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Abstract—Electricity theft is a type of cyberattack posing
significant risks to the security of smart grids. Semi-supervised
outlier detection (SSOD) algorithms utilize normal power usage
data to build detection models, enabling them to detect un-
known electricity theft attacks. In this paper, we applied feature
engineering and ensemble learning to improve the detection
performance of SSOD algorithms. Specifically, we extracted 22
time-series and wavelet features from load profiles, which served
as inputs for the seven popular SSOD algorithms investigated in
this study. Experimental results demonstrate that the proposed
feature engineering greatly enhances the performance of SSOD
algorithms to detect various false data injection (FDI) attacks.
Furthermore, we constructed bagged ensemble models using
the best-performing SSOD algorithm as the base model, with
results indicating further improvements in detection performance
compared to the base model alone.

Index Terms—electricity theft detection (ETD), semi-
supervised outlier detection (SSOD), feature engineering, ensem-
ble learning, false data injection (FDI) attack, smart grids

I. INTRODUCTION

Advanced metering infrastructure (AMI) enhances the ef-
ficiency and resilience of energy delivery and management
in smart grids by enabling a dynamic, bidirectional flow
of energy and information [1]. In the AMI network, high-
frequency energy consumption data are collected from con-
sumers by smart meters deployed by utility companies, which
are used to facilitate data-driven services for energy delivery
and management [1].

However, AMI also introduces a range of security vul-
nerabilities in smart grids [2], one of which is the threat
of electricity theft [3], [4]. Rather than physically tampering
with or bypassing traditional mechanical meters to lower
their electricity bills, electricity thieves can alter smart meter

data through cyberattacks. Substantial financial losses can be
caused by electricity theft for utility companies in various
countries. For instance, a 2017 study by the Northeast Group
found that utilities worldwide suffer annual losses of $96
billion due to non-technical losses (NTLs) including electricity
theft [5]. Therefore, advanced electricity theft detection (ETD)
methods are necessary to safeguard the security and long-term
sustainability of smart grids.

Physical inspections and video surveillance are traditional
methods for detecting electricity theft, but they are time-
consuming and costly [6]. The vast amount of high-frequency
energy consumption data collected by AMI has facilitated the
research of new data-driven ETD methods, primarily utilizing
machine learning techniques.

Supervised learning is the most popular machine learning
technique for detecting electricity theft. Traditional machine
learning algorithms have been utilized to build detection
models, such as decision trees [7], support vector machines
(SVM) [7], and random forests [8]. Recently, the exceptional
performance of deep learning across various domains has made
it a leading approach for ETD. For instance, convolutional
neural networks (CNNs) are a popular choice due to their
effectiveness in this area [9].

Supervised ETD methods require samples of fraudulent
activities of electricity thieves to build effective detection
models, which can be very hard, if not impossible, to obtain
in real-world applications. Unsupervised learning is another
popular machine learning technique for ETD, which solely
relies on unlabeled data to construct models for detecting
potential fraudulent users. Clustering and correlation analysis
are the two main techniques adopted by unsupervised learning-

979-8-3503-7240-3/24/$31.00 ©2024 IEEE



based methods [6], [10]. Unsupervised ETD methods come
with certain limitations, including reduced effectiveness in
detecting specific attack types and longer detection times.

Semi-supervised outlier detection (SSOD), on the other
hand, can address the issues of supervised and unsupervised
ETD methods. Since only normal usage data is employed to
train detection models, there is no need to collect fraudulent
usage data, and the trained models have the capability of de-
tecting unknown attack types. Several studies in the literature
have explored the use of SSOD for ETD. For instance, the
study of [11] evaluated one-class SVM (OCSVM) for this
purpose. Additionally, the study of [12] conducted feature
engineering by extracting 20 time-series features from load
profiles. They considered eight types of false data injec-
tion (FDI) attacks in their study. Their experimental results
demonstrate that using these extracted time-series features
significantly improves the detection performance of SSOD
algorithms compared to using the original load profiles.

This paper introduces a new feature engineering technique
that extracts features from both time and wavelet domains,
aiming to address a broader range of FDI attacks than those
considered in [12]. We explored how this technique can
improve the detection performance of various SSOD algo-
rithms. Additionally, we further improved the performance of
the best-performing algorithm through ensemble learning by
constructing bagged ensemble models with random subspace
sampling, utilizing the features extracted through our feature
engineering.

The rest of this paper is organized as follows: Section II
describes the FDI attacks considered in our study, designed to
simulate the fraudulent activities of electricity thieves. Section
III presents the SSOD algorithms explored, our proposed
feature engineering, and the bagged ensemble model with
subspace sampling used to enhance detection performance.
Section IV provides the results of the performance evaluation
experiments. Finally, Section V concludes the paper.

II. FDI ATTACKS

As far as we know, there is currently no real-world high-
frequency smart meter dataset that includes electricity theft
data. As a result, research in this field typically employs
various FDI attacks to simulate the fraudulent activities of
electricity thieves. Tampered load profiles are generated by
modifying normal load profiles with these FDI attacks to
evaluate the detection performance of proposed ETD methods.
We considered eleven FDI attacks in this study that have been
adopted in other studies [4], [6], [10], [11], which are shown
in Table I. These attacks fall into two categories: reduced
consumption attacks (types 1 to 8) and load profile shifting
attacks (types 9 to 11) [4]. To lower electricity bills, reduced
consumption attacks employ various strategies to directly
reduce smart meter readings. In contrast, load profile shifting
attacks do not change the total daily power consumption but
rather modify the timing of peaks and valleys in daily load
profiles to evade higher electricity prices during specific time
intervals set by utility companies. In Table I, x denotes the

normal daily load profile, xt denotes the reading of the normal
load profile at time instance t, and x̃t denotes the altered
reading of the tampered load profile at time instance t. N
is the total number of readings in a daily load profile. Figure
1 illustrates the effects of different FDI attacks on altering a
user’s normal load profile.

TABLE I: FDI attacks

Attack Type Modification
1 x̃t = αxt, 0.2 < α < 0.8
2 x̃t = f(t)× xt,

f(t) =

{
0 t1 < t < t2
1 otherwise

3 x̃t ← αtxt, 0.2 < αt < 0.8
4 x̃t = f(t)× xt,

f(t) =

{
α 0.2 < α < 0.8, t1 < t < t2
1 otherwise

5 x̃t ← αtx, 0.2 < αt < 0.8

6 x̃t =

{
xt xt ≤ γ

γ xt > γ
γ < max(x)

7 x̃t = max{xt − γ, 0}, γ < max(x)
8 x̃t = (1− f(t))× xt,

f(t) =


αmax t ≥ tmax

β(t− ts) ts < t < tmax

0 t < ts
9 x̃t = x

10 x̃t = xN−t

11 x̃t =

{
xt − λxt t1 < t < t2
xt +

σ
N−n

otherwise

III. METHODS

A. SSOD Algorithms Investigated in This Study

The performance of the following seven popular SSOD
algorithms for ETD was investigated in our study.

• Principal component analysis (PCA): In addition to being
a popular technique for data dimensionality reduction,
PCA can also be applied for outlier detection [13]. When
used for outlier detection, the model is built using the
major and minor principal components derived from
normal samples. The outlier score of a test sample is
determined by its distance in the principal component
space.

• Angle-based outlier detection (ABOD): ABOD draws
inspiration from the notion that angles exhibit greater
stability for outlier detection compared to distances [14].
When a sample is located within a cluster, the angle
between it and pairs of other samples in the cluster shows
significant variability. In contrast, if the sample is an
outlier, the angles generally exhibit minimal variation.
During the training stage, a threshold based on the vari-
ance of angles is established using normal samples, which
is then utilized in the testing stage to detect outliers.

• k-nearest neighbor (KNN): KNN is a simple outlier
detection algorithm, which calculates the outlier score of
a sample by computing the Euclidean distance from the
sample to its k-th nearest neighbor [15].
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Fig. 1: An illustration of the effects of eleven FDI attacks on altering a user’s normal load profile

• Gaussian mixture model (GMM): GMM employs a mix-
ture of Gaussian distributions to estimate the probability
distribution of normal data [16]. The outlier score of a test
sample is computed according to its probability obtained
from the estimated distribution. A lower probability indi-
cates the sample is more likely an outlier.

• OCSVM: OCSVM is a variation of the traditional SVM
algorithm designed specifically for outlier detection [17].
In OCSVM, a kernel function is utilized to map the input
data into a high-dimensional feature space. An iterative
process then identifies a hyperplane that maximizes the
margin between normal samples and the origin. This
hyperplane is used to distinguish between normal and
abnormal samples [18].

• Local outlier factor (LOF): LOF compares a sample’s
local density to that of its neighbors for detecting outliers
[19]. If a sample’s local density is significantly lower than
that of its neighbors, it is considered an outlier.

• Histogram-based outlier score (HBOS): HBOS performs
effective outlier detection by constructing histograms of

input features first [20]. An input feature’s histogram is
utilized to compute its outlier score. The HBOS outlier
score is then obtained by summing all input features’
outlier scores.

B. Feature Engineering

We conducted feature engineering to extract 22 features
from the time and wavelet domains to enhance the effec-
tiveness of SSOD algorithms for ETD. The discrete wavelet
transform (DWT) was performed using the db1 wavelet and
four levels of decomposition. These 22 extracted features serve
as the input for the SSOD algorithms, aimed at aiding in
the detection of malicious changes in energy consumption
amounts and/or load profile shapes. For example, the three
level-4 DWT approximation coefficients not only capture the
approximate shape of the load profile but also represent the
user’s energy consumption during different periods of the day.

• mean: the average value of the load profile
• standard_deviation: the standard deviation of the

load profile



• skewness: the skewness of the load profile
• maximum: the maximum value of the load profile
• minimum: the minimum value of the load profile
• sum_values: the sum of all values of the load profile
• mean_abs_change: the averaging of the absolute dif-

ferences between subsequent values of the load profile
• benford_correlation: the correlation between the

first digit distribution of the load profile and the Benford’s
Law distribution

• last_location_of_maximum: the last location of
the maximum value of the load profile

• last_location_of_minimum: the last location of
the minimum value of the load profile

• first_location_of_maximum: the first location of
the maximum value of the load profile

• first_location_of_minimum: the first location of
the minimum value of the load profile

• percentage_of_recurring_values_to_all
_values: the percentage of recurring values of the load
profile

• sum_of_recurring_data_points: the sum of all
recurring values in the load profile

• has_duplicate_max: a Boolean value indicating
whether the maximum value of the load profile occurs
more than once or not

• has_duplicate: a Boolean value indicating if any
value of the load profile occurs more than once or not

• count_above_mean: the count of values of the load
profile higher than the mean

• count_below_mean: the count of values of the load
profile lower than the mean

• number_peaks: the count of peaks in the load profile
• DWT coefficients: three level-4 approximation co-

efficients of DWT

C. Bagged Ensemble with Random Subspace Sampling

To further improve the detection performance, we con-
structed bagged ensemble models with random subspace sam-
pling using the best-performing SSOD algorithm as the base
model. The random subspace sampling method constructs an
individual detection model with a randomly sampled feature
subset. To apply an ensemble model for detection, the outputs
of individual models are combined with a pre-defined rule. We
considered two rules in our study: MAX and AVG. The MAX
rule uses the maximum posterior probability of all individual
models as the output of the ensemble model, while the AVG
rule uses the average posterior probability as the final output.

IV. EXPERIMENTS AND RESULTS

We adopted the popular Irish CER Smart Metering Project
Dataset [21] for performance evaluation. The sampling rate
for the dataset is 30 minutes per sample, resulting in a daily
load profile containing 48 data points. Our experiments utilized
data from 100 randomly selected small and medium-sized
enterprises (SMEs) over 180 days, spanning from July 15,
2009, to January 11, 2010. Each SME user’s data was divided

into training and testing sets with a ratio of 7:3. Subsequently,
for the load profiles in the testing set, we introduced tampering
in half of them using a selected FDI attack type. The proposed
method was compared against two reference methods: one
directly utilizing the load profile as input for SSOD algorithms,
denoted as RF1, and another employing the 20 time-series fea-
tures extracted with the feature engineering approach proposed
in [12] as input, denoted as RF2. All methods were imple-
mented by Python and the PyOD library [22]. The load profiles
and the extracted features were normalized using min-max
normalization before being inputted into SSOD algorithms.
The performance metric employed in our experiments is the
Area Under the Curve (AUC). The reported results represent
the averages across the 100 SME users, and the result of the
best-performing algorithm for each attack type is marked in
bold.

The performance evaluation results of the two reference
methods and the proposed method in terms of AUC are
reported in Tables II to IV. The results indicate that both RF2
and the proposed feature engineering approach greatly enhance
the detection performance of SSOD algorithms compared to
RF1, highlighting the effectiveness of feature engineering for
ETD. However, RF2, not designed for all 11 attack types,
exhibits lower performance for attack type 10, as evidenced
by its much lower AUC score compared to RF1. In contrast,
the proposed method demonstrates comparable performance
to RF1 for attack type 10 while achieving significantly better
performance for other attack types. Specifically, the best-
performing SSOD algorithm in the proposed method is ABOD,
which consistently achieves top performance for every attack
type with an average AUC score of 0.8969.

To further enhance the detection performance, we trained
two bagged ensemble models using the best-performing SSOD
algorithm, ABOD, as the base model. We denote the two
ensemble models using the AVG and MAX combination rules
as EMAVG and EMMAX , respectively. Each ensemble model
comprises 50 individual models trained with randomly selected
feature subsets. Table V compares the performance of ABOD
with that of the two ensemble models. The results demonstrate
that both ensemble models outperform the base model ABOD,
with EMAVG achieving the highest average AUC score.
Notably, the AUC scores of EMAVG are more than 3% higher
than those of ABOD for attack types 1 and 4, highlighting
the effectiveness of ensemble learning in improving detection
performance.

V. CONCLUSIONS

This paper aims to enhance the performance of SSOD
algorithms in addressing the ETD problem. We achieved
this by performing feature engineering to extract features in
both time and wavelet domains from users’ load profiles. We
conducted a performance evaluation using the popular Irish
CER smart meter dataset and applied various FDI attacks to it.
Our results demonstrate that the proposed feature engineering
significantly improves the detection performance of SSOD
algorithms across a broad range of FDI attacks. Additionally,



TABLE II: Performance of SSOD algorithms for RF1

Attack Type PCA ABOD KNN GMM OCSVM LOF HBOS
1 0.7267 0.6828 0.6407 0.5278 0.6801 0.8097 0.751
2 0.8836 0.8480 0.7687 0.7686 0.9072 0.9286 0.8062
3 0.8087 0.8487 0.7754 0.7993 0.7920 0.9192 0.8021
4 0.6647 0.6850 0.6321 0.6424 0.6391 0.7586 0.6767
5 0.8684 0.8783 0.7958 0.8243 0.8613 0.9337 0.8497
6 0.5369 0.5324 0.5281 0.4367 0.5072 0.6583 0.6143
7 0.8588 0.8134 0.7501 0.6068 0.8552 0.8954 0.8382
8 0.6720 0.6599 0.6123 0.6050 0.6501 0.7177 0.6727
9 0.7490 0.6661 0.7066 0.5110 0.7206 0.7538 0.7921
10 0.8291 0.8175 0.7902 0.8041 0.8239 0.8541 0.7330
11 0.7570 0.7628 0.7324 0.6888 0.7468 0.7937 0.7880

Average AUC 0.7595 0.7450 0.7029 0.6559 0.7440 0.8203 0.7567

TABLE III: Performance of SSOD algorithms for RF2

Attack Type PCA ABOD KNN GMM OCSVM LOF HBOS
1 0.7409 0.8536 0.8058 0.7599 0.7105 0.8301 0.7800
2 0.9514 0.9845 0.9672 0.9000 0.9482 0.9710 0.9433
3 0.9405 0.9543 0.9503 0.8687 0.9435 0.9446 0.9100
4 0.6898 0.7986 0.7478 0.7312 0.6673 0.7817 0.7284
5 0.9580 0.9713 0.9746 0.9178 0.9594 0.9628 0.9404
6 0.9341 0.9682 0.9539 0.9663 0.9292 0.9572 0.8723
7 0.8985 0.9345 0.9135 0.8436 0.8922 0.9105 0.8825
8 0.6978 0.7547 0.7318 0.7105 0.6800 0.7427 0.7137
9 0.9982 0.9997 0.9995 0.9962 0.9988 0.9983 0.9799
10 0.5588 0.6146 0.5937 0.5656 0.5595 0.6036 0.5739
11 0.6995 0.7932 0.7423 0.7304 0.6840 0.7687 0.7327

Average AUC 0.8243 0.8752 0.8528 0.8173 0.8157 0.8610 0.8234

TABLE IV: Performance of SSOD algorithms for the proposed method

Attack Type PCA ABOD KNN GMM OCSVM LOF HBOS
1 0.7648 0.8536 0.8067 0.7216 0.7255 0.8304 0.8136
2 0.9502 0.9799 0.9608 0.9114 0.9407 0.9594 0.9367
3 0.9157 0.9723 0.9373 0.8471 0.9196 0.9578 0.9039
4 0.6836 0.7689 0.7200 0.7105 0.6481 0.7460 0.7358
5 0.9479 0.9763 0.9681 0.8922 0.9481 0.9727 0.9319
6 0.9333 0.9624 0.9447 0.9555 0.9238 0.9501 0.8689
7 0.9150 0.9374 0.9189 0.8368 0.9139 0.9227 0.9002
8 0.7157 0.7884 0.7512 0.7169 0.7057 0.7679 0.7153
9 0.9978 0.9996 0.9992 0.9924 0.9987 0.9991 0.9687
10 0.7398 0.8073 0.7822 0.7718 0.7181 0.7827 0.7091
11 0.7570 0.8198 0.7893 0.7801 0.7473 0.7875 0.7685

Average AUC 0.8473 0.8969 0.8708 0.8306 0.8354 0.8797 0.8411

TABLE V: Performance comparison of ABOD with bagged
ensemble models

Attack Type ABOD EMAV G EMMAX

1 0.8536 0.8850 0.8613
2 0.9799 0.9786 0.9805
3 0.9723 0.9773 0.9730
4 0.7689 0.7990 0.7734
5 0.9763 0.9830 0.9751
6 0.9624 0.9421 0.9624
7 0.9374 0.9391 0.9387
8 0.7884 0.7943 0.7915
9 0.9996 0.9990 0.9995

10 0.8073 0.7961 0.8118
11 0.8198 0.8322 0.8213

Average AUC 0.8969 0.9023 0.8990

we developed bagged ensemble models based on the best-
performing SSOD algorithm. Our findings indicate that these
ensemble models offer superior detection performance com-
pared to the base model.
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