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Abstract. Forest fires, while destructive and dangerous, are important to the functioning and renewal of ecosys-
tems. Over the past 2 decades, large-scale, severe forest fires have become more frequent globally, and the risk is
expected to increase as fire weather and drought conditions intensify. To improve quantification of the intensity
and extent of forest fire damage, we have developed a 30 m resolution global forest burn severity (GFBS) dataset
of the degree of biomass consumed by fires from 2003 to 2016. To develop this dataset, we used the Global Fire
Atlas product to determine when and where forest fires occurred during that period and then we overlaid the
available Landsat surface reflectance products to obtain pre-fire and post-fire normalized burn ratios (NBRs) for
each burned pixel, designating the difference between them as dNBR and the relative difference as RAINBR. We
compared the GFBS dataset against the Canada Landsat Burned Severity (CanLaBS) product, showing better
agreement than the existing Moderate Resolution Imaging Spectrometer (MODIS)-based global burn severity
dataset (MOdis burn SEVerity, MOSEV) in representing the distribution of forest burn severity over Canada. Us-
ing the in situ burn severity category data available for the 2013 wildfires in southeastern Australia, we demon-
strated that GFBS could provide burn severity estimation with clearer differentiation between the high-severity
and moderate-/low-severity classes, while such differentiation among the in situ burn severity classes is not cap-
tured in the MOSEV product. Using the CONUS-wide composite burn index (CBI) as a ground truth, we showed
that ANBR from GFBS was more strongly correlated with CBI (r = 0.63) than dNBR from MOSEV (r = 0.28).
RdANBR from GFBS also exhibited better agreement with CBI (»r = 0.56) than RANBR from MOSEV (r = 0.20).
On a global scale, while the INBR and RANBR spatial patterns extracted by GFBS are similar to those of MO-
SEV, MOSEYV tends to provide higher burn severity levels than GFBS. We attribute this difference to variations
in reflectance values and the different spatial resolutions of the two satellites. The GFBS dataset provides a more
precise and reliable assessment of burn severity than existing available datasets. These enhancements are crucial
for understanding the ecological impacts of forest fires and for informing management and recovery efforts in
affected regions worldwide. The GFBS dataset is freely accessible at https://doi.org/10.5281/zenodo.10037629
(He et al., 2023).

Published by Copernicus Publications.
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1 Introduction

In recent years, many regions around the world have expe-
rienced an increase in the frequency, intensity, and extent of
wildfires (Doerr and Santin, 2016; Shukla et al., 2019; Dupuy
et al., 2020). Wildfires are now among the most popular re-
search topics as a result of this rising global concern, which
is further heightened by changes expected in fire regimes as
a consequence of changes in climate and land use (Moreira
et al., 2020). While most wildfires occur in grasslands and
savannas (Scholes and Archer, 1997; Abreu et al., 2017), for-
est fires are more dangerous and destructive and perhaps of
greater interest because of their importance to the function-
ing and renewal of ecosystems (Flannigan et al., 2000, 2006;
Nasi et al., 2002). Changes brought by the warming climate,
which has dried fuels and lengthened fire seasons across the
globe (Jolly et al., 2015), are also particularly significant
to forested ecosystems with abundant fuels (Kasischke and
Turetsky, 2006; Aragdo et al., 2018).

With the rapid development of remote sensing techniques,
more frequent observations from satellites facilitate the mon-
itoring of global fire activities. The valuable information they
provide at fine spatial and temporal resolutions can be used
to study the number and size distributions of individual fires
(Archibald and Roy, 2009; Hantson et al., 2015; Oom et
al., 2016), fire shapes (Nogueira et al., 2016; Laurent et al.,
2018), and locations of ignition points (Benali et al., 2016;
Fusco et al., 2016). Among the most widely accepted tech-
niques are those based on the Moderate Resolution Imaging
Spectrometer (MODIS) (Chuvieco et al., 2016), which re-
trieves information on the entire Earth in 36 spectral bands
every 1 to 2d. The MODIS-derived burn area (BA) products
are essential for ascertaining the patterns of fire occurrence,
extent, propagation (Rodrigues and Febrer, 2018), and fre-
quency (Andela et al., 2019). Based on these products, an
essential indicator called “burn severity” has been derived to
determine the degree of biomass consumption and the overall
impact of fire on ecosystems (Keeley, 2009).

Traditionally, burn severity could be quantified from satel-
lite sensors through spectrum information. The changes
caused by fire to near-infrared (NIR) and shortwave-infrared
(SWIR) reflectance are highly sensitive to, respectively,
canopy density and moisture content (Chuvieco et al., 2010).
Several burn severity datasets have been generated and re-
leased based on this method. Regionally, the Monitoring
Trends in Burn Severity (MTBS) dataset, which includes
burn severity assessments for the contiguous United States
(CONUS) and provides information on fire perimeters and
severity classes, uses satellite data — specifically Landsat
imagery (Eidenshink et al., 2007). Similarly, the Canadian
Landsat Burn Severity (CanLaBS) product uses Landsat im-
agery to assess and map burn severity on a national scale
(Guindon et al., 2021). Globally, MOdis burn SE Verity (MO-
SEV) has provided monthly burn severity data with global
coverage at a 500m spatial resolution based on MODIS
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Terra and Aqua satellites (Alonso-Gonzélez and Ferndndez-
Garcia, 2021). However, a dataset for assessing and mapping
global forest burn severity based on Landsat at a high spa-
tial resolution (30 m resolution) is not yet available. Such a
product would support advances in fire management strate-
gies and ecosystem conservation efforts, leading to more re-
silient and sustainable landscapes.

In this paper, we describe a new global dataset comprising
information on burn severity derived at a high spatial reso-
Iution (30 m) from Landsat imagery from the period 2003—
2016. This dataset represents a step forward in quantifying
and analyzing wildfire impact on forest ecosystems world-
wide. We begin with a section detailing the input data and
the algorithm used to process the dataset, as well as the ana-
lytical techniques employed. The following section presents
the characteristics of the dataset and its performance in repre-
senting the distribution of forest fires. In the Results section,
we analyze the advantages and disadvantages of the dataset
and set forth its main contributions to forest fire manage-
ment strategies worldwide. The last section summarizes the
primary findings and suggests possible implications of the
dataset.

2 Data and method

Below, we delineate the specifics of data input and pre-
processing and the analytical techniques we employed to cre-
ate the dataset. The Global Fire Atlas was the main source
of global fire records, which was overlaid with annual land
cover types from Moderate Resolution Imaging Spectrora-
diometer (MODIS) Land Cover Type (MCD12Q1) to deter-
mine when and where forest fires occurred. We then utilized
the reflectance information from Landsat’s satellite archives
to calculate burn severity indices for the burned forest ar-
eas. Finally, we compared GFBS with the CanLaBS dataset
available over Canada and used the field-assessed burn sever-
ity category data in southeastern Australia and the CONUS-
wide composite burn index (CBI) as the ground truth to eval-
uate the performance of GFBS relative to that of the existing
MODIS-based global burn severity dataset (MOSEV).

2.1 Input data

The input data we used to build the GFBS dataset comprised
the fire records available in the Global Fire Atlas for the years
2003-2016 and all Landsat images for the same period.

The Global Fire Atlas tracks the daily dynamics of indi-
vidual fires globally to determine the time and location of
ignition, area burned, and duration as well as daily expan-
sion, fireline length, velocity, and direction of spread. A de-
tailed description of its underlying methodology is provided
by Andela et al. (2019).

The Terra and Aqua combined Moderate Resolution
Imaging Spectroradiometer (MODIS) Land Cover Type
(MCD12Q1) version 6.1 data product provides global land
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cover types at yearly intervals (Friedl and Sulla-Menashe,
2022). With its global coverage and the insights it offers
into the planet’s diversity of land cover types, the MCD12Q1
dataset is pivotal to various ecological and environmental
studies.

The Landsat 5, 7, and 8 scenes are 16d composite
images with 7, 8, and 11 surface reflectance bands, re-
spectively. With its 30 m resolution and global coverage,
it provides a high-quality, atmospherically corrected snap-
shot of the Earth’s surface. The use of the best avail-
able observations gathered over the 16d period ensures
the image is as clear and accurate as possible, mini-
mizing issues such as cloud cover that can obscure the
satellite’s view (https://developers.google.com/earth-engine/
datasets/catalog/landsat, last access: 16 July 2023).

2.2 Pre-processing

To pre-process the data, we first imported individual fire
polygons from the Global Fire Atlas into the Google Earth
Engine (GEE) and then collected the most recent Land-
sat images based on the tags demarcating the start and end
times of each individual fire. We applied a cloud-and-snow-
masking algorithm to remove any snow, clouds, and their
shadows from all imagery based on each sensor’s pixel qual-
ity assessment band. By mosaicking the masked images, we
created a composite with the smallest possible cloud and
shadow extent (https://developers.google.com/earth-engine/
guides/landsat, last access: 16 July 2023).

2.3 Algorithm overview

In the first step, we determined the forest fire polygons us-
ing the Global Fire Atlas data associated with the MCD12Q1
land cover data and then utilized reflectance information
from Landsat’s satellite archives to obtain the forest fire
NBRs from the Landsat composites. Healthy plants absorb
most of the visible light (for photosynthesis) while reflecting
a large portion of the near-infrared (NIR) light. In contrast,
areas that have been burned exhibit low NIR reflectance and
high shortwave-infrared (SWIR) reflectance (Key and Ben-
son, 2003; Montero et al., 2023). This change in spectral
properties is due to the loss of vegetation and the exposure
of the underlying soil and charred material, which have dif-
ferent reflective characteristics. By computing this ratio for
images taken before and after a fire, it’s possible to deter-
mine the extent and severity of the burn (Cocke et al., 2005;
Alcaras et al., 2022).

In the second step, we used the pre- and post-fire dates
by the Global Fire Atlas data to obtain the corresponding
pre- and post-fire NBRs, which allowed us to create the burn
severity indices — that is, INBR and RANBR - based on the
respective differences between them.

We took additional steps to validate the performance of the
dataset by comparing the burn severity category data over
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southeastern Australia and CBIs over CONUS with those
based on the MOSEV dataset. These steps are detailed in
Sect. 2.3.1-2.3.3.

2.3.1 Identification of global forest fires

To identify global forest fires, we first overlaid the fire
polygons from the Global Fire Atlas with MCD12Q1 data
from the corresponding year. Based on annual International
Geosphere—Biosphere Programme (IGBP) classifications of
land cover, we identified a forest fire polygon within each
area where we found forest to be the dominant land cover
type within the fire extent — that is, wherever the propor-
tion of burned pixels representing forest, including evergreen
needleleaf forests, evergreen broadleaf forests, deciduous
needleleaf forests, deciduous broadleaf forests, and mixed
forests, was largest relative to the proportion of burned pixels
for other land cover types, such as shrublands and grasslands.

2.3.2 Estimation of the normalized burn ratio (NBR)

We calculated the normalized burn ratio (NBR) spectral
index for each Landsat composite according to the for-
mula in Eq. (1) (https://www.usgs.gov/landsat-missions/
landsat-normalized-burn-ratio, last access: 27 September
2023).

NBR = (NIR — SWIR)/(NIR + SWIR) (1)

In Landsat series 4 through 7, we collected NIR informa-
tion from Band 4 and SWIR information from Band 7. In
Landsat 8, we collected NIR information from Band 5 and
SWIR information from Band 7.

2.3.3 Estimation of dNBR and RANBR

Having obtained burn area locations and burn dates from the
Global Fire Atlas product, we selected from the Landsat 16d
time series valid pre-fire and post-fire NBR pixels that were,
respectively, from the date most closely preceding the start
date and the date most closely following the end date of each
burned polygon within a 3-month time window.

The dNBR index, calculated according to Key and Benson
(2006) as shown in Eq. (2), is the reference burn severity
spectral index used by the European Forest Fire Information
System (https://effis.jrc.ec.europa.eu/about-effis, last access:
27 September 2023) and by the United States’ Monitoring
Trends in Burn Severity program (https://www.mtbs.gov, last
access: 27 September 2023). Larger dNBR values indicate
higher burn severity.

dNBR = preNBR — postNBR 2)

RANBR is another burn severity spectral index that is
widely used, including by the United States’ Monitoring
Trends in Burn Severity program (https://www.mtbs.gov/,
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Figure 1. Methodology for building the GFBS database (2003-2016) and validation and comparison with the MOSEV benchmark.

last access: 1 May 2021). The RANBR normalizes the dNBR
to the square root of pre-fire NBR value, which helps in re-
ducing the variability caused by pre-fire vegetation condi-
tions and enhances the accuracy in assessing burn severity
(Miller et al., 2009). As formulated in Eq. (3) (Miller and Th-
ode, 2007), higher RANBR values indicate higher burn sever-

1ty.

RANBR = dNBR/,/|preNBR| 3)

2.4 Validation

To validate the GFBS database, we used data on 112 ground-
verified burn severity sites following the Fire Extent and
Severity Mapping (FESM) scheme for the 2013 wildfires
over southeastern Australia. The FESM severity classes in-
clude unburnt, low severity (burnt understory and unburnt
canopy), moderate severity (partial canopy scorch), high
severity (complete canopy scorch and partial canopy con-
sumption), and extreme severity (full canopy consumption).
Besides FESM, we used the ground-measured CONUS-wide
composite burn index (CBI) from 2003 to 2016. CBI was
developed by Key and Benson (2006) to assess the above-
ground effects of fire on vegetation and soil land use types
(i.e., burn severity). It is determined through direct field ob-
servations after a fire when assessors visit various sites within
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the burned area to evaluate the effects of the fire on dif-
ferent components of the ecosystem, such as the degree of
charring, percentage of foliage consumed, changes in ground
cover, and mortality of plants. The CBI score for each site
was calculated by averaging the scores of the different com-
ponents. This overall score represents the burn severity at
a specific site. The index ranges continuously from 0 (un-
burned) to 3 (high severity). These values have been related
to satellite-derived burn severity values through regression
equations (https://burnseverity.cr.usgs.gov/products/cbi, last
access: 2 October 2023). In this study, we used all available
CBI values over CONUS to establish relationships between
CBI and the dNBR and RANBR values of the GFBS and MO-
SEV datasets. We used the Pearson correlation coefficient
and bias as metrics to evaluate the performance of the two
datasets. Figure 2a shows the locations of the 112 ground-
verified burn severity sites for the 2013 wildfires over south-
eastern Australia. Figure 2b shows the locations of CBI ob-
servations over CONUS for the period from 2003 to 2016. Of
the 1315 ground-surveyed CBI reports for forest fires during
that time, most came from western states, such as Arizona,
Colorado, and Oregon, where forest fires are more frequent
and severe. Fewer CBI records are available in eastern states,
such as Florida and Georgia.

https://doi.org/10.5194/essd-16-3061-2024
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Figure 2. Locations of (a) ground verification burn severity sites over southeastern Australia and (b) forest fire CBIs over CONUS.

In addition to validation against in situ data., we also
compared the fire severity magnitudes of GFBS with the
CanLaBS dataset available over Canada. CanLaBS provides
burn severity information for burned areas identified from
the Canada Landsat Disturbance product at the level of in-
dividual 30 m resolution pixels. The dataset is derived from
Landsat imagery and uses values of differences in pre-fire
and post-fire INBRs for nearly 60 x 10° ha of burned areas
across Canada’s forests from 1985 to 2015 (Guindon et al.,
2017, 2018).

3 Results

3.1 Forest fire coverage of Landsat composites

Figure 3a shows the number of forest fire polygons globally
between 2003 and 2016, representing individual fire events,
from the Global Fire Atlas dataset. Approximately 80000
forest fire events occur in the world each year on average,
where more than 90000 happened in 2004 and more than
100000 in 2003 and 2015 each. Figure 3a displays the avail-
ability of Landsat imagery covering the burn area where indi-
vidual forest fires happened worldwide. From 2003 to 2012,
Landsat 5 could provide images covering between 35 % and
68 % of the recorded forest fire events in the Global Fire At-
las, while Landsat 7 images covered 83 % to 93 % of the
Global Fire Atlas events. From 2013 to 2016, Landsat 7 im-
ages covered between 90 % and 98 % of the fire events, while
Landsat 8 images covered more than 97 %. The Landsat com-
posites combining all available Landsat 5 and Landsat 7 im-
ages from 2003 to 2012 and Landsat 7 and Landsat 8 images
from 2013 to 2016 significantly increased the number of for-
est fires shown by Landsat images, with coverage of the fire
events ranging from 88 % to 99 %. Figure 3b shows the distri-
bution of the spatial coverage of cloud-free Landsat compos-
ites for individual fires from the Global Fire Atlas. We used
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an algorithm for cloud and shadow removal to eliminate in-
valid poor-quality pixels from recorded forest fires, resulting
in a line chart showing the distribution of the percentages of
valid pixels compared to the total burn pixels in each year.
Overall, the spatial coverage was above 72 %, and the cov-
erage has been above 85 % since 2013, when Landsat 8 was
launched.

Figure 4 shows the data process for a single post-
NBR Landsat composite for the fire event that ended on
17 September 2015 in north Washington. The first prior im-
age for the NBR calculation was on 20 September 2015 from
Landsat 8 (as image 1). The cloud and shadows are removed
in image 1 after applying the cloud/shadow mask. The next
available image, taken on 21 September 2015 from Landsat 7
(as image 2), was then used to fill those gaps in image 1 and
obtain a new Landsat composite (phase 1). The third avail-
able image, taken on 29 September 2015 from Landsat 8 (as
image 3), alongside the image taken on 15 October 2015 if
needed, was adopted sequentially to fill the unscanned gap
pixels in phase 1 and generate the final post-NBR image for
this event. The process for pre-NBR image calculation is the
same but in a reversed time order from the start time of the
fire event.

The scatterplot in Fig. 5a shows the NBR values of the
overlapping pixels in image 1 and image 2 with the asso-
ciated distributions of NBR for the fire event. It is noted
that NBR values in images 1 and 2 show a high correla-
tion (r = 0.96), relatively low bias (—23.81 %), and simi-
lar probability densities even though they are derived from
two different Landsat images (Landsat 8 and Landsat 7). The
scatterplot in Fig. 5b shows the NBR values of overlapping
pixels in image 1 and image 3 with the associated distribu-
tion of NBR for the fire event. Similarly, NBR values in im-
age 1 and image 3 have a high correlation (r = 0.96), low
bias (12.30 %), and similar probability densities even though
they are derived from different times (9 d apart). The results

Earth Syst. Sci. Data, 16, 3061-3081, 2024
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Figure 4. NBR image process for Landsat composite for the fire event that ended on 17 September 2015 in north Washington.

indicate that the cloud-free NBR composite mosaic of all
available Landsat images has reasonable accuracy with high
spatial and temporal consistency.

3.2 Comparison between GFBS and CanLaBS over
Canada

In this section we describe the comparison of the fire sever-
ity maps of GFBS and MOSEV datasets to the ones from
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the CanLaBS dataset over Canada for an overlapping period
from 2003 to 2015. Figure 6 shows the number and the trend
of forest fires over Canada from 2003 to 2015 recorded by
CanLaBS data and GFBS products, while the vertical bar
represents the number of forest fires recorded by both Can-
LaBS and GFBS each year. Due to the different sources and
algorithms to map the burn area, the number of forest fires
depicted by CanLaBS is larger than those depicted by GFBS

https://doi.org/10.5194/essd-16-3061-2024
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each year. Nevertheless, it is noted that GFBS agrees with
CanLaBS in terms of the variations in forest fire activities,
such as the intense forest fires in 2004 and 2015 and the rel-
atively low number of forest fires in 2007 and 2008.

Figure 7 illustrates the scatterplots of dNBR of forest fires
from CanLaBS alongside those from GFBS (panel a) and
MOSEV (panel b), for the period from 2003 to 2015. Con-
sistent with the results shown in Fig. 6, ANBR from GFBS
shows a strong correlation with the dNBR from CanLaBS,
with r being 0.77, and a slight underestimation of the over-
all dANBR for forest fires (with a bias of —12.42 %). On the
other hand, dNBR from MOSEYV exhibited low correlation
with the dNBR from CanLaBS (r = 0.42) and slight over-
estimation (with a bias of 11.84 %). Figure 7c displays the
probability density function (PDF) plots of CanLLaBS dNBR,
GFBS dNBR, and MOSEV dNBR. The close PDFs of GFBS
dNBR and CanLaBS dNBR are noted, though the mode of
GFBS distribution is at slightly lower dNBR values relative
to the CanLaBS distribution. On the other hand, the distribu-
tion of MOSEV dNBR significantly deviates from CanLaBS
dNBR, having a lower peak and larger tails.

https://doi.org/10.5194/essd-16-3061-2024

Figure 8 presents the box plots of distributions of ANBR
from CanLaBS, GFBS, and MOSEYV separated by year. Con-
sistent with the previous results, GFBS compares well with
CanLaBS in terms of the dNBR distribution of annual for-
est fires and the variations in dNBR over time even though it
provides slightly lower dNBR values compared to CanLaBS.
On the other hand, MOSEV compared poorly with CanLaBS
annual dNBR distributions, exhibiting overall larger ANBR
values and larger anomalies over time.

3.3 Validation against in situ fire severity category over
southeastern Australia

Using the in situ burn severity categorizations from the 2013
wildfires over southeastern Australia as the ground truth, we
evaluate the performance of GFBS and MOSEV datasets.
Figure 9a—c display the spatial patterns of GFBS dNBR
and MOSEV dNBR for wildfires that happened on 15, 17,
and 21 October 2023, respectively, in southeastern Australia,
where relatively dense in situ burn severity categorization
data are available. It is noted that GFBS dNBR shows simi-
lar spatial patterns to the MOSEV dNBR in the events on 15
and 17 October 2023, both showing significant fire centers
where high dNBR is found. For the 21 October 2023 event,
however, the ANBR map from MOSEV shows a larger high-
burn-severity area than GFBS.

The box plots in Fig. 10a—c display the corresponding dis-
tributions of dNBR from GFBS and MOSEYV at different ob-
served severity classes in the events on 15, 17, and 21 Oc-
tober 2023, respectively. The severity classes, i.e., low, mod-
erate, and high, are categorized from the field assessed sites
in the corresponding fire events. For the event on 15 Octo-
ber 2023, dNBR from GFBS shows a significant difference
between the moderate-/high- and low-severity classes and no
difference between high- and moderate-severity classes. The
dNBR from MOSEY, however, presents lower dNBR for the
high-severity class than those for moderate- and low-severity
classes. For the event on 17 October 2023, both GFBS and
MOSEV show significant discrepancies on dNBR between
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high- and moderate-/low-severity classes. For the event on
21 October 2023, GFBS could clearly differentiate among
high-, moderate-, and low-severity classes in terms of ANBR
values, whereas MOSEV presented the lowest ANBR values
for the moderate-severity class, while exhibiting small dif-

Earth Syst. Sci. Data, 16, 3061-3081, 2024

ferences in ANBR values between the low- and high-severity
classes. Figure 10d shows the overall performances of ANBR
from GFBS and MOSEYV for the different severity classes,
combining all 112 ground verification sites. More significant
differences are shown in the GFBS dNBR box plots between
high-, moderate-, and low-severity classes than those from
MOSEY, indicating that GFBS is more skilled at distinguish-
ing between forest fires of different severity levels.

As mentioned above, MOSEV gave relatively small AINBR
values in the event on 15 October 2023, where burn sever-
ity is classified according to in situ measurements as high.
Figure 11a displays the location of the ground verification
sites with the corresponding burn severity class and associ-
ated dANBR values from MOSEV and GFBS. It is noted that
within one MOSEYV grid cell (500 m), four ground verifica-
tion sites are located. The dNBR value from MOSEYV is 295
for all four sites, while three of the sites are classified as low-
severity and only one site is classified as high-severity. On
the other hand, at the GFBS resolution (30 m), we can note
significant spatial variation in ANBR, with GFBS dNBR be-
ing 239 for the site classified as high-severity and 9, 16, and
68 for the sites classified as low-severity. In a surrounding

https://doi.org/10.5194/essd-16-3061-2024
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Figure 9. Spatial patterns of dNBR for wildfires on (a) 15 October 2023, (b) 17 October 2023, and (c¢) 21 October 2023 in southeastern

Australia, derived from the GFBS and MOSEYV datasets.

MOSEV pixel, we note a site classified as high-severity, but
dNBR from MOSEY is 188, while dNBR from GFBS is 397.
In the event on 21 October 2023, we found that MOSEV
gave relatively high dNBR values at ground verification sites
that are classified as low-severity. Figure 11b shows the loca-
tions of ground verification sites with corresponding classi-
fied burn severity and associated dNBR values from MOSEV
and GFBS. In the two adjacent MOSEV grids, the dNBR
values from MOSEV are 287 and 327, respectively, where
both sites are classified as low-severity. At the GFBS resolu-
tion, more significant changes between high and low dNBR
are found within the same MOSEV grid, resulting in dNBR
values of 30 and 32 for the ground verification sites classi-
fied as low-severity. The results demonstrate the significance
of GFBS high-resolution data in representing the small-scale

https://doi.org/10.5194/essd-16-3061-2024

variations in dNBR and providing more granular and reliable
dNBR estimations.

3.4 Validation against CBI over CONUS

Figure 12a—d shows the spatial patterns of dNBR derived
from GFBS and MOSEV over CONUS for the forest fires
with the largest burn areas (referred to as annual maximum
forest fire hereafter) in 2004, 2006, 2007, and 2013, re-
spectively, for which CBI records are available. The figures
present the PDFs of dNBR values from GFBS and MOSEV
along with spatial distribution maps of dNBR. The similarity
in spatial patterns between GFBS burn severity and MOSEV
burn severity is noted in these plots. Significant differences
occur, however, between dNBRs from GFBS and MOSEV.
Specifically, MOSEV tends to provide overall larger ANBR

Earth Syst. Sci. Data, 16, 3061-3081, 2024
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values, but where dNBR from GFBS is relatively high, MO-
SEV dNBR values are relatively lower. This difference could
also be inferred from the PDFs of dNBR from GFBS and
MOSEYV, where dNBR from MOSEYV distributed more on the
mean dNBR of around 300, while dNBR from GFBS is bi-
modal with peaks on both low and high values. For the annual
maximum forest fire in 2007 in particular, MOSEV showed
more extensive areas with high dNBR values compared to
GFBS, which is a difference that was also revealed in the
large deviation of mean dNBR values in the PDFs of dNBR
from the GFBS (mean dNBR of around 100) and MOSEV
(mean dNBR of around 500) datasets.

The density plot of dNBR in Fig. 12 also shows the bi-
modal distribution for ANBR from GFBS at around 100 (as-
sociated with low severity) and 700 (associated with high
severity) for the annual maximum forest fire in 2006. ANBR
from MOSEYV, on the other hand, shows a single-peak dis-
tribution at around 500, indicating that INBR from MOSEV
underestimated the high-severity occurrences and overesti-
mated the low-severity ones, as depicted in the GFBS dataset.
For the annual maximum forest fire in 2013, the density plot
presents two different peaks in the distributions of GFBS and
MOSEY, indicating a significant difference in the burn sever-
ity depicted in the two datasets.

Earth Syst. Sci. Data, 16, 3061-3081, 2024

Figure 13a—d present the scatterplots of CBI against AINBR
from GFBS and dNBR from MOSEV for the annual maxi-
mum forest fires in 2004, 2006, 2007, and 2013, respectively.
For the annual maximum forest fire in 2004, Fig. 13a shows
a positive correlation between CBI (r = 0.45) and dNBR
from GFBS, while we found no correlation between CBI
and dNBR from MOSEV. For the annual maximum forest
fire in 2006, we found good agreement between the CBI
and dNBR from GFBS, with an r value of 0.85, while the
r value was only 0.28 for ANBR from MOSEV. Though cor-
relations between CBI and dNBR from GFBS and MOSEV
were poor, dNBR from GFBS showed a positive trend to
CBI, while the relationship between CBI and dNBR from
MOSEV was negative for the annual maximum forest fire in
2007. For the annual maximum forest fire in 2013, dNBR
from GFBS (r =0.72) was more strongly correlated with
CBI than dNBR from MOSEYV (r = 0.36).

Figure 14a—d show the spatial patterns of RANBR from
GFBS and MOSEV along with the associated PDFs of
RANBR for the forest fires over CONUS with the largest
burn areas (referred to as annual maximum forest fire here-
after) in 2004, 2006, 2007, and 2013, respectively. RANBR
from GFBS and MOSEYV exhibit similar spatial patterns yet
provide different ranges of RANBR values over burn area.
RANBR from MOSEV tended to be higher than RANBR

https://doi.org/10.5194/essd-16-3061-2024
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from GFBS, which is consistent with the density plots of
RANBR from GFBS. The mean value in the distribution of
RdANBRs from MOSEYV is larger than the mean value in the
distribution of RANBRs from GFBS for the annual maxi-
mum forest fires in 2003, 2006 and 2007. The density plots
of RANBR from GFBS and MOSEYV are largely overlapped
for the annual maximum forest fire in 2013, but RANBR from
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(b)

Figure 11. The location of ground verification sites with burn severity classes overlaid by dNBR values from GFBS and MOSEV for the

MOSEV distributed more at the mean values around 800 than
RANBR from GFBS, while RANBR from GFBS distributed
more on the extreme low values above 0 and high values
above 1500. These findings demonstrate that RANBR from
MOSEV represents overall larger burn severity estimations
than RANBR from GFBS.
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Figure 12. Spatial patterns of dNBRs for annual maximum fires over CONUS with distribution of probability density functions in (a) 2004,
(b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and MOSEYV datasets.
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Figure 13. Scatterplots of CBI against ANBR from GFBS and MOSEYV for annual maximum fires in (a) 2004, (b) 2006, (¢) 2007, and

(d) 2013.

Figure 15a-d present the scatterplots of CBI against
RdANBR from GFBS and MOSEYV for the annual maximum
forest fires in 2004, 2006, 2007, and 2013, respectively. For
the annual maximum forest fire in 2004, RANBR from GFBS
shows a positive correlation with CBI (» = 0.57), while no
correlation was found between CBI and RANBR from MO-
SEV. For the annual maximum forest fire in 2006, RANBR
from GFBS correlated well with the CBI, showing an r
value of 0.85, while the r value was only 0.18 between CBI
and RANBR from MOSEV. The correlations between CBI
and RANBR from GFBS and MOSEYV are bad for the an-
nual maximum forest fire in 2007; the RANBR from GFBS
showed a positive trend to CBI, with r = 0.15, while the
RdANBR from MOSEV showed a negative trend to CBI, with
r = —0.28. For the annual maximum forest fire in 2013,
RANBR from GFBS (r = 0.74) was more strongly correlated
with CBI than RANBR from MOSEYV (r = 0.40).

Figure 16a and b shows the scatterplots of CBI against
dNBR from GFBS and MOSEYV, respectively, for all forest
fires from 2003 to 2016 over CONUS. Involving all ground
validations, we found that GFBS dNBR shows a stronger cor-
relation with CBI (r = 0.63) than MOSEV dNBR (r = 0.28).

https://doi.org/10.5194/essd-16-3061-2024

Using RANBR as the burn severity, Fig. 16¢ and d show that
GFBS RdNBR (r = 0.56) outperformed MOSEV RANBR
(r =0.20).

3.5 Comparison of GFBS and MOSEYV globally

Figure 17a displays the global spatial distributions of the
overlapping area between the density plots of dNBR from
GFBS and MOSEY, which is defined as the area intersected
by two probability density functions presented in Figs. 12
and 14. The overlapping areas in density plots typically rep-
resent the percentage of common values between the dis-
tributions of two datasets, which range from 0 to 1 for the
larger value, indicating that the two distributions are more
likely to come from the same distribution. As Fig. 17a shows,
we found the overlapping area over most of the world to
be above 0.4, indicating a similarity of 40 % between the
burn severity information provided by GFBS and MOSEV in
these regions. For some regions, like South America, western
Europe, and southeast Australia, the overlap was above 0.6.

From Fig. 17b, which shows the global distribution of the
mean dNBR for each burn pixel derived from GFBS, we

Earth Syst. Sci. Data, 16, 3061-3081, 2024
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Figure 14. Spatial patterns of RANBRs for annual maximum fires over CONUS with distribution of probability density functions in (a) 2004,
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Figure 15. Scatterplots of CBI against RANBR from GFBS and MOSEYV for annual maximum fires in (a) 2004, (b) 2006, (c¢) 2007, and

(d) 2013.

found the global spatial heterogeneity of burn severity to
be small, with ANBR values from GFBS of around 100 and
200. The exception was in western Europe, where dNBR was
above 300. The global distribution of the mean dNBR for
each burn pixel derived from MOSEY, as shown in Fig. 17c,
however, indicated a large spatial variability in burn severity
globally. The MOSEV dataset, for example, indicated that
the forest fires in north CONUS and Canada should have an
average dNBR above 300, while in the GFBS dataset, the
average dNBR value was around 100 to 200. The MOSEV
dataset also indicated that the average dNBR values for for-
est fires in south Africa and China should be close to or below
0, while in the GFBS dataset, they were around 100 to 200,
respectively.

Figure 17d presents a more detailed comparison between
the dNBR from GFBS and MOSEV globally, showing the
difference in the mean dNBR for each burn pixel, as calcu-
lated by deducting GFBS dNBR from MOSEV dNBR. Glob-
ally, MOSEYV data indicated higher forest burn severity than
GFBS over Canada and CONUS (also found in the results
presented in Sect. 3.2 and 3.4), as well as southeast Aus-
tralia (also found in the results presented in Sect. 3.3). MO-
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SEV data presented lower forest burn severity over Mexico,
South Africa, Europe, China, and southeast Asia. These find-
ings revealed that the forest burn severity information pro-
vided by GFBS might be more reliable and reasonable than
that provided by MOSEV for some fire-prone areas, such
as CONUS, as validated in this study. This improved accu-
racy over MOSEV data would support advances in decision-
making in fire management strategies and ecosystem conser-
vation efforts.

4 Discussion

The GFBS dataset presented in this paper is the first to pro-
vide fine-spatial-resolution (30 m) burn severity information
for global forest fires from 2003 to 2016. Compared with
the existing Landsat-based CanLaBS dataset, GFBS shows
closer agreement to CanLaBS in describing the distribution
of annual forest fire burn severity than the MODIS-based
MOSEV data. As suggested by the validation against the
ground reference, GFBS can represent the spatial variabil-
ity better and provide better performance than the MOSEV
dataset. In addition, GFBS is shown to have more reliable
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Figure 16. Scatterplots of CBI against (a) dNBR from GFBS, (b) dNBR from MOSEYV, (¢) RANBR from GFBS, and (d) RANBR from

MOSEY for forest fires from 2003 to 2016 over CONUS.

burn severity estimations than MOSEV for some fire-prone
areas, like CONUS, Canada, and Australia, which could sup-
port advances in decision-making in fire management strate-
gies and ecosystem conservation efforts.

The difference in the performance of GFBS and MOSEV
with respect to burn severity can be attributed to two sources.
The first is spatial resolution. GFBS, based on Landsat (5,
7, and 8) images, is at a resolution of 30 m, while MOSEV
is based on MODIS Terra MODO09A1 and Aqua MYDO09A1
images, with a resolution of 500 m. As shown in Fig. 11a,
stemming from the coarse spatial resolution, MOSEV pro-
vides a dNBR value of 295 for the site classified as high-
severity as well as for those classified as low-severity, lead-
ing to an overestimation for low-severity sites. With the im-
proved spatial resolution, GFBS is able to capture more de-
tailed localized variability in dNBR, providing a more rea-
sonable dNBR estimation for low-severity sites (INBR equal
to 9, 16, and 68). Similarly, in the event shown in Fig. 11b,
MOSEYV provides dNBR estimations of 287 and 327 for the
low-severity sites, which are relatively too large. In GFBS,
the relative lower dNBRs of 30 and 32 are provided at the
corresponding low-severity sites. The coarse resolution of

Earth Syst. Sci. Data, 16, 3061-3081, 2024

MOSEYV could also make it more difficult to capture the ex-
treme values, as we found to be the case for the annual maxi-
mum forest fires in 2006 over CONUS. dNBR from GFBS
clearly showed two peaks in the density plot of dNBR at
around 100 and 700, representing the low and high sever-
ity, respectively. ANBR from MOSEV, however, showed only
a single peak at around 500, indicating that the extreme
low/high values in the 30 m grid were averaged in the 500 m
grid. These findings reveal that burn severity from MOSEV
has higher uncertainty for wildfires with larger spatial vari-
abilities.

Another reason leading to the difference in the perfor-
mances of the two data sets was related to sensors on board
Landsat and MODIS. MODIS has a wider spectral range and
more spectral bands (36) than Landsat 7 and 8 (7 spectral
bands and 11 spectral bands, respectively), which resulted
in different sensitivity to surface reflectance. For example,
the NBR is commonly calculated using near-infrared (NIR)
and shortwave-infrared (SWIR) bands. In MOSEY, the bands
used to calculate NBR are NIR Band 2 (0.841-0.876 um
range) and SWIR Band 7 (2.105-2.155 um range). In GFBS,
they are Landsat 5 Band 4 (0.76-0.90 um range) and SWIR
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Band 7 (Range 2.08-2.35um), Landsat 7 Band 4 (0.77-
0.90 um range) and SWIR Band 7 (2.09-2.35 um range), and
Landsat 8 Band 5 (0.85-0.88 um range) and SWIR Band 7
(2.11-2.29 ym range). While MODIS and Landsat 8 are close
in NIR and SWIR band information, Landsat 5 and 7 both
have wider spectrums in NIR and SWIR than MODIS.

This study has shown that combining all available Landsat
images, including those from Landsat 5, 7, and 8, could sig-
nificantly improve the probability of obtaining dense cloud-
free NBR time series. The NBR composite shows high spa-
tial and temporal consistency with the NBR images closest
to the start and end time of the fire event despite different
band settings that are used from Landsat 5, 7, and 8. Stud-
ies by Koutsias and Pleniou (2015) and Chen et al. (2020)
have also shown that differences are small when using re-
flectance values from sensors aboard the Landsat 5, 7, and 8
satellites to calculate burn severity over burned area. While
studies (Mallinis et al., 2018; Howe et al., 2022) have demon-
strated that Sentinel-2 generally performed as well as Land-
sat 8 in burn severity mapping, the further extension of this
study will also incorporate images from Sentinel-2 to ob-
tain a dNBR composite, especially for extending the GFBS
dataset to the present. With the finer spatial resolution (10 m)
and more frequent revisit period (5d), GFBS could pro-
vide improved burn severity information when incorporating
Sentinel-2 images. The National Aeronautics and Space Ad-
ministration (NASA) has launched the Harmonized Landsat
and Sentinel-2 (HLS) project aiming to produce a seamless
surface reflectance record from the operational land imager
(OLI) and multispectral instrument (MSI) aboard Landsat
8/9 and Sentinel-2A/B remote sensing satellites, respectively,
which is an alternative source for extending the GFBS dataset
(https://hls.gsfc.nasa.gov/, last access: 4 March 2024).

With the development of radar-based techniques, syn-
thetic aperture radar (SAR) polarimetric images have been
proven to be effective in burn severity mapping, owing to the
strong correlation between SAR backscatter and burn sever-
ity (Czuchlewski and Weissel, 2005; Tanase et al., 2010a,
2011; Addison and Oommen, 2018). With the unique proper-
ties of L-band SAR, it is suitable for assessing and monitor-
ing post-fire effects and burn severity (Tanase et al., 2010b;
Peacock et al., 2023). For example, the frequency of L-band
(1.26 GHz) allows it to penetrate through smoke; ash; and,
to some extent, vegetation canopy. This capability makes
L-band SAR particularly useful for assessing areas imme-
diately after a fire even in the presence of smoke or cloud
cover that would obstruct optical sensors. The incorporation
of L-band synthetic aperture radar (SAR) data, such as the
ALOS-2 PALSAR-2 ScanSAR Level 2.2 data (https://www.
eorc.jaxa.jp/ALOS/en/alos-2/a2_about_e.htm, last access: 4
March 2024) and the incoming NASA-ISRO synthetic aper-
ture radar (NISAR; https://nisar.jpl.nasa.gov/, last access: 4
March 2024), can also facilitate the retrieval of burn severity.

By comparing GFBS with CanLaBS, we found that the
number of forest fires in CanLaBS dataset is larger than those
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in GFBS. This is because CanLaBS is based on the burn area
map from Canada Landsat Disturbance product at a 30 m res-
olution, while GFBS is based on the burn area map from the
Global Fire Atlas, which is derived from the MODIS burn
area product at a 500 m resolution. This difference in the
spatial resolution of the burn area causes some small forest
fires to be ignored in the GFBS dataset. Therefore, a finer-
spatial-resolution burn area product (10/30 m) is promoted
regionally and globally to reveal the forest fire behavior, e.g.,
fire number, size and severity, better (Roy et al., 2019; Bar
et al., 2020). Despite the differences in the number of for-
est fires, GFBS agreed well with CanLaBS in terms of the
annual forest burn severity. While the method to generate
GFBS remains consistent, with the small difference that is
to be ignored in banding settings from Landsat 5, 7, and 8,
GFBS provides comprehensive temporal coverage spanning
from 2003 to 2016 for forest burn severity, indicating the
potential application of GFBS in long-term analysis of burn
severity for forest fires beyond Canada, i.e., regions over the
globe, such as CONUS and Australia, where GFBS has been
demonstrated to perform well against ground truth. More-
over, integrating the 30 m GFBS into the regional forest plan-
ning can enhance fire resilience in vulnerable areas, shaping
policies that prioritize the forest environment (Bradley et al.,
2016). As climate change exacerbates the frequency, inten-
sity, and unpredictability of wildfires globally, the analysis
of GFBS data can help to assess the impact of these fires on
carbon emissions (Xu et al., 2020), forest recovery (Meng
et al., 2018), and biodiversity (Huerta et al., 2022), which
would in turn inform predictive models that project future
fire behavior under various climate scenarios.

5 Data availability

The GFBS data are  freely accessible  at
https://doi.org/10.5281/zenodo.10037629 (He et al., 2023).

6 Conclusion

We have introduced a newly developed dataset, named
GFBS, which provides forest burn severity information with
global coverage for the period 2003-2016. We identified
global forest fires by overlaying the Global Fire Atlas data
with the annual land cover data, MCD12Q]1, and proposed
an automated algorithm for calculating the severity of these
fires. The algorithm used the band information from Land-
sat 5, 7, and 8 surface reflectance imagery to compute the
most used burn severity spectral indices (AINBR and RANBR)
with a 30 m spatial resolution and provide the output de-
picted in the GFBS dataset. Comparison between CanLaBS
and GFBS showed good agreement in representing the dis-
tribution of forest burn severity over Canada. The valida-
tion against field-assessed burn severity category data in
southeastern Australia showed that GFBS could provide burn
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severity estimation with clear differentiation between the
high-severity class and the moderate-/low-severity classes of
the in situ data, while such differences among burn severity
class were not obvious in the MOSEYV dataset. The validation
results over CONUS showed dNBR values from GFBS to
be more strongly correlated with CBI (» = 0.63) than dNBR
from MOSEV (r = 0.28). RANBR from GFBS also showed
better agreement with CBI (r = 0.56) than RANBR from
MOSEYV (r = 0.20). Thus, this database could be more re-
liable than prior sources of information for future studies of
forest burn severity on a global scale as well as for studies to
which forest burn severity could be relevant, such as in forest
management and CO, emissions research.

A future direction for this study would be to extend the
GFBS dataset to the present based on updated Global Fire
Atlas data or other datasets providing global burn area and
burn date information. Another direction is to involve more
ground validations from the fire-prone areas like south Africa
and south Mexico to further evaluate and improve the perfor-
mance of GFBS data globally.
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