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Determining the drivers of non-native plant invasionsis critical for managing native
ecosystems and limiting the spread of invasive species'* Tree invasions in particular
have beenrelatively overlooked, even though they have the potential to transform
ecosystems and economies>*. Here, leveraging global tree databases>”’, we explore
how the phylogenetic and functional diversity of native tree communities, human
pressure and the environment influence the establishment of non-native tree species
and the subsequent invasion severity. We find that anthropogenic factors are key to

predicting whether alocationisinvaded, but that invasion severity is underpinned by
native diversity, with higher diversity predicting lower invasion severity. Temperature
and precipitation emerge as strong predictors of invasion strategy, with non-native
speciesinvading successfully when they are similar to the native community in cold or
dry extremes. Yet, despite the influence of these ecological forces in determining
invasion strategy, we find evidence that these patterns can be obscured by human
activity, with lower ecological signal in areas with higher proximity to shipping ports.
Our global perspective of non-native tree invasion highlights that human drivers
influence non-native tree presence, and that native phylogenetic and functional
diversity have acritical role in the establishment and spread of subsequent invasions.

Plant invasions have multifaceted impacts on ecosystems and human
wellbeing across the globe' %, It is expected that plant invasions will
continue to increase in the coming decades owing to human-assisted
introduction and naturalization of these species, with ever-growing
impacts on biodiversity within native forest ecosystems"®'°. These
invasions will undoubtedly also have considerable economicimpacts
in managed landscapes by disrupting timber production, agriculture
and humanlivelihoods™ Y. In particular, non-native trees represent an
important and increasing concern globally, as they are often actively
planted far outside their native ranges for forestry, reforestation, resi-
dential, or ornamental purposes**®. Along with the passive spread of
non-native species, the active propagation of trees by humans can often
resultin an increased potential to become problematic invaders*2.,
Giventhe prominentroles of treesin shaping the structure and function-
ing of ecosystems, such tree invasions have the capacity to alter plant
composition, productivity, biodiversity and the services provided to
humans"*?, Previous research in invasion ecology has expanded our
understanding of community-level properties that influence ecosys-
tem susceptibility to invasion®%, as well as traits that make plant spe-
cies more likely to become invasive? . However, most work has been
restricted to local and regional scales®??, with contrasting ecological
mechanisms affecting invasion success in different regions. We thus
lack aglobal unified theory of the humanand ecological drivers of tree
species invasions®. Developing anintegrated global understanding of
ecological and anthropogenic forces that drive non-native treeinvasions
is critical toimprove decision makingin conservation and management.

Countless ecological mechanisms have been proposed to explain the
susceptibility of different ecosystems to invasion by non-native species
indifferentlocations. Traditionally, more diverse or ecologically com-
plex systems are thought to exhibit ‘biotic resistance’ to invasion®>*%,

This hypothesisis based on the assumption that greater diversity in the
native community fills the available ecological niches and reduces avail-
able resources, limiting niche space to novel species. However, most
work has focused on testing this hypothesis using species richness as
anindicator of niche filling??, which may not fully capture the propor-
tion of niches that are filled in the native community. Instead, more
informative metrics for nichefilling may be phylogenetic or functional
diversity. Phylogenetic diversity accounts for evolutionary similarity
andrepresents areasonable proxy for similarity between taxa, whereas
functional diversity directly addresses the underlying mechanism of
biotic resistance (that is, the breadth of ecological niches filled), but
may be more difficult to measure. Conversely, there is also evidence for
the opposite patterninsome ecosystems, whereby amore diverse com-
munity isindicative of amore favourable habitat, where a wide range of
invasive species might survive. This ‘biotic acceptance™*** hypothesis
leads to the expectation that highly diverse sites are optimal for many
plant species and could promote invasion of non-native species. None-
theless, we still lack a unified understanding of the relative importance
ofthese two competing processes, and their variation across the globe,
leading to ongoing calls to resolve this ‘invasion paradox’>.

Invasion success is also likely to depend on the ecological strategy
oftheinvading species relative to the recipient native community. One
school of thought is that environmental constraints are the primary
drivers of plant species distributions. Therefore, to be successful, inva-
sive species ought to be similar to native species that are adapted for
that region, especially in extreme environments*. Under this ‘envi-
ronmental filtering hypothesis’**** (or ‘preadaptation hypothesis’),
invasive species will be more successful if their traits mirror those of
the native community*. For example, to be successfulinaharsh desert
environment, non-native plants would need to be ecologically similar
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Fig.1|Distribution of the study data. Distribution of the full study dataset,
coded for non-native severity (n=471,888 plots). The map shows average per
centinvasionacrossal-degree hexagonal grid, from non-invaded (0%) pixels

to native plantsto survive, possessing traits that protect themagainst
high heatand water loss. By contrast, the ‘limiting similarity hypothesis’
(also known as ‘Darwin’s naturalization hypothesis’) postulates that
invasive species need to be ecologically distinct from native species to
avoid niche overlap*¢™*. Here, invaders are thought to be more success-
fulif they can fill unique niche spaces that are not already used by the
native community, reducing competition and enabling their establish-
ment. These two processes suggest contrasting mechanisms for how
species invade: either species invade by being similar or dissimilar to
the native community (Darwin’s naturalization conundrum?®-°). It is
possible that the relative importance of these opposing ecological
mechanisms varies under different environmental conditions, with
greater importance of environmental filtering in harsh conditions
and greater niche differentiationin more moderate environments®*,
Suchregional variationin therelative importance of these mechanisms
might help to explainthe opposing responses observed across studies.
However, until now, we lack a broad-scale analysis of these different
invasion mechanisms that can help us to see past the idiosyncrasy of
local-scale observations to identify unifying trends.

Akey challenge hindering a global consensus of the ecological pat-
terns and mechanisms underpinning plant invasion is that these pro-
cesses are likely strongly influenced by anthropogenic activity, which
may dampen the signal of ecological drivers. Humans drive contempo-
rary plantinvasions through highly efficient transport—bothintentional
and accidental—of non-native plants, with proximity to ports and air-
ports being associated with increased invasion'***, A constant influx
of non-native species may override anative community’s ability to resist
invasion® (biotic resistance) and obscure theimpacts and importance
of specific ecological drivers, such as native diversity, particularly at
early stages of invasion. That is, with increased propagule pressure
of non-natives species exerted by humans, the relative importance of
ecological drivers may be reduced. Moreover, sites with high levels of
non-native propagule pressure due to humanactivity are alsolikely to be
heavily disturbed, compounding this anthropogenicinfluence. Account-
ing for human global change drivers may be particularly important
when considering the role of invasion strategy, with the potential for
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ingreento completelyinvaded (100%) pixelsin purple. Plots are considered
invadedifthereisany non-native tree present.

anthropogenic drivers and human propagule pressure to overwhelmthe
impact of ecological drivers. This could occur through anincreasein the
frequency and magnitude of introductions, which would be expected
toincrease stochastic variation and dampen ecological signals. So far,
these hypotheses have been tested only at local and regional scales,
with few studies integrating ecological and anthropogenic drivers of
invasion at the global scale to disentangle the relative importance of
human activity, environmental conditions and biological diversity®.
Here, by combining global datasets of local-scale forest inventories,
native status, environmental climate variables and anthropogenic
drivers, we test for the relative importance of ecological and anthro-
pogenic influence on non-native tree invasion. Using this large-scale
approach, we search for a unifying perspective of the environmental
and anthropogenic contexts driving non-native invasion and invasion
severity, via both relative richness and abundance of non-natives, as
well asinvasion strategy. We consider three hypotheses: (H1) greater
native diversity reduces non-native invasion?; (H2) high levels of
environmental filtering in extreme environmental conditions leads
to similarity of non-natives with the surrounding natives, and moderate
conditions are associated with greater levels of niche differentiation
and dissimilarity?*; and (H3) human drivers, specifically proximity to
ports and areas of high human population density, will mediate and
potentially override these ecological relationships®. We explore these
hypotheses through the lens of different biodiversity metrics (phyloge-
netic diversity, functional diversity and species richness), providing a
comprehensive view of the interactions between ecological processes
and human influence on invasion. Addressing these hypotheses is
important to highlight generalizationsin the field for preventionand
management of non-native tree invasions, whichis key to mitigating the
potential severe ecological and socio-economic toll of these invasions.
Using the Global Forest Biodiversity Initiative database’, we deter-
mined native tree status (native or non-native) according to the Global
Naturalized Alien Flora® and the KEW Plants of the World databases”.
This dataset encompassed 471,888 plots, of which 4.9% of plots were
invaded, or contained at least one non-native tree species (Fig. 1and
Supplementary Table 1a). Moreover, this dataset contained a larger
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Fig.2|Anthropogenicdrivers are more important than native diversity
indetermininginvasionoccurrence. a,b,Importance (Shapley additive
explanations (SHAP) values) of all variables included in random forest models
ordered fromgreatest toleastimportant,alongside influence of distance to
ports, nativerichness and native redundancy on non-native presence (whether
aplotisinvaded or not) for global models of phylogenetic (a) and functional

proportion of invaded plots in tropical (15.2%) than in temperate
systems (5.2 %). Overall, 249 individual non-native tree species were
identified, with the most frequent being Robinia pseudoacacia, Pinus
sylvestris, Maclura pomifera, Picea abies and Ailanthus altissima
labelled as non-native in 3,976, 2,603, 2,493, 2,468 and 1,597 plots,
respectively (Supplementary Table 2). Regions with the greatest like-
lihood of being invaded include North America, Europe and East Asia
(Extended Data Fig. 1), consistent with previous findings'®* (but see
ref. 58). To test for drivers of non-native tree invasion and invasion
strategy, we used a down-sampled version of the dataset consisting
of 17,738 forest plots, distributed across 14 biomes proportional to
their global land cover.

We calculated three metrics of invasion: (1) presence of non-natives
inthe plot (‘non-native presence’); (2) relative proportion of non-native
species richness to total tree richness (‘non-native richness’); and
(3) relative proportion of non-native species basal area to total tree
basal area (‘non-native abundance’). The first metric (non-native
presence) is simply a measure of the presence or absence of invasion,
whereas the latter two metrics (relative abundance and richness)
provide insight into the subsequent severity of the invasion.

Totesthow hypothesized human and environmental drivers affected
the probability aforest plot was invaded or the invasion severity within
invaded plots, we built generalized linear models (GLMs) and random
forest models using either phylogenetic or functional diversity metrics
(both as richness and redundancy) as predictor variables (Extended
Data Fig. 3). For both functional and phylogenetic diversity, we used
random forest models to determine variable importance and for visu-
alization purposes, whereas GLMs were used to test for significance and
directionality of relationships. Our models also included human drivers
(distance to shipping ports (hereafter referred to as ports) and popula-
tion density) and accounted for several additional soil chemical and
climate variables. Next, to test whether non-native tree species invade
by being similar or dissimilar to the native community (termed ‘invasion
strategy’), we again built models predicting non-native similarity from
either native phylogenetic or functional diversity metrics, along with
the same environmental and humanimpact variables. The non-native

Distance to ports (km)

Native richness Native redundancy

(b) diversity (phylogenetic diversity, n =17,640 plots; functional diversity,
n=17,271plots). Allresults shown are from random forest models. Note that
y-axisranges differamong panels, with the variable importance plots
representing the corresponding magnitude. Error bands represent 95%
confidenceintervals.

invasion strategy was defined as the change in redundancy due to
addition of non-native trees, with values below zero and values above
zero indicating invasion via similarity and dissimilarity, respectively,
to the native community.

Diversity limits invasion severity

We found that anthropogenic drivers were more important than local
native tree diversity in determining non-native invasion (presence)
globally (H3), whereas native diversity— both phylogenetic and
functional—was most important in determining invasion severity
(H1; Fig. 2 and Supplementary Tables 3 and 4; phylogenetic diversity
random forestareaunder the curve (AUC) = 0.634, functional diversity
random forest AUC = 0.631). These results indicate the importance of
human-induced propagule pressure in initiating invasion of forests
and of native biodiversity moderating the severity of the invasion. We
found that forest plots closer to ports are more likely to be invaded
(Supplementary Tables 3 and 4; linear model P < 0.001). Notably, these
results are consistent whether we analyse all datatogether at the global
level or separate datainto either the temperate and tropical bioclimatic
zones (Supplementary Tables 3 and 4). By contrast, we did not find that
human population density was consistently related to non-native pres-
ence, withresults being variable across diversity metrics and bioclimatic
zones considered (Supplementary Tables 3 and 4). However, popula-
tion density was always positively correlated with invasion probability;
population density may be aweaker predictor asit only measures human
presence, whichis not necessarily related to propagule pressure.
Proximity to ports haslong been known to influence invasion™****, with
locations closer to a port being likely to experience greater propagule
pressure. Moreover, proximity to ports may serve as a proxy for residence
time, where plots closer to ports are more likely to have longer exposure
tonon-native propagule pressure, thusincreasing the likelihood of inva-
sion®. Yet, at far enough distances, stochastic processes and historical
land-use patterns may begin to weaken the role of ports (Fig. 3, distances
greater than 500 km). For example, the third most frequent non-native
tree in our dataset, M. pomifera, is widely naturalized throughout the
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Fig.3|Native diversity isthe mostimportantdriver ofinvasionseverity.
a,b, Importance (Shapley additive explanations (SHAP) values) of all variables
includedinrandom forest models ordered fromgreatest to leastimportant,
alongsideinfluence of distance to ports, native richness and native redundancy
oninvasionseverity for global models of phylogenetic (a) and functional

(b) diversity (phylogenetic diversity, n = 3,498 plots; functional diversity,
n=3,368plots). Plots are shown for the severity of invasion measured as

interior of North America, where it has been used for various agricul-
tural purposes dating back to the 1850s%. Such results highlight the
idiosyncratic use of trees across the globe, leading to unique invasion
trendsrelative to herbaceous plants. Nevertheless, at more local scales,
this strong signal of anthropogenic activity and associated propagule
pressure relative to native diversity driving non-native presence is in
agreementwith previous work that considersinvasionacrossstages*and
recentassessments of regional and global tree invasion®¢°, and highlights
the prominent role of humans in reshaping biological communities.
Although proximity to ports determined the probability a forest
plot wasinvaded, native tree communities with higher phylogenetic
and functional diversity exhibited lower invasion severity (Fig. 3,
Extended Data Fig. 4 and Supplementary Tables 3 and 4; phyloge-
netic diversity random forest non-native richness R* = 0.68, phy-
logenetic diversity random forest non-native abundance R*= 0.14,
functional diversity random forest non-native richness R* = 0.69 and
functional diversity random forest non-native abundance R* = 0.07;
GLM phylogenetic and functional diversity P < 0.001). Addition-
ally, distance to ports was no longer significant in linear models
predicting invasion severity (Supplementary Tables 3 and 4) for
both phylogenetic (P =0.16 and 0.28 for non-native richness and
abundance, respectively) and functional diversity models (P = 0.63
and 0.86 for non-native richness and abundance, respectively), and
showed reduced variable importance in the random forest models
(Fig.3and Extended DataFig. 4). When investigating these patterns
using conventionally analysed species richness instead of phylo-
genetic or functional richness, we find similar qualitative results
(Supplementary Table 5, random forest non-native richness R*= 0.71
and random forest non-native abundance R? = 0.14), suggesting that
species diversity may be a useful proxy for projecting invasion sever-
ity in the absence of functional and phylogenetic information. Our
results are consistent with the hypothesis of biotic resistance (H1),
where increased native diversity reduces invasion success, which is
probably driven by the native community utilizing more available
niche spaces®**3%!, These results are also consistent with work
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non-native species abundance (proportion of basal areawith non-native plant
species); plots for non-native species richness (proportion of non-native plant
species) are shownin Extended DataFig. 4. Allresults shown are from random
forest models. Note that the y-axis ranges differ among panels, with the
variableimportance plotsrepresenting the corresponding magnitude. Error
bandsrepresent 95% confidenceintervals.

investigating tree migration drivers that suggests that migration is
slower into more diverse communities owing to greater resource use
(fewer available niches) in these systems™’.

Overall, these results show that anthropogenic drivers, particu-
larly distance to shipping centres (ports), are more important in
determining which locations will experience non-native invasions
compared with traditionally studied native diversity (H3). However,
itistheintrinsic ecological drivers, including native tree community
phylogenetic and functional diversity (richness and redundancy), that
aremore important in determining invasion severity (H1). Repeated
humanintroduction of plant species hasamoreimportantroleinthe
initialinvasion process, butinvasion severity is predominantly aresult
of nativeintrinsic diversity. Notably, both distance to ports and native
diversity show patterns of saturation of effects, suggesting a thresh-
old at which plots that are far enough from ports, or high enoughin
native diversity, will not benefit from further distance or diversity with
regard toreduced invasion or invasion severity. Although our focus
hereis on the relative importance of human versus biotic drivers of
introduction, we find that environmental variables—especially mean
annual temperature—correlate strongly with patterns of non-native
invasion, which may reflect resource availability?®, belowground
microorganism composition®® or potential climate compatibility
between donor and recipient ranges®?. Together, our results sug-
gest thatlocations near human activity are more likely to experience
non-native invasions in part due to increased propagule pressure,
whereas those with lower diversity are more likely to experience more
severe non-native invasions once non-natives are present. These
results may suggest that managing forests to maintain high native
tree diversity may be a good strategy to buffer communities against
invasion, particularly for locations that are far from human activity.

Evidence for environmental filtering

When considering arange of climate, soil and anthropogenic variables,
we find evidence for environmental filtering as a driver of invasion
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Fig.4 |Environmental filtering at temperature extremes. a,c, Estimates of
overlapping variablesincludedin temperate and tropical GLM models (forest
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estimates. b,d, Relationship between mean annual temperature and invasion
strategy for phylogenetic (b) and functional (d) diversity models, showing that

strategy, in particular, with respect to mean annual temperature and
precipitation. In all global models, temperature was important for
predictingtreeinvasion strategy (Fig. 4, Extended DataFig. 5 and Sup-
plementary Table 6; phylogenetic diversity random forest R*= 0.084,
functional diversity random forest R = 0.099; H2), with our global analy-
sisindicating that non-native trees were more similar to the native com-
munity in environments at cold and hot temperature extremes (Fig. 5
and Supplementary Table 6, P< 0.001). Thatis, in ordertoinvadeintoa
cold or hotenvironment, non-native plants are more successful if they
share similar traits with native plants to survive inthese harsher temper-
ature conditions. By contrast, atlocations with moderate temperatures,
non-natives are neither more nor less similar to native communities,
potentially because these less harsh environmental conditions allow a
wider range of life strategies to coexist®. For functional diversity, inva-
sion strategy at high temperatures is relatively neutral, with the line
approachingavalue of zero, suggesting that although phylogenetically
similar, these communities show some level of functional divergence,
highlighting theimportance of including functional diversity in future
studies. When separating the datainto temperate and tropical systems,
we found divergent temperature patterns (Supplementary Table 6;
temperate P<0.001, tropical P= 0.01). In temperate systems, non-native
trees were more likely to be similar to the native tree community in
colder environments relative to hot environments, inline with previous
results in temperate North America®. In tropical systems, we found the
opposite pattern, with non-native trees being more likely to be similar
to the native tree community in hotter tropical environments. At the
lowest temperatures, non-natives invading through similarity were pri-
marily gymnosperms (fir, spruce and pine species) invading into native

Mean annual temperature (°C)

atextreme temperatures invasion occurs through similarity (Supplementary
Table 7; phylogenetic diversity: Py, = 9.69 x10™, P, = 2.13 x 10™"; functional
diversity: Py, <2 %107, P, =1.07 x10™*, where Py and P, represent each
temperature and temperature squared Pvalues, respectively). Note for
functional diversity, this pattern only holds at low temperatures. Error bars
andbandsrepresent standard error.

communities containing speciesin the same genus; by contrast, at the
highest temperatures, non-natives invading through similarity were
angiosperms, with a high prevalence of palms and legumes. Further,
we detect asimilar pattern of environmental filtering for mean annual
precipitation whenanalysing phylogenetic and functional diversity with
random forest models, where lower or higher precipitationis associated
with non-nativeinvasion through similarity (Extended DataFig. 5). This
suggests that the most likely invaders at low or high temperature or
precipitation may be ecologically similar to the host communities,
which could informinvasion risk checklists at ports.

Within the temperate bioclimatic zone, wefound evidence that anthro-
pogenicactivity weakened the environmentalfiltering pattern for phylo-
geneticand functional diversity seen for temperature and precipitation,
respectively (H3).In particular, proximity to ports modified the signal of
environmentalfiltering due to temperature, weakening the influence of
temperature oninvasion strategy with respect to phylogenetic similarity
(Fig.5and Supplementary Table 6; P< 0.001). Colder ecosystems show
evidence of environmental filtering of invasion; however, increased
proximity to ports reduces the prevalence of this strategy. We suggest
that thismaybe duetoincreasedintroductions around shipping ports,
whichwouldincrease stochastic variationand dampen ecological strat-
egies. However, we did not detect a similar interaction governing the
tropical bioclimatic zone, potentially owing to relatively lower human
pressure, and particularly lower ship traffic®*, compared to temperate
systems. Alternatively, this pattern may also reflect the fact that some
temperate plots occur at greater distances to ports than tropical sites
(95th percentile of 784 km versus 311 km for temperate and tropical,
respectively), increasing statistical power for detecting this trend in
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Fig. 5| Proximity to ports weakens environmental filteringin the
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temperature is positively correlated withaninvasion strategy of increasing
dissimilarity for phylogenetic (a) and functional (b) diversity (phylogenetic
diversity:n=2,710 plots, P=6.37 x10°%; functional diversity:n=2,603,

temperate regions. Furthermore, proximity to ports also marginally
weakened the signal of environmental filtering due to precipitation for
functional invasion strategy (Supplementary Table 6; P=0.07). These
resultsillustrate that humaninfluence can override the ecological factors
driving invasion, suggesting that at high enough propagule pressure,
the phylogenetic and functional similarity of anon-native becomesless
importantin predictingits ability toinvade anative community. Never-
theless, as our analyses are not causal, these results could also reflect
correlations between port locations and invasion strategy. However,
when we investigated the same effect with human population density,
we did not see this weakening effect, demonstrating that distance to
ports seems to be a particularly relevant mediator of these patterns.
These results suggest that human activity may overwhelm ecological
drivers of non-native invasion strategies and reduce the influence of
ecological processes, making inclusion of human impacts critical for
studying global invasion strategies.

Collectively, our work integrates biotic and anthropogenic fac-
tors across phylogenetic and functional diversity for both invasion
presence and invasion severity of non-native tree species worldwide.
Although non-native trees have beenrelatively overlooked relative
to herbaceous plants, their large size, long lifespans and impor-
tant history in forestry, food, reforestation and city landscaping
exposes trees to unique ecological and anthropogenic factors that
shape their worldwide distributions. Moreover, given that many
tree invasions are in their infancy, with substantial ‘invasion debts’
of recent tree plantings®, understanding the ecological drivers pro-
moting spread has the potential to provide real-time feedback for
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Mean annual precipitation

P<2x107%).¢,d, Thisrelationship between temperature and invasion strategy
weakens for phylogenetic (c) and functional (d) diversity with proximity to
ports (Supplementary Table 7; phylogenetic diversity: P= 0.0001; functional
diversity: P=2.71x107). Lines and points represent the lowest (c,d) and
highest (a,b) 10% of data. Error bands represent standard error.

the preventative management of invasive trees. However, there are
important considerations when interpreting these findings, many of
which could be addressed withincreased dataresolution andincreased
sampling within under-sampled geographic regions. First, our analy-
sis is largely observational, whereas community composition would
ideally be compared before and after invasion to better understand
the causality of the trends observed here. We can gain some insight
into this question by conducting a sensitivity analysis on the subset of
invaded plots that were measured at multiple time points and that had
noinitial invasion. Doing so reveals that the reductionin native diversity
duetoinvasion can potentially account for as much as 10.4% (mean of
6.7%) of the observed biotic resistance (Supplementary Table 9), but
that the remainder of this effect is attributable to difference in native
diversity (thatis, biotic resistance) across plots. Additional long-term
dataon plots thatare uninvaded and become invaded will be useful in
further addressing the influence of invasion on native diversity. Second,
many tree species in our analysis were only identified to genus level
or were not present in the master plant phylogeny, which may lead to
an underestimation of native diversity or invasive species richness in
some plots, particularly inspecies-rich forests. Indeed, akey challenge
in global analyses such as ours is the underrepresentation of certain
ecosystems, for example, tropical ecosystems*®. This is addressed to
some extent by our down-sampling approach, as well as our spatial
cross-validation approach (Methods), but ongoing efforts to fund and
develop open-access and fair® tropical forestinventory data are critical
for gaining betterinsightinto these ecologically and socially important
ecosystems.



Many tree species are intentionally introduced for forestry or wood
products and may be managed*, generating variation in the drivers
underpinning invasion that are unique to trees. To minimize the
influence of heavily managed forests, we included only plots with a
minimum of three species and thus our dataset does notinclude mono-
culture forestry plantations. Inaddition, when restricting our analysis
tothe subset of global plots that occurin protected areas with minimal
human footprint, our coreresults and inferences remain unchanged
(Supplementary Table 7). Having additional high-quality data on the
humanroleininvasion, including the type and time of management,
and overalllevelin disturbance regime®®, would refine our results and
better separate ecological versus human drivers. Future work should
also focus on drivers of tree invasion and invasion strategies across
scales™%*% as patterns may differ at scales larger than the local plot
level that we include here, which may be important for regional versus
local management of non-native trees. Finally, emerging work shows
that the consideration of native range size and change in environment
and/or disturbance from donor to recipient community may be more
helpful in understanding introduction and invasion success than
simply quantifying these variables in the novel, recipient range®¢°.
Therefore, including the change in environmental and humanimpact
variables would also be a fruitful avenue for future research.

Together, these results provide important unifying insights into
the global drivers of non-native tree invasions and the ecological
strategies that might be most successful in different regions. The
trends and ecological mechanisms identified here can provide tan-
gible guidelines to support forest management of non-native tree
invasions around the globe. However, because non-native trees are
introduced purposefully for forestry or to supportlocal livelihoods,
which can lead to differences in forest management objectives and
strategies®, it is critical that local stakeholders are included when
making decisions about how to best manage these introductions®°,
Ultimately, this emerging understanding of global tree invasions pro-
vides fundamental insights that are needed to understand how forest
composition is being reshaped under global change, and for forest
management practices to limit the spread and impacts of non-native
tree invasions worldwide.
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Methods

Treeinventory and non-native status

Fortreeinventory data, we used the Global Forest Biodiversity Initiative
(GFBI) database’, which contains tree-level abundance data for more
than1.2 million forest plots on all continents across the globe, contain-
ingmore than 31 million unique georeferenced records of tree size and
density dating from 1958. Each observationin the dataset consists of a
uniquetreeID, plotID, plot coordinates, tree diameter at breast height
(DBH), tree-per-hectare expansion factors, year of measurement, and
binomial species names. In this study, we applied severalfilters to these
data before analyses. First, where plots had multiple years of data,
we kept only the most recent year of census data. We then subset the
datatoinclude only plots with at least three species as required for
our phylogenetic metrics, excluding monoculture forest plantations
from the study.

To assign native status to each tree species (native or non-native,
representing naturalized and invasive), we established a consensus
status between the Global Naturalized Alien Flora (GIoNAF)® and the
KEW Plants of the World’ databases. All databases were standardized
to The Plant List taxonomy”’. The GIoNAF database contains detailed,
georeferenced information on the naturalized status of more than
10,000 plant speciesin eachof1,029 regions across the globe represent-
ing countries or federal states; the KEW database outlines native ranges
of vascular plant species for over 1.2 million plant species™. The GFBI
and GIoNAF datasets were joined by matching each unique species by
locationin GFBIto a GlIoNAF region polygon and species status. Then,
for each GFBI plot, we extracted the GIoNAF region identifier using
Google Earth Engine”. This process was then repeated for the KEW
database. We then filtered out plots that included any species with
disagreement between GIoNAF and KEW databases (that is, conflicting
native status), and only included trees witha minimumdiameter of 5 cm
and aminimum height of 1.3 mto allow for DBH measurements. All trees
identified as ‘non-native’ were verified to be listed in the BGCI Tree
List, which defines a tree as, “A woody plant with usually a single stem
growingto aheight of atleast two metres, or if multi-stemmed, then at
least one vertical stem five centimetres in diameter at breast height””>.
Note that thisis an inclusive definition which includes monocots and
tree ferns, as well as species that can occur both as tall single-stem and
shrub-like multi-stem phenotypes.

Toaccount for unequal representation of plots across biomes (Fig. 1),
we used areduced version of this database, down-sampled to anumber
of plots proportional to the land area covered by each of 14 biomes
(Supplementary Table 1), while conserving as many tropical plots as
possible. This ensured that we were not overrepresenting historically
oversampled biomes, particularly in temperate regions. In addition,
we preferentially retained invaded plots during this down-sampling to
ensure adequate representation of invaded plots in the final dataset,
with amaximum of half of the plots withinabiome beinginvaded. This
oversampling ofinvaded plots allowed for adequate representation of
invaded and non-invaded plots in our analyses of non-native presence,
and allowed sufficient data for our analyses of invasion severity, as
these analyses only used data from plots that had non-native species
invasions. Results were not qualitatively different if we did not pref-
erentially retain invaded plots in our down-sampling (Extended Data
Fig. 6 and Supplementary Table 8). Note also that the global mapping
used the full dataset, with no subsampling. Prior to analyses, we also
collapsed locations with multiple replicate plots and removed plots
where phylogenetic of functional diversity could not be calculated for
both native and full communities due to less than three species being
present (see below).

Non-native invasion metrics
We split our invasion metrics into the two broad categories of ‘non-
native invasion’ (presence) and ‘invasion severity’. Specifically, using

our data, we were able to determine for each plot (1) whether any
non-native tree species were present (non-native presence); (2) the
proportion of tree species that were non-native relative to total tree
species (invasion severity, assessed via non-native richness)?; and
(3) the proportion basal area of non-native tree species relative to
total tree species basal area (invasion severity, assessed via non-native
abundance). These metrics are congruent with recently proposed
frameworks for measuring and reporting invasive plant species™”.
The metric of relative introduced species richness may be hypoth-
esized to lead to a bias in detection of biotic resistance, with greater
biotic resistance falsely detected in diverse communities, as these
communities will have a lower proportion of non-native trees due to
the higher denominator (total site diversity). However, use of the bino-
mial approach in our GLM modelling of this proportion, as opposed
to direct proportion, overcomes this limitation, as it uses raw counts
of proportion, effectively weighting observations by the total species
number in the community?.

Climatic and anthropogenic variables

For climatic and anthropogenic variables, we relied on the Global
Environmental Composite’”’. This global database contains spatially
explicit geographicinformation system (GIS) layers of more than 260
unique environmental variables, encompassing climate, soil, land cover
and land use, plant biomass, topography, human footprint, and distur-
bance””. Climate variables were extracted from the CHELSA (clima-
tologies at high resolution for the earth’s land surface areas) dataset™,
whereas soil variables were from the SoilGrids®® dataset. In addition,
we created distance measures by calculating the spherical distance
to shipping ports® and airports®. All layers were standardized to a
30 arcsecresolution (<1 km?at the equator), aresolution at which these
variables have been shown to have aninfluence on plant biogeography
and assembly patterns®5, We chose model variables to represent both
climate and soil properties that exhibited low collinearity for each of
three datasets: global (all 14 biomes from Supplementary Table 1),
temperate (temperate broadleaf, coniferous, grassland biomes) and
tropical (tropical moist broadleaf, deciduous broadleaf, coniferous, and
grassland biomes). We chose to use distinct variables rather than trans-
forming them into principal component analysis axes for increased
interpretability of these variables and their effects. Because variables
exhibiting collinearity varied between the three datasets, the resulting
modelsinclude different variable combinations. For all models, we used
mean annual temperature (MAT), mean annual precipitation (MAP),
distance to shipping ports® (hereafter ‘ports’) and human population
density®. For the global models, we used the following additional envi-
ronmental variables: absolute depth to bedrock, coarse fragments,
sand content and soil pH. For temperate models, we used absolute
depth to bedrock, clay content, and soil pH as additional variables;
for tropical models we used absolute depth to bedrock, soil organic
content, and soil pH as additional variables. All soil variables used were
determined at a depth of 0 cm, or the top layer of soil.

Diversity metrics

We analysed data using either phylogenetic or functional diversity;
these two approaches were chosen to be as analogous as possible.
Phylogeneticalphadiversity explains the genetic relatedness of species
within acommunity and is often assumed to represent a proxy for func-
tional similarity across species within a community assemblage. Yet,
congruency between these two metrics remains under debate®**” and
theirroleininvasion patterns remains untested; therefore, we focused
ontwo major axes of diversity, explaining richness and divergence inthe
community across both phylogeneticand functional space®®, capturing
bothevolutionary and ecological processes. For each native and entire
tree community (native and non-native species), we calculated Faith’s
phylogeneticdiversity (phylogenetic richness) and mean nearest taxon
distance (MNTD, phylogenetic redundancy; Extended Data Fig. 2).



Entire tree community metrics were calculated on all species, whether
they were matched to GIoNAF and KEW or not; this included tree species
whichwereidentified to genus level. Faith’s phylogenetic diversity was
calculated as the sum of the branch lengths on the phylogenetic tree
of the species inthe community; MNTD was calculated as the average
distanceto the nearest neighbour across the community. These metrics
were calculated based on tree placement of taxainarecently published
reference backbonetree for plants®. Out 0f 13,345 starting taxa, a total
of' 12,325 were placed on the reference tree, with 4,960 placed at the
speciesleveland 7,365 placed at the genus level. We chose MNTD over
other available metrics describing community divergence because
we were interested in redundancy of the community, and this metric
captures this best***°. To enable a more intuitive understanding of this
metric, we transformed each community-level value of MNTD to the
maximum MNTD across all communities minus calculated MNTD. This
transformed the maximum value to zero and all smaller values trans-
formedtoincreasingly larger numbers, with higher MNTD values indi-
cating a greater native redundancy, similar to the expected increased
redundancy with greater phylogenetic richness (Faith’s phylogenetic
diversity). To determine the non-native invasion strategy, or impact
of non-natives on native MNTD, we calculated the difference between
the native and non-native community relative to the native community
alone. We used the following formula for non-native invasion strategy:
(entire community MNTD - native community MNTD)/native commu-
nity MNTD. When non-native invasion strategy was greater than zero,
this indicated that the addition of the non-native species resulted in
amoredissimilar community, whereas anon-native invasion strategy
less than zero corresponded to the opposite.

For functional diversity, we calculated the analogous metrics using
trait distance matrices instead of phylogenetic tree-based distances.
We selected eight traits extracted from Maynard et al.® that repre-
sented the major clusters of functional trait diversity, thereby cap-
turing the full spectrum of tree form and function while minimizing
correlation between traits. Maynard et al.** used data from the TRY
plant trait database to parametrize machine learning models to esti-
mate the expression of 18 traits as a function of the local environment
and/or phylogeny. The observed trait data underlying these models
encompassed 491,001 unique observations across 13,189 species from
2,313 genera, with consistent representation across taxonomic orders.
The resulting models were then used to generate trait estimates for
52,255tree species, capturing approximately 80% of documented tree
species”. Using this trait database, we were able to assign trait value
to 81% of the tree species in GFBI reported to the species level. The
eight traits we included in our metrics were chosen to include traits
typically associated with plantinvasion®®* including those associated
with dispersal, establishment, resource acquisition and competitive
ability that represent the major trait clusters encompassing the full
dimensionality of trait space from Maynard et al.®* The eight traits
included in our study were the following: wood density, root depth,
leaf nitrogen, leaf phosphorus, leaf area, tree height, seed dry mass,
and bark thickness. All traits were log-transformed and normalized to
allow for statistically valid comparisons®, To obtain functional diversity
metrics analogous to those used for phylogenetic diversity, we used
the dendrogram approach of Petchey and Gaston®>. Specifically, for
every plot we calculated the species-by-species trait distance matrix
encompassing all eight traits, and then used hierarchical clustering to
create a functional dendrogram. This dendrogram was subsequently
used to calculate ‘functional richness’ (analogous to Faith’s phylo-
genetic diversity) and ‘functional redundancy’ (MNTD); we use this
terminology for functional diversity to maintain naming of variables
between phylogenetic and functional diversity analyses. Metrics were
calculated in R using packages ape®*, tidyverse®, abdiv®®, doParallel”,
foreach® and pez”.

Because both functional and phylogenetic diversity metrics have
unique limitations, we considered them both here so as to obtain a

morerobust view of underlying patterns and processes. The benefit of
phylogenetic diversity is that it does not rely onimputed data, and thus
it provides more consistent results with lower uncertainty. However,
phylogenetic diversity is only aloose proxy for functioning, depending
onthedegree towhich the functional traits of interest are phylogeneti-
cally conserved. Thus, asacomplement of this, we also use imputed trait
values to estimate functional diversity, which should better capture
underlying functional differences across species, but whichis subject
to higher uncertainty relative to phylogeny (or measured trait values),
and may omit rare and potentially functionally unique species. Thus, by
simultaneously considering both functional and phylogenetic diversity
and showing that these metrics yield consistent global trends, our
approach provides consistent evidence that these patterns are robust
to the limitations of either approach taken individually.

Statistical analyses

We combined random forest'°° and GLM approaches to answer our
focal questions. Specifically, we used random forest models to visualize
patterns and determine variableimportance, while GLMs were used to
assess statistical significance and directionality of patterns. We first
tested for environmental and anthropogenic drivers of non-native inva-
sion, including non-native presence and invasion severity (non-native
richness, non-native abundance). Ourindependent variablesincluded
either phylogenetic or functional metrics, climate and soil variables,
and human impact variables. Next, we tested the impact of these
variables on non-native invasion strategy (difference in MNTD due to
non-natives). We focused on addressing specific hypothesesrelated to
drivers of non-native invasion and invasion strategy. We acknowledge
theimportance of other variables, and therefore included theminour
models, but do not interpret each variable.

Random forest models and GLMs used the same model designs.
Models predicting non-native presence as well as invasion severity,
for both non-native richness and abundance, included independent
predictor variables of native diversity and native redundancy, as well as
climate and humandriver variables detailed in ‘Climatic and anthropo-
genicvariables’.For comparison, we repeated these models with native
tree speciesrichnessin place of both diversity variables (richness and
redundancy), as species richness is commonly used in the invasion
literature when testing for biotic resistance??**, Finally, we used an
adapted version of therandom forest models, removing diversity vari-
ables, to assess probability of locations with non-native trees globally
and generate an associated map (Extended Data Fig. 1).

Toaccount for spatial autocorrelationin the modelling step, we used
residual autocovariates (RACs)'*'°% First, we used simple linear regres-
sion to determine the range of spatial autocorrelation for the models
with continuous outcomes (invasion severity and invasion strategy).
We then assessed residual spatial autocorrelation using correlelo-
gram plots using the ncf'® package in R, which showed that residual
correlation was consistently negligible beyond 250 km, which was
also applied to the models with binary outcomes (non-native pres-
ence). Using this buffer distance, we generated RAC values using the
autocov_dist() function in the spdep package®'®*, which determines
aninverse distance weighted residual value for each data point in the
250 kmneighbourhood. RAC incorporates the spatial signature of the
model residuals, relative to the model without any spatial autocorrela-
tion correction, into avariable thatis included in each model"*'*2, The
resultisaninverse distance weighted residual value for each data point
inthe 250 km neighbourhood, which we used as continuous predictors
in both the linear and random forest models.

Random forest models were used primarily to assess variable impor-
tance and influence. Specifically, we used Shapley additive explanations
(SHAP) values to infer variable importance in the model outcome!*>¢,
SHAP values are a machine learning analogue of partial regression,
quantifying the relative importance of each variable on the outcome,
accounting for all other variables in the model. To estimate the SHAP
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values, random forest models were fit in R using the ranger package'”’,
using default hyperparameters (500 trees, observations sampled
with replacement, number of variables per split equal to the square
root of the number of predictors, a minimum of 5 observations per
node). We then used the fastshap package'*® to estimate approximate
SHAP values for each predictor, using n =100 simulations. The overall
variable importance was taken as the sum of the absolute value of the
SHAP values, and the marginal effect of each variable was visualized
by plotting the covariate versus the corresponding SHAP value for
each observation.

To account for spatial autocorrelation in the accuracy assessment
of random forest models, we implemented spatially-buffered leave-
one-out cross-validation (LOO-CV) to obtain conservative lower-bound
accuracy measures'®’. To do this, we first randomly selected a focal
observation as the test data, and then we omitted all observations
withina250 km buffer distance around this observation. The remain-
ing datawere used to train the model, and the resulting fit was used to
predict outcome for the withheld focal observation. This was repeated
500 times for each model, each time selecting a new focal point and
predicting its outcome using the 250 km spatially-buffered training
set. Theresulting accuracy measures were calculated on the set of 500
out-of-fit predictions. For continuous variables, we estimated accuracy
using the cross-validated coefficient of determination relative to the
one-to-oneline (termed VEcv'®), denoted simply R* here, and for binary
outcomes we used area under the ROC curve (AUC), which quantifies
the ability of the classifier to distinguish between classes, and serves
as an assessment of model performance.

To create a global map of invasion probability and its local uncer-
tainty, we used arepeated prediction approach in Google Earth Engine®
(Extended Data Fig. 1a; AUC of spatial cross-validation = 0.84 + 0.04,
mean Flscore of non-native presence = 0.36). This repeated prediction
approach used the full dataset without any down-sampling. To our
knowledge, no global maps on phylogenetic or functional diversity
metrics exist, so we were unable to include these diversity metricsin
the random forest model for mapping; therefore, these modelsinclude
the same covariates as the other models except diversity metrics. We
thought it reasonable to exclude diversity metricsin this analysis as dis-
tanceto portsisthe mostimportantdriver ofinvasion probability, while
native diversity is lessimportant. After aggregating samples within the
30-arcsec pixels, 368,030 data points remained for our repeated predic-
tion approach. Wefirst trained 50 random forest models on stratified
bootstrapped samples with a total of 10,000 data points each, using
biome as stratification category; this allowed us to repeatedly predict
the probability of non-native presence for each terrestrial pixel on
Earth. Theresulting 50 predictions were used to create per-pixel mean
and coefficient of variation maps of the probability of non-native pres-
ence, with probabilities calibrated using Platt scaling™"2. These two
maps allow us to investigate the patterns of invasion and the regions
of uncertainty in the predictions. Next, the extrapolation extent was
estimated as a per-pixel percentage of predictor variables, and interac-
tions of predictor variables, outside of the training range, in univariate
and multivariate space, respectively (Extended Data Fig.1b)*°. In addi-
tion, to account for gaps in predictor space, we estimated the Area of
Applicability', used to mark regions of extrapolation in this map. All
maps are restricted to regions with aminimum of 10% forest cover™.

GLM models were used to estimate statistical parameters and con-
duct statistical tests. All GLM models included the same variables as
thoseintherandom forest models. In the models predicting non-native
presence, we used abinomial distribution and logit link. For non-native
abundance, we used abetaregression approachto predict the propor-
tion of non-native basal area, as a method of modelling proportions
between 0 and 1. We could not use a binomial GLM analogous to that
used for non-native abundance because basal area measurements were
notwhole numbers and we wanted toretain allinformationin the data.
Finally, to account for spatial autocorrelation and non-independently

distributed residuals, we employed the inclusion of RACs as described
above. These models were repeated separately for temperate and tropi-
calbioclimaticzones, but results were qualitatively similar to the global
model, so we report only global results here. All GLM results can be
found in Supplementary Tables 3-5. GLMs were run in R (v. 4.2.2)'"
using Ime4"¢, ImerTest"”, and betareg"®, while visualizations for these
models used ggplot2'’; tidyverse® was used throughout as well.

Because invasion of non-native species may alter the native diversity
ofthesiteinto which theyinvade, we conducted asensitivity test using
plots where we had data across two time points to incorporate this
effect. We first took all plots for which we had two time points, where
the first time point represented a fully native community (that is, no
presence of non-natives; n = 8,221 plots). We then modelled the per
cent change of species richness in each plot from this uninvaded first
time pointtoalater time point. Our predictor variables included final
invasion status (non-natives present or not) to determine theimpact of
invasion on per cent change of species richness, along with all climate,
soil, and anthropogenic impact variables we included in other global
models. We extracted the coefficient of final invasion status (along
with upper and lower confidence ranges), which quantifies the per
cent change in richness due to invasion, and we used this to update
the native species richness of the full global dataset. We then used
these coefficients to estimate the pre-invasion native diversity for each
plotintheglobal dataset by adding the corresponding species change
resulting from invasion. Finally, we reran our global analysis with this
updated pre-invasion native diversity. The relative contribution of
native species loss to biotic resistance was calculated by comparing
therelative change in therichness coefficient for each of the updated
models relative to the original model (Supplementary Table 9).

Non-native invasion strategy was predicted using the difference
inredundancy (MNTD) in the tree community due to invasion. We
included the same variables as in the previous set of models, except
native redundancy, as this is integrated in our response variable and
therefore would exhibit high collinearity. In GLM models, we tested for
theinteractionbetween MAP and MAT to detect potential non-additive
environmental filtering effects of these two dominant climate vari-
ables. In addition, we tested for the interaction between each MAP
and MAT with distance to ports, to examine whether this important
anthropogenic driver modified main ecological relationships. Final
reported models are those resulting from a process of first creating a
fullmodel with allinteractions, and subsequently removing nonsignifi-
cant interactions. All GLM results for invasion strategy can be found
inSupplementary Table 7.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data used in this study can be found in cited references for the Global
Naturalized Alien Flora (GIoNAF) database® (non-native status), the
KEW Plants of the World database® (native ranges) and the Global
Environmental Composite®®” (environmental data layers). Plant trait
datawere extracted from Maynard et al.’®. Data from the Global Forest
Biodiversity Initiative (GFBI) database® are not available due to data
privacy and sharing restrictions, but can be obtained upon request
viaScience-I (https://science-i.org/) or GFBI (gfbinitiative.org) and an
approval from data contributors.

Code availability

Allcode used to complete analyses for the manuscriptis available at the
followinglink: https://github.com/thomaslauber/Global-Tree-Invasion.
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Extended DataFig.1|Map of non-native invasion probability. Map showing local uncertainty of invasion probability viabootstrapped coefficient of
probability of non-native tree presence based on the probability output variation (i) and extent of extrapolation as percentage of bands outside

of therandom forest classifier (A, totaln =368,030 plots, n per iteration = univariate (i) and multivariate (ii) training range. Regions outside the Area of
10,000 plots) alongside maps showing uncertainty in predictions (B) including  Applicability areindicated with dots.
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Extended DataFig.2|Map of non-nativeinvasion probability inside the uncertainty in predictions (B) including local uncertainty of invasion
area of applicability. Map showing probability of non-native tree presence probability viabootstrapped coefficient of variation (i) and extent of
based onthe probability output of the random forest classifier (A, total extrapolation as percentage of bands outside univariate (ii) and multivariate

n=368,030 plots, nperiteration=10,000 plots) alongside maps showing (ii) training range. Regions outside the Area of Applicability are masked.
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Extended DataFig. 3 |Mean nearest taxon distance (MNTD). Mean nearest
taxondistanceis the average distance to nearest neighbor by branchlengthon
thetree, whichrepresents redundancy in the community (A). For each speciesi,
thesumof allshortest distances dto each other taxajis calculated; these values
arethenaveragedacrossthetotalspeciesinthetree (N).Ifinvasion occursvia

MNTD NTD MNTD NTD

non-natives being similar to the native community, this would lead to the
expectationthat MNTD decreases, increasing redundancy (B). Conversely,
ifnon-native invasion occurs via non-natives being dissimilar to the native
community, thiswould lead to the expectation that MNTD increases, reducing
redundancy (C). Taxon D represents a non-native addition to the community.
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data used in this study can be found in cited references for the Global Naturalized Alien Flora (GIoNAF) database6 (non-native status), the KEW Plants of the World
database5 (native ranges), and the Global Environmental Composite65,82 (environmental data layers). Plant trait data were extracted from Maynard et al.83 Data
from Global Forest Biodiversity Initiative (GFBI) database 59 are not available due to data privacy and sharing restrictions, but can be obtained upon request via
Science-| (https://science-i.org/) or GFBI (htpps://www.gfbiinitiative.org/) and an approval from data contributors.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |:| Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We combined random forest and generalized linear model (GLM) approaches to answer our focal questions. Specifically, we used
random forest models to visualize patterns and determine variable importance, while GLMs were used to assess statistical
significance and directionality of patterns. We first tested for environmental and anthropogenic drivers of non-native invasion,
including non-native presence and invasion severity (non-native richness, non-native abundance). Our independent variables
included either phylogenetic or functional metrics, climate and soil variables, and human impact variables. Next, we tested the
impact of these variables on non-native invasion strategy (difference in MNTD due to non-natives). We focused on addressing
specific hypotheses related to drivers of non-native invasion and invasion strategy. We acknowledge the importance of other
variables, and therefore included them in our models, but do not interpret each variable.

Research sample The Global Forest Biodiversity Initiative (GFBI) database, which contains tree-level abundance data for more than 1.2 million forest
plots on all continents across the globe, containing more than 31 million unique georeferenced records of tree size and density
dating from 1958. Each observation in the dataset consists of a unique tree ID, plot ID, plot coordinates, tree diameter at breast
height (DBH), tree-per-hectare expansion factors, year of measurement, and binomial species names.

Sampling strategy To account for unequal representation of plots across biomes (Figure 1), we used a reduced version of this database, down-sampled
to a number of plots proportional to the land area covered by each of 14 biomes (Table S1), while conserving as many tropical plots
as possible. This ensured that we were not overrepresenting historically oversampled biomes (down-sampling), particularly in
temperate regions. In addition, we preferentially retained invaded plots, or up-sampled to invasion within our down-sampling
proportional to biome cover, to ensure that no more than half of the plots within a biome were invaded. This oversampling of
invaded plots allowed for adequate representation of invaded and non-invaded plots in our analyses on non-native presence, and
allowed sufficient data for our analyses of invasion severity, as these analyses only used data from plots that had non-native species
invasions.

Data collection Data collection varies across all datasets. Please refer to references for each dataset for more details.

Timing and spatial scale Data timing and spatial scale varies across all datasets. Please refer to references for each dataset for more details.
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Data exclusions We applied several filters to this data before analyses. First, where plots had multiple years of data, we kept only the most recent
year of census data. We then subset the data to include only plots with at least three species as required for our phylogenetic
metrics, excluding monoculture forest plantations from the study.

Reproducibility This study uses experimental data so was not possible to reproduce.
Randomization Please see "Sampling strategy" for a detailed explanation of random subsampling.
Blinding Blinding was not possible during data analysis.

Did the study involve field work? []ves X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines & |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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