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Abstract
Aim: Species distribution models (SDMs) that integrate presence-only and presence–
absence data offer a promising avenue to improve information on species' geographic 
distributions. The use of such ‘integrated SDMs’ on a species range-wide extent has 
been constrained by the often limited presence–absence data and by the heterogene-
ous sampling of the presence-only data. Here, we evaluate integrated SDMs for stud-
ying species ranges with a novel expert range map-based evaluation. We build new 
understanding about how integrated SDMs address issues of estimation accuracy and 
data deficiency and thereby offer advantages over traditional SDMs.
Location: South and Central America.
Time Period: 1979–2017.
Major Taxa Studied: Hummingbirds.
Methods: We build integrated SDMs by linking two observation models – one for 
each data type – to the same underlying spatial process. We validate SDMs with two 
schemes: (i) cross-validation with presence–absence data and (ii) comparison with re-
spect to the species' whole range as defined with IUCN range maps. We also com-
pare models relative to the estimated response curves and compute the association 
between the benefit of the data integration and the number of presence records in 
each data set.
Results: The integrated SDM accounting for the spatially varying sampling intensity 
of the presence-only data was one of the top performing models in both model vali-
dation schemes. Presence-only data alleviated overly large niche estimates, and data 
integration was beneficial compared to modelling solely presence-only data for spe-
cies which had few presence points when predicting the species' whole range. On the 
community level, integrated models improved the species richness prediction.
Main Conclusions: Integrated SDMs combining presence-only and presence–absence 
data are successfully able to borrow strengths from both data types and offer im-
proved predictions of species' ranges. Integrated SDMs can potentially alleviate the 
impacts of taxonomically and geographically uneven sampling and to leverage the 
detailed sampling information in presence–absence data.
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1  |  INTRODUC TION

Information about species distributions is widely used for assess-
ing species vulnerability to climate and land use change (Dawson 
et al., 2011; Jetz et al., 2007), and for optimizing species conserva-
tion efforts (Hannah et al., 2020; Jetz et al., 2022; Jung et al., 2021). 
Species distribution models (SDMs) provide such information 
through spatial predictions, but the accuracy and precision of the 
predictions depends on the quantity and quality of the underly-
ing species occurrence data (Guillera-Arroita et al., 2015). Data to 
support SDMs from sources such as citizen science and new sens-
ing technologies are growing rapidly (Amano et al., 2016; Wüest 
et al., 2019), but due to sampling biases these data alone are lim-
ited in how they can advance global species distribution knowledge 
(Oliver et al., 2021). Alleviating this deficiency and supporting im-
proved spatial predictions has been key goal of more recent SDM 
approaches that integrate multiple types of species occurrence data 
(Dorazio, 2014; Fletcher et al., 2015). Such integrated SDMs have 
the potential to improve predictions of species' whole ranges, which 
are central to many basic and applied uses and underpin the spe-
cies distribution ‘Essential Biodiversity Variable’ (Guisan et al., 2013; 
Jetz et al., 2019). If scalable to more species and larger geographic 
extents, there is thus a real potential for integrated SDMs to sub-
stantially improve the spatial biodiversity information base for un-
der-sampled taxa and regions (Isaac et al., 2020). Hence, successful 
applications and validations of species range-wide integrated SDMs 
are urgently needed.

Data integration can be conducted in multiple ways (Fletcher 
et al., 2019), and in this study we focus on the joint likelihood ap-
proach (henceforth ‘integrated models’), in which data sets are 
assigned separate likelihood models with shared parameters 
(Dorazio, 2014; Pacifici et al., 2017). Integrated SDMs of this sort 
have traditionally been fitted with systematically sampled presence–
absence (PA) along with opportunistically sampled presence-only 
(PO) data (Fletcher et al., 2019) or coarser resolution PA data from 
species atlases (Chevalier et al., 2021, 2022). These models have 
been shown to improve all essential aspects of SDMs compared to 
single data-type models: estimation accuracy of model parameters 
(Chevalier et al., 2021; Koshkina et al., 2017), predictive accuracy on 
a hold-out data (Koshkina et al., 2017; Simmonds et al., 2020), model 
fit on the training data (Bowler et al., 2019; Martino et al., 2021) and 
model uncertainty (Farr et al., 2021; Rufener et al., 2021). So far, 
integrated SDMs have been shown to improve model fit regardless 
of the level of data deficiency (Simmonds et al., 2020), but associat-
ing gain in model performance from data integration with number 
of presence or sampling points has not been tested with real spe-
cies. Traditionally, different integration methods, model structures 
and strategies to account for sampling biases have been validated 

at a spatially restricted set of testing points (Fletcher et al., 2019; 
Koshkina et al., 2017; Simmonds et al., 2020) or by a measure of 
information content (Martino et al., 2021). To our knowledge, no ex-
isting studies predict a species entire range with integrated SDMs. 
This is due to lack of data to evaluate SDMs on a spatial extent of a 
species' whole range and in a manner that does not propagate sam-
pling biases in the validation (Isaac et al., 2020). We present a new 
validation scheme, in which we use expert range maps to validate 
models with respect to their skill to predict species' whole range cor-
rectly and relate predictive performance of models on two spatial 
extents: the spatially constrained extent where there are system-
atically monitored species data (traditional validation method) and 
the extent of the species' whole range (new validation method). To 
validate integrated SDMs for modelling data-deficient species, we 
study how the benefits of data integration are associated with the 
number of species presence points and species range size in both 
model validation schemes. In fact, the predictive validation of the 
species' whole range is missing for traditional single data-type SDMs 
as well and with this study we bridge a method gap in the whole field 
of species distribution studies and not just integrated SDMs.

The improvements for distribution prediction from data inte-
gration originates from better coverage of different environmen-
tal conditions (Chevalier et al., 2021, 2022) and the study area 
(Doser et al., 2022) by the combination of data sets compared with 
a single data set alone. This alleviates ‘niche truncation’, which 
describes inaccurately estimated covariate effects and overly 
narrow niche estimates due to poor environmental coverage of 
the species data (Chevalier et al., 2021; Robinson et al., 2020). 
Another potential benefit of integrated SDMs is in addressing the 
often strong sampling bias in opportunistically sampled PO data 
(Fithian et al., 2015) which may confound the estimates of the co-
variate effects and thus degrade the accuracy of the distribution 
predictions (Warton et al., 2013). However, several examples to 
date suggest limited success for integrated models to overcome 
strong sampling bias in PO data compared to models that use only 
PA data (Fletcher et al., 2019; Simmonds et al., 2020). Accounting 
for sampling biases requires additional spatial information about 
the sampling intensity or an explicit model parameterization, 
such as spatial latent effects, reflecting the sampling process 
(Dorazio, 2014; Koshkina et al., 2017). The potential of spatial la-
tent effects in cases where there is no spatially explicit covari-
ate data of sampling intensity has been demonstrated previously 
(Ahmad Suhaimi et al., 2021; Gelfand & Shirota, 2019; Renner 
et al., 2019; Simmonds et al., 2020), but the approach has as yet 
not been validated for the full extent of species geographical 
ranges (Isaac et al., 2020). Indeed, previous work suggested that 
spatial latent effects might create inaccurate and counter-intuitive 
covariate coefficient estimates due to inherent collinearity with 
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relevant covariates (Hawkins et al., 2007; Kim, 2021; Mäkinen 
et al., 2022). In earlier integrated SDMs which have focused on 
relatively narrow spatial extents, the risk of such spatial con-
founding was relatively small (Gelfand & Shirota, 2019; Simmonds 
et al., 2020), but a recent study showed that spatial confounding 
impacted the covariate effect estimates already on a country wide 
extent (Renner et al., 2019). We hypothesize that improving range-
wide distribution predictions through integrated SDMs is condi-
tional on alleviating the ‘niche truncation’ while rigorously treating 
sampling biases of each data set (Zulian et al., 2021) and avoiding 
spatial confounding.

Here, we create novel understanding of how integrated SDMs 
improve information about species distributions. We compare dif-
ferent strategies to account for sampling biases and spatial con-
founding in terms of models' predictive accuracy and covariate 
effect estimates. Our approach used PA data for detailed infor-
mation about species–environment relationships for a limited set 
of sampling locations and PO data to deliver environmental signals 
across the species entire range. We modelled distributions of 71 
hummingbird species in South and Central America and conducted 
a model comparison on two levels. First, we chose 25 species, 
which had high enough prevalence in the PA data set for meaning-
ful spatial block-wise cross-validation and expert range map-based 
validation (Ridgely et al., 2003). We computed the correlation be-
tween the change in model performance when integrating data 
sets and number of species presence observations. Second, we 
predicted species richness with all 71 species and evaluated the 
models relative to the species richness map derived by stacking 
expert range maps of the 71 species. We assumed that systematic 
inaccuracies in single species SDMs from varying sampling inten-
sity or spatial confounding propagate to community level predic-
tions through stacked species distribution predictions (Pineda & 
Lobo, 2012). Given that species richness predictions are a common 
output from SDM studies (Schmitt et al., 2017), we considered this 
as an important output feature. Expert range maps can support 
an evaluation of model's predictions across the whole geographic 
range, albeit only at a coarser resolution, here assumed to be 
2500 km2 (Hurlbert & Jetz, 2007). To alleviate potential sampling 

biases of PO data or spatial confounding of a spatial latent ef-
fect, we formulated two additional integrated SDMs: one with an 
extra spatial latent effect to capture the varying sampling inten-
sity in PO data set, as done previously (Gelfand & Shirota, 2019; 
Simmonds et al., 2020), and one with a spatially restricted latent 
effect (Hanks et al., 2015), which ensures that a spatial latent ef-
fect explains only residual spatial variation independent of the co-
variates and thereby avoids collinearity between covariates and a 
spatial latent effect. In total, we implemented five models (Table 1) 
to address the following questions:

1. Does an integrated SDM perform better compared to single 
data-type SDMs in terms of predictive accuracy in the spatially 
restricted extent and across the species' whole range?

2. Do integrated SDMs benefit from accounting for sampling bias of 
PO data or from avoiding spatial confounding?

3. What is the role of covariate effect estimates in the differences of 
model performance?

4. Are benefits of data integration associated with the levels of data 
deficiency measured with the number of presence observations 
and range size?

2  |  MATERIAL S AND METHODS

2.1  |  Data sets

We obtained PO, PA and expert range map data for 71 humming-
bird species from a previous data integration study (Ellis-Soto 
et al., 2021). Their data were accessible through the Map of Life (mol. 
org): PO observations are originally from GBIF (https:// gbif. org), PA 
observations are a collection of long-term checklists in the northern 
Andes (https:// mol. org/ datas ets/ 769f3 b99- 214e- 4056- 8c39- 1200a 
6855943) and expert range maps were originally created by Ridgely 
et al. (2003) as then further amended in Jetz et al. (2012) (https:// 
mol. org/ datas ets/ d542e 050- 2ae5- 457e- 8476- 02774 1538965). PO 
observations were restricted to 1979–2017 to match the climatic 
covariates used as explanatory variables. We thinned PO data set 

TA B L E  1  Models assessed in this study and their likelihoods and intensity functions.

Model Definition Likelihood Intensity function

Presence-only PO YPO ∼ Poisson
(

!PO
)

log
(

!PO
)

= " + #x + g(s)

Presence–absence PA YPA ∼ Bernoulli
(

f
(

!PA
))

log
(

!PA
)

= " + #x + g(s)

Integrated PO + PA YPO ∼ Poisson
(

!PO
)

YPA ∼ Bernoulli
(

f
(

!PA
))

log
(

!PO
)

= "PO + #x + g(s)

log
(

!PA
)

= "PA + #x + g(s)

Integrated + additional sampling effect PO + PA + samp. YPO ∼ Poisson
(

!PO
)

YPA ∼ Bernoulli
(

f
(

!PA
))

log
(

!PO
)

= "PO + #x + g(s) + h(s)

log
(

!PA
)

= "PA + #x + g(s)

Integrated + restricted spatial latent effect PO + PA + restr. YPO ∼ Poisson
(

!PO
)

YPA ∼ Bernoulli
(

f
(

!PA
))

log
(

!PO
)

= "PO + #x + g(s)

log
(

!PA
)

= "PA + #x + g(s)

cor(x, g(s)) = 0

Note: PO and PA models were fitted with a single data type, and the integrated model PO + PA and its modifications were fitted with both data types. 
PO + PA + samp. introduces an additional spatial latent effect (h(s)) to explain the effect of varying sampling intensity. PO + PA + restr. restricts the 
spatial latent effect, g(s), by orthogonalizing it to the environmental covariates.
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of each species by discarding duplicated observations having the 
exact same location. By removing duplicates, we changed the vari-
able of interest from relative abundance to relative areal density of 
locations where species is present (also called relative occurrence 
rate). Sampling strategies of PO data may vary between surveys 
collected in GBIF (including eBbird) and the spatial distribution of 
PO points reflects the collective sampling intensity of the surveys. 
See the Tables S1.1–S1.3 in Appendix 1 for example species data 
and full lists of species and sample sizes, and Tables S1.4 and S1.5 in 
Appendix 1 for summary statistics of species sample and range sizes. 
PA observations have been sampled from areal units of size roughly 
1 km2. This is a standard survey unit area for avian monitoring. Still, 
some of the survey areas were not reported, but we think that the 
analysis is not sensitive to this missing information. Basically, if the 
size of the survey unit areas are independent of the environmental 
covariates and species intensity (which we can safely assume), the 
deviation of the average survey unit area from 1 km2 would only af-
fect the estimate of the model intercept of the presence–absence 
part of the integrated model and this parameter is not of ecological 
interest. Based on previous studies, 1 km2 captures adequately the 
environmental niche of the species (Lu & Jetz, 2023).

For many study species, PO data cover a larger area than PA data 
and better capture the extent of the species range [see Figure S1.1 in 
Appendix 1 for example species, buff-winged starfrontlet (Coeligena 
lutetiae) and sword-billed hummingbird (Ensifera ensifera)]. Data sets 
also differ in the geometry of their sampling: PO data are point-wise 
observations without an areal measure of sampling, whereas PA ob-
servations are measures of species presence status in a fixed survey 
area (Gelfand & Shirota, 2019; Moraga et al., 2017). As such they are 
not comparable measures of either species presence probability or 
abundance, but they can be related to the same function of species 
intensity through different link functions (Section 2.2). PA locations 
do not follow a uniform or random sampling design, but we assume 
that the impact of preferential sampling is negligible compared to 
that in the PO data and does not impact the inference and the pre-
diction accuracy.

Environmental conditions of our 1 km2 analysis pixels were 
characterized by annual mean temperature, mean diurnal range, 
annual precipitation, precipitation seasonality, intra-annual vari-
ation of cloud coverage (Wilson & Jetz, 2016), enhanced vegeta-
tion index (EVI) (Didan, 2015) and topographic ruggedness index 
(TRI) (Amatulli et al., 2018). Climatic variables were derived from 
Chelsa bioclim data set (Karger et al., 2017a, 2017b). Models were 
built at 1 km2 resolution following the grid system of Chelsa bio-
clim layers. Species and environmental data are accessible through 
Mäkinen et al. (2023).

2.2  |  Integrated models

An overview of the five models assessed and their likelihood and 
intensity functions is given in Table 1. We defined the observa-
tion model for the PO data as an inhomogenous Poisson point 

process (IPPP) conditional on the intensity of the process (Renner 
et al., 2015). Log likelihood of a Poisson point process is defined as:

where ! is the intensity of presence observations, si a spatial location 
of the ith presence observation, I the total number of the PO observa-
tions and A the study area. However, the integral over the study area 
cannot be computed and needs to be approximated, for example by 
discretizing the study area into quadrature points and assigning them 
weights (Warton & Shepherd, 2010). We sampled 20,000 quadrature 
points in a systematic grid which has been shown to be sufficient for 
convergence of the integral estimate in an IPPP (Renner et al., 2015) 
and assigned them the same quadrature weights, which equalled to the 
size of the grid cells. We did not apply any other sampling scheme or 
number of quadrature points, but relied on earlier studies showing the 
sufficiency of 20,000 points (Renner et al., 2015; Valavi et al., 2022). 
This saved us from high computational burden as well. Model conver-
gence does not directly depend on the study extent but on the spatial 
autocorrelation of the environmental covariates. In our study, envi-
ronmental variables vary smoothly over the study area and 20,000 
quadrature points capture the environmental variation well enough to 
guarantee convergence.

The likelihood of the Bernoulli distributed PA observations can 
be linked to the species' intensity, !, by computing the probability of 
a species presence with a complementary log–log link function of 
the intensity (Dorazio, 2014). The likelihood of the PA observations 
is defined as:

where J is the total number of the PA observations and yj is the jth 
PA observation. The joint log likelihood is computed as the sum of the 
PO and PA log likelihoods. The intensity of the presence points cor-
responds to the expected number of observations per 1 km2 and as it 
matches with the sampling unit size of the PA data, we do not need to 
scale the intensity variable when computing the log likelihood for the 
PA data.

The logarithm of the intensity function was modelled as a func-
tion of first- and second-order polynomial effects of the environ-
mental covariates (to allow modal responses) and the spatial latent 
effects. In Table 1, we present the single data-type and integrated 
models. The function of the log intensity is:

where ! is the average log intensity of the species over the study area, 
!k is the coefficient related to the kth variable, xk

(

si
)

 is the value of 
that variable in location si and g

(

si
)

 is the spatial latent effect shared 
between the Bernoulli and Poisson likelihoods (more information 

(1)log
(

l
(

!; sPO
))

=

I
∑

i=1

log
(

!
(

si
))

− ∫A!(s)ds,

(2)log
(

l
(

!; sPA
))

=

J
∑

j=1

− yjlog
(

1 − exp
(

− !
(

sj
)))

+
(

1 − yj
)

!
(

sj
)

,

(3)log
(

!
(

si
))

= " +

14
∑

k=1

#kxk
(

si
)

+ g
(

si
)

,
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about spatial latent effects is provided in section for model fitting 2.3). 
The likelihood functions for the two data sets have separate intercept 
parameters to account for the differing average species intensities 
(!PA, !PO for PO + PA and its varieties in the Table 1), partly arising from 
differing average sampling efforts in the data sets. Further details 
on the IPPP and log-intensity function have been discussed, e.g., in 
Matthiopoulos et al. (2020).

In two other integrated models we modified this intensity 
function: In the PO + PA + samp. model we added another spa-
tial latent effect (h

(

si
)

), which was fitted only for the PO data and 
assigned to its likelihood. h

(

si
)

 was intended to capture the spa-
tially varying sampling intensity in the PO data. A core assumption 
when fitting an IPPP for the PO data is that the presence locations 
are collected by randomly sampling the whole study area with a 
constant effort. However, we could relax this assumption in the 
PO + PA + samp. model (see Table 1) with h

(

si
)

 and by breaking the 
point process to two processes: one reflecting the species distri-
bution (! +

∑14
k=1

"kxk
(

si
)

+ g
(

si
)

) and one reflecting the sampling 
effort (h

(

si
)

) (Diggle et al., 2010). This model is analogous to a 
marked point process model, where the point process refers to 
the sampling effort and the marks, here presence locations refer 
to the species distribution (Soriano-Redondo et al., 2019). The ad-
ditional spatial latent effect h(s) is not interesting for the species 
distribution and omitted when making spatial predictions of the 
species distribution. The same model structure and reasoning was 
used by Gelfand and Shirota (2019) and Simmonds et al. (2020). It 
is possible that h

(

si
)

 captures spatial variation from other sources 
as well, such as long-distance dispersal, but we assume that given 
g
(

si
)

 capturing spatial variation over the PO and PA data sets, h
(

si
)

 
explains mostly the effect of sampling intensity. We validated this 
assumption implicitly in the model evaluation by leaving h

(

si
)

 out 
from the prediction of the species distribution. In case that h

(

si
)

 
would capture ecologically essential variation of a species distri-
bution, model's predictive accuracy should suffer compared to 
other integrated models.

In the PO + PA + restr. model, we constrained the variation of 
g
(

si
)

 so that it did not correlate with the environmental covari-
ates and thus captured such spatial variation, which was left over 
after we accounted for the covariate effects. Such restricted spa-
tial regression methods have been introduced previously (Hanks 
et al., 2015; Reich et al., 2006) to avoid spatial confounding, namely 
high collinearity, between environmental covariates and a spatial 
latent effect. Such confounding distorts the inference and returns 
counter-intuitive estimates for the covariate effects but can be 
avoided with strict restrictions on the spatial latent effect (Hodges 
& Reich, 2010). A similar approach for single data-type SDMs has 
been earlier supported by Crase et al. (2012), who showed that a 
restricted spatial latent effect simultaneously returned accurate 
estimates for the covariate effects and captured the spatial au-
tocorrelation of the response variable. However, if the estimates 
of the non-spatial model for the covariate effects are inaccurate 
due to collinearity between the covariate and the unobserved spa-
tial process, a restricted spatial latent effect cannot improve the 

accuracy of the estimates, though it increases posterior variance 
of the covariate effects (Hanks et al., 2015; Hodges & Reich, 2010). 
In our study, the unobserved spatial process corresponded to e.g. 
sampling intensity, which could correlate with environmental co-
variates by chance or due to a common driving factor, such as a 
macroclimatic variable. Thus, spatial confounding could originate 
from the collinearity between the observed covariates and the un-
observed processes. To our understanding, this model structure 
has not been earlier applied in integrated SDMs, and it provides an 
interesting opportunity to avoid confounding between the covari-
ates and the spatial latent effects, though it assumes that sampling 
bias in PO data is independent of the environmental gradients and 
species population density which usually is not the case. We con-
strained the spatial latent effect by orthogonalizing it to the in-
tercept and the environmental covariates, following the approach 
described previously (Hanks et al., 2015; Reich et al., 2006). See 
Appendix 2 for a more detailed definition of the constraint. By 
comparing different versions of the PO + PA models, we tested 
whether sampling bias (treated explicitly with the PO + PA + samp. 
model) or spatial confounding between model terms (avoided ex-
plicitly with the PO + PA + restr. model) has a greater impact on the 
predictive performance of the model.

2.3  |  Model fitting

We fitted models for each species separately with integrated nested 
laplace integration (INLA) through the R-INLA package and ap-
plied stochastic partial differential equations (SPDE) for fitting the 
spatial latent effects (Bakka et al., 2018; Lindgren & Rue, 2015; 
Rue et al., 2017). We assigned Matérn-3/2 type covariance func-
tion for both spatial latent effects (g(s), h(s)) and assigned penalized 
complexity priors for the parameters of the covariance functions 
(Fuglstad et al., 2018) (magnitude of variation and spatial autocor-
relation range of covariance). We put more prior probability for lo-
cally varying (with probability 0.95 that spatial autocorrelation range 
is less than 200 km) and relatively weak (with probability 0.99 that 
magnitude of variation is less than 2) spatial latent effects compared 
to the spatial structure and effect of the environmental covariates. 
Moreover, we assigned slightly informative priors for the model in-
tercepts and covariate effects (Gaussian distribution with mean zero 
and standard deviation 10). Spatial latent effects (g(s), h(s)) were fit-
ted along with the covariate effects, but only g(s) was used for pre-
dicting as well.

2.4  |  Model validation

We validated models with fourfold block-wise cross-validation 
on the PA data set, and the PO data set was used only for model 
training. In cross-validation, folds were formed by splitting the PA 
sites into 20 spatially distinct blocks and grouping blocks into four 
folds, which provide the most even species prevalence among the 
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folds. The presence points of the PO data set that were located 
less than 30 km from the testing points were discarded to improve 
the independence of the testing data set. We kept the quadra-
ture points in their original locations since we wanted to keep the 
area where validation points are located comparable to any part 
of the study area where a species may occur, but no species re-
cords exist, as when predicting species whole ranges. Discarding 
the PO points decreases the effect of spatial latent effect in the 
prediction and impacts the predicted values of the model around 
the spatial block of the validation points compared to a full model. 
This reflects a scenario where a model is used for predicting the 
species distribution in an area, where there are not any kind of ob-
servational data. This allows us to validate models better with re-
spect to how accurately covariate effects were estimated (Roberts 
et al., 2017; Wenger & Olden, 2012). We validated models with 
AUC and Cohen's kappa. For kappa, we set a threshold for trans-
forming the predicted intensities into binary presence–absence 
prediction by choosing the log-intensity value that provided the 
highest sum of specificity and sensitivity in the training PA loca-
tions. This was done for the PO model as well, though the training 
PA data set was not used in model fitting. In the model validation, 
we followed a Bayesian approach by taking 500 samples from the 
predictive posterior distribution and computing the mean predic-
tive accuracy over the samples. We further computed the stand-
ard deviation of the predictions in the cross-validation to test for 
predictive precision.

We restricted the model validation to 25 species, which had at 
least three presence observations in each testing fold creating on 
average a prevalence of 0.145 for testing folds. Prevalence is the 
proportion of sites with a presence observation to all sampling sites. 
We conducted cross-validation and species' whole-range validation 
for this set of species to keep the metrics comparable.

We conducted an additional, complementary assessment of 
range-wide predictions with the expert range maps. To do this, 
we first predicted the species log intensity throughout the study 
domain [the larger of a 750-km buffer around the (independent) 
expert range maps ranges or the PO locations]. On the extent 
of 1000 s of kilometres, expert range maps for groups like birds 
can offer a sufficiently reliable source of presence and absences 
at spatial grains of ca. 100 km upward, with 50 km justifiable 
for well-studied systems (Graham & Hijmans, 2006; Hurlbert & 
Jetz, 2007). Moreover, expert range maps provide a reliable es-
timate of species absences (high specificity) regardless of the 
spatial resolution and thus inform about the extent of occurrence 
(Graham & Hijmans, 2006; Hurlbert & Jetz, 2007). Most impor-
tantly, we can assume that the errors in expert range maps are 
randomly distributed across the species ranges and independent 
of the SDMs' error sources, such as the spatially varying sampling 
intensity of the PO data. We transformed the expert range maps 
into presence–absence data in 50 km resolution (2500 km2) by 
treating each coarse resolution cell as presence if any 1 km2 cell 
was present inside it. We set the threshold for the range-wide pre-
diction in the same way as in the cross-validation and used AUC 

and kappa as the validation metrics. Additionally, we conducted an 
expert range map-based validation for all 71 species to make sure 
that the results are not sensitive to the sub-sample of species. We 
conducted another expert range map-based validation by com-
puting the sum of species intensities over the study domain and 
calculated the proportion of the intensities inside the expert range 
map. This validates models with respect to how much they over 
predict species intensities outside of the expected range so that 
the best-performing model would predict 100% of the population 
inside the expected range. An evaluation of integrated models was 
previously applied by Schank et al. (2017) for predicted population 
size, but we are not aware of earlier studies using expert range 
maps for validating predictions of a species range or population 
distribution.

We compared the models in terms of covariate effect esti-
mates which denote the breadth of conditions that a species can 
tolerate. We assumed that the PA data covers a small part of the 
full range for a few species, and hence not a complete sample of 
environmental gradients, which are accessible to those species. 
Hence, the PA model could suffer from ‘niche truncation’ and 
provide overly narrow niche estimates (Chevalier et al., 2021). 
Integrating PO data from across the species whole range allows 
to sample the whole environmental gradients and could alleviate 
‘niche truncation’. Without the true data generating values, we 
compared models only in terms of relative ‘niche truncation’ or 
‘inflation’ (overly large niche estimates) among the models. We as-
sessed the role of niche estimates in species range predictions by 
comparing models in terms of covariate effect estimates and range 
prediction accuracy. Moreover, we tested whether the changes 
in covariate effect estimates are related to the spatial autocor-
relation range of the covariates. We assume that accurate effect 
estimates for a relatively coarse scale covariate (long spatial au-
tocorrelation range) would require the observational data to fully 
cover the study area to sample whole environmental gradients. 
Here, we computed the strength of the spatial autocorrelation of 
the covariates with Moran's index using the Moran function from 
raster package in R (v. 4.2.1). Moran's index measures the over-
all strength of correlation between neighbouring cells across the 
study area. Values close to one indicate strong spatial clustering 
and smooth spatial appearance of the covariate. To study the ben-
efits of data integration relative to data deficiency we computed 
Pearson's correlation coefficients and statistical significance of 
the correlation between the change in predictive performance 
when comparing single data-type and integrated SDMs and the 
number of presence points in the PO and PA data sets and the 
species range size (from the expert range map).

We computed a species richness prediction over 71 species 
by stacking single species predictions and compared the species 
richness prediction to a species richness map from stacked ex-
pert range maps. We compared the predicted species richness 
with the number of the PO records on the cell level to study the 
dependence of the richness prediction on the sampling intensity. 
We did both comparisons with Pearson's correlation test. This was 
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362  |    MÄKINEN et al.

conducted in the 50 km resolution to reflect the relatively coarse 
resolution implicit in the expert range maps.

3  |  RESULTS

In cross-validation, the PO + PA + samp. model performed better 
than the PO model but slightly worse than the PA model (Figure 1: 
first row). For most species, the PA model performed the best. The 

other integrated models (PO + PA and PO + PA + restr.) provided only 
slight improvement in cross-validation compared to the PO model 
but were inferior to the PA and PO + PA + samp. models in terms of 
AUC and kappa metrics (Figure 1: first row).

When predicting species' whole range with all the data, the 
PO + PA + samp. model performed on average better than the PA 
model and as well as the PO and other integrated models (Figure 1: sec-
ond row). This pattern was consistent across both validation metrics in 
the binary range-wide prediction (AUC and kappa) and the proportion 

F I G U R E  1  Model performance comparison for the 25 hummingbird species with sufficient data for spatial cross-validation. Panels in the 
first and third columns show the distribution of the absolute values of PO model and the second and fourth columns show distribution of 
the pairwise differences in performance to PO model. First row: cross-validation. Second row: range-wide prediction. Third row: range-
wide prediction and predictive precision. In the range map-based validation, values on the y-axis denote the proportion of the predicted 
population inside the expert range map. In the uncertainty estimation, values on the y-axis denote the average predictive standard deviation 
over the validation points of all cross-validation folds. The number under each box denotes the number of species for which the respective 
model performed the best.

 14668238, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13792, W

iley O
nline Library on [26/09/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    |  363MÄKINEN et al.

of the population predicted inside the expert range (Figure 1: second 
and third rows). Overall, there were only four species, for which a sin-
gle model performed the best in cross-validation and expert range 
map-based validation in terms of AUC (three with the PO + PA + samp. 
model and one with the PO + PA model). The expert range map-
based validation results for all 71 species were fully in line with the 
validation results for the 25 species examined with the cross-valida-
tion (see Figure S1.2 in Appendix 1). We also assessed the predictive 
precision in the cross-validation as a measure of predictive uncer-
tainty. Here the PA model provided the highest precision followed 
by the PO + PA + samp. model (Figure 1: third row). See Figure S1.1 in 
Appendix 1 for an illustration of the model comparison for two ex-
ample species, the buff-winged starfrontlet, a narrow-ranged species 

with relatively few PO observations, and the sword-billed humming-
bird, a wide-ranged species with relatively many PO observations.

The PO and integrated models estimated on average stronger 
quadratic effects for temperature (on average −9) and precipitation 
(on average −4) than the PA model did (average quadratic effect −5 
for temperature and −1 for precipitation) (Figure 2). The change in the 
covariate effect estimates was smaller for other covariates decreas-
ing on average close to zero for EVI. Here we highlight estimates for 
a few covariates, but see Figures S1.5 and S1.6 in Appendix 1 for the 
same comparison for all covariates for the 25 cross-validated species 
and for all 71 species. There were only small differences among the 
PO and integrated models in terms of covariate effect estimates. The 
environmental covariates had similar levels of spatial autocorrelation 

F I G U R E  2  Distributions of the estimates for the effects of temperature, precipitation and EVI for the 25 hummingbirds.
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364  |    MÄKINEN et al.

measured with the Moran's I, and thus the changes in the covariate 
effect estimates were not associated with the spatial structure of 
the covariates. See Table S1.6 in Appendix 1 for a table of Moran's I 
of each covariate raster.

The change in the model performance in cross-validation be-
tween the PO and PO + PA + samp. models was not associated with 

number of presence points in the PO or PA data sets or species 
range size (Table 2). However, there was a negative association be-
tween the model improvement in expert range map-based valida-
tion between the PO and PO + PA + samp. models and the number 
of PO presence points (Table 2). We found the same association in 
cross-validation between the performance difference of the PA and 
PO + PA + samp. models. The same comparison over all 71 species 
showed only weak and statistically insignificant associations (see 
Table S1.7 in Appendix 1).

We next extended our predictions to the full set of 71 humming-
bird species and compared the species richness predictions from 
stacked model's predictions with the species richness estimate from 
the stacked expert range maps. Results showed that prediction of 
the PO + PA + samp. model had the highest correlation with the esti-
mated species richness from the expert range maps and the second 
lowest correlation with the sampling intensity after the PA model 
(Table 3). The PO model predicted high species richness in a few 
areas, which also correspond to the areas of high sampling intensity 
(Figure 3), whereas the PA model predicted high species richness 
across the northern Andean Mountain range. The prediction of the 
PO + PA + samp. model was less impacted by the sampling intensity 
than the other integrated models were, and the predicted hot spot 
areas matched better with those of the expert range map estimate.

4  |  DISCUSSION

We tested integration of the opportunistically sampled PO data and 
the species checklist-based PA data for fitting integrated SDMs for 
71 hummingbird species on the extent of the species' whole ranges. 
Of the different integration methods (tested, e.g. in Ahmad Suhaimi 
et al., 2021; Pacifici et al., 2017; Simmonds et al., 2020), we focused 
on the joint likelihood approach since it allowed us to analytically 
link different types of survey data sets to a function of environ-
mental covariates and spatial latent effects. We found that the inte-
grated SDM with the additional PO data-specific spatial latent effect 
(PO + PA + samp.) predicted the presence–absence status of the 

TA B L E  2  Pearson's correlation coefficient and statistical 
significance (*p < 0.05) for how the performance difference 
between the PO + PA + samp. and the PO or PA models is 
associated with the number of species presences in PO and PA data 
sets and the species range size (estimated from the expert range 
map).

Cross-validation Expert range map

Model Model

PO PA PO PA

Presences (PO) −0.35 −0.51* −0.41* 0.04

Presences (PA) −0.12 −0.16 −0.28 −0.09

Range size 0.14 0.1 0.13 −0.09

Note: Model performance is the AUC in cross-validation and expert 
range map-based validation for 25 test species.

TA B L E  3  Correlation between species richness derived from 
expert range maps versus stacked SDM predictions and species 
richness, assessed at 50 × 50 km grain (N = 11,291).

Model

Correlation

Expert range map Sampling intensity

PO 0.82 0.7

PA 0.85 0.62

PO + PA 0.83 0.71

PO + PA + samp. 0.87 0.66

PO + PA + restr. 0.84 0.69

Note: The correlation between expert range map species richness and 
sampling intensity is 0.56. Correlation is estimated with Pearson's 
correlation coefficient.

F I G U R E  3  Predicted species richness of the three presented models in relation to expert range map richness and sampling intensity 
(number of samples are shown on log scale), all represented for grid cells of size 50 × 50 km. Model-based richness is based on the stacked 
thresholded (binary) distributions of the 71 assessed species. The rightmost panel shows the sampling intensity as the count of presence 
records of assessed species in each grid cell.
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species in cross-validation more accurately and precisely than the 
PO or other integrated models did. Moreover, the PO + PA + samp. 
model improved the accuracy of the species' whole-range predic-
tions compared to the PA model. In all model comparisons, the 
PO + PA + samp. model balanced between the PA, PO and other 
integrated models by providing relatively good predictions but not 
necessarily being the top performing model. Compared to the PO 
model, the PO + PA + samp. model improved the range prediction 
especially for data-deficient species. The PO and integrated mod-
els had stronger effects of the environmental covariates, especially 
temperature and precipitation, than the PA model had. The aggre-
gated species richness predictions of the PO + PA + samp. model 
was less severely impacted by sampling bias of the PO data set than 
other integrated models were and based on a comparison to stacked 
expert range maps, the PO + PA + samp. model provided more accu-
rate prediction for the areal species richness than the other models 
did. The sampling component of this model seems to succeed in cap-
turing redundant spatial variation in the PO data set and address the 
effects of the varying sampling intensity.

4.1  |  Model comparison

Our results show that integrated SDMs can help address limited 
amounts of the occurrence data but the improvements are condi-
tional on accounting for different biases of the data sets, such as the 
sampling bias of the PO data, as can be expected based on previous 
studies (Dorazio, 2014; Renner et al., 2019). However, the method 
applied here using the additional spatial latent effect has not previ-
ously been validated on a spatial extent representing a species entire 
range. Previous studies have also found support for integrated mod-
els over the PA or PO models (Ahmad Suhaimi et al., 2021; Koshkina 
et al., 2017; Pacifici et al., 2017; Simmonds et al., 2020), and our 
results support those findings with the addition that the improve-
ment of the integrated modelling depends on the prediction domain 
of the model: over the PA domain, the PA model performed better 
in cross-validation than the PO + PA + samp. model, but underper-
formed the PO + PA + samp. model when predicting species' whole 
range. Although three studies have tested the integrated SDMs in 
scenarios where the PA data covers only a part of the study area 
(Ahmad Suhaimi et al., 2021; Robinson et al., 2020), they have not 
validated the models with independent range estimates and thus our 
approach shows that modelling the PA data alone may give inaccu-
rate predictions of species' whole ranges.

We can relate the differences in the performance of the PA, PO 
and PO + PA + samp. models to the estimates of the environmen-
tal covariate effects and of the hyperparameters controlling the 
spatial latent effects. First, although all models supported modal 
responses of the species population to temperature and precipita-
tion, the PO and integrated models supported steeper decline of the 
intensity function around the optimal temperature conditions than 
what the PA model supported. Second, the PO model had the high-
est estimate for the standard deviation of the spatial latent effect 

followed by the PO + PA + samp. (estimate for the standard devia-
tion of the shared spatial latent effect) and the PA model with the 
lowest standard deviation estimate (see Figure S1.3 in Appendix 1). 
We also suspect that, due to relatively small estimates (on average 
one third of the estimate for the PO model) for the standard devi-
ation of the spatial latent effect, the PA model's predictions in the 
cross-validation were more informed by the environmental covari-
ates compared with the PO model's predictions. On the other hand, 
the PO and PO + PA + samp. models predicted species' whole range 
on average more accurately than the PA model did due to the stron-
ger effects of the temperature and precipitation and that their spa-
tial latent effects reduced the predicted species intensity outside 
of the species range, where there were no presence observations 
in either of the PO or PA data sets. The PA model over-predicted 
ranges by predicting species distribution to areas, which may be un-
suitable or inaccessible for the species or where the species may 
have been outcompeted. The PA model's predictions had a smaller 
range of the predicted values compared with the predictions of the 
PO + PA + samp. model. For example, for sword-billed hummingbird, 
the prediction of the PA model varied between −8 and 0 and the pre-
diction of the PO + PA + samp. model varied between −15 and 0 (see 
Figure S1.1 in Appendix 1). This conclusion is supported by the find-
ing that the PA model predicted on average larger ranges than what 
the expert range maps indicated and larger than what other models 
predicted (Figure S1.4 in Appendix 1). We can assume that the ex-
pert range maps are overestimates of the true ranges since they do 
not always capture holes in species ranges. Only the PO + PA + samp. 
model predicted on average slightly smaller ranges than what the ex-
pert range maps indicated. In the worst case, an overestimated range 
size may underestimate the species vulnerability status and exclude 
the species from conservation targets (Hurlbert & Jetz, 2007). From 
an ecological standpoint, small covariate effect estimates of the 
PA model characterize species more as generalists compared with 
the other models, which return tighter response curves and pre-
dict smaller environmentally suitable and geographically accessible 
space for the species. The results showed that the PO + PA + samp. 
model could leverage information about the species environmen-
tal niche and other range constrains from species' whole range and 
improve the range prediction compared with the PA model. Due to 
accounting for the additional spatial variation in the PO data, it could 
still improve cross-validation compared with the PO model. To our 
knowledge, integrated models have not been earlier validated with 
two contrasting spatial extents (cross-validation vs. species' whole 
range) with a link to the covariate effect estimates, and our results 
show the magnitude and driver of improvements of the integrated 
models compared with the PO and PA models.

Comparison of the different integrated models showed that 
the PO + PA + samp. model performed better than other model 
candidates. Large estimates for the standard deviation and small 
estimates for the spatial autocorrelation range of the PO da-
ta-specific spatial latent effect (h(s)) of the PO + PA + samp. model 
(see Figure S1.3 in Appendix 1) indicate that a high proportion 
of the variation of the PO data was likely related to the spatially 
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varying sampling intensity. This feature of the data generating 
process was not accounted for by the PO or other integrated 
models which penalized the performance of this group of models 
in the cross-validation. However, the estimates for the environ-
mental covariates did not change much between the PO and in-
tegrated models, which indicates that the sampling bias impacted 
more the spatial latent effect than the environmental covariate 
effects. These findings address the importance of accounting for 
the sampling bias of the PO data explicitly in the model struc-
ture. Similar conclusions were previously reported (Gelfand & 
Shirota, 2019; Simmonds et al., 2020), and this matches well with 
the ideas presented (Renner et al., 2019) to find a shared spatial 
process between the data sets and simultaneously account for the 
data set-specific sampling processes. To our surprise, we did not 
detect strong spatial confounding between the environmental co-
variates and spatial latent effects and confounding seemed to take 
place in the spatial latent effect in the PO and PO + PA models 
so that predictions of these effects mostly reflected the spatially 
varying sampling intensity. This conclusion was supported by the 
smaller estimates for the standard deviation of the shared spatial 
latent effect of the PO + PA + samp. model compared to that of the 
PO + PA model. We did not test whether leaving a spatial latent 
effect out when predicting with the PO + PA or PO + PA + restr. 
models would have returned more accurate results. However, a 
problem inherent to the PO, PA, PO + PA or PO + PA + restr. mod-
els (and like to many other SDMs) is that there is no instrument 
to separate out data set-specific variation from the model that is 
used for predicting. A more extreme option would have been to 
leave spatial latent effects out also from the model fitting and ex-
plain variation in species' log intensity solely with environmental 
variables. However, such non-spatial model would have returned 
overly optimistic uncertainties to model estimates and not nec-
essarily improved estimates' accuracy (Mäkinen et al., 2022). 
Moreover, the model structure chosen here corresponds to state-
of-the-art SDMs, introduced e.g. in Chakraborty et al. (2011) and 
Latimer et al. (2009), applied e.g. in Mäkinen and Vanhatalo (2018) 
and Soriano-Redondo et al. (2019) and provides opportunities to 
explain different sorts of redundant spatial variation in the data 
compared with non-spatial models.

In addition to the higher predictive accuracy, the PO + PA + samp. 
model had consistently lower predictive uncertainty than the PO or 
other integrated models (Figure 1: Uncertainty estimation). Similar 
results have been reported also by Rufener et al. (2021) when fitting 
integrated SDMs for fisheries. Uncertainty is an important feature 
for the applicability of the model's predictions in decision-making 
problems, for example when assessing the effectiveness of man-
agement actions (Regan et al., 2005; Williams & Hooten, 2016). For 
most species the PO + PA + samp. model combined relatively high 
predictive accuracy on the extents of spatially constrained moni-
toring data and species' whole ranges with relatively low model un-
certainty. Given that this may not necessarily be the case for other 
species presenting different data features, a multi-model infer-
ence framework would help choose the best model among a set of 

models. We recommend including the PO + PA + samp. model in fu-
ture data integration studies and for wider and applied use creating 
information about biodiversity across spatial scales. Moreover, the 
improvements in species richness predictions show that integrated 
modelling can refine macroecological studies and provide new find-
ings in the analysis of richness gradients.

4.2  |  Studying data-deficient species and areas

The general assumption that data integration benefits data-deficient 
species, which are scarcely observed due to low population abun-
dance or low detectability, was not fully supported by our study. 
Our results showed that the PA model performed in the cross-vali-
dation better than the PO + PA + samp. model for species which had 
relatively many PO observations. This indicates that in the spatially 
restricted cross-validation, the PO data more likely confounded 
the prediction of the PO + PA + samp. model than improved it pos-
sibly due to that the PA model was estimated with data only from 
relatively close to the validation points, whereas the PO model 
(especially for data abundant species) was estimated with data 
from across the whole continent. Locally estimated models, such 
as the PA model, can perform relatively well in cross-validation in 
a small area, but poorly in predicting across large spatial extents, 
known as poor model transferability (Yates et al., 2018). This has 
been shown for Ebird data when comparing locally adjusted spatio-
temporal models to fixed models at different spatial extents (Fink 
et al., 2010). Contrary, when predicting the species' whole range, the 
PO + PA + samp. model performed better than the PO model when 
there were only few PO observations. Although, on average, over 
the study species the PO and PO + PA + samp. models performed 
equally well, supporting the model with the PA data improved the 
range prediction for relatively scarcely sampled species. Range size 
was not associated with the change in model performance between 
the models. Similar to the model evaluation, also the associations 
between data or species characteristics and the benefits of data in-
tegration depended on the spatial extent of the validation data, as 
data integration was shown to be more beneficial for data-deficient 
species on the extent of species' whole range. However, we think 
that it is not only the number of data points that controls the pos-
sible gain of predictive accuracy from data integration, but that the 
predictive improvement from data integration depends also on how 
well the data sets cover the environmental gradients that are acces-
sible to the species and the level of preferential sampling of the PO 
data. We see this as an interesting question for future studies.

From a geographical point of view, the PA model suffered from 
over-predicting a species population outside of the species range 
and the PO model suffered from over-predicting species richness 
in the area of high sampling intensity (the latter was also found by 
Ellis-Soto et al., 2021). These errors were corrected to some extent 
by the PO + PA + samp. model supporting its use for studying un-
evenly sampled areas, such as remote areas in the tropics (Oliver 
et al., 2021) or marine regions (Menegotto & Rangel, 2018). Previous 
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efforts in integrated SDMs, including this study, have examined char-
ismatic species, which are commonly sampled by public surveyors 
and have long-term well-established systematic survey protocols, 
such as birds (Meyer et al., 2015). Integrated modelling approach can 
be used to improve spatial information for less commonly surveyed 
species groups, like invertebrates (Meyer et al., 2015), which may 
be surveyed systematically only in a small part of the species geo-
graphical range.

4.3  |  Limitations of the study and future 
perspectives

By involving different types of species information in the model in-
ference and validation propagates uncertainties and biases in the 
results. We considered expert range maps as fixed truth of species 
occurrence status despite expert range maps have been shown to 
suffer from inaccuracies (Graham & Hijmans, 2006). However, we 
could alleviate the inaccuracies by coarsening the resolution of the 
model validation (see Hurlbert & Jetz, 2007). For all species, this may 
not have been an adequate treatment and validation would have 
required an even coarser resolution. The fact that cross-validation 
supported the PA model over all other models, whereas expert range 
map-based validation gave the opposite result, may have been partly 
due to the inaccuracies of the range maps. Still, many results sup-
port the conclusion that the PA models are inaccurate as providing 
overly small estimates for the covariate effects and hence predict-
ing larger species ranges than what other models predict, or expert 
range maps present (see Figure S1.4 in Appendix 1). For humming-
birds, expert range maps can be considered a credible information 
source, but we cannot make this assumption for all taxa since for 
many species groups range maps may suffer from larger inaccuracies 
or simply, they do not exist.

New approaches to account for the sampling bias of the PO 
data are currently being developed (Chauvier et al., 2021; Nolan 
et al., 2021). Here, we used the approach from previous studies 
(Gelfand & Shirota, 2019; Simmonds et al., 2020) and modelled the 
sampling intensity of the PO data with a spatial latent effect. We 
used presence records of only the focal species for estimating the 
spatial latent effect, but given the general interest of the surveyors 
to all the study species, we could have fitted it over presence records 
of all species. A similar approach for borrowing information between 
species has been used to constrain likelihood estimation only to 
locations, where any of the study species has been sampled (tar-
get group sampling) (Chakraborty et al., 2011; Phillips et al., 2009). 
Estimating the sampling intensity with a spatial latent effect over all 
sampling locations and adding it to the function of species log inten-
sity would provide a probabilistic alternative to fixing background 
sites to observation locations of any species and assuming a con-
stant survey effort over the locations.

Observational survey data are still only one of the information 
sources for species distributions and environmental niches. Previous 
studies have shown that integrating PO data and spatial information 

from expert range maps or elevational tolerance limits of the species 
provides good results too (Ellis-Soto et al., 2021; Merow et al., 2017). 
On the other hand, physical performance experiments provide de-
tailed information about individual level responses to environmen-
tal variables, and estimated responses from the experiments can be 
further used to project a species distribution to a landscape (Muñoz 
et al., 2021). New types of integrated SDMs (Kotta et al., 2019; 
Talluto et al., 2016) provide interesting approaches for integrating 
experiments and observational data in a single model through a 
shared latent process, like the structure used in the PO + PA + samp. 
model. These information sources should be considered in future 
studies and flexible methods for modelling jointly such discrepant 
observations are highly needed.

Our models did not address the fact that hummingbirds' distri-
butions are constrained by mountain chains and dispersal barriers 
(Weinstein et al., 2014). Although spatial latent effects assumingly 
capture dispersal processes, we modelled the decay of covariance 
in Euclidean space and did not account for the impact of dispersal 
barriers on the covariance. Adding dispersal constrains in the co-
variance structure has been shown by Bakka et al. (2019), and for 
hummingbirds dispersal barriers could be derived from elevational 
tolerance limits, which were used for restricting species distribution 
predictions (Ellis-Soto et al., 2021). This approach could be used to 
improve the identifiability of different processes impacting the geo-
graphic distribution of a species population and we see it as an inter-
esting research question for future studies.

5  |  CONCLUSION

We have shown that compared to traditional models using a single 
data type, integrated SDMs provide advantages for predicting a spe-
cies entire range. Specifically, integrated SDMs offered predictions of 
greater accuracy and lower uncertainty. This predictive improvement 
is conditional on explicitly modelling the sampling intensity of the op-
portunistically sampled data. This approach simultaneously solves 
the problems of small covariate effect estimates, which are common 
in models fitted with ecological surveys covering a relatively small 
spatial extent and sampling bias, which is common in heterogene-
ous and opportunistic species data covering a species' whole range. 
The improvement in the accuracy of single species range predictions 
propagates also to community level species richness predictions and 
has the potential to refine macro-level richness mappings. Integrated 
modelling can alleviate the problem of taxonomic and geographic data 
gaps and biases by combining the respective strengths of the PO and 
PA data and thus support and improve spatial information basis for 
large-scale biodiversity science and conservation.
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