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Aim: Ecological and anthropogenic factors shift the abundances of dominant and rare

ecosystem functioning. To inform forest and conservation management it is important
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1 | INTRODUCTION

and Biogeography

to understand the drivers of dominance and rarity in local tree communities. We an-
swer the following research questions: (1) What are the patterns of dominance and
rarity in tree communities? (2) Which ecological and anthropogenic factors predict
these patterns? And (3) what is the extinction risk of locally dominant and rare tree
species?

Location: Global.

Time period: 1990-2017.

Major taxa studied: Trees.

Methods: We used 1.2 million forest plots and quantified local tree dominance as
the relative plot basal area of the single most dominant species and local rarity as the
percentage of species that contribute together to the least 10% of plot basal area. We
mapped global community dominance and rarity using machine learning models and
evaluated the ecological and anthropogenic predictors with linear models. Extinction
risk, for example threatened status, of geographically widespread dominant and rare
species was evaluated.

Results: Community dominance and rarity show contrasting latitudinal trends, with
boreal forests having high levels of dominance and tropical forests having high levels
of rarity. Increasing annual precipitation reduces community dominance, probably be-
cause precipitation is related to an increase in tree density and richness. Additionally,
stand age is positively related to community dominance, due to stem diameter in-
crease of the most dominant species. Surprisingly, we find that locally dominant and
rare species, which are geographically widespread in our data, have an equally high
rate of elevated extinction due to declining populations through large-scale land
degradation.

Main conclusions: By linking patterns and predictors of community dominance and
rarity to extinction risk, our results suggest that also widespread species should be

considered in large-scale management and conservation practices.

KEYWORDS
community, dominance, environmental predictors, forests, macroecology, rarity, species
abundance, species population threats

dominant and rare species within communities and may lead to spe-
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Tree communities typically contain a few dominant and relatively
many rare tree species, both of which contribute to ecosystem func-
tioning, resilience and services (Dee et al., 2019; McGill et al., 2007).
Communities are defined as ‘a group of interacting species popula-
tions occurring together in space’ (Roughgarden & Diamond, 1986;
Stroud et al., 2015) and it is therefore important to analyse what
drives local dominance and rarity, and hence, species composition.
Here, dominance and rarity refer to the relative abundance of dom-
inant and rare species in the community (Hillebrand et al., 2008).
Dominant tree species make up most of the community biomass and
contribute therefore most to ecosystem services, whereas rare tree
species increase functional diversity and therefore ecosystem multi-
functionality (Fauset et al., 2015; Grime, 1998; Mouillot et al., 2013).
Habitat conversion and degradation shift the abundances of

cies loss, with potentially strong impacts on ecosystem functioning
and biodiversity (Bowler et al., 2017; Butchart et al., 2010; Doncaster
etal.,, 2016; Fei et al., 2017; Xu et al., 2014). Quantifying broad-scale
dominance and rarity patterns at a tree community level and iden-
tifying the predictors of extinction risk of locally dominant and rare
tree species are therefore critical for management and conservation
(Chapin et al., 2000; Enquist et al., 2019; Wilsey et al., 2009).
Patterns in community dominance and rarity are shaped by in-
teracting biotic and abiotic factors operating at various scales. First,
global patterns in the relative abundance of species generally fol-
low the latitudinal gradient in diversity (Liang et al., 2022; Scheiner
& Rey-Benayas, 1994; Ulrich et al., 2016). In general, species-rich
forests have many rare species, whereas less speciose forests
tend to have relatively few species that are more evenly distrib-
uted (Bazzaz, 1975; Hordijk et al., 2023). By definition, only a few
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species can dominate a community, although the absolute domi-
nance might differ between forest types (Pitman et al., 2001; Ter
Steege et al., 2013); forests can either be dominated by one single
species or multiple species (Hart et al., 1989; Hobi et al., 2015).
Second, abiotic factors shape community dynamics by filtering out
species that cannot survive in a given environment, which subse-
quently can increase the abundance of well adapted species (Arnillas
& Cadotte, 2019; Avolio et al., 2019; Venn et al., 2011). Once a spe-
cies is established, its abundance will be determined by its suitability
to the abiotic environment, and by interactions with the biotic envi-
ronment, such as competition and facilitation (Goldberg, 1990; Lynn
et al., 2019; Meier et al., 2010). Across environmental gradients,
the suitability of species to the local environment shifts, leading to
differences in community composition (Cornwell & Ackerly, 2009).
Third, dominant and rare species can also directly affect each oth-
er's abundance through interactions, whereby dominant species
compete for resources and ultimately exclude rare species from the
community when they reach a high abundance (Markham, 2015;
Zhang et al., 2015). Besides the biotic and abiotic factors shaping
tree communities, also (historical) forest management and prefer-
ence for certain tree species affects tree community composition
(Albert et al., 2023; Li et al., 2023; Paillet et al., 2010).

Rabinowitz identified seven forms of rarity (Rabinowitz
et al., 1986). Species can be rare because they occupy a narrow
geographical range, have locally low population densities, have
specialized habitat requirements, or combinations of these (adding
up to seven). Here we focus on species that have low local popu-
lation densities. Rare species are inherently more susceptible to
human disturbance than dominant species as small stochastic fluc-
tuations in population density can drive them to local extinction
(Goodman, 1987; Matthies et al., 2004; Menges, 1991). When se-
vere enough, human activity can drive species to extinction through
habitat conversion, habitat fragmentation, or the introduction of in-
vasive species (Newbold et al., 2015; Richardson & Rejmanek, 2011).
However, dominant species can also decline rapidly in abundance,
particularly due to overexploitation, accidentally introduced fun-
gal pathogens, pests, diseases or severe droughts that can deci-
mate species across their distribution range (Gaston & Fuller, 2008;
Hartmann et al., 2022). Whereas the drivers of elevated extinction
risk for rare species with a narrow distribution range are well estab-
lished, an assessment of the patterns and predictors of extinction
risk for locally dominant and rare species with a wider geographical
distribution is lacking (Gaston, 2010; Wan et al., 2017).

In this study, we use 1.2 million forest plots distributed across
the globe and relate local tree dominance and rarity to ecologi-
cal predictors (i.e. climate and soil characteristics) and anthropo-
genic predictors (i.e. population density and human development).
Specifically, we answer the following research questions: (1) What
are the patterns of dominance and rarity in tree communities? (2)
Which ecological and anthropogenic factors predict these patterns?
And (3) are locally rare species more likely to be threatened with ex-
tinction compared to dominant species within ecological communi-

ties? The species we captured in this study are generally widespread

tree species that differ in their local abundances. We hypothesize
that (i) at low latitudes community rarity is highest and dominance
is lowest, as with an increase in species richness, the number of rare
species increases and the single most dominant species becomes
less dominant (Magurran & Henderson, 2003; Ulrich et al., 2016),
(i) community dominance increases in environments with higher
resource limitations, as it increases competition, and human dis-
turbance, as it selects for early successional species (Huston, 1979;
Keddy, 2023; Morris, 2010; Rozendaal et al., 2019), and (iii) dominant
species have a lower extinction risk under anthropogenic pressure
on forests than rare species due to their higher population density
(Vincent et al., 2020).

2 | METHODS
2.1 | Dataset

To assess tree community dominance and rarity in forest communities
worldwide, we used the database of the Global Forest Biodiversity
Initiative (GFBI database, 2021). Our analysis also includes the data
of Condit et al. (2019a, 2019b). The plots include all trees with
stem diameter at breast height (DBH)z5cm. The plots in the GFBI
database contain information on tree species composition and DBH
of every individual tree, along with the latitudinal and longitudinal
coordinates of the forest plots (Figure 1a).

The entire GFBI database consists of approximately 1.2 million
plots. However, since the number of dominant and rare species can
vary with spatial scale (Weiher & Keddy, 1999; Wilson et al., 1999;
Zhang et al., 2012), we excluded plots that were smaller than the
first quantile (0.02 ha) and larger than 1.6 ha. This resulted in the ex-
clusion of 8.3% of the database, and resulted in a mean plot size
of 0.06ha. Within the filtered database, the correlations between
plot size and community dominance or rarity explained very little
variation as indicated by the low r and r? values (Pearson's r=-0.16,
r?=0.03, N=670,527, p<0.001 and Pearson's r=0.20, r*=0.04,
N=670,527, p<0.01, respectively), the apparent significance being
driven by the large number of observational data. Additionally, plots
measured before 1990 were filtered out, as these plots may not rep-
resent current forest composition and do not match with the climatic
data we used. This resulted in filtering out 21% of the database, and
the average measurement year being 2006. The filtered GFBI data-
set consisted of 858,315 forest plots (including plots in for example
savannas), of which 668,812 are in the six forest biomes (boreal for-
est, temperate conifer forest, temperate broadleaf forest, tropical
conifer forest, tropical dry forest, tropical moist forest) (Dinerstein
et al., 2017). Species names in the GFBI dataset were standardized
using The Plant List, at least up to genus level (The Plant List, 2013).
Of the 10,141 species names, around 10% could not be matched
using The Plant List, including around 20% of the genera, therefore
subsequently the Global Biodiversity Information Facility (GBIF)
backbone was sourced to standardize these species names as well to
accepted species names (GBIF Secretariat, 2020).
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FIGURE 1 (a)Location of the Global
Forest Biodiversity Initiative database
plots used in this study (GFBI database),
coloured by biome (n=668,812). In the
table, the number of plots and mean
species richness per plot is indicated per
forest biome (Dinerstein et al., 2017). (b)
A graphical illustration of the definitions
of dominance, rarity and dominant and
rare species. Dominance is defined as b
the relative basal area (BA) of the single
most dominant species, while rarity is
defined as the maximum proportion of -
species that accounts for the least 10%
of the basal area. In this graph, rarity
equals 25%. Dominant and rare species
are defined as the species which make up
respectively the top and bottom 10% of
basal area in a plot.

(a)
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Biome # Plots Mean richness
Tropical moist forest 6240 65
Tropical dry forest 2284 15
Tropical conifer forest 721 7
Temperate forest 511,579 6
Temperate conifer forest 90,007 4
Boreal forest 57,981 3

(b)

Dominance
relative BA single most
dominant species

Dominant species
top 10% of BA

‘ Definitions species abundances ‘

Ar42

Rarity

?V maximum proportion of species that

accounts for <10% of the BA

50% 25%
> Rare species
bottom 10% of BA
Dominant sp Rare sp

2.2 | Calculating community dominance and rarity

There are many definitions of dominant and rare species at differ-
ent spatial levels and suitable for different communities (e.g. Avolio
et al., 2019; Rabinowitz et al., 1986). This study assesses dominance
and rarity at the community level. A community is defined as “a
group of interacting species populations occurring together in space”
(Roughgarden & Diamond, 1986; Stroud et al.,2015). Hence, we quan-
tified dominance and rarity at the plot level, as this is the spatial scale
at which tree species interact directly with each other, and therefore
where the outcome of both abiotic and biotic interactions affect-
ing species abundances are most directly reflected (Roughgarden &
Diamond, 1986; Stroud et al., 2015). Classification of tree commu-
nity dominance and rarity is based on basal area (m?) of each species
per hectare, calculated from the tree-level DBH measurements (in
cm) for each inventory plot (Figure 1b). The total basal area (BA) per
species is calculated asBA; (m? /ha) = Y | 7= (d,~7,,/200)2‘ Where
BAj stands for the total basal area per species, and d, for the DBH
of the individual(s) of that species. Basal area integrates both the
number of tree stems and the stem size, is commonly used to com-
pute competition (Biging & Dobbertin, 1992; Contreras et al., 2011,
Kunstler et al., 2016), and is correlated with the ecosystem functions
of aboveground biomass and carbon sequestration (Balderas Torres
& Lovett, 2013; Rao et al., 2015; Slik et al., 2010), but also with leaf
area index and therefore photosynthetic capacity and respiration

(Bartelink, 1997; Buckley et al., 1999; Fang et al., 2019; Jonckheere
et al., 2005). In this analysis, we quantify community dominance as
the percentage of basal area occupied by the single most dominant
species in a given plot (cf. Friedman & Reich, 2005; Koike, 2001;
Majumdar et al., 2014; Riemann et al., 2018; Zilliox & Gosselin, 2014).
Values closer to 100% indicates therefore that the most dominant
species contributes relatively more to plot basal area. Because we
expressed the dominance metric as a percentage we quantified rar-
ity also as a percentage, for sake of symmetry. Rarity was defined
as the percentage of the total species in a plot that had the smallest
basal area and accounted together for <10% of the accumulated plot
basal area (Bracken & Low, 2012; Gaston, 1994; Magurran, 2004;
Molina, 2013) (Figure 1b). Although in both cases dominance and
rarity is expressed as a percentage to account for large biome differ-
ences in plot basal area and richness, for dominance the percentage
refers to the plot basal area, and for rarity to the percentage of spe-
cies making up the least 10% of the basal area (Figure 1b). We chose
10% as a threshold because this clearly distinguishes dominant from
rare species, it allows to compare plots with different numbers of
species, and it allows to include a representative number of plots
for all biomes (which would not be the case with a species richness
threshold) (Bracken & Low, 2012). This means that not every plot
contains rare species, as the least dominant species might comprise
>10% of the basal area of the plot. The measure of rarity can include
multiple species, as long as the least 10% of the basal area threshold

ASUADIT SUOWIOY) dATEaI)) d[qedridde oy £q PauIaA0S a1k Sa[dIIE V() 1Ash JO SA[NI 10§ AIRIQI AUI[UQ AS[IA UO (SUONIPUOI-PUE-SULId}/ WO KA[1M’ KTRIqI[ouT[Uo//:sd)Iy) SUONIPUOD) pue SWIAT, 3U) 39S *[+707/60/97] U0 Areiqr auruQ K[IM ‘688 1°95/1 111" 01/10p/wod Kofim’ Kreiqraurfuoy/:sdiy woiy papeo[umod ‘01 ‘+20T ‘878991



HORDIJK ET AL.

6of21 Wl LEY Global Ecology Adourmalof
and Biogeography e

is not reached. If a species does not occur in a given plot, it is not
categorized as dominant or rare species in that plot. Community
dominance and rarity were calculated for each plot in the GFBI data-
base, providing single point values that together describe the spatial
variation in dominance and rarity for forests globally. The effect of
plot size on richness, dominance and rarity is visualized in Figure S1.

2.3 | Mapping community dominance and
rarity globally

To map community dominance and rarity across all forested biomes
(including savannas), we used the approach described in van den
Hoogen et al., (2019, 2021). We extracted information available at
global scale that is reported to influence plant dominance, including
10 climatic variables (Kraft et al., 2015; Venn et al., 2011): mean an-
nual temperature, temperature seasonality, isothermality, maximum
temperature of the warmest month, minimum temperature of coldest
month, annual temperature range, mean annual precipitation, precip-
itation seasonality, precipitation of the driest month, precipitation of
the wettest month (Karger et al., 2017), 7 soil variables (Hillebrand
et al., 2007; Stevens et al., 2004): cation exchange capacity, sand
content, clay content, silt content, organic carbon, pH, saturated
water content (Batjes et al., 2017; Ribeiro et al., 2018), 9 biomass
and greenness variables (Bradford, 2011): tree density (Crowther
et al., 2015), above ground biomass, growing stock volume (Santoro
et al., 2018), annual net primary productivity (Running et al., 2011),
NDVI, EVI (Didan, 2015), LAl (Myneni et al., 2015), EVI dissimilar-
ity, Shannon index of greenness (Tuanmu & Jetz, 2015), 2 landscape
characteristics: slope and elevation (Amatulli et al., 2018), 2 stand
age variables: percentage secondary forests (forests younger than
150years) and mean age of the secondary forest (Poulter et al., 2019),
and 2 human disturbance variables: population density (Center for
International Earth Science Information Network—CIESIN—Columbia
University, 2016) and human development (Tuanmu & Jetz, 2014)
(See Table 1 for details of the variables).

To assure that all predictor variables had the same spatial resolu-
tion, we extracted all these variables from global maps ata 30 arc sec-
ond resolution (Poulter et al., 2019; Richardson & Rejmanek, 2011;
Urbieta et al., 2008) (see Table 1 for full list of covariates). Using
these covariates as independent variables, we predicted tree com-
munity dominance and rarity using random forest models, with 100
decision trees, a minimum of three variables per split, and a bag
fraction (the proportion of training data to be used in the next tree,
which by default is 0.5) of 0.632. To overcome computational lim-
itations inherent in dealing with millions of observations and have a
similar sample number per biome, we performed a stratified boot-
strapping mapping procedure, where 1000 plots were sampled with
replacement per biome (or the maximum number of plots for biomes
with <1000 unique plots) and used to train the models. We repeated
this bootstrapping approach 500 times for both community dom-
inance and rarity. For every pixel we then calculated a mean and
standard deviation across the 500 model-based predictions. The

final maps have a resolution of 30 arcseconds and were projected
in WGS84 (EPSG:4326) coordinate system, and only forested areas
were visualized in the maps (FAO, 2001; Hansen et al., 2013). The
modelling and mapping procedure was performed with Google Earth
Engine (Gorelick et al., 2017).

We tested the predictive accuracy of our models using a spa-
tial leave-one-out cross-validation (van den Hoogen et al., 2021).
In this test, a random forest model is trained on all data except for
points that fall within a predefined buffer zone from a test point.
This procedure is repeated for every data point across ten randomly
sampled stratified bootstrapped training sets per biome and across
a range of buffer zone radii (1km, 5km, 10km, 25 km, 50km, 100km)
(Table 2). Tukey's test indicated that the mean r? of the random for-
est model for buffer zone radii was significantly different (Tukey's
test, p<0.05) indicating that they showed spatial autocorrelation, at
1km, but did not show spatial autocorrelation at spatial scales of
5km and beyond (Tukey's test, p>0.1 in all cases). Thus, no spatial
autocorrelation was detected for dominance and rarity values sam-
pled further apart than 5km.

To further analyse confidence in the final maps, we visualized
the predicted versus observed values (Figure S2) and evaluated the
coefficient of variation for the community dominance and rarity map
by dividing the standard deviation across the 500 model-based pre-
dictions by the mean value per pixel (Figure 2). Additionally, we eval-
uated the percentage of data interpolation and extrapolation for the
global community dominance and rarity maps (Figure S3), as a gen-
eral limitation of our approach is the limited capacity of random for-
est models to predict outside the range of the training data (Hengl
et al.,, 2018). To visualize the areas of extrapolation, we assessed
whether predicted pixel values of dominance and rarity are within
the range of the training data (van den Hoogen et al., 2021). In gen-
eral, 92% to 97% of the predicted values of dominance and rarity in
the global forest pixels were predicted within the range of the train-

ing data, which is the measured tree community data (Figure S3).

2.4 | Analysing predictors of community
dominance and rarity

In global datasets, tropical biomes are usually under-represented,
and the GFBI database used in this present study is no exception
(McGill, 2003; Meyer et al., 2016). To address the problem of under
sampled tropical regions, we performed the analyses with a subset
of the dataset where the proportion of plots within a biome was
approximately representative of that biome's forest cover across
the globe. We therefore selected 14,282 plots, composed of at
least 1000 plots from each of the six Ecoregions2017©R°"e for-
est biomes, and proportional to the forested area within that biome
(Dinerstein et al., 2017). These proportions were calculated in
Google Earth Engine by overlaying the biomes with a global map of
existing forest cover (Hansen et al., 2013), where areas with more
than 10% canopy cover for vegetation taller than 5m were defined
as forests (FAO, 2001).
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TABLE 1 The variables used to create
the global map of dominance and rarity.

The relationship between community dominance, community
rarity and species richness within the six forest biomes was eval-
uated with a Pearson correlation. Species richness was calculated
as the number of species in the plot, and log (Ln) transformed in
the correlation to ensure normality. Plots without rare species
(i.e. if the least abundant species accounted for >10% of the basal

and Biogeography

Variable category Variable

Climate Mean annual temperature
Temperature seasonality
Isothermality

Maximum temperature of
the warmest month

Minimum temperature of
coldest month

Annual temperature range
Mean annual precipitation
Precipitation seasonality

Precipitation of the driest
month

Precipitation of the wettest
month
Soil (at 15cm depth) Cation exchange capacity
Sand content
Clay content
Silt content
Organic carbon
pH
Saturated water content
Biomass and greenness Tree density
Above ground biomass
Growing stock volume

Annual Net Primary
Productivity

NDVI

LAI

EVI

EVI dissimilarity

Shannon index of greenness

Landscape Slope
Elevation
Stand age Secondary forest percentage

Age secondary forest

Human impact Population density

Human development

= wiLey--

Reference

Karger et al. (2017)

Batjes et al. (2017), Ribeiro
et al. (2018)

Crowther et al. (2015)
Santoro et al. (2018)

Running et al. (2011)

Didan (2015)

Myneni et al. (2015)
Didan (2015)

Tuanmu and Jetz (2015)

Amatulli et al. (2018)
Poulter et al. (2019)

Center for International
Earth Science Information
Network—CIESIN—Columbia
University (2016)

Tuanmu and Jetz (2014)

Note: In the machine learning models to produce the maps the Nadir reflectance bands 1 to 7 are
included as well (Schaaf & Wang, 2015). The variables in bold were included in the random forest
models to evaluate the importance of climate, soil and human impact on dominance and rarity.

slope (Figure S4a,b).

area), were excluded when evaluating the relationship between
dominance and rarity (58% of the plots). Also, monodominant
plots were excluded when evaluating the relationship between
dominance and rarity as they introduced a mathematical artefact,

forcing the regression line to change from a positive to negative
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To evaluate how dominance and rarity were predicted by eco-
logical and anthropogenic factors, we included the variables having
the largest effect per variable category on dominance and rarity
based on the random forest model to map the global distribution.
We selected for climate mean and seasonality in temperature and
precipitation (Karger et al., 2017), for soil variables soil pH and sand
content at 15cm depth (Batjes et al., 2017; Ribeiro et al., 2018), for
topography elevation (Amatulli et al., 2018), for forest attributes tree
density, stand age, for the landscape the percentage forest classi-
fied as secondary forest (Poulter et al., 2019), and for human impact
population density and human development (Tuanmu & Jetz, 2015;
University, 2016) (Table 1). To quantify the relative importance of
the effect of these variables on community dominance and rarity, we

used random forest models. Biome, latitude, longitude, plot size and

TABLE 2 The r? of the dominance and rarity maps across a range
of buffer zone radii.

Dominance Rarity
Standard Standard
Radius (km) Meanr? deviationr> Mean r? deviation r?
1 0.448 0.025 0.416 0.036
5 0.353 0.020 0.299 0.040
10 0.355 0.020 0.298 0.043
25 0.361 0.021 0.287 0.041
50 0.348 0.030 0.259 0.037
100 0.335 0.025 0.222 0.035

(a) Community Dominance (b) Global Map of Tree Community Dominance
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species richness were included in the models as well, to correct re-
spectively for the effect of different biomes, geographical locations,
plot sizes and the number of species within the forest plot on domi-
nance and rarity. Both dominance (Pearson's r=-0.82, N=670,527,
p<0.001) and rarity are related to species richness (Pearson's
r=0.60, N=670,527, p<0.001). To ensure that the patterns we find
can be assigned to the effect of dominance or rarity and not to rich-
ness, we corrected for the confounding effect of species richness by
including species richness as a predictor variable in the models. See
Table S2 for an overview of the variable importance values for all
variables predicting dominance and rarity.

2.5 | Identifying conservation status and range
dominant and rare species

Here, we define dominant species as the species which make up
the top 10% of plot level basal area, and rare species as the species
which make up the bottom 10% of plot level basal area (Figure 1b).
To assess if the definition of dominant and rare species affects the
results, we also analyse the data when dominant and rare species
are defined based on respectively the highest and lowest 10% of the
number of stems in the plot and when dominance is defined as the
single most dominant species (Figures S5-S7). Additionally, we show
for species that are neither defined as dominant nor rare (the ‘locally
common’ species), their distribution characteristics (Figures S5-57).
It is possible for a species to be locally dominant and locally rare

within different plots within a biome because of a chance effect in

(€) coefficient of Variation Global Map of Tree Community Dominance

100% 15%

60% 7.5%

20%

100% (f)

0%

Coefficient of Variation Global Map of Tree Community Rarity 365

50% 15%

0%
0%

FIGURE 2 Global tree community dominance and rarity. (a) Community dominance is the percentage basal area of the most dominant
species in the forest plot. The boxplot visualizes the measured data in the six forest biomes. (b) The map of predicted community dominance
in global forests, with the spatially corrected r? indicated. (c) Coefficient of variation for the community dominance maps. The coefficient of
variation is the standard deviation divided by the mean, and is expressed in percentages. The coefficient of variation indicates the variation
in the different model outcomes, the higher the coefficient of variation the larger the distances between the values of the different models
and the less accurate the mean value. (d) Community rarity is defined as the percentage of rare species, which are defined as the proportion
of species contributing to the least 10% basal area. The boxplot visualizes the measured data in the six forest biomes. (e) The map of
predicted community rarity in global forests, with the spatially corrected r? indicated. (f) Coefficient of variation for the community rarity
maps. The map of tree community dominance was less variable, with a maximum coefficient of variation of 15%, whereas the map of tree
rarity had a maximum coefficient of variation of 30%. The predicted dominance values exhibited particularly high variation in species rich
areas, whereas in Spain, France, Northern Canada and Russia, the rarity predictions are more variable.
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relatively small plots, or because of within biome differences in en-
vironmental conditions. The species were therefore categorized as
locally dominant or rare only if their local abundance was consistent
(i.e. in at least in 95% of the plot occurrences they were either domi-
nant or rare). We use this strict categorization of dominant and rare
species as we want to limit our analyses to species that have consist-
ent abundances within the community. In total, consistently 3% of
the species have been categorized as dominant, 29% as common and
68% as rare at biome level.

According to the definition of the IUCN, a species has an ele-
vated extinction risk (i.e. threatened) if it: (i) is restricted in geo-
graphical range, (ii) has a low number of individuals, or (iii) exhibits
rapid declines in population density over time (IUCN Standards and
Petitions Committee, 2019). Therefore, we evaluated the conserva-
tion status (e.g. not threatened or threatened), extent of occurrence
(EOO, which is a measure for the range where the species occurs)
and endemism of locally dominant, common, and rare species with
data generated for the first report of the Global Tree Assessment
from Botanic Gardens Conservation International (BGCI, 2021a).
Additionally, the population trend over three generations of locally
dominant, common, and rare species was evaluated with data from
IUCN Red list (IUCN, 2021b). The Global Tree Assessment database
provides the most comprehensive overview of extinction risks of
tree species, covering 84% of the global number of tree species.
However, we are aware of the constraints of the databases used,
such as the impact of spatial scale on rarity and extinction risk
(Hartley & Kunin, 2003). The GFBI and Global Tree Assessment
data (BGCI, 2021a) were matched using the species names. In the
GFBI database 371 dominant and 7815 rare species were classified
as either “not threatened”, “possibly threatened” or “threatened”
(BGCI, 2021a). Of the dominant species, the conservation status of
1.2% were not evaluated and 3.5% were evaluated but data is too
uncertain and therefore considered data deficient. For the rare spe-
cies, 4.9% was not evaluated, and 3.6% was data deficient. With a
Fisher's exact test, which is used to test associations between cat-
egorical variables, we identified if there is a difference in conserva-
tion status between dominant and rare species. To identify if the
conservation status (i.e. “not threatened”, “possibly threatened” or
“threatened”) of dominant and rare species differs between biomes,
we performed a Poisson regression, as this is count data, with biome,
species category (dominant or rare species), and their interaction as
predictors.

To evaluate the spatial range where the locally dominant and
rare species occur, the extent of occurrence (EOO) was calculated
for the threatened dominant and rare species. The latitude and lon-
gitude of the species distribution was extracted using the GBIF da-
tabase, and distribution was refined to native countries only using
GlobalTreeSearch (BGCI, 2021b; GBIF Backbone Taxonomy, 2020).
EOO was calculated as the minimum convex hull in km? where the
species can occur, however there can be areas within the EOO
where the species is absent. The methodology for EOO follows the
IUCN mapping standards (IUCN, 2021a). For each forest biome, the
mean difference between EOO of in total 315 dominant and 5923

and Biogeography

rare species was tested with a t-test. As our locally common and
rare species are based on inventory plots, rather than on sampling
all unique habitats, this may result in a selection of more widespread
species. To check if this affects the results, we also compared the
EOO of tree species in the GFBI dataset to the average EOO of tree
species per forest biome (IUCN, 2021b). A one-sample t-test was
performed to analyse if the EOO of the species included in GFBI
within a specific forest biome differs between the average EOO of
that forest biome. We also assessed if the number of species consid-
ered by IUCN Red List to have a high extinction risk was higher for
locally rare species, endemic species and species with smaller dis-
tribution range (EOQ) (Figure S8). We defined endemism based on
whether a species was restricted to a single country (endemic) or not
(non-endemic) (BGCI, 2021a). Extinction risk information was avail-
able for all dominant and 89.1% of the rare species (BGCI, 2021a).
The difference in endemism between the two groups was evaluated
with a Fisher's exact test.

Additionally, we used data from the IUCN Red List to evaluate
for locally dominant and rare species the population trend (e.g. de-
creasing or increasing) and the type of threats (e.g. logging lead-
ing to mortality, ecosystem conversion or ecosystem degradation)
(IUCN, 2021b; IUCN Standards and Petitions Committee, 2019). The
IUCN Red List could provide population trend or threat information
on of 81% of the dominant and 48% of the rare species. To identify
if there is a difference between population trend or type of threats
to the population between threatened dominant and rare species, a
Fisher's exact test was performed. Data management and statistical
analyses in this study were performed in R, version 3.6.1 (R Core
Team, 2019). The data to simulate the main graphs, and the code
used to perform the statistical analyses can be found at Github, fol-
lowing this link: tinyurl.com/376m4pra.

3 | RESULTS

3.1 | Global and regional patterns of community
dominance and rarity

The contribution of dominant and rare species to local community
structure shows a clear opposing latitudinal pattern at the global
scale (Figure 2). These patterns are consistent across different spa-
tial scales (i.e. it was analysed with grid sizes varying from 0.01 to
1000km?) (Figure $9). Community dominance increases gradually
with latitude, where the single most dominant species comprises
on average 35% of local basal area near the equator to 70% in bo-
real forest (Figure 2a,c). In contrast, the proportion of species that
are rare (those compromising the bottom 10% of basal area) ranges
from an average of 40% in tropical forest to nearly 0% in boreal for-
est. These results closely mirror global patterns in species richness:
community rarity is positively related to species richness (Pearson's
r=0.60,N=670,527,p<0.001), whereas dominance is negatively re-
lated to species richness (Pearson's r=-0.82, N=670,527, p <0.001)
(Figure 3).
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At the biome scale, within the tropical forest biome a positive
relationship between rarity and species richness (tropical moist for-
est: Pearson's r=0.52, N=6263, p<0.001), whereas the temperate
and boreal forest biomes show a negative relationship (boreal for-
est: Pearson's r=-0.54, N=58,522, p<0.001). While at the global
scale there is a negative relationship between dominance and rarity,
at the forest biome scale, species-poor communities tend to exhibit
a stronger positive relationship between community dominance
and rarity (boreal forest: Pearson's r=0.75, N=20,648, p<0.001)
(Figure 3). These results suggest that two mechanisms structure
these patterns at different scales: (1) at the global scale, the inverse
correlation between community dominance and rarity is predicted
by turnover in richness across ecosystems, and (2) at regional scales,
with less variation in species richness, an increase in the abundance
of the dominant species necessarily decreases the abundance of the

remaining species, thereby promoting rarity.

3.2 | Predictors of community
dominance and rarity

When exploring the predictors underpinning community dominance
and rarity with a random forest model (N=14,282), biome differ-
ences explained =2% of the variation, whereas richness explained
23% of dominance and 12% of rarity. Regarding the abiotic environ-
ment, climate was the most important predictor (=31%), followed by
soil characteristics (=20%) (Figure 4a). Specifically, annual precipita-
tion decreases community dominance (=8%), and soil sand content
is an equally strong predictor for both community dominance and
rarity (=<9%). Dominance increases with soil sand (pseudo r?=0.08),

whereas the relationship between soil sand content and rarity is
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not well predicted by a generalized linear model (pseudo r>=0.001).
Interestingly, community dominance and rarity are equally predicted
by human impact (=15%) and stand age (=14%). Community dominance
showed a gradual increase with stand age (generalized linear model,
pseudo r?=0.28), whereas community rarity shows a very slight de-
crease (generalized linear model, pseudo r?=0.06) (Figure 4b).

3.3 | Conservation status of dominant and
rare species

BGCI categories the extinction risk of species in three broad cat-
egories; threatened, possibly threatened, or at risk (BGCI, 2021a).
Both locally dominant and rare species have a similar percentage of
species that are either ‘threatened with extinction’ (11% and 16%,
respectively) or ‘possibly threatened with extinction’ (5% and 7%, re-
spectively) (Figure 5a). There is no significant difference between the
number of locally at-risk dominant and rare species, neither globally
(Fisher's exact test, p=0.89) nor between biomes (Poisson regres-
sion, z-value=0.971, $=0.10, p=0.33). Of the species threatened
with extinction, dominant and rare species show a similar population
decline of 95% and 75%, respectively (Fisher's exact test, p=0.17)
(Figure 5b), and a similar percentage (36% and 41%, respectively)
are identified as endemic (Fisher's exact test, p=0.61) (Figure 5c).
Dominant species have a larger distribution range (EOQ) than rare
species (t-test, p=0.04) (Figure 5d). These trends are consistently
found when different definitions of locally dominant and rare spe-
cies are used. (Figures S5-5S7). Ecosystem degradation is the most
important threat for both dominant and rare species, followed by
mortality for dominant species and ecosystem conversion for rare
species (Table S2).

Species richness—Rarity

0 25 50 75 100 0 2
Dominance (%)

Legend
.rropical moist forest . Tropical dry forest

log(Species richness)

4 6 2 4 6
log(Species richness)

.Tropical conifer forest

.I'emperate forest .Temperate conifer forest J Boreal forest

FIGURE 3 The relationship between dominance, rarity and species richness in forests globally (N=670,527). For the relationship
between rarity and dominance, and rarity and species richness, only the plots that included rare species were considered (N=X). In
Figure S4, the relationships between rarity and dominance, and rarity and species richness were visualized for all plots, including

monodominant plots.
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FIGURE 4 (a)Relative variable importance of soil characteristics (soil pH and soil sand content), climate (annual mean and seasonality of
precipitation and temperature), stand age (percentage secondary forest, stand age) and human impact (human development and population
density) on tree community dominance and rarity. Variable importance is calculated with a random forest model, incorporating species
richness (variable importance 23% for dominance and 12% for rarity), plot size (variable importance 4% for dominance and rarity), biomes
(variable importance 2% for dominance and rarity), latitude (variable importance 4.8% for dominance and 8.6% for rarity) and longitude
(variable importance 6% for dominance and 5.4% for rarity), which are not shown in the bar graph. The 12 of the random forest models are
indicated under the bar graph. (b) The relationship between community dominance, rarity and the best fitting climatic, soil, and stand age
variables to a gaussian generalized linear model. The data density is visualized with the colour saturation. The pseudo r? of the generalized

linear models are indicated in the graphs.

4 | DISCUSSION

In this study, we evaluated patterns and population status of locally
dominant and rare species across forests globally. Specifically, we
analysed (1) global patterns, (2) abiotic and anthropogenic predic-
tors and (3) extinction risk and population decline of locally domi-
nant and rare tree species. We found clear latitudinal trends, which
are predicted by species richness both across and within biomes
(Figure 2-4). Across biomes, community dominance decreased
with annual precipitation (Figure 4b) and increased with stand age
(Figure 4b). Dominant and rare species show similar levels of ex-
tinction risk, with ecosystem degradation and land use conversion
being the most important causes (Figure 5a). Taken together, these
results suggest that species relative abundances are clearly related

to species richness and affected by human impact, and that locally
dominant and rare species are equally threatened.

4.1 | Global and regional patterns of community
dominance and rarity

At the global scale, higher number of tree species correlates with
a decrease in the abundance of the locally most dominant spe-
cies and a slight increase in the proportion of locally rare spe-
cies (Figure 2), which is consistent with previous studies (Bock
et al., 2007; Enquist et al., 2019; Sabatini et al., 2022; Soininen
et al., 2012; Stirling & Wilsey, 2001). However, at the biome scale,
the relationship between community dominance and rarity is
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FIGURE 5 (a) The percentage of locally dominant and rare
species identified as “threatened”, or “possibly threatened”
according to the Global Tree Assessment (BGCI, 2021a). (b)
The population trend of threatened dominant and rare species.
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Threatened species are defined as “vulnerable”, “endangered” or
“critically endangered” according to the IUCN Red List assessment.
(c) The percentage of endemic threatened dominant and rare
species according to the Global Tree Assessment (BGCI, 2021a). (d)
The extent of occurrence (EOQO) for threatened dominant and rare
species according to the Global Tree Assessment (BGCI, 2021a).
The difference between the EOO of dominant and rare species is
evaluated with a t-test (p=0.04).

generally positive, apart from very species rich biomes (i.e. tropi-
cal forest) where there is no significant relationship (Figure 3).
Based on the definition of dominance and rarity, a stronger and
consistent relationship between rarity and richness would be ex-
pected as richness is included in the calculation of rarity. However,
the relationship between dominance and richness is stronger and
consistent (Figure 3). These results suggest fundamentally dif-
ferent processes structuring global versus biome level patterns
of species abundance, which is also known as Simpson's paradox
(Scheiner et al., 2000; Simpson, 1951). At the global scale, pat-
terns of community dominance and rarity are predicted by species
richness, whereas at a regional scale there is more direct competi-
tion between dominant and rare species for space and resources
(Markham, 2015). However, this local pattern breaks down for
moist tropical forests, suggesting that other mechanisms play a
role in speciose forests (Svenning et al., 2004; Volkov et al., 2003).

At biome level, local dominance declines with species richness
(Figure 3), which indicates that with a higher number of species
in the community, the most dominant species have a relatively
smaller basal area. A higher species richness indicates higher in-
terspecific competition, which can indeed affect tree diameter
and architecture (Forrester et al., 2017; van de Peer et al., 2017).
Interestingly, the relationship between richness and rarity is

positive for the tropical forests, but negative for the temperate
and boreal forests (Figure 3). It is widely accepted that a higher
species richness leads to a higher number of rare species, and
that in an ecological community most of the species are, by defi-
nition, rare (Preston, 1962). Species richness is indeed positively
correlated with rarity (Pearson's r=0.60, N=670,527, p<0.001),
which might indicate that in less species-rich forests an additional
species will be present in relatively high abundance. This would
mean that species have a more equal abundance in a forest con-
taining fewer species, which is supported by the most common
species-abundance distribution models and a global analysis on
the relationship between richness and relative abundance of spe-
cies (Hordijk et al., 2023; Ulrich et al., 2010).

4.2 | Predictors of community
dominance and rarity

When evaluating the effect of abiotic, biotic and anthropogenic pre-
dictors on local community dominance and rarity, the random for-
est model explained community dominance better (r*=0.73) than
rarity (r*=0.42). Therefore, the relationships between the most im-
portant abiotic, biotic and anthropogenic predictors were stronger
with dominance compared to rarity. Overall, rarity is best explained
by richness, which might be caused by the way rarity is calculated,
whereas dominance increases with stand age and soil sand content,
and decreases with annual precipitation. With an increase in stand
age, trees increase in diameter after the initial phase where trees
mainly invest in height growth (Ryan & Yoder, 1997). Our results
suggest that the basal area of the most dominant species increases
with stand age, indicating that species' basal area might differenti-
ate more during succession due to competition. Soil sand content
also increases community dominance, which might be a result of
fewer tree species able to establish and dominate on less fertile soils
with a lower water holding capacity (Avolio et al., 2019; Ehbrecht
et al., 2021; Laurance et al., 2010). Additionally, we found that pre-
cipitation is negatively related to dominance, a possible explanation
is that under more benign and productive conditions, more species
are able to persist, which increases richness and reduces absolute

dominance.

4.3 | Conservation status of dominant and
rare species

The IUCN Red list regards a species to have an elevated extinc-
tion risk (i.e. threatened) if it: (i) is restricted in geographical range,
(ii) has a low number of individuals, or (iii) exhibits rapid declines
in population density over time (IUCN Standards and Petitions
Committee, 2019). We indeed found that endemic species and spe-
cies with narrow distribution ranges have a higher risk of extinction
than widespread species (Figure S8) (consistent with e.g. Chichorro
et al. (2019), Cardillo et al. (2005) and Purvis et al. (2000)). However,
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we also show that species that are locally dominant or rare in the
community have a similar level of extinction risk (11% and 16% of
the species, respectively), endemism and range (Figure 5a). In gen-
eral, the range of tree species in our dataset is larger or equal to the
average range of tree species per biome (p <0.001), which indicates
that the species we are evaluating are relatively widespread (Gaston
et al., 1997). Indeed, species can be geographically widespread, but
regionally and locally rare (Rabinowitz et al., 1986). A surprisingly
large proportion of locally dominant and rare species show a decline
in population size (respectively 95% and 75%) (de Lima et al., 2024).
This might be explained by the main threat, which is ecosystem deg-
radation, as this has probably an equally high impact on dominant
and rare species within the same community (Curtis et al., 2018;
Newbold et al., 2015). Additionally, in the boreal and temperate co-
nifer forests, where species are widespread and thought to have a
high population density, the threatened status of widespread domi-
nant and rare species shows a rapid decline in population size due
to disease outbreaks and invasive species (e.g. Dutch elm disease,
emerald ash borer, invasive pests) (Table S1). In this context, our re-
sults point to declining population densities across species ranges as
the primary cause of elevated extinction risk for these widespread
species (Boonman et al., 2024; Gaston & Fuller, 2007, 2008).

The main challenges when working with global forest inventory
data and extinction risk assessments are unbalanced sampling with
biomes over-represented and other biomes under-sampled and the
lack of species population assessments to evaluate extinction risk,
which can be particularly limited in tropical regions. To reduce this
sampling bias, we analysed a weighted subset of the data for our
global analyses of predictors of community dominance and rarity.
Moreover, especially in the tropical forest biomes there is relatively
a lower percentage of assessed locally dominant and rare species,
compared to the temperate and boreal forests. Therefore, the per-
centage of at-risk species could differ between biomes if a higher
percentage of the species in the most speciose forest biomes were
assessed. Additionally, it became apparent that our dataset is biased
towards species with larger ranges (although rare species can have
larger distribution ranges as well, see Zizka et al., 2018). Therefore,
an effort can be made to include in the future also datasets within
GFBI with a focus on species with a smaller range, especially in the
tropics. Another challenge when working with global forest inven-
tory data without a standardized protocol are the different manage-
ment histories of the plots and the different plot sizes within the
dataset. We filtered very small and large plots out of the data but are
aware that a larger plot size in the same region could lead to a higher
richness, lower dominance and higher rarity. The differences in plot
sizes, however, are more pronounced between biomes versus within
biomes, and the more species rich biomes have generally a larger
plot size (Figure S1).

Typically, the focus of plant conservation studies are on
dispersal-limited species and localized endemics with naturally low
geographical range distributions, usually in more species rich re-
gions (e.g. Corlett, 2016; Myers et al., 2000; With & King, 1999).
However, we find that geographically widespread species also have

Macroecology

and Biogeography

high levels of extinction risk, a conclusion which has not previously
been reported at this global scale to our knowledge. Widespread
and dominant species are key for ecosystem functioning, such as
carbon sequestration to mitigate climate change, and their decline
is therefore a major concern (Gaston & Fuller, 2007; Grime, 1998).
Furthermore, we show that the primary predictors of population de-
cline and elevated extinction risk for both rare and dominant species
are land degradation, land conversion for farming and agro-industry,
and species mortality mainly due to logging (Table S1), consistent
with global studies (Curtis et al., 2018; DeFries et al., 2010; Foley
et al., 2005). Together, our results bring a new perspective on bio-
diversity loss, highlighting the importance of implementing conser-
vation and restoration actions to bend the curve of biodiversity loss
(Cazzolla Gatti et al., 2022; Leclére et al., 2020) and reverse the tra-
jectory of species decline and elevated extinction risk for geographi-
cally widespread species (Thakur et al., 2018). Together, our findings
and previous works emphasize the need to develop more holistic,
ecosystem scale, biodiversity conservation efforts that explicitly in-
clude the protection of widespread species, which are not tradition-
ally a high priority of conservation and restoration actions. However,
these results capture broad-scale macro-ecological patterns at the
biome and global scale, contingent on the specific dataset we use.
To responsibly manage local forest ecosystems and tree species, it
is important to consider the local environmental and social context
(Swanson et al., 2021).

5 | CONCLUSIONS

The attention of conservation biologists has focused primarily on
species with narrow range distributions (endemics and dispersal-
limited species), as these species that have a higher intrinsic risk of
extinction. In this study, we focus on global and biome level patterns
in community dominance and rarity, and show that across ecosys-
tems, annual precipitation is a strong predictor of the variation in
dominance and rarity, with lower dominance in regions character-
ized by high precipitation levels. Within forest communities, stand
age and successional dynamics influence patterns of community
dominance, indicating the effect of habitat disturbance on species
abundances. We show that relatively widespread tree species which
are locally dominant or rare are equally threatened by anthropogenic
pressures, with land degradation being the largest threat. Although
forests are continuously changing over time and space, there is a
clear footprint of human activity on the abundance of both dominant
and rare species. Our results therefore suggest that conservation ef-
forts should focus not only on the geographically limited species but
also incorporate the more widespread but locally rare or dominant
species that are also critical for functioning of forest ecosystems.
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