F. Data Limited Continual Learning

In our third set of experiments, we utilized the MNIST and
FMNIST datasets to examine the influence of SRC on ANN
performance in a data limited continual learning paradigm.
Here we leveraged 2 tasks, the initial task involved distinguish-
ing classes 0-4 while the subsequent task focused on classes
5-9. The datasets were then randomly sub-sampled such that
1% to 20% of the original task data remained and used for
model training.

The ANN underwent sequential training with initial training
on Task 1 (classes 0-4) followed by training on Task 2 (classes
5-9). Each MNIST/FMNIST task training phase consisted
of 3/5 epochs with a learning rate of 0.06 and a Binary
Cross Entropy loss function optimized by Stochastic Gradient
Decent (batch size 64). Following initial Task 1 training, the
model learned to differentiate classes 0-4 while performance
on the untrained Task 2 digits remained poor. After training
the second task, Task 2 performance (classes 5-9) reached a
maximum while Task 1 was catastrophically forgotten. These
two training phases were followed by SRC (Section II-B), after
which the ANN was tested again for both tasks.

The 5 task scenario was trained similarly to the two task
scenario consisting of 3/5 epochs with a learning rate of
0.06 and a Binary Cross Entropy loss function optimized
by Stochastic Gradient Decent (batch size 64) for MNIST
/ FMNIST. Here, each task consisted of differentiating two
classes (e.g., 0 vs 1,2 vs 3, 4 vs 5, and so forth) with 5% of the
total training data available for the corresponding classes. To
explore the robustness of our approach, models were trained on
five different random task orderings (which were subsequently
renamed to reflect chronological task order) with each task
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Fig. 1. Accuracy on MNIST (A) and FMNIST (B) with mean (lines) and

standard deviation (error bars) across 10 trials. X-axis - log of the relative
amount of data used for training (e.g., 0.01=1% of data). Blue - baseline (after
ANN training); Orange - baseline + sleep; Green - baseline + sleep + fine-
tuning. Note significant gain in accuracy after the sleep phase on low data.
The sleep phase reduced performance on high data but was largely recovered
by fine-tuning.

order tested across five trials differing in randomness (ini-
tialization, training, and SRC) to ensure generalizable results.
Although additional SRC hyperparameters were tuned, single
and multi-task performance improvements were still observed.

III. RESULTS
A. Performance with limited training data

When the network was trained on the full dataset, the
model achieved over 90% accuracy on both the MNIST
and Fashion MNIST datasets. Yet, as illustrated in Fig. 1,
accuracy significantly drops (blue line) when only a fraction
of training data was used. To evaluate the impact of sleep
replay on accuracy, Sleep Replay Consolidation (SRC) was
employed following initial training with limited data. Briefly,
the ANN was trained on limited data then translated to a

Spiking Neural Network (SNN) with an identical architecture
(for details, see the Methods section). This SNN was then
stimulated by Poisson-distributed spiking inputs with mean
firing rates corresponding to mean input element intensity
across all datasets used during the preceding training ses-
sions. During the sleep phase, synaptic weights were adjusted
through local Hebbian-type plasticity: strengths were increased
if presynaptic activity led to a postsynaptic response, and
reduced if postsynaptic activity occurred in the absence of
presynaptic activation. Following the sleep phase, the SNN
was transformed back into an ANN where performance was
reassessed either immediately or after an additional fine-tuning
on the original limited dataset.

We found a significant improvement in accuracy for models
trained with low amounts of data (0.2-10% of the original
dataset) for both MNIST and FMNIST after introducing the
sleep phase (Fig. 1, orange line). We verified these results
using 10 and 50 epochs of training. These long training dura-
tion experiments revealed that while increasing the amount of
training improved baseline performance in data restricted sce-
narios, sleep was still capable of further improving accuracy.

Fig. 2 presents the confusion matrices obtained during the
MNIST experiment, prior to and following the sleep phase. For
these experiments we employed a 3% subset of the MNIST
dataset for training while using the training parameters detailed
in Table I. Following training, the network demonstrated
noteworthy accuracy for only four specific classes, achieving
0.99 for class 0, 0.51 for class 3, 0.71 for class 8, and 0.87
for class 9 (Fig. 2A). The remaining classes were predicted
inaccurately and misclassified as class 0, 8, or 9. Overall,
the prediction accuracy was very low at 0.32. After SRC,
there were significant accuracy improvements for most under-
performing classes. Specifically there was notable class-wise
enhancement for 1, 2, 4, 6 and 7 (Fig. 2B) which led to an
overall improved accuracy of 0.60.

We obtained similar results for FMNIST. Fig. 3 illustrates
the confusion matrices generated using a 3% subset of the
FMNIST dataset. Prior to the sleep phase, the overall accuracy
stood at 0.38, with only classes 0, 6, 8, and 9 being accurately-
classified (Fig. 3A). Following sleep, a notable improvement
was observed in the accuracy of other classes (2,3,4,7) (Fig.
3B), culminating in an overall accuracy of 0.59.

These results suggest that not only does SRC improve per-
formance in low data contexts but it proportionally aids under-
performing classes yielding a more class balanced model.

While performance improved when there was limited train-
ing data, we also observed a slight (10-15%) decrease in
performance when more than approximately 10% of the data
was employed for ANN training. This performance degrada-
tion, however, could be mitigated by introducing a short one
epoch fine tuning phase after sleep using the original (limited)
training data (Fig. 1, green line).

B. Performance with limited and imbalanced data

Next, we systematically tested the effect of SRC in class
imbalanced settings, i.e., in addition to training the network
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Fig. 2. Confusion matrices before and after sleep for MNIST dataset. A 3%
subset of the overall MNIST dataset was used in training. The value in each
cell indicates the fraction of images of a given true label that were classified
as a given predicted label by the model. (A) - before SRC, (B) - after SRC.

on limited data, one selected class was explicitly underrep-
resented. Fig. 4 shows an example of such analysis when we
used a 10% subset of MNIST training data and further limited
the number of images for one selected class during training.
In practice, we developed these datasets by first randomly
selecting a 10% subset of the MNIST dataset and ensuring
each class had the exact same number of images. Then, for one
selected “imbalanced” class, we further restricted the number
of instances present causing this class to be underrepresented.

The fraction of images in the low data class ranged from
10% to 100% of the original training data subset (i.e. 1% to
10% of the class from the original full MNIST).
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Fig. 3. Confusion matrices before and after sleep for FMNIST dataset. A 3%
subset of the overall FMNIST dataset was used in training. The value in each
cell indicates the fraction of images of a given true label that were classified
as a given predicted label by the model. (A) - before SRC, (B) - after SRC.

We found that class-wise model performance was more
robust to data reduction for some classes when compared to
others. For example, digit 0 showed high class-wise accuracy
when more than 70-80% digit 0’s were used for training (i.e.,
more than 7-8% of digit 0’s in the total dataset), while digit
5 had very low performance even when all data were used
(i.e., 10% of 5’s in the total dataset). After SRC, most classes
(except digit 8) showed a positive improvement in class-wise
accuracy (Fig. 4). The magnitude of the gain and the range
of data reduction where the gain was observed were varied
between digits likely because of the different sensitivity to data
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Fig. 4. Imbalanced class accuracy improvement due to sleep. Each row shows
experiments with data reduction for one specific class (shown on the left),
with the percentage of reduction shown on the horizontal axis. Each cell
shows the class-wise accuracy of the underrepresented class before sleep (top
value) and after sleep (bottom value). The color map is based on the change in
accuracy, A = After Sleep - Before Sleep. Reds indicate a positive difference
(improvement), while blues indicate a negative difference (drop in accuracy).
Note, many red squares showing class-wise improvement with only a few
blue squares showing class-wise performance loss.

reduction. Similar results (not shown) were observed with the
FMNIST dataset.

C. Performance during sequential learning tasks with limited
data

We next tested how sleep replay can affect performance of
models trained on sequential data limited tasks. A previous
study [15] reported that SRC can protect older tasks damaged
by the recent training, however, it remains unknown if SRC
can accomplish the same effect when training data are limited.
It is also unknown if the same SRC hyper-parameters can
both protect old tasks’ performance while simultaneously
improving recent under-trained task performance.

To test SRC in a sequential learning paradigm, we created 2
tasks (per dataset) for the MNIST and Fashion MNIST where
the first task consisted of the first 5 classes and the second task
comprised of the last 5. These two tasks (T1 and T2) were
trained sequentially followed by a sleep phase. The amount of
data used to train each task was varied independently in the
range 0-20% of the full datasets.

Fig. 5 shows results for both the MNIST and Fashion
MNIST datasets. After T1 training, network accuracy in-
creased for that task (top left plots in Fig. 5A,B), while
intuitively the untrained T2 performance was zero (middle left
plots in Fig. 5A,B). Subsequent T2 training led to an increase
in T2 performance (middle middle plots in Fig. 5A,B) but T1
suffered from catastrophic forgetting causing T1 performance
to fall to zero, except when T2 training data was very low (top

>

After Task 1 After Task 2

After Sleep

0.1 A

ui
=

T1 Accuracy
Task 1 data

« .'Ti

T2 Accuracy
Task 1 data

0.2
0.1

Task 1 data

Mean Accuracy

o
-

0.2
Task 2 data

(=}
-

0.2

Task 2 data Task 2 data

oy

After Task 2

After Task 1 After Sleep

0.2

0.1

=
i 1N
=1

T1 Accuracy
Task 1 data

0.6

T2 Accuracy
Task 1 data

0.4

0.2
0.1

Mean Accuracy
Task 1 data

(=}
-

0.2
Task 2 data

o
-

0.2

Task 2 data Task 2 data

Fig. 5. Heatmaps showing accuracy changes after each phase of sequential
learning and SRC (columns) on MNIST (A) and FMNIST (B). In each subplot,
X-axis represents amount of T2 training data and Y-axis - amount of T1
training data. The rows show accuracy on T1, T2 and the mean accuracy.

middle plots in Fig. SA,B). Finally, SRC implemented after T2
training rescued T1, except when the T2 dataset significantly
exceeded the size of the T1 dataset (top right plots in Fig.
5A,B). Following this period of replay, T2 performance was
further increased for MNIST (middle right plot in Fig. 5A)
and slightly decreased for FMNIST (middle right plot in Fig.
5B).

Fig. 6 presents the same results but for the specific case of
equal amounts of training data for T1 and T2 (i.e., diagonal
in Fig. 5) with the Y-axis denoting mean accuracy between
two tasks and X-axis denoting amount of data. Overall, we
observed an increase in the mean accuracy in the range 15-
30% for MNIST and 5-15% for FMNIST with the exact
improvement dependent on the amount of training data.
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data). Blue - baseline (after ANN training); Orange - baseline + sleep; Green
- baseline + sleep + fine-tuning. Note significant gain in overall accuracy after
sleep phase on low data.

To further investigate, we implemented SRC within a multi-
task paradigm. The MNIST and FMNIST datasets were each
divided into 5 subset tasks, models were then trained on
random orders of these tasks either with or without inter-
spersed periods of SRC. Each task consisted of 5% of the
total data available for that corresponding subset. Our findings
again illustrate that sequential training, even on limited data,
invariably leads to complete catastrophic forgetting of prior
tasks (Fig. 7A,B). However, when SRC is strategically inter-
leaved between training sessions, there is a marked recovery
of previously learned tasks and sometimes the most recently
learned task, resulting in a notably elevated mean task per-
formance (Fig. 7C,D). For example, for MNIST data, Task 1
performance is 0.39 after Task 2 training but reaches 0.61 after
subsequent sleep (Fig. 7C). Interestingly, we also found that
sleep has a protective effect that reduced the amount of damage
to old tasks observed immediately after new task training.

For example, compare the effect of Task 2 training on Task
1 accuracy without sleep between training stages (Fig. 7A,
change from 0.78 to 0) and when sleep is applied in between
T1 and T2 training (Fig. 7C, change from 0.82 to 0.39).

D. Network dynamics during SRC

In an attempt to gain further insight as to why SRC was
capable of improving under-trained model performance, we
analyzed the sleep stage for the single task scenario. We first
measured network activity by examining the instantaneous
layer-wise firing rates. It can be observed that all layers,
excluding the output layer, in both the MNIST and FMNIST
networks were highly active (Fig. 8). The lack of output layer
activity along with the previously described Hebbian learning
rules means the output layer received no modifications during
the entirety of SRC, all benefits were therefore due to hidden
layer modifications.

Analysis of individual hidden layer neuron activity revealed
a progressive decay of activity over the course of the sleep
phase (Fig. 9). This was more obvious in the second hidden
layer. Thus, task performance improved by SRC reducing the
overall level of activity in the network thereby forming sparser,
but presumably more contrasting, representations between
tasks.

To confirm this prediction, we next examined the magnitude
of weight modifications. Fig. 10 shows a histogram of the
cumulative weight perturbation each synapse received during
sleep. Although a small number of critical synapses showed
an increase in strength (positive weight deltas) most synapses
decreased their sensitivity (Fig. 10 shows large number of
synapses with negative weight deltas; note log scale in Y-axis).

IV. DISCUSSION

Although artificial neural networks (ANNs) have recently
begun to approach human performance in various tasks, from
intricate games [33] to image classification [34] to language
processing [35], they exhibit several limitations. These include
catastrophic forgetting, lack of generalization, and dependency
on substantial amounts of training data. Catastrophic forgetting
[36]-[38] is the phenomenon where a system cannot learn new
information without losing previously acquired knowledge.
Consequently, even if new data that could enhance a model’s
performance are available, direct training on these new datasets
often results in damage to previously learned information.
Additionally, ANNs may develop bias when training data is
limited and imbalanced, leading to models that are unfairly
prejudiced against certain categories. This poses risks in
sensitive applications like healthcare, where it could result in
misdiagnoses, or in legal settings, where it might contribute to
unequal treatment [39], [40]. Addressing these biases is crucial
for creating fair and reliable Al systems.

Here, we have tested an unsupervised sleep replay consol-
idation (SRC) algorithm on artificial neural networks trained
incrementally with limited and imbalanced datasets. We found
that SRC effectively mitigates catastrophic forgetting and
improves accuracy when only a very small fraction of data is
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Task 1
Task 2
Task 3
Task 4
Task 5

Mean

C
Task 1 0.39 0.61 0.46 0.58 0.37 0.57
Task 2 0.71 0.63 0.37 0.41
Task 3 0.38
Task 4 0.56 0.44
Task 5

Mean

T1 SRC T2 SRC T3 SRC T4 SRC T5 SRC

Task 1
Task 2
Task 3
Task 4
Task 5
Mean
1.0
Task 1 0.53 0.37 0.57
Task 2 0.8
Task 3 0.6
Task 4 0.4
Task 5 0.58 0.57 0.2
Mean M 0.34
0.0

T1 SRC T2 SRC T3 SRC T4 SRC T5 SRC

Fig. 7. Accuracy for sequential training across 5 tasks on MNIST ((A)) and FMNIST ((B)) datasets, alongside interleaved training and SRC on MNIST ((C))
and FMNIST ((D)). Notably, integrating SRC between task training reduces forgetting and increases average joint task performance.

used for training or when data is class-imbalanced. Effectively,
SRC was able to shift the transition point from “low” to
“high” accuracy as the amount of training data increases.
The relationship between training data and accuracy has been
widely studied (e.g., [41]), and our study provides evidence
that the transition to high accuracy during learning could be
influenced by spontaneously generated unsupervised replay.
One advantage of SRC is that it is complementary to fine-
tuning and other gradient-based methods and thus can be used
in conjunction with these methods.

Existing methods to prevent catastrophic forgetting gen-
erally fall into two categories: rehearsal and regularization
techniques [6]. Rehearsal methods involve incorporating pre-
viously learned data, either stored or generated, alongside new
inputs during subsequent training sessions to mitigate forget-
ting [7]-[12]. While effective, as the number of previously
learned tasks increases, this approach may necessitate increas-
ingly complex generative networks capable of reproducing all
previously acquired knowledge.

Regularization methods aim to modify plasticity rules,
maintaining important weights from previous tasks by adding
constraints to gradient descent [13]. Notably, the Elastic
Weight Consolidation (EWC), Synaptic Intelligence (SI) and
Orthogonal Weight Modification (OWM) techniques penalize
weight updates for prior tasks [14], [42], [43]. While these
methods show promise in preventing catastrophic forgetting
across various tasks, such as MNIST permutations, Split
MNIST, and Atari games, they may not perform optimally in

class-incremental learning scenarios, where one input class is
learned at a time [9]. OWM has demonstrated greater success
than EWC and SI in class-incremental learning tasks.

Methods to improve network accuracy when training data
are limited include data augmentation [3], pre-training on
other datasets [4] or alternative architectures such as neural
tangent kernel [5]. It is worth noting, that these methods
should be applied independently from those developed to
enable continual learning leading to complex models with
many hyperparameters to be tuned.

SRC has been proposed as an unsupervised method applica-
ble to solving various tasks, including catastrophic forgetting
[15], lack of generalization [44], [45], and low accuracy with
limited training data [46]. However, the advantages of SRC
were reported in independent studies, each using different
sets of hyperparameters tuned to optimize performance for a
specific task. Here, we report that SRC can accomplish several
independent tasks together in the same model and using the
same set of hyperparameters. These results are consistent with
the known role of sleep in memory and learning.

Sleep has been shown to play a critical role in memory
consolidation, generalization, and the transfer of knowledge
in biological systems [17], [47], [48]. During sleep, there is a
reactivation of neurons involved in previously learned activity
[16]. Because sleep reactivation depends on the previously
learned synaptic connectivity matrix, it invokes the same
spatio-temporal patterns of neuronal firing as the patterns
observed during preceding training in the awake state [20].
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Fig. 8. Layer-wise activity during SRC for MNIST (left) and FMNIST

(right). It can be seen that all layers are active except the output layer in
both the MNIST and FMNIST networks implying the benefits of SRC are
due to enhancing the networks ability to extract relevant features.

Thus, sleep reactivation, or replay, would strengthen synapses
involved in a previously learned task. It was reported that
plasticity changes during sleep can increase a brain’s ability to
reduce memory interference [28], to form connections between
memories and to generalize knowledge learned during the
awake state [49], to link semantic categories based on a single
episodic event to enable one-shot learning [50].

Why can noise-driven unsupervised plasticity improve ac-
curacy and successfully recover memories learned during
ANN training, as we report here? In biology, sleep-generated
brain activity, while spontaneous, still mirrors the synaptic
weight structure acquired during training. It was observed in
vivo that similar spatial patterns of neuronal activity occur
both spontaneously and in response to specific stimuli [51].
Although the noisy input in the SRC algorithm may lack
the higher-order structure of the training data, sleep replay
extracts such complex interactions, as these are embedded in
the synaptic weight patterns. This form of spontaneous replay
in the biological brain, as implemented in the SRC algorithm,
differs significantly from the explicit replay of past inputs
common in machine learning rehearsal methods, reviewed in
(1], [2]

Analysis of synaptic weight dynamics revealed that while
SRC increased the strength for a subset of presumably critical
synapses, many others were weakened. This suggests that the
overall increase in accuracy after SRC was a result of sparser
responses. Thus, SRC may be improving feature representa-
tions by causing hidden layer neurons to be less sensitive
to certain stimuli. Intuitively, in a data-limited context, the
training distribution may have many outliers among the small
number of samples, thereby causing the model to pick up
irrelevant features only present in a small percentage of ex-
amples. SRC then selectively suppresses the strength of many
synapses while maintaining a few, thereby reducing irrelevant
feature sensitivity and leading the model to focus on the most
common and therefore predictive features. In multiple task
scenarios, SRC may reduce weights biased towards the most
recent tasks, thus allowing older tasks to be correctly classified
as long as information about these tasks is still present in the
synaptic weights matrix.

In sum, our study sheds light on a potential synaptic weight
dynamics strategy employed by the brain during sleep to
enhance memory performance for continual learning when
training data are limited or imbalanced. Applied to ANNSs,
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Fig. 9. MNIST (left) and FMNIST (right) spike rasters for input and hidden
layers (denoted by red lines). While generated input remains at a consistent
level (left of first red lines), hidden layer activity begins high and slightly
decays over the course of sleep (right of first red lines)
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Fig. 10. Weight difference distributions for MNIST (left) and FMNIST
(right). Plots highlight that many synapses decrease in strength implying
performance benefits are a result of suppressing incorrect signals.

sleep-like replay improves performance in a completely un-
supervised manner, requiring no additional data, and can be
applied to pre-trained models.
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