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Abstract— Space Al has become increasingly important and
sometimes even necessary for government, businesses, and soci-
ety. An active research topic under this mission is integrating
federated learning (FL) with satellite communications (SatCom)
so that numerous low Earth orbit (LEO) satellites can collab-
oratively train a machine learning model. However, the special
communication environment of SatCom leads to a very slow FL
training process up to days and weeks. This paper proposes
NomaFedHAP, a novel FL-SatCom approach tailored to LEO
satellites, that (1) utilizes high-altitude platforms (HAPs) as dis-
tributed parameter servers (PSs) to enhance satellite visibility,
and (2) introduces non-orthogonal multiple access (NOMA) into
LEO to enable fast and bandwidth-efficient model transmissions.
In addition, NomaFedHAP includes (3) a new communication
topology that exploits HAPs to bridge satellites among different
orbits to mitigate the Doppler shift, and (4) a new FL model
aggregation scheme that optimally balances models between
different orbits and shells. Moreover, we (5) derive a closed-form
expression of the outage probability for satellites in near and far
shells, as well as for the entire system. Our extensive simulations
have validated the mathematical analysis and demonstrated the
superior performance of NomaFedHAP in achieving fast and
efficient FL. model convergence with high accuracy as compared
to the state-of-the-art.

Index Terms—Low Earth orbit (LEO), federated learning,
high altitude platform (HAP), non-orthogonal multiple access
(NOMA).

I. INTRODUCTION

ATELLITE communication (SatCom) technology is con-
S sidered a major player of the Internet of Remote Things
(IoRT) [1]. Recent advancements in SatCom have stimulated
giant companies such as SpaceX, Amazon, and OneWeb,
as well as government agencies such as ESA and NASA,
to launch a large number of small satellites into space on
low Earth orbits (LEOs) [2]. These satellites are equipped
with high-resolution cameras and collect massive satellite
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imagery [3]. Meanwhile, the booming developments of Al
have motivated the leverage of machine learning (ML) to
perform satellite data analytics. However, traditional ML
approaches which require downloading the massive imagery
from satellites to a ground station (GS) are not practical due
to the limited SatCom bandwidth. In this regard, federated
Learning (FL) [4], [5] offers a potential solution as it replaces
data transmission with model transmission, where each satel-
lite trains an ML model onboard using its own data and then
only sends the trained model to the GS. This substantially
reduces the demand for bandwidth and gains the additional
benefit of preserving data privacy.

However, integrating FL. with SatCom is non-trivial and
involves significant challenges. This is because FL entails
an iterative training process that typically involves hundreds
of communication rounds between clients and the parameter
server (PS). While this is not a big issue in usual networks,
it is a critical bottleneck in SatCom/LEO, where clients are
LEO satellites and the PS is the GS, due to four factors. First,
the highly sporadic, intermittent, and irregular connectivity
pattern between LEO satellites and the GS. This is caused by
the distinction of travel trajectories and speeds between LEO
satellites and the PS, where satellites orbit the earth with
an inclination angle between 0-90° while PS travels along
the Earth rotation direction. Second, the long propagation
and transmission delays in SatCom, due to the long distance
and low data rate. Third, FL. models are often large (e.g.,
528/549MB for VGG16/19, 232MB for ResNet152, 479MB
for EfficientNetV2L) because of the high image resolution and
accuracy dictated by satellite applications such as national and
homeland security, disaster and weather monitoring. Lastly,
the wireless channels between LEO satellites and GS are
unreliable due to adverse weather conditions like rain, fog,
wind turbulence, and interference from other radio signals
especially near the Earth’s surface. As a result, the short
visible time window between a satellite and the PS is often
insufficient to allow the complete transmission of a model,
especially when multiple satellites’ transmissions are involved.
Ultimately, the above challenges significantly impede the FL
training process and result in slow convergence that takes days
or even weeks [6], [7].

In this paper, we propose a novel FL-SatCom frame-
work called NomaFedHAP that is tailored to LEO satel-
lites to address the above challenges. First, it introduces
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non-orthogonal multiple access (NOMA) as a spectrum-
efficient communication scheme into FL-SatCom to enable
satellites at different orbit shells (hence different altitudes)
to transmit models concurrently from/to the PS. Second,
following our previous work [8], NomaFedHAP utilizes mul-
tiple high-altitude platforms (HAPs) in lieu of GSs to act as
distributed PS's to improve satellite visibility. But unlike [8],
NomaFedHAP introduces a new satellite-HAP communication
topology in which each HAP also serves as a relay to forward
models among HAPs. This has the benefit of handling multiple
orbits of satellites without inter-orbit communication, thus
avoiding significant Doppler shifts. Third, NomaFedHAP pro-
poses an FL model aggregation scheme that optimally balances
the number of models between different orbits and shells prior
to model aggregation, thereby avoiding a biased global model.

In summary, this paper makes the following contributions:

o To the best of our knowledge, NomaFedHAP is the first
work that introduces NOMA to FL-SatCom, addressing
the link budget limit and enabling concurrent transmis-
sions of large FL models within short and sporadic visible
windows. It also uses HAPs instead of GS as PS to
achieve faster convergence.

o We propose to use orthogonal frequency division multi-
plexing (OFDM) for communication among satellites in
the same orbit. This results in a hybrid NOMA-OFDM
communication scheme. Furthermore, we derive a
closed-form expression of the outage probability for
satellites located in near and far orbit shells, as well as
for the entire system.

o We also propose (i) a new satellite-HAP communication
topology in substitution of the traditional star topology of
FL, where we let HAPs act as inter-orbit relays to mitigate
the Doppler shift, (ii)) a new intra-orbit model propa-
gation algorithm that utilizes inter-satellite links (ISL)
and sub-orbital model aggregation to enable “straggler”
satellites to participate in FL without waiting for their
visible windows, and (iii) a new FL model aggregation
scheme that optimally balances the number of models
between different orbits to avoid a biased global model.

o We extensively evaluate NomaFedHAP using 3 common
datasets and a real satellite dataset, and demonstrate its
efficient bandwidth utilization and high data rate when
transmitting FL. models between satellites and HAPs.
We also show that NomaFedHAP accelerates FL con-
vergence by an order of magnitude as compared to
state-of-the-art FL-SatCom algorithms (4 vs. 72 hours),
while achieving the highest model accuracy.

II. RELATED WORK

While research in FL-SatCom is still in a nascent
stage, a decent number of interesting studies have recently
appeared [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20] and have made appealing progress.

A. Synchronous FL

In synchronous FL, the PS (e.g., GS) has to wait until all
LEO satellites complete training and send their local models
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to PS when they sequentially come into its visible zone.
Only after that, the PS will proceed to aggregate those
received models into a global model and then start the next
communication round by sending the global model back to
all the satellites for retraining. In such synchronous FL, slow
satellites or “stragglers”, who have limited visibility to the PS,
will become the bottleneck of the training process, where fast
satellites have to idly wait.

Despite this, synchronous FL as a simple (and hence
desirable) approach has been applied to LEO constellations
in several studies. For instance, [6] adopted the traditional
synchronous FL approach (i.e, FedAvg [4]) without any tai-
loring for LEO constellations and demonstrated that FL is
more advantageous than a direct download of raw data to a
centralized server for training. The study, however, did not take
into account the satellite-GS visibility challenge which slows
down the FL training processes significantly. To deal with this
challenge, [7] proposed an intra-orbit routing technique called
FedISL specifically designed for FL-SatCom. It performs well
when the PS is a GS situated either at the North Pole
(NP) or a medium Earth orbit (MEO) satellite flying above
the Equator (at an altitude of 20,000 km). In these cases,
each satellite visits the PS at regular intervals, resulting in
more frequent communication and hence faster convergence.
However, when the PS is located at a different position,
the convergence time increases significantly, taking several
days instead of just a few hours. Moreover, NP is an ideal
location which is often unavailable in practice, and MEO
would incur considerable Doppler shifts. To address this
limitation, FedHAP [8] introduces HAPs as a proxy of GS to
LEO constellations without restriction on locations. However,
the FL model still requires more than a day to converge
due to the non-ideal PS locations. Lin et al. [9] proposed
an approach to dynamically aggregate satellite models based
on connection density, excluding stragglers in cases of sparse
connections, and involving the collaboration of multiple GSs
at distributed locations. However, ensuring model consistency
at multiple GSs is nontrivial and incurs more overhead,
and excluding straggler satellites can introduce bias in the
global model towards frequently visible satellites. In [10],
a clustering and edge selection approach is proposed, where
a GS selects an LEO server, clusters neighboring LEO clients
with good channel quality, and then selects satellites within
each cluster to participate in the training process. However,
this may result in a biased model toward satellites with good
channel quality. The authors of [11] proposed a decentralized
learning paradigm, eliminating the need for a PS. They
utilize intra- and inter-orbit ISLs with a traditional com-
munication scheme like OFDM [21], attempting to address
convergence speed; however, this approach still requires a
higher data rate due to the Doppler shift among different
orbits. Moreover, all the above studies evaluate their models
on non-SatCom-related datasets, and the convergence time
still takes long hours and days. Most recently, FedLEO [12]
enhances the FL convergence through the use of intra-plane
model propagation and scheduling of sink satellites, and uses
a real satellite dataset to test their model. On the other hand,
it requires each satellite to run a scheduler to determine a
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sink satellite, leading to delays during model exchanges with
the GS.

B. Asynchronous FL

Unlike synchronous FL, asynchronous FL allows the PS
to receive only a subset of the satellites’ (typically fast ones’)
model updates to proceed to the next communication round.
This mitigates the idleness problem in synchronous FL, but
faces another problem called model staleness, where outdated
models from straggler satellites will arrive in later commu-
nication rounds, potentially affecting the model convergence
and performance adversely (e.g., FedAsync [5]).

Razmi et al. [13] proposed FedSat, an asynchronous FL
approach tailored for SatCom. FedSat adapts FedAvg [4]
to an asynchronous setting, where it averages the received
satellite models based on their visibility order, assuming
regular satellite visits to the GS. In response to this ideal
consideration, they proposed another work [14], FedSatSched-
ule, that considers the location of the GS can be anywhere.
FedSatSchedule is developed to reduce model staleness by
determining whether each satellite has sufficient visible time
for downloading the global model, training a local model, and
uploading it. Otherwise, the satellite will schedule uploading
its local model for the next communication round, allowing
it to train its local model during its “long” invisible period.
However, FedSatSchedule has only limited improvement in
efficiency, still requiring several days for an FL model to
converge. The authors of [15] proposed another asynchronous
FL approach, FedSpace, which stores satellite models into a
buffer with a predicted size and reduces the weighting of stale
models. On the other hand, this method requires each satellite
to upload a small amount of its raw data to the GS in order to
be used for scheduling the model aggregation, which is con-
trary to the FL principle of maintaining privacy by not sharing
raw data. Wang et al. [16] proposed a graph-based routing and
resource reservation algorithm aimed at optimizing the delay
in FL. model parameter transfer. The algorithm enhances a
storage time-aggregated graph, enabling a joint representation
of the satellite networks’ transmission, storage, and computing
resources. AsyncFLEO [17] is a more recent asynchronous
FL approach that offers a solution to the staleness challenge,
where it first groups satellites from different orbits based on
the similarity of their models, and then selects only fresh
models from each group to include in the model aggregation.
Outdated satellite models are only selected when it is the
only model in a group and will be down-weighted during
aggregation. Finally, Wu et al. [18] proposed FedGSM, which
implements a compensation mechanism to mitigate gradient
staleness. FedGSM utilizes the deterministic and time-varying
topology of the orbits to counteract the negative impact of
staleness. However, their approach still requires a long time
for convergence.

While considerable efforts have been made to accelerate
the convergence of the FL-SatCom model and address the
challenge of satellite-GS sporadic connectivity, no work has
been proposed to formally address the issue of uploading large
satellite ML models to the PS (e.g., GS, MEO, HAPs) within
the satellite link budget limit and the sporadic short satellite
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visibility periods. In addition, most of the existing works rely
on direct communication between the server (often a GS) and
LEO satellites, not leveraging the potential benefits of utilizing
HAPs in space to improve FL training. Moreover, balancing
among orbits to mitigate bias was overlooked too. This work
aims to fill these gaps.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a general LEO satellite constellation consisting
of N orbital shells, where each shell consists of L orbits,
all at the same altitude d,,." In a shell n, each orbit | €
L = {l,la,...,l,} carries K; equally distributed homoge-
neous satellites with an inclination angle of ©;. Each satellite
in the orbit [ has a unique ID and travels at a speed of
v = (Tgfg”) with an orbital period of T} = %}W
where rg = 6371 km is the Earth’s radius, G, is the
Earth gravitational constant, and M is the mass of the Earth
(GeM = 3.98 x 10'*m?3/s?). In addition, consider H HAPs,
where each HAP /£ serves as a PS and communicates with
a diverse set of satellites deployed in different orbits/shells
and performs (partial or full) model aggregation. Furthermore,
a HAP £ can perform NOMA among satellites located in
different shells based on their distance.

For the communication to be established between any
satellite £k € K and the PS (i.e., a set of HAPs), the line
of sight (LoS) link between them must not be blocked by the
Earth. In mathematical terms, this can be expressed as:

Dps(t) £ L(rps(0), (rk(t) = rps(D)) < G~ Pin (1)

where 74 (t) and rps(t) are the trajectories of satellite k£ and
the PS, respectively, and 9,,;, is the minimum elevation
angle, a constant depends on each HAP’s location. To account
for communication between any satellite and the PS, we con-
sider two particular satellites that are the closest and the
farthest to the PS, referred to as the nearest satellite (NS)
and the farthest satellite (FS), respectively. An illustration of
our system model is given in Fig. 1.

i

A. FL-LEO Computation Analysis

Consider an LEO satellite constellation C, where each
satellite k collects a set of Earth observational images.
These images, collected by different satellites, are typi-
cally non-independent and identically distributed (non-1ID)
due to varying orbital speeds, altitudes, and coverage areas.
Specifically, a satellite k& captures its own dataset D =
{(X1,¥y1),(X2,¥2), -, (Ximy,¥Yms )}, where X; and y; are
the feature vector and its corresponding label of the i-th sample
(labels are not required but written here for notation purposes
only). The overarching objective of the FL-LEO system is to
have the LEO satellites and the PS work collaboratively to
train a global ML model with the objective of minimizing the
overall loss function F'(w):

|Dk|

arg min F(w) =3 oy Flw), )
w kek

IThe orbit shell consists of multiple orbits, each carrying a number of
satellites at the same altitude.
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Fig. 1. An FL system in the context of satellite constellations, using multiple
HAPs as parameter servers. For the sake of clarity, only two orbit shells are
shown.

where w is a vector representing the model weights,
> ick |Dk| is the total number of data samples collected by
LEO satellites, and F(w) is satellite k’s loss function:

|Dy |

1
ka w; X;,y4), (3)

F; k (w | D |
where fi(w; X;,y;) is the training loss over a data point X;.
The training process in a synchronous FL-LEO system
such as FedHAP [8] requires multiple communication rounds
8 = 0,1,2,..., where |B]| is the total number of commu-
nication rounds needed to achieve FL model convergence.
During each round, the PS awaits each satellite k& to enter
its visible zone (transiently) in order to send its aggregated
global model w?” or to (subsequently) receive this satellite’s
local model 'wf . What happens is that the satellite & carries
out a local optimization method such as stochastic gradient
descent (SGD) on the received global model w? using its
local data, iterating J local epochs to update the model:

wi Tt = wd — VL (w7 Xy, G=1,2,...,J

“4)

where (g is the learning rate at the round 3. After this training
process, the satellite £ obtains an updated local model. It then
transmits this model back to the PS when entering the PS’s
visible zone again. At the PS, after it receives all the satellites’
models, it aggregates them into a global model as

D
wit =3 ||Dk||w£ | (5)
kel

The above procedure repeats, where (3 continuously increases,
until the FL. model converges, i.e., achieves a target accuracy
or loss, or reaches the maximum communication rounds.
Fig. 2 gives an illustration of the FL-LEO system. One of
the major challenges with this learning process is that all
communications (uplink/downlink) can only occur when a
satellite is transiently visible to the PS, which significantly
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Fig. 2. Tllustration of an FL-LEO system.

limits the communication opportunities and prolongs the entire
process to several days or even weeks. This makes the learning
speed unable to keep up with the rate at which data is collected
by LEO satellites, and as a result, the global FL model
is always outdated. Moreover, another challenge to FL-LEO
convergence is that during the visible window of the PS for an
LEO satellite, the limited bandwidth can be insufficient for a
large satellite model to be fully uploaded to the PS and hence
the satellite has to wait for the next longer visible window to
start over, resulting in large delays.

B. FL-LEO Communication Analysis

In this paper, we consider a set of HAPs as the PS that coor-
dinates the model aggregation process in the FL-LEO system.
Because of this, we incorporate two types of communication
links, satellite-HAP link (SHL) and inter-HAP link (IHL),
in addition to the satellite-GS link and inter-satellite link (ISL)
which exist in prior studies. We apply the Shadowed Rician
channel fading model to analyze these links since there will be
direct LoS and multi-path links during the visible periods, and
the transmission between satellites can be affected by various
factors including atmospheric conditions, rains, and obstacles
or debris in space. Note that HAPs and LEO satellites can use
free-space optical (FSO) links instead of radio frequency (RF)
links to communicate at much higher data rates. However,
we do not take this advantage in our simulation, so we can
have a consistent setup with current state-of-the-art research
and a fair comparison.

Our analysis of SHL takes into account four factors: i) free-
space path loss, ii) antenna gain of the transmitter and receiver,
iii) antenna pointing error and shadowing, and iv) fading of the
channel. Consequently, the total link budget of SHL between
a satellite k and a HAP #, without small-scale fading, can be
expressed as [22]

Gr Gr(9)

SHL(k, ) = 1=,
5 p

(6)

where G is the antenna gain of a HAP £, G (6) is the beam
gain of a satellite k,which given by [23]

I

where G}, is the antenna gain of k, J(-) is the Bessel function,
and k; is a constant denoting the distance between the beam
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of a satellite & to a HAP £ and its entire coverage radius. Ly, 4
is the free-space pass loss between a satellite k£ and a HAP £.
As long as a LoS link between them is established (i.e., not
blocked by the Earth), Ly, ; can be given by [8]

N A
Lm:( 7|k, |sz> ®

c

where ||k, f||2 is the Euclidean distance between satellite k
and HAP f, f. denotes the carrier frequency, and c is the
speed of light. In (6), L, is the antenna pointing error loss,
which can be expressed as [22]

L,=27211x 10 f* 0% D> ©)

where 6. denotes the angle of the pointing error, and D, is
the diameter of the aperture antenna.

When using traditional communication schemes, such as
orthogonal multiple access (OMA) systems, the total time ¢,
required to exchange the local model generated by a satellite
wy with the global model w generated by a HAP £ can be
calculated as:

te =ty +1tp + te + 1y, (10)
q/D| [k, All2
by = R T oo 1D

where t; and t, are the transmission and propagation times,
respectively, t; and t; are the processing delay at a satellite
k and a HAP £, respectively (we omit them in our simulation
since they are much smaller than ¢, and t,), |D| is the data
samples of the dataset D, ¢ is the number of bits in each
sample, and R is the maximum achievable data rate.

In OMA systems, since R is limited by the bandwidth
allocated to each satellite, the time required to transmit a
satellite’s model to a PS can be longer than the satellites’
visibility period and thus will fail. In the next section, we show
that by using NOMA in FL-LEO, we can essentially increase
the value of R and thereby allow for exchanging large satellite
model parameters within a short visible window.

IV. NOMAFEDHAP COMMUNICATION FRAMEWORK

NomaFedHAP is a synchronous FL framework proposed to
address the slow convergence of FL-LEO training due to the
short and irregular visibility of LEO satellites. Fig. 3 shows
an example of a visibility pattern for an LEO satellite con-
stellation, which indicates that each satellite’s visible window
is only a few minutes and the invisible periods (i.e., gaps in
between) are much longer and highly irregular.

The cause of this problem is that LEO satellites fly very fast,
typically taking only 90-120 minutes to orbit the Earth, while
the Earth takes 24 hours to rotate one cycle. More importantly,
satellites and the Earth are moving along distinct trajectories.
As aresult, each LEO satellite meets up with the PS in a very
infrequent and transient manner, and eventually, this impedes
the convergence of FL tremendously.

NomaFedHAP introduces the NOMA communication
scheme to FL-LEO to address this issue. It enables satellites
to fully utilize the entire bandwidth of downlink and exchange
their ML models with the PS at high data rates and low
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Fig. 3. A simulated visibility pattern over two days of six LEO satellites
located in three different shells, each containing two satellites positioned at
an altitude of 500km, 1250km, and 2000km, respectively. The PS is a GS
located in Rolla, Missouri, USA. In the figure, k;_ ; represents the i-th satellite
in the j-th orbit.

bit error rates (BER), thereby drastically reducing the model
transmission time to only a few seconds which is shorter
than any visible window. In consequence, the issue of having
straggler satellites is no longer eminent in NomaFedHAP
despite its synchronous nature.

On top of that, NomaFedHAP introduces other techniques
(OFDM, HAPs, model propagation, unbiased model aggrega-
tion) to expedite FL convergence further, which we describe
in later sections.

A. NomaFedHAP Communication Architecture

To address the high propagation and transmission delays
between LEO satellites and the traditional PS such as GS,
LEO satellite, or MEO satellite, NomaFedHAP utilizes mul-
tiple HAPs following our work in [8] as PS to propagate
the local and global models between LEO satellites and
HAPs. HAPs also serve as relays among orbits, mitigating the
Doppler shift when the PS is an LEO or MEO satellite [7],
[11]. In the stratosphere at an altitude 17-22 km above
the Earth’s surface [24], HAPs, such as unmanned airships,
aircraft, or balloons, serve as quasi-stationary aerial stations
that improve the network connectivity and throughput [25].
In general, HAPs can offer the following advantages over
traditional PS (e.g., GS):

o Enhanced visibility: Due to HAP’s elevated altitude,
it can “see” more satellites at once or see each satellite
more frequently than GS (GS has an angular view of
180° — ©, while a HAP can view even beyond 180°).

o Improved communication environment: HAPs operate
in the stratosphere which offers a clearer, stabler, and less
interfered environment than the troposphere. Moreover,
HAPs and LEO satellites can use FSO rather than RF
links and thereby achieve a much higher data rate and
lower latency (1)-2 ms) [26], [27]. Note, however, that we
do not use FSO in our experiments, for a fair comparison
with other approaches.

o Lower-cost and flexible deployment: A GS can cost
millions of dollars while a HAP costs much lower [28],
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[29]. Also, a GS is difficult to relocate, while a HAP
can move easily for provisioning on-demand services or
adapting to LEO changes.

o Better energy management: HAPs can be powered by
solar panels more effectively due to the higher altitude,
and even completely self-powered with careful trajectory
optimization [30].

Traditional FL communication follows a star topology
where the PS sits in the center. In our work, due to the
introduction of collaborative HAPs as PS and relays between
orbits, we design a two-layer communication architecture. The
first layer is a HAP layer or server layer, which is composed
of all the HAPs that aggregate and transmit global models.
The second layer is a satellite layer or worker layer, which
is composed of all LEO satellites that train and transmit local
models. We use intra-orbit ISL only and no inter-orbit ISL for
communication among satellites,” to avoid any considerable
Doppler shift. Therefore, the HAPs will serve as relays that
bridge different orbits.

The server layer is organized in a ring structure for inter-
HAP communication. In addition, each HAP communicates
with a collection of visible satellites from different orbits
as in a star topology. Therefore, the eventual communication
architecture becomes a ring of small stars.

Such a parallel connectivity pattern among the rings can
significantly enhance communication. Even when there is
only a single HAP, our local model propagation algorithm
(Section V-A) allows satellites to leverage current or soon-
to-be visible satellite to exchange models with PS without
waiting for their own visible windows, thus reaping substantial
performance gains.

B. Introducing NOMA to FL-LEO

Fig. 4 gives an overview. For illustration purposes, it only
shows one orbit per shell and a single HAP. However,
NomaFedHAP supports multiple orbits per shell and multiple
HAPs.

NomaFedHAP introduces a hybrid NOMA-OFDM com-
munication scheme to LEO satellites. Specifically, visible
satellites on different shells communicate with HAPs using
PD-NOMA, while satellites on the same shell (i.e., at the
same distance from the HAPs) communicate with HAPs and
other satellites in the same orbit using OFDM (the intra-orbit
communication is for the purpose of model propagation which
is described in Section V-A).

Over the downlink, all the visible satellites from different
shells transmit signals (i.e., their ML models) to their respec-
tive visible HAPs within the whole bandwidth using NOMA.
Each HAP £ € H will thus receive a combined signal y from
all the satellites K’ in A’s visible zone, which can be expressed
as, due to different power allocation coefficients,

y=n+ Z Aevar Ps xy,

keK’

12)

2A satellite has four antennas, two on the roll axis for intra-orbit ISL
communication and two on the pitch axis for inter-orbit ISL communication.
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where )\, is the channel coefficient of k-th satellite, a; is a
fractional power coefficient, P; is the maximum downlink
transmission power of each visible satellite, and xj is the
k-th satellite’s signal with unit energy. The other term,
n ~ CN(0,0?), is complex additive white Gaussian noise
(AWGN) with variance 02 = KT B, where K = 1.38 x
10723 J/K is the Boltzmann constant, T is the noise temper-
ature, and B is the bandwidth.

The power coefficient a; is adjusted by each satellite &
based on its channel condition, and satisfies Zke,c, ar < 1to
limit the interference from other satellites. Note that a; is
inversely related to the satellite’s channel condition, which
means that a satellite with a poor channel will select a higher
transmission power coefficient.

Next, each HAP starts to decode the combined signal
using successive interference cancellation (SIC) iteratively.
The satellites are ordered according to their channel gain
(strongest first), as

2> (X2 > > Ak (13)

The HAP will then decode the signal of the strongest satellite
first, i.e., 1, by treating the signal from other satellites as
interference. Next, it re-modulates and subtracts the decoded
signal z; from the received signal y. After that, it performs
SIC for the next strongest satellite (i.e., x2) and so forth until
the last satellite’s signal xj is decoded. See Fig. 4 for an
illustration.

In our analysis below, we focus on the downlink NOMA,
as the uplink in our system can use any standard satellite
communication scheme since it only involves the PS broad-
casting the same global model to all the satellites, and thus
each satellite independently decodes a single signal.

1) Signal-to-Interference Noise Ratio Analysis: Once all the
visible satellites’ signals are decoded at the HAP, the signal-
to-interference noise ratio (SINR) of the first satellite (i.e.,
strongest signal) can be computed by [31]:

SINR; = ayp|\i|? (14)

where p = P,/o? is the signal-to-noise ratio (SNR). For the
the remaining visible satellites k € X', k # 1, the SINR can
be calculated by

agp| M|
Py Nil2ai + 1
2) Data Rate Analysis: Once the SINR of downlink NOMA
is determined, we can obtain the maximum achievable rate at
a HAP f. Assuming that the symbols x1,xs,...,Tr_1 have

been decoded correctly, the maximum data rate at £ to decode
satellite k£’s symbol xj, is given by

SINR; = (15)

(16)

akﬂ\)\k\g )
p>F T N2a 1

SINR;,

Rkﬂﬁ = lng (1 +

Note that Rj_,; is normalized per unit bandwidth. Conse-
quently, the maximum total rate R;.:q; for a HAP to correctly
decode all its visible satellites’ symbols is

Riotat = Y log,(1+ SINRy) = log, (1+ a1plA|?)
keK’
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Fig. 4. NomaFedHAP with orbital shells 1,2,... N and a single HAP as PS for illustration. Only visible satellites are drawn so all the shown links are LoS
links.

2 i
oY o (1 ) < (B — 6) "6, @n
ek’ k1 P 2=t NifPai + It is assumed that the links between each HAP /£ and the
y 1 \ 2 1 azp|a|? GS (for transmitting the final global model after the training
= ‘09, +ap|M|” ) x (14 ariplhi]? +1 completes) follow Nakagami-m fading, whose PDF can be
expressed by [22]
y <1+ azp|\s[* % myg\ ™ gl Y
arpMP +azp a2 +1)7 7 :(7) T e 2
1p| M| 22P| 2| Fingz (@) Q, Ty © (22)
= log, (1 +p Z | Akl ak)' (I7) " where mj and € are the severity parameter and the average
keK’ power of LoS, respectively, for a HAP #. Hence, the CDF for
When p > 1, Riotar can be approximated as fixs2 (z) can be given by
m;—1
Riotar = log, (p 3 ilar). (18) ey g 1
? ;;/ Fap@) =1—e %" > (@x)m. (23)
n=0

3) Channel Model Statistics: The downlink between each
visible satellite k& and its connected HAP can be modeled by
a shadowed-Rician fading channel, whose probability density
function (PDF) of |\ |? is given by [32]

4) Outage Probability Analysis: Here we analyze the
NOMA downlink reliability from the perspective of system
outage probability (OP). In the context of LEO satellites,
OP refers to the probability that the received power at a HAP

Sz () = prel PR By (my; 1; 0p) (19) A falls below a threshold such that the SINR is too low for
L ( i) 3 L the HAP to decode the correct signal z;. Mathematically,
where pr = mmm’“, k= ap Ok =
m, 1F1(.5.;.) is a confluent hypergeometric func- OP; =1~— PT(Ql NQ20---N Qk) 24)
tion of the first type [33], 2by, is the multi-path component, m;, Wwhere Q;,j = 1,..., k, denotes the event that a satellite signal

is the integer-valued fading severity parameter of the channel, x; is correctly decoded by HAP f. The OP can be rewritten
and €, is the average power of the LoS link. Using my, the as

hypergeometric function | F} can be expressed as 2
yperg 1Py p oPk — pr(ngRkHﬁ < th) _ p,«(% <75h)

my—1 i i P Ai]ai+1
(=1)"(1 — mg),(0k)

Fy(my; 1;8p2) = %%® k LN |2a 4 1
1F (my, k) ; (i!)2 :Pr<|)\k|2< (P Xicy [l )
agp
k(%) 5 . N
mi—1 =P7"(|>\k| <77k> = Fixg2 ()
= e5k$ Z Kj(i)7 (20) 3 mg—1 % il ]
i=0 =1 — ppe” Be=0k)mi Z k(1) 7(772)]
where (-); is the pochhammer symbol. With the aid of =0 =0
[34, Eq. (3.351.2)], we obtain the cumulative distribution x (B _5k)*(i*j+1) (25)

function (CDF) for f|y,2() as in (19) as v )
where ~;; is the SINR threshold of k-th satellite to be

M1 L correctly decoded and 77 = max{n ..., ME} with
_ -5 . (23 - i k 1,712, » Mk
Fiage (@) = 1= e Or00e % H(Z)Zﬁﬂ?] A (p T A ait)
i=0 j=0"" nj = a;p :
J
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Below, we derive a closed-form OP expression for the near-
est satellite (NS) and that for the farthest satellite (FS), which
represent the strongest and the weakest signals, respectively,
with respect to any HAP A. We also derive the closed-form
OP for the entire LEO system subsequently.

a) Derivation of OP for the NS: The outage for the NS
scenario occurs when the NS’ transmitted signal g cannot
be successfully decoded by its connected HAP £, which can
be expressed as

opPN® = Pr(+Y S <~y )— NS >N )

where WN S = 22Rns _ 1 is the target SINR threshold for the
NS to be correctly decoded by £, and Ry is the target data
rate for correctly receiving the NS’s signal by A. The SINR
N5 can be written as

— Pr(y} (26)

NS = ansp [Ans)? 27)

Using (27), we can write OPN9 as

NS
Ttk “’1)
aNs

=1- (1 — Flaysp2 (A w1)) = Flays2 (A wr) (28)

OP;VS =1 —P’I”<|/\Ns|2 Z

—Yt h

where A = and wy; = =. With the aid of (21), we obtain
the closed-form expression for oP}NS a

mp—1 i

e . 7! ;

OFY'S =1~ pre= G4 37 553 B (en’
i=0 j=0""

X (B — 0p) (I HD

b) Derivation of the outage for the FS: The OP for the
FS scenario occurs under two conditions: 1) its connected HAP
f fails to decode both the NS signal xyg and its transmitted
signal Fyg, and ii) £ can decode the NS signal s but cannot
decode its signal zpg. Mathematically, that is

(29)

OP,fS Pr( <fyt )Pr( <%h )
+Pr( NS >’y )Pr( <'yt )
=1- Pr( FS > ’Yth ) (30)

Similar to NS, ’yF S = 22Frs _ 1 denotes the target SINR
threshold of the FS to be correctly decoded by £, and Rpg is
the target data rate for correctly receiving the FS’s signal by
A. But here v is given by

apsp|Ars|?
P PalPai+1
Similar to the derivation of OPHN 5. we can derive the

closed-form expression for the OP of the FS scenario by
substituting from (21) as follows:

vES = (31)

mp—1 i -y _
ORFS =1 — e 3™ iy 3" 2 (i
i=0 j=0""

X (By, — 0)~(—IHD (32)

P NilPait1

and wy = >

,YFS
where |/ = -t
afgs
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c) Derivation of OP for the entire LEO system: By
combining the outage experience at £ for both NS and FS
scenarios, the overall system OP can be expressed as®

OnggflfPT( S>'y )Pr( S>’y )
=1- (1_F\/\NS\Q(A wl)) (1_F\>\FS\Q(E wQ))
mE—1
=1—- ‘ukei(ﬂkigk)Awl H(Z) %(Awl)J
( Zz:; JZ::OJ!

X (B = 8) 07D
mp—1

x (e (0B 37 (i)

i=0

5 2 (B x (5 - 5) (D)

Jj=0 It

To the best of our knowledge, the OP of NOMA for

LEO satellites as “clients” has never been derived in the
literature. Additionally, we also demonstrate via simulations
that our NomaFedHAP scheme achieves higher data rates and
experiences less outages even when a large number of satellites
communicate simultaneously with the PS.

(33)

V. NOMAFEDHAP CONVERGENCE FRAMEWORK

In NomaFedHAP, FL convergence is achieved through two
key components, a model propagation algorithm, and a model
aggregation algorithm. The model propagation algorithm is
proposed to minimize the “idleness” in traditional synchronous
FL-LEO approaches, where “straggler” satellites cause the PS
to idly wait for long periods for model exchange. Note that
unlike existing works which resort to asynchronous FL and
thereby face the stale model problem, our solution keeps the
synchronous nature (and hence benefits from all instead of a
subset of models) yet still accelerates the process substantially,
by enabling intra-orbit client communications. The second
component, the model aggregation algorithm, runs on the HAP
layer and aggregates the sub-orbital models received from
each HAP. This model aggregation algorithm differs from
traditional FL, which only aggregates individual client models.

A. NomaFedHAP Model Propagation Algorithm

This algorithm consists of propagation of global, local, and
sub-orbital models, as illustrated in Fig. 5 and explained below.

Global Model Propagation within HAP Layer (Fig. 5a).
When there are multiple HAPs in the HAP layer, one HAP will
be designated as the source while the other (the farthest one
from the source) as the sink. To begin with, the source HAP
generates the initial global model w® and sends it to its adja-
cent HAPs via IHL. Simultaneously, it also broadcasts w" at
different altitudes using our proposed NOMA-OFDM scheme
(see Section IV-B). The adjacent HAPs, upon receiving w®,
forward w? to their respective next-hop neighbors, and also
send it to their respective visible satellites. This continues until

3Note that our derivation has accounted for the case when there are extra
satellites between NS and FS, which can be seen from (31).
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(a) Global model propagation within the HAP
layer.

Fig. 5.

(b) Local and sub-orbital models propagation
within the Satellite Layer.
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Source HAP

Sink HAP

(c) Sub-orbital model propagation within the HAP
layer.

Tllustration of the proposed model propagation algorithm. (a) The source HAP £y forwards the global model w? to the sink HAP Ag; (b) Visible

satellites are represented by blue, and invisible satellites by black. Colored curved arrows show the propagation of models (global model and sub-orbital
model) from ko — k4, k4 — k7, kv — k10, k10 — k11, k11 — ko. (c) The sink HAP f4 propagates the sub-orbital model wy? to the source HAP

fi1 along the reverse pathway.

the sink HAP receives w” and transmits it to its currently
visible satellites. In subsequent rounds (3 = 1,2,...), the
same procedure as above takes place again, except that w°
is replaced by w”.

Local and Sub-orbital Model Propagation within Satel-
lite Layer (Fig. 5b). In any round, say the (-th, as soon as
the visible satellites successfully receive and decode the global
model w?, each of them performs two tasks. First, it retrains
w? using its own data to obtain an updated local model 'wf .

Second, it transmits both w”? and a weighted version of 'w',f s
which is wg = fykwg + 0 (see Eq. (34) below, where
is defined similarly), to its next-hop satellite k¥’ via ISL. The
propagation direction is pre-designated as either clockwise or
counterclockwise. Sending w? is to ensure &’ to have a copy
of the global model regardless of whether k’ is visible to any
PS. Next, the satellite & will first retrain w?” to obtain wf,,
like what k& did; then, it will perform sub-orbital aggregation
by combining its own 'wg/ with the received 'wg (which has
been weighted by k) as follows:

w’g, = %/wf, + wf (34)
where v, = |Dy/|/|D| is a scaling factor that weighs model
importance according to data size, |Dy/| is the data size of
satellite ¥’ and |D| is the sum of all the data sizes in the
same orbit. Thus, wg, is a partially aggregated model which
we refer to as an sub-orbital model. Next, wg, will be sent to
the next-hop satellite (say k"), together with the global model
w”, like above. This uni-directional forwarding continues until
reaching a visible satellite (say £*), which will stop forwarding
further; instead, after training and partial-aggregation like
above, it will transmit the aggregated model wf* to its visible
HAP using NOMA, with a power coefficient based on its
current altitude (static and dynamic power allocations are both
evaluated in Section VI). Hence essentially, Eq. (34) is FedAvg
computed in a sequential manner.

In summary, unlike traditional FL approaches where the PS
must wait for all the satellites to be visible for an appropriate
visibility period before receiving their updated local models
and then aggregating them into a global model, we are able

to “activate” all satellites, even those that are invisible or
visible within a short visibility period (through introducing
the NOMA scheme), by propagating satellite local models
together with the sub-orbital models to invisible satellites
within the same orbit, and thus accelerate the FL convergence
processes.

Sub-orbital Model Propagation within HAP Layer
(Fig. 5c). After each HAP receives the sub-orbital models
from all its visible satellites, it will propagate these sub-orbital
models along the reverse pathway (from the sink HAP to
the source HAP). The source HAP will then aggregate all
the received sub-orbital models into a global model whtl,
following Section V-B (Eq. 37), and propagates w®’*! to all
the HAPs as in phase 1 (Fig. 5a).

Algorithm 1 summarizes the above three phases of model
propagation. It has an overall complexity of O(T xA)), where
T is the number of iterations until the termination criterion is
met, and A represents the nested loop operations governing the
training, aggregation, and propagation of models by invisible
satellites. Please note, the loops at lines 2, 6, 8, and 15 occur
concurrently, while lines 9-11 run sequentially.

B. NomaFedHAP Model Aggregation Algorithm

When all HAPs gather the sub-orbital models from their
visible satellites, a propagation round begins from the sink
HAP to the source HAP by forwarding the received models.
Once the source HAP receives all sub-orbital models, it sorts
them as follows:

U’ =1{8,8,,...,5.} (35)

where U” is the set of all sub-orbital models received by
HAPs in round 3, and S; C UP is a subset of UP that
comprises all sub-orbital models for an orbit /, which can be
expressed as

Si={ {wiba, (Wl {whn ) G6)
—— N—— ——
Us=1 Up=2 Un

It is possible for S; to encompass redundant sub-orbital
models, particularly when a satellite is visible to multiple
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Algorithm 1 NomaFedHAP Model Propagation
Algorithm

Algorithm 2 NomaFedHAP Model Aggregation
Algorithm

Initialize: Global iteration 3=0, w”, and Uy |5 = ¢
1 while Termination criterion is not met do

2 foreach 1 € H do > Global Model
Propagation from source to sink
HAP
3 Forward w” to its next-neighbor HAP
4 if A has LoS connection with satellites then
5 | Transmit w” to its visible satellites
6 foreach k € K that is visible to h do
> Local/Sub-orbital Models
propagation
7 Retrain w” to update 'w'Z using its own
data
8 foreach invisible k' between k and k + 1
do > Aggregation of
sub-orbital models
9 Retrain w” to update w’g, using its own
data
10 Aggregate wf and wf, using (34)
11 Propagate w” and wf to next k'
12 Transmit wf by Sat k + 1 to its visible
HAP
13 Update Uy «— U, U {wf}
14 Store all the propagating Sat IDs
15 foreach 1 € H do > Sub-orbital Models
Propagation from sink to source
HAP
16 L Transmit U/, to the next neighboring HAP
17 g—p+1

Note: The above process provides a sequential representa-
tion for clarity. However, in real-world scenarios and our
simulations, computation and transmission occur concur-
rently.

HAPs at the same time. In such cases, NomaFedHAP utilizes
satellites’ IDs, which are unique and sent as metadata with
each sub-orbital model, to filter out these redundant models.
Consequently, NomaFedHAP yields U'® = {81,,80,>
S7}, where S] is a set of distinct sub-orbital models for an
orbit /.

Subsequently, for all orbits L, NomaFedHAP checks
whether any satellite ID has been excluded from {’%. This
scenario occurs infrequently, typically when an orbit lacks
visible satellites to any HAP for an extended time. In such
cases, NomaFedHAP will not generate an updated version of
w” immediately. Instead, it waits until any HAP £ receives
the sub-orbital models containing the IDs of those satellites.
These sub-orbital models are then transmitted to the source
HAP to update /’°. This ensures a balanced collection of
models from all orbits, allowing all satellites to contribute
equally in generating w®. It also prevents biasing the global
model toward a specific orbit.

Initialize: U/° # ¢
1 while Termination criterion is not met do

2 Sort all received sub-orbital models as (35)
and (36)
3 Filter redundant sub-orbital models from U/”

according to satellite IDs

Generate U'P

if Source HAP receives all sub-orbital models then
| Aggregate w’T! using (37)

else
L Wait for all sub-orbital models to be received

9 B—p+1

® N n &

Once the source HAP has received all the remaining
sub-orbital models and updated /"?, NomaFedHAP aggregates
all the models in U’* as follows:

L H |D|luﬁ’

wtt=3">" W“’z@;

=1 f=1

37

where |D|},, is the total data size of the satellites in the set
Uj for an orbit [, whereas |D|; is the total data size for an
orbit . Subsequently, the entire procedure will recommence
from Section V-A, until the FL. model is converged.

Algorithm 2 summarizes the entire process. It has an overall
complexity of O(T(BLog2B)), where B is the number of
received sub-orbital models. The (BLog2B) term signifies the
complexity of sorting and organizing the models, which dom-
inates the filtering operations and the subsequent aggregation
process.

C. Convergence Analysis of NomaFedHAP

In this section, we analyze the convergence of the NomaFed-
HAP approach. To do that we make the following assumptions
regarding the loss functions of the satellites Fi,..., Frk,
1 < k < K. These assumptions align with the commonly
encountered assumptions in the FL literature [35], [36].

Assumption 1 (Smoothness): All the functions Fi,..., Fg
in Equation (3) exhibit A-smoothness, as for any a and b € R?
and any k € I, it holds that:

Fil@) < Fi(B) + (a— ) VEL(b) + 5 la— bl

Assumption 2 (Strong convex): All the functions Fi,...,
Fyx in Equation (3) exhibit p-strongly convex, as for any a
and b € R and any k € K, it holds that:

Fi(@) > Fi(b) + (a—b) VEL(5) + Slla— bl

Assumption 3 (Bounded variance): Let f,f be a data point
randomly sampled from the dataset Dy, of satellite k. The vari-
ance of the stochastic gradients at each satellite is constrained
as follows:

E||V Ey(w], &) — VF(w))|3 < o7
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This constraint applies to all satellites, with k ranging from
1t K.

Assumption 4 (Bounded stochastic gradients): The square
norm of the expected stochastic gradients of Fy, is uniformly
bounded, satisfying the inequality:

E||V Fy(w, €03 < G

This constraint applies to all satellites, with k ranging from
11t K.

Theorem 1: Supposing that Assumptions 1-4 are met, with
A, 0,0k, and G defined accordingly, we can consider a Fed-
erated Learning in Low Earth Orbit (FL-LEO) configuration
with K fully participating satellites in each round (3. In this
setup, the goal is to train a machine learning model as in
Equation (3), and as a result, the NomaFedHAP framework
fulfills the following condition:

2v
Bly — p* <
B{F ()] - I < 5

Here, we set v as %, 0 as max{8uv, J}, the learning rate (g
and define Z as

Z
(Q + 2A[|w® — w*||§> (38)

2
RICEOR
K
Z = ay’or” + 6AT +8(J — 1)°G”
k=1

. D
where oy, is calculated as ‘IDkl

participation, and ' = F* — ZkK:l apFyF > 0.
We provide the proof of Theorem 1 in Appendix.

and represents the full satellites

VI. PERFORMANCE EVALUATION
A. Experiment Setup

1) LEO Satellite Constellation: We examine a Walker-delta
constellation K [37] consisting of 60 LEO satellites in six
orbits, with ten satellites in each orbit (see Figs. 6 and 7).
The six orbits are located on three different shells at altitudes
of 500 km, 1000 km, and 1500 km above the Earth’s surface.
Each shell contains two orbits and each orbit has an inclination
angle of 70°. We examine a variety of PS scenarios, including
GS, single HAP, two HAPs, and three HAPs. For both the GS
and single-HAP scenarios, they are located at Rolla, Missouri,
USA (but can be anywhere of/above the Earth). The scenarios
with two/three HAPs involve one HAP positioned above the
city of Chinook, MT, USA, and another HAP positioned above
the city of Primorsky Krai, Russia, in addition to the HAP
above the city of Rolla, USA. All PSs are situated at an
altitude of 25 km above the Earth’s surface and maintain a
minimum elevation angle of 10°. To compute the visiting
pattern of LEO satellites to each PS, we use a simulator
called Simulator Tool Kits (STK) developed by AGI. All PS-
Satellite connections are monitored over a period of three days
to obtain a comprehensive set of results.

2) Communication Links: The parameters pertaining to the
communication channel of the NOMA system, as discussed
in Section III-B, are assigned as follows: P, varies from —40
to 40 dBm, the antenna gain for G () and Gpgs is set to
6.98 dBi, the carrier frequency f is 20 GHz, T is 354.81 K,
and B is set to 50 MHz. The power allocation coefficients
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allocate 75% and 25% power to the FS and NS, respectively.
The path loss exponent is 4, and the fading severity parameter
m is 2. The average power of the multi-path component
¢ and the LoS component 2 are set to 0.279 and 0.251,
respectively. Finally, we select the communication channel
type as shadowed Rician, with QPSK as the modulation type.

3) Baselines: To the best of our knowledge, the NOMA
scheme has not been introduced to FL with LEO satellites
as clients before. Therefore, we first investigate the per-
formance of NomaFedHAP with a single HAP as PS in
comparison with traditional OMA schemes. Second, we com-
pare NomaFedHAP against state-of-the-art (SOTA) FL-LEO
approaches proposed recently and reviewed in Section II,
including:

¢ Synchronous FL approaches: FedAvg [4], FedHAP [8],
FedISL [7], and DSFL [11].

o Asynchronous FL approaches: FedSatSchedule [14],
FedSpace [15], FedSat [13], AsyncFLEO [17], and
FedAsync [5].

4) Datasets and ML models: To evaluate the performance
of NomaFedHAP against baseline approaches, we focus
on image classification. We employ commonly used model
training datasets including MNIST, CIFAR-10, and CIFAR-
100, which are frequently utilized in various FL-SatCom
studies [6], [8], [14], [17]. In addition, despite the lack
of space application datasets, we utilize a real dataset of
high-resolution satellite images called DeepGlobe for road
extraction to provide a realistic evaluation of NomaFedHAP
as well as demonstrate its applicability to real-world scenarios.
The specifics of each dataset are as follows:

o MNIST [38]: is a dataset consisting of 70,000 grayscale
images of handwritten numbers of size 28 x 28 pixels.
To train our satellites, we use a convolutional neural
network (CNN) with three convolutional layers, three
pooling layers, and one fully connected layer with
437,840 trainable parameters.

o CIFAR-10 [39]: is a dataset consisting of 60,000 colored
images of ten classes, each with 6000 images. Each image
has a size of 32 x 32 pixels (images of animals and
vehicles). To train our satellites, we also use the CNN
model with 798,653 training parameters.

e CIFAR-100 [39]: is a dataset similar to CIFAR-10,
but contains 100 classes with 600 images each, which
makes the training task more challenging. As a result, the
CNN model is constructed using six convolutional layers
and two fully connected layers, with 7,759,521 training
parameters.

o DeepGlobe for Road Extraction [40]: is a dataset
consisting of 6,226 colored satellite images of size
1024 x 1024 with a high-resolution of 50 cm/pixel. For
more effective training, we apply various data augmen-
tation techniques, such as flipping, rotating, and contrast
adjusting, resulting in a dataset size of 12,452. To train
our satellites, We use the U-Net model with 3,048,576
training parameters.

Our analysis considers both IID and non-IID data distributions
(except for DeepGlobe where the images are already non-1ID).
In the IID setup, each satellite on each shell trains over
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(a) GS located in Rolla. (b) Single HAP

Fig. 6.
USA; Chinook, USA; and Primorsky Krai, Russia.

(b) Single HAP

(a) GS located in Rolla.

Fig. 7.
USA; Chinook, USA; and Primorsky Krai, Russia.

the same classes of images, but these images are shuffled
randomly and distributed equally across satellites. In the non-
IID setup, satellites on each of two shells train on a distinct
set of 30% of the classes, while satellites on the other shell
train on 40% of the classes. The training hyperparameters are
set as follows: the number of local training epochs is 100, the
learning rate ranges from 0.1 to 0.0001, and the mini-batch
size is 32.

B. Evaluation of NomaFedHAP’s Communication Scheme

We first compare the performance of the NomaFedHAP
scheme to traditional OMA schemes with LEO satellites
as clients. Figure 8.a shows the BER performance against
transmitting power of an NS and FS satellite at altitudes
of 500km and 1500 km, respectively, for various scenarios:
i) when using the NomaFedHAP with both static and dynamic
power allocation (PA) based on their distance to £, and
i) when employing the OMA scheme. According to this
figure, the OMA scheme achieves a slightly better BER com-
pared to both PA scenarios of NomaFedHAP. This advantage
is because the transmitted data from various satellites do
not interfere with each other in OMA. However, despite this
small improvement in the BER, the capacity of satellites that
NomaFedHAP can support simultaneously at the same time
and frequency is much higher compared to OMA. This is illus-
trated in Fig. 8.b, which shows the achievable satellite capacity
versus transmitting power of the simulated NomaFedHAP
approach.

Furthermore, in Fig. 9.a, we compare NomaFedHAP’s
achievable data rate versus transmitting power under various
scenarios of altitudes for NS and FS, as well as for the
overall system rate. From this figure, we observe that when
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Simulated Walker-delta constellation in 2D with a variety of PS scenarios: (a) GS located in Rolla, MO, USA, (b-d) HAPs located above Rolla,
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(c) Two HAPs (d) Three HAPs

.

Simulated Walker-delta constellation in 3D with a variety of PS scenarios: (a) GS located in Rolla, MO, USA, (b-d) HAPs located above Rolla,

the distance between the NS and FS is large enough, the
overall system rate is higher compared to smaller distances.
This is because the PS can easily decode the signals from
distant satellites without interference. Notably, in both cases,
the achievable data rate ranges from 140 Mbps to 160 Mbps
at a transmitting power of 40 dBm and bandwidth of 50 MHz,
which is more than sufficient to transmit large models like
the VGG-16 model of 528 MB. This means the uploading of
models to the PS only takes around 30.17 to 26.4 seconds,
demonstrating that employing NOMA with LEO satellites
significantly reduces the required time for model uploading
from minutes to just a few seconds.

In Fig. 9.b, we show the OP experienced by /£ versus
transmitting power for the same two scenarios of the NS
and FS, as well as for the overall system. According to the
simulated results, the overall outage of the communication
between the NS or FS to the PS is around 1% chance when
the transmitting power is around 20 dBm, and this decreases
to 0.1% when the transmitting power is increased to 40 dBm.
These results demonstrate that NomaFedHAP achieves lower
OP under various scenarios.

Finally, in Fig. 10, we show the total sum rate versus the
maximum number of satellites that NomaFedHAP can support,
considering varying multi-path and LoS average powers at
different transmitting power levels. Two key observations
emerge from this figure. Firstly, NomaFedHAP can support
a high number of satellites even with lower multi-path or
LoS average power. For instance, with a transmitting power
of 30 dBm, using ¢:=0.279 and 2=0.251, NomaFedHAP
can communicate with 14 satellites simultaneously, achieving
12 bps/Hz, and with B=50 MHz, each satellite will have
approximately 600 Mbps. In addition, increasing B will
further boost the sum rate and allow for an increase in
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Fig. 9. Comparison of achievable data rate and outage probability for Nomal

the number of supported satellites while maintaining high
data rates. Secondly, there is a drop-off point beyond which
the data rate decreases. However, even after this drop-off,
NomaFedHAP still supports a substantial number of satel-
lites with high data rates. Therefore, introducing NOMA to
FL-LEO significantly improves system capacity, allowing for
more satellites to be launched without bandwidth limitations
experienced with OMA schemes.

C. Evaluation of NomaFedHAP’s Convergence Operation

1) Comparing NomaFedHAP With Baselines: Table I
presents the convergence performance of NomaFedHAP
against baselines based on MNIST, CIFAR-10, and CIFAR-
100 datasets in a non-IID setting with a GS in Rolla, USA
serving as a PS. Additionally, we use a GS at NP for
some baselines to align with their setup environment. The
table shows that NomaFedHAP achieves an accuracy of
82.73%, 77.36%, and 62.81% on the MNIST, CIFAR-10,
and CIFAR-100 datasets, respectively, within only 24-hour

Transmitting Power [dBm)]
(b) The outage probability vs. transmitting power.

FedHAP at two altitudes (NS and FS). B=50 MHz.

timestamp and without any impractical assumption using a GS
as baselines, and not HAPs (results with HAPs are provided
in Table II).

Asynchronous approaches such as FedSat [13], or
AsyncFLEO [17] can achieve better or comparable accuracy to
NomaFedHAP. However, their usability in realistic scenarios
is limited due to their oversimplified assumption that satellites
should visit the GS in a regular manner or overlook the
sink satellite’s visibility period. When the authors of FedSat
omitted this assumption by developing FedSatSchedule [14],
the convergence speed is doubled to 48 hours, and the
accuracy is reduced by 14-24% in comparison with FedSat
on different datasets. Although FedSatSchedule offers more
realistic consideration, traditional FedAsync [5] can achieve
similar accuracy for the same convergence period. Despite
FedSpace’s [15] efforts to balance idleness and staleness
in synchronous approach and asynchronous FL approaches,
respectively, its performance is limited to 50% or less on the
three datasets tested.
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TABLE I
ACCURACY AND CONVERGENCE TIME OF NOMAFEDHAP VS. BASELINES UNDER NON-IID SETTING
FL-LEO Accuracy (%) Convergence |Remark
Approaches MNIST |CIFAR-10 |CIFAR-100 time (h)
FedAsync [5] 70.36 61.81 56.37 48 GS at any location
é FedSat [13] 85.15 81.18 72.19 24 GS located at the NP
g | FedSatSched [14] | 73.61 62.77 54.59 48 GS at any location
>
< | FedSpace [15] 52.67 39.41 36.04 72 Satellites need to upload portion of their raw data
AsyncFLEO [17] |79.49 69.88 61.43 9 Assuming enough visible period for sink satellites
FedAvg [4] 79.41 70.68 61.66 60 GS at any location
FedISL [7] 82.76 73.62 66.57 8 GS located at NP
d FedISL [7] 61.06 52.11 47.99 72 GS located at any location
E FedHAP [8] 81.62 76.63 59.89 48 GS located at any location
| DSFL [11] 76.69 71.63 62.18 19 Require higher data rates for model exchange due to Doppler shift
FedLEO [12] 84.69 73.26 61.31 36 GS at any location (requires scheduling sink satellite)
NomaFedHAP |82.73 77.36 62.81 24 GS located at any location
TABLE II
ACCURACY AND CONVERGENCE TIME OF NOMAFEDHAP UNDER VARIOUS PS¢ SCENARIOS
I I MNIST Dataset I CIFAR-10 Dataset I CIFAR-100 Dataset |
Accuracy (%) |Converge Time (h) Accuracy (%) |Converge Time (h) Accuracy (%) |Converge Time (h)
PS 11D Non-IID |IID Non-1ID ||IID Non-1ID |IID Non-IID ||1ID Non-IID |IID Non-IID
GS 97.14 |90.69 24 36 88.28 [80.23 32 42 76.56 |71.99 52 61
Single HAP [|93.12 {90.88 3 9.11 85.19 [82.5 492 |12 78.28 |72.82 48 54
Two HAPs ||96.23 |93.67 1.74 3.68 87.67 |83.29 3.17 4.38 77.67 |75.13 24 30
Three HAPs||97.62 |95.19 1.62 |3 89.13 |84.67 2.27 |3.81 80.09 |78.62 22 26

For the synchronous FL approaches, FedISL [7] is the
fastest synchronous FL approach with a convergence time of
8 hours and an accuracy of 82.76%, 73.62%, and 66.57% on
MNIST, CIFAR-10, and CIFAR-100, respectively, when the
GS is located at the NP. However, when the GS location is
changed, its accuracy drops to 61.06%, 52.11%, and 47.99%
on the same datasets after 72 hours of training. DSFL [11]
is the second fastest, converging within 19 hours, however,
it suffers from the Doppler shift due to the inter-orbit ISL
communication. The comparison with the rest of the baselines
is summarized in Table I.

2) Evaluating NomaFedHAP in-Depth: We extensively
evaluate NomaFedHAP’s performance across various
scenarios, including various PS setups and datasets with
different distribution settings. The left side of Table II
shows the maximum achievable accuracy with respect to
the convergence speed of NomaFedHAP on the MNIST
dataset. The results indicate that utilizing HAP as PS instead
of traditional PS significantly accelerates the convergence
of the FL, reducing the convergence speed from days to
just a few hours without sacrificing the target accuracy.
When two/three HAPs were employed, there was a slightly
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Convergence time (h)

(a) MNIST dataset.

Fig. 12.

different improvement in convergence speed for the IID
setting compared to the single HAP scenario. However, the
use of multiple HAPs had a more significant impact on the
convergence speed for the non-IID settings, particularly when
compared to the GS scenario. These findings demonstrate
that employing multiple HAPs as PSs can enhance the
convergence speed and have a substantial influence on the
FL-LEO system.

Table II also shows the accuracy and convergence speed
of NomaFedHAP using more complex datasets of CIFAR-10
and CIFAR-100. The trends observed on these datasets are
similar to those seen on the MNIST dataset. According to our
evaluation of NomaFedHAP’s performance using these two
datasets, we find that when the number of classes increased
from 10 to 100, there was a reduction in accuracy of 10-15%
and an increase in convergence time of 14-45 hours.

Fig. 11 and Fig. 12 evaluate the performance of the
NomaFedHAP under various evaluation conditions on a
larger scale. From these figures, we can infer using even
a single HAP in lieu of GS can provide higher conver-
gence accuracy with less convergence time by an order of

magnitude. This advantage also still holds under various
datasets and tough distribution (non-IID), which proves its

effectiveness.

(b) CIFAR-10 dataset.
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Fig. 11. NomaFedHAP’s accuracy over time for various datasets in the IID setting.
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(c) CIFAR-100 dataset.

NomaFedHAP’s accuracy over time for various datasets in the non-IID setting.

3) Evaluating NomaFedHAP Using Real Satellite Imagery:
We finally evaluate the performance of NomaFedHAP on real
satellite images of the DeepGlobe dataset for extracting road.
To assess NomaFedHAP’s effectiveness on this dataset, we use
two evaluation metrics: the Intersection-over-Union (IoU) and
Dice coefficient (F1 score), which are more precise than pixel
accuracy for segmentation tasks. The results demonstrate that
NomaFedHAP can accurately detect roads with an IoU of
61.87% and a Dice coefficient of 65.12% after only 5 hours.
These metrics improve to 72.68% and 73.90%, respectively,
after 10 hours. In Fig. 13, we present a sample of images
after 5 hours vs. 10 hours, illustrating that NomaFedHAP

can quickly achieve convergence without compromising model
performance across various datasets.

Comparing NomaFedHAP with one of the baseline
approaches [12], that baseline initially achieves an IoU of
36.18% and a Dice coefficient of 40.11% after 5 hours, which
subsequently improves to 69.32% and 72.76% after 16 hours.
However, NomaFedHAP consistently achieves significantly
higher accuracy—approximately 25% more than this particular
approach. Moreover, other baseline approaches exhibit signifi-
cantly longer convergence times with lower accuracy under the
same settings. Notably, when incorporating realistic satellite
images into the training process, NomaFedHAP demonstrates
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Satellite Image 4

Satellite Image 5

(a) Samples of original satellite images.

Ground Truth Label 1

Ground Truth Label 2

Ground Truth Label 3

Ground Truth Label 4

Ground Truth Label 5

(b) Corresponding ground truth labels of roads.

Predlcted Label 1 Predlcted Label 2

Predicted Label 3

Predicted Label 4 Predicted Label 5

(c) Corresponding predicated labels after 5 hours during convergence.

Predicted Label 2

Predicted Label 3

Predicted Label 4 Predicted Label 5

(d) Corresponding predicated labels after 10 hours during convergence.

Fig. 13.

Comparison of NomaFedHAP’s segmentation performance at two different timestamps (5 hours vs. 10 hours during convergence) over sample

images from the DeepGlobe dataset. The PS is a single HAP located at Rolla, Mo, USA.

the ability to expedite convergence by at least a factor of 2 to
5 when compared to those baseline FL-LEO approaches.

VII. CONCLUSION

This paper introduces NomaFedHAP, a novel FL framework
tailored for LEO satellite constellations, leveraging HAPs as
distributed PSss to facilitate FL. model training. NomaFedHAP
tackles the challenge of much prolonged FL-LEO training
time due to the irregular and sporadic LEO satellite connec-
tivity with the PS, and transient visibility windows. To that
end, NomaFedHAP introduces NOMA into FL-LEO, enabling
efficient utilization of SatCom bandwidth and fast model
exchange between satellites and the PS within just seconds.
Under our new communication architecture, we also derive a

closed-form expression for the outage probability of the NS
and FS scenarios as well as the entire system orchestrated
by HAPs. NomaFedHAP consists of i) a new communica-
tion topology utilizing HAPs as relays to mitigate Doppler
shift among satellites in different orbits, ii) a novel model
propagation scheme for seamless model exchange between
satellites and HAPs, and iii) an optimized model aggrega-
tion approach for balancing models from different orbits and
shells to achieve rapid FL convergence. Extensive simulations
demonstrate NomaFedHAP’s superiority in rapid and efficient
FL model convergence on realistic satellite datasets, while
limiting the OP of NOMA to only 0.1%, outperforming the
state-of-the-art approaches by at least 5 times in terms of
convergence speed.
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APPENDIX
PROOF OF THEOREM. 1

Let wg is the local model updated by satellite k£ during com-
munication round [ with SGD local iterations E > 1 before
transmitting the updated version to the PS. Additionally, let
T represents the set of global synchronization steps, denoted
as I {nEn = .}. Thus, the update equation
for NomaFedHAP, with partially visible satellites, can be
expressed as

VIt = wl — VL (wh €7) (39)
T if 6+1¢ g,
B+1 K
_ 40
wk Zakvfﬂ lfﬁ‘f‘l EIE. ( )
k=1
B+1

In Equation (39), we introduce an additional variable vy ",
which represents the immediate result of one step of SGD from
wg . Here, wf“ can be viewed as the model obtained after
the aggregation round 3 + 1, which corresponds to a global
synchronization step.

Motivated by [36], we define two virtual sequences namely,

=K ;o and @® = 31| . We can therefore

1nterpret 711 as the result of a single-step SGD update from
@?. When B+ 1 is not within Zg, both ©° and @° are inac-
cessible. However, if 8+ 1 is part of Zg, we can only access
w" T, For convenience, we define g° = Zk 1 akVFk('wk)
and g° = Y8, VF(w?, 7). Thus, we have Eg’ = g
and 971! = wP — (g”°

Lemma 1 (Results of single-step SGD) Assuming Assump-
tions I and 2 are satisfied, if (g < then we have:

4A’
El[o7" —w*|[5 < (1 - (po)E[@w” — w3
JFCB]E”g - 8”3
K
+6ACRT +2E Y ag @ — wi|f3.
k=1
where w* is the target model that achieves the desired
accuracy.

Lemma 2 (Bounding the variance): Assuming
Assumption 3 is satisfied, then we have:

Elg’ —g°|3 <Zak0k
k=1

Lemma 3 (Bound wf divergence): Assuming
Assumption 4 is satisfied and (g < 2(g1p is non-increasing
V 3 > 1, then we have:
K
Zak”wk — Wy, Hz < 4(5( 1)2G2-
k=1
Proof: Let AP = E||wi ! —w*||2, and @’ = 57+ in

both scenarios, whether 3+ 1 € Zg or 8+ 1 ¢ Zg. Drawing
upon the results of Lemmas 1-3, we have

< (1-Cpo)A" + (52
For a decreasing step size, let (g = ﬁj— 5 Where e > 1 and

§ > 0 are chosen such that (i < min{3, 7} = 7.

APt (41)

and
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(s < 2§5+E We aim to prove that AP < T
max{ = < Z (5 +1)A'}.

To achleve this, we employ the induction method. Beginning
with the base case of § = 1 and considering the definition
of 7, we ensure its hold for some (3 as follows

ABT1 < (1 —CBQ)Aﬂ+C§Z

_(1_ 5@) T n g2z

N B+6)B+6  (B+06)2
_B+d-1 +[ e2Z  eo-1
G+ " B+3p R

Sﬂ+5+1

Leveraging Assumption 2, which asserts the strong convexity
of F(-), we obtain

A AT
E[F (@) — F* < 5A5 3555
In particular, with the choice of ¢ = % and 4 = max
{82 — 1,E}, and denoting v = 2, we have (5 = 2515,
therefore
E[F(@°)] — F* < 52:5 (j +2AA1)
|
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