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Strong gravitational lensing of gravitational waves (GWs) occurs when the GWs from a compact binary

system travel near a massive object. The lensed waveform is given by the product of the lensing amplification

factorF and the unlensed waveform. For many axisymmetric lens models such as the point mass and singular

isothermal sphere that we consider,F can be calculated in terms of two lens parameters, the lens massML and

source position y. In the geometrical-optics approximation, lensing in these models produces at most two

discrete images which can be parametrized by two image parameters, the flux ratio I and time delay Δtd
between images. In the macrolensing regime for whichΔtd is large compared to the time T they spend within

the sensitivity band of GW detectors, it is natural to parametrize lensing searches in terms of these image

parameters. The functional dependence of the lensed signal on these image parameters is far simpler,

facilitating data analysis for events with modest signal-to-noise ratios, and constraints on I and Δtd can be

inverted to constrain ML and y for any lens model. We propose that this use of image parameters can be

extended to the microlensing regime (Δtd < T) in which the two interfering images are observed as a single

GW event. We use image parameters to determine the detectability of gravitational lensing in GW the

microlensing regime and find that forGWeventswith signal-to-noise ratiosρ and totalmassM, lensing should

in principle be identifiable for flux ratios I ≳ 2ρ−2 and time delays Δtd ≳M−1.
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I. INTRODUCTION

The first direct detection of gravitational waves (GWs)

frommerging compact objectswas reported by theLIGOand

Virgo collaborations in 2016 [1]. To date, Advanced LIGO

[2] and Advanced Virgo [3] have reported about 90 events,

most of which are mergers between stellar-mass black holes,

during their first three observing runs [4]. Kamioka

Gravitational Wave Detector (KAGRA) [5–7] has joined

the preexisting ground-based GW detectors to form the

Advanced LIGO-Virgo-Kagra (LVK) network. The

increased sensitivity of detectors such as LVK has allowed

us to detect an increasing number of GW events and to

perform various general relativistic and cosmological tests

[8,9]. With the increasing sensitivity of the current ground-

based detector network and future detectors such as the

Cosmic Explorer (CE) [10], the Einstein Telescope (ET)

[11], the Deci-Hertz Interferometer Gravitational Wave

Observatory (DECIGO) [12], and the Laser Interferometer

Space Antenna (LISA) [13], the number of observed GW

events will increase dramatically, as will the probability of

observing new propagation effects such as gravitational

lensing that have yet to be detected [14].

When GWs traveling through the Universe encounter a

massive object, such as a compact object, galaxy or galaxy

cluster, that can act as a lens, deflection of these GWs, i.e.

gravitational lensing, will occur [15–21]. Strong lensing of

GWswill arisewhen a lens is very close to the line of sight. In

the geometrical-optics approximation, strong lensing will

result in the GWs splitting into different lensed images, each

with its ownmagnification and phase [19,22]. Therewill also

be an associated time delay between the lensed imageswhich

could range from seconds to years depending on the mass of

the lens and geometry of the lens system [23,24].

GW lensing, if detected, could facilitate several exciting

scientific studies. It could be used to extract information

about the existence of intermediate-mass (mass ranging

from ∼102–105M⊙) [25] or primordial black holes [26,27]

and test general relativity [28–30], including through

constraints from GW polarization content [31]. In addition,

if a lensed electromagnetic (EM) counterpart of the lensed

GW event is observed, it could help to locate the host

galaxy at sub-arcsecond precision [32]. Combining the

information from the two messengers, i.e. GW and EM

lensing, could enable high-precision cosmography [33–38].

There are two major differences between the gravita-

tional lensing of EM waves and GWs from the point of

view of wave-optics effects. The first difference is in the

applicability of the geometrical-optics approximation. In

the case of EM waves, this approximation, typically valid
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when thewavelength λ of thewaves is much smaller than the

Schwarzchild radius Rs of the lens, applies to the vast

majority of observations. This is not always the case for

GWs, since ground-based detectors such as the LVKnetwork

observe at frequencies f in the range 10 Hz≲ f ≲ 104 Hz,

lower than even the lowest-frequency radio telescopes. These

GWs have wavelengths longer than the Schwarzschild

radii of lenses with masses ML ≲ 104M⊙, leading to non-

negligible wave-optics effects. The second difference is that

the GWs emitted by compact binaries, unlike most EM

sources, are coherent, causing interference between lensed

images when the signals overlap at the observer.

Lensing in the geometrical-optics approximation can be

classified as either macrolensing or microlensing, depend-

ing on whether the time delay

Δtd ≈ML ¼ 0.05 s

�

ML

104M⊙

�

; ð1Þ

between images is longer or shorter than the time [39]

T ≈ 5ð8πfÞ−8=3M−5=3

¼ 1.45 s

�

f

20 Hz

�

−8=3
�

M

20M⊙

�

−5=3

ð2aÞ

¼ 33.8 d

�

f

10−4 Hz

�

−8=3
�

M

106M⊙

�

−5=3

; ð2bÞ

it takes quasi-circular binaries of chirp mass M emitting

GWs at frequency f to merge. As galaxies have masses

ML > 1010M⊙, they typically generate time delays of

hours to days when acting as gravitational lenses. This

implies that galactic lenses are deeply in the macrolensing

regime for LVK sources with typical parameters f ≳ 20 Hz

and M ≈ 20M⊙, though not necessarily for LISA sources

with typical parameters f ≳ 10−4 Hz andM ≈ 106M⊙. For

LVK sources, the microlensing regime applies to lens

masses ML ≲ 105M⊙ relevant to intermediate-mass black

holes and dark-matter halos too small to host galaxies. In

this paper, we focus on the microlensing of LVK sources by

such intermediate-mass objects. However, our treatment is

also applicable to the microlensing of LISA sources by

more massive galactic lenses.

In the frequency domain, the modulation of GWs due to

gravitational lensing is characterized by a multiplicative

factor known as the amplification factor. In the limit where

the geometrical-optics approximation is valid, this factor

can be expressed as a sum of terms, each of which

corresponds to a discrete image with its own magnification

and time delay. For two-image lenses like those considered

in this paper, the amplification factor is characterized up to

a normalization factor by two image parameters, the flux

ratio I and time delay Δtd between the two images. For a

particular axisymmetric lens model, I and Δtd can be

calculated as invertible functions of two lens parameters,

the source position y and lens mass ML [17,19].

In the macrolensing regime, the goal of lensing searches

is to determine whether two GW events are really two

widely separated images of the same source. It is natural to

parametrize such searches [40–42] in terms of the image

parameters, as the searches are independent of the under-

lying lens model. In the microlensing regime, the goal of

lensing searches is to distinguish a single lensed GW event

from an unlensed event through the modulation induced by

the interference between the two simultaneously observed

images. A previous study [43] conducted model-dependent

microlensing searches in terms of the lens parameters ML

and y. Although this is necessary in the wave-optics regime,

we propose that microlensing can still be analyzed in terms

of the model-independent image parameters as long as the

geometrical-optics approximation is valid. Such model-

independent microlensing analyses improve computational

efficiency by eliminating the need to iterate through lens

models. They also reveal degeneracies between different

lens models that give rise to the same image parameters.

Using a match-filtering analysis, we explore the mismatch

between microlensed and unlensed GW waveforms in both

the lens and image parameter spaces and show that this

validates our proposal.

This paper is organized as follows. In Sec. II, we begin

with a pedagogical outline of gravitational lensing of GWs,

discussing the time delay and amplification factor due to

the lens. We then present the prescription used to generate

the GWs in the inspiral phase of binary compact objects

using the post-Newtonian approximation following [39]. In

Sec. III, we present a detailed analysis of the point mass

(PM) and singular isothermal sphere (SIS) axisymmetric

lens-mass profiles and introduce the model-independent

image parameters. In Sec. IV, we perform a match-filtering

analysis in which we calculate the mismatch between

lensed and unlensed GWs. Appendices A and B investigate

the mismatch between lensed GW source and unlensed

templates. Throughout the paper, we assume c ¼ G ¼ 1.

II. BASIC FORMALISM

In this section, we briefly review the basic theory of the

gravitational lensing of GWs.

A. Gravitational lensing

In the strong gravitational-lensing regime, we observe

multiple images (or a single very distorted image) of a

distant background source due to the presence of an

intervening massive astrophysical object known as a lens.

Lensing occurs when the GWs from a compact binary

system travel near a lens as shown for the general lensing

geometry in Fig. 1 [24]. The extents of the lens and the

source are taken to be much less than the observer-lens and

lens-source distances, in which case they can be localized

to the lens and source planes. An optic axis connects the

observer and the center of the lens. The lens and source
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planes are at angular-diameter distances DL and DS

respectively. The angular-diameter distance between the

lens and source planes is DLS. A GW source is located on

the source plane at displacement η with respect to the optic

axis. After being emitted by the source, the GWs travel to

the lens plane, with an impact parameter ξ, and are

deflected through an angle α̂ by the gravitational potential

of the lens. x≡ ξ=ξ0 and y ≡ η=ðξ0DS=DLÞ are dimen-

sionless vectors on the lens and source plane respectively,

where ξ0 is a model-dependent characteristic length scale

on the lens plane called the Einstein radius. GWs that reach

the observer satisfy the lens equation

y ¼ x − αðxÞ; ð3Þ

where

αðxÞ ¼ DLDLS

ξ0DS

α̂ðξ0xÞ ¼ ∇xψðxÞ; ð4Þ

is the scaled deflection angle at the observer. The lensing

potential ψðxÞ is given by the two-dimensional Poisson

equation

∇2
xψðxÞ ¼

2ΣðxÞ
Σcr

; ð5Þ

where Σ is the surface mass density of the lens and Σcr ≡

DS=4πDLDLS is the critical surface mass density. For the

formation of multiple images, Σ=Σcr > 1 is a sufficient, but

not necessary condition [44].

Gravitational lensing causes a time delay between the

lensed images at the observer. The arrival time has two

components, one arising from the geometry of the path

traveled, and the other due to the gravitational potential of

the lens known as the Shapiro time delay. The time delay at

the observer due to a lens at redshift zL is

tdðx;yÞ¼
DSξ

2
0ð1þ zLÞ
DLDLS

�

1

2
jx−yj2−ψðxÞþϕmðyÞ

�

; ð6Þ

where ϕmðyÞ is chosen such that the minimum value of the

time delay is 0.

The lensing amplification factor FðfÞ ¼ h̃LðfÞ=h̃ðfÞ
relates the lensed waveform h̃LðfÞ to the unlensed wave-

form h̃ðfÞ for GWs of frequency f. It is given by

Kirchhoff’s diffraction integral [19,24]

FðfÞ ¼ DSξ
2
0ð1þ zLÞ
DLDLS

f

i

Z

d2x exp½2πiftdðx; yÞ�: ð7Þ

This integral over the lens plane accounts for all the

trajectories in which the wave can propagate; it is unity

in the absence of a lens.

1. Geometrical-optics approximation

In the geometrical-optics approximation, generally valid

for GW frequencies f and lens masses ML for which f ≫

M−1
L [45], discrete images form at the stationary points xj

of the time-delay function at which ∇xtdðx; yÞ ¼ 0. Only

these points contribute to the lensing amplification factor

FðfÞ ¼
X

j

jμjj1=2 expð2πiftdðxj; yÞ − iπnjÞ; ð8Þ

where μj ¼ 1= detð∂y=∂xjÞ is the magnification of the jth

image and the Morse index nj has values of 0, 1=2, or 1

depending on whether xj is a minimum, saddle point, or

maximum respectively of the time-delay surface, tdðx; yÞ.

B. Gravitational waveform

We restrict our analysis to the inspiral phase of the GW

evolution from binary black hole (BBH) mergers and use

the post-Newtonian (PN) approximation to model our

unlensed waveform [39]

h̃ðfÞ ¼
�

A
D
M5=6f−7=6eiΨðfÞ; 0 < f < fcut

0; fcut < f;
ð9Þ

where D is the luminosity distance to the source, ΨðfÞ is
the GW phase, and the GWamplitude A is a function of sky

localization and source geometry of order unity as dis-

cussed in [46]. For a BBH system with masses m1 and m2,

M ¼ m1 þm2 is the total mass, η ¼ m1m2=M
2 is the

symmetric mass ratio, Mz ¼ ð1þ zÞM is the redshifted

total mass, and M ¼ η3=5Mz is the redshifted chirp mass.

FIG. 1. A typical gravitational lens system consisting of a

compact binary system in the source plane, a lens in the lens

plane, and an observer. DL, DLS and DS are the angular-diameter

distances from observer to lens, lens to source, and observer to

source respectively. The vector ξ is the impact parameter in the

lens plane, and the vector η is the location of the source with

respect to the optic axis in the source plane. α̂ is the deflection

angle measured on the lens plane.
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The cutoff frequency fcut ¼ 1=ð63=2πMzÞ is chosen to be

twice the orbital frequency at the innermost stable circular

orbit of a BH of mass Mz.

To 1.5PN order [39], the GW phase is

ΨðfÞ ¼ 2πftc − ϕc −
π

4

þ 3

4
ð8πMfÞ−5

3

�

1þ 20

9

�

743

336
þ 11η

4

�

x − 16πx
3
2

�

;

ð10Þ

where tc and ϕc are the coalescence time and phase and

x≡ ðπMzfÞ2=3 is the PN expansion parameter.

Our restriction to the inspiral stage of waveforms is a

reasonable approximation for this study of microlensing, as

the interference between the two images can most readily be

observed as the binaries inspiral through a frequency range

Δf ≳ Δt−1d . Although the merger and ringdown stages can

make significant contributions to the total signal-to-noise

ratio (SNR), they occur over a narrow range in frequencies

making the effects of microlensing degenerate with changes

to the luminosity distance D and coalescence phase ϕc.

III. AXISYMMETRIC LENS MODELS

In this section, we discuss two axisymmetric lens

models, the singular isothermal sphere (SIS) and the point

mass (PM), that produce at most two images in the

geometrical-optics approximation. We introduce model-

independent image parameters that describe the amplifica-

tion factor F in this approximation, and assess the validity

of these new parameters as the geometrical-optics approxi-

mation breaks down at low frequencies.

A. Singular isothermal sphere (SIS)

The SIS density profile ΣðξÞ ¼ σ2v=2ξ, where σv is the

velocity dispersion, is the most simple profile that can

effectively describe the flat rotation curves of galaxies [47].

It leads to the lensing potential ψðxÞ ¼ x by Eq. (5) and the
amplification factor [19,48]

FðfÞ ¼ −iweiwy
2=2

Z

∞

0

dx xJ0ðwxyÞ

× exp

�

iw

�

1

2
x2 − xþ ϕmðyÞ

��

¼ e
i
2
wðy2þ2ϕmðyÞÞ

X

∞

n¼0

Γð1þ n
2
Þ

n!

× ð2wei3π2 Þn21F1

�

1þ n

2
; 1;−

i

2
wy2

�

; ð11Þ

by Eq. (7), where w ¼ 8πMLf, ϕmðyÞ ¼ yþ 1=2, J0 is the

Bessel function of zeroth order, ξ0 ¼ 4πσ2vDLDLS=DS is

the Einstein radius, and ML ¼ πσ2vð1þ zLÞξ0 is the lens

mass inside the Einstein radius.

B. Point mass (PM)

The PM is the simplest mass distribution for a gravita-

tional lens. It leads to a lensing potential ψðxÞ ¼ ln x and

amplification factor [19,49]

FðfÞ ¼ exp

�

πw

4
þ i

w

2

�

ln

�

w

2

�

− 2ϕmðyÞ
��

× Γ

�

1 −
i

2
w

�

1F1

�

i

2
w; 1;

i

2
wy2

�

; ð12Þ

where w ¼ 8πMLf, ϕmðyÞ ¼ ðxm − yÞ2=2 − ln xm, xm ¼
ðyþ ðy2 þ 4Þ1=2Þ=2, and 1F1ða; b; cÞ is the confluent

hypergeometric function. The Einstein radius ξ0 for a

PM of lens massML is ξ0 ¼ ½4MLDLDLS=DSð1þ zLÞ�1=2.

C. Geometrical-optics approximation

In the limit where the geometrical-optics approximation is

valid, a source at position y creates a discrete number of

images at positions xj which are stationary points of the time

delay tdðx; yÞ given by Eq. (6). For the SIS lens, only one

image is formed if the source is outside theunit circle (y > 1),

whereas two images are formed if the source is inside

(y < 1). The amplification factor FðfÞ in the geometrical-

optics approximation of Eq. (8) is given by [19]

FðfÞ ¼
� jμþj1=2 − ijμ−j1=2e2πifΔtd ; y < 1

jμþj1=2; y > 1;
ð13Þ

where

μ� ¼ �1þ 1

y
; ð14aÞ

Δtd ¼ 8MLy: ð14bÞ

As a PM lens can deflect photons by an arbitrarily large angle

for sufficiently small impact parameter, there are two images

for all source positions y. FðfÞ is given by [19]

FðfÞ ¼ jμþj1=2 − ijμ−j1=2e2πifΔtd ; ð15Þ

where

μ� ¼ 1

2
� y2 þ 2

2yðy2 þ 4Þ1=2 ; ð16aÞ

Δtd ¼ 2ML

�

yðy2 þ 4Þ1=2 þ 2 ln

�ðy2 þ 4Þ1=2 þ yÞ
ðy2 þ 4Þ1=2 − yÞ

��

:

ð16bÞ

Both the SIS andPMlensmodels can be parametrized by two

lens parameters, the source position y and lens mass ML.
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The amplification factor FðfÞ for the SIS is shown in
Fig. 2. In the low-frequency limit, FðfÞ converges to unity
because diffraction effects prevent long-wavelength GWs
from being affected by the presence of a lens [19,50]. In the
high-frequency limit, the geometrical-optics approximation
is valid and oscillatory behavior is observed due to interfer-
ence between the coherent lensed images.We assume that the
time delay Δtd is much less than the observing time of the
GW detector as is appropriate for the lens mass shown
in Fig. 2.

Figure 3 shows the unlensed waveform h̃ðfÞ and lensed

waveform h̃LðfÞ ¼ FðfÞh̃ðfÞ as functions of frequency f.
The unlensed waveform given by Eq. (9) is parametrized by
the GW amplitude A, redshifted chirp mass M, symmetric
mass ratio η, source luminosity distanceD, coalescence time
tc, and coalescence phase ϕc; we choose fiducial values of
A ¼ 0.21, M ¼ 20M⊙, η ¼ 0.25, tc ¼ ϕc ¼ 0, and D ¼
1 Gpc for these source parameters. It is proportional to f−7=6

according to Eq. (9) and appears as a straight line in this log-
log plot. The lensed waveform is calculated for a SIS with

lens parameters y ¼ 0.5 and ML ¼ 104M⊙ and displays
oscillatory behavior due to interference between the two
terms in Eq. (13).

D. Model-independent image parameters

When the amplification factor FðfÞ is given by Eq. (15),
i.e. the source position is such that two images are formed

and the geometrical-optics approximation is valid, we can

express this factor directly in terms of the flux ratio

I ¼ jμ−j=jμþj and time delay Δtd between the images.

These “image parameters” are model-independent in

that they fully specify the amplification factor for any

two-image lens model up to an overall normalization that is

observationally degenerate with the GW amplitude A. The
relationship between these image parameters and lens

parameters like the source position y and lens mass ML

is model dependent; these relations for the SIS and PM lens

models are given by Eqs. (14) and (16) respectively.

In Fig. 4, we plot the flux ratio I and time delay Δtd as

parametric functions of the source position y for our two

FIG. 2. The magnitude of the amplification factor FðfÞ as a

function of frequency f for an SIS with lens mass ML ¼ 103M⊙

and source positions y ¼ 0.1, 0.5, 1.0, and 3.0 shown in red, blue,

green, and black. The solid lines are calculated using the exact

result of Eq. (11), while the dashed lines are calculated using the

geometrical-optics approximation of Eq. (13).

FIG. 3. Waveform magnitudes as functions of frequency f for
our default source parameters of A ¼ 0.21, M ¼ 20M⊙,
η ¼ 0.25, tc ¼ ϕc ¼ 0, and D ¼ 1 Gpc. The orange line shows

the unlensed waveform h̃ðfÞ, while the blue curve shows the

lensed waveform h̃LðfÞ ¼ FðfÞh̃ðfÞ for the amplification factor

FðfÞ of a SIS with lens parameters y ¼ 0.5 and ML ¼ 104M⊙

calculated in the geometrical-optics approximation.

FIG. 4. The flux ratio I and time delay Δtd as parametric

functions of the source position y for two-image lens models of

varying lens mass ML. The solid (dashed) curves correspond to

the PM (SIS) lens model, while the red (green) curves are for a

lens massML ¼ 103M⊙ (1.2 × 103M⊙). The blue cross indicates

the point (I ¼ 0.25, Δtd ¼ 2.8 × 10−2 s) where curves for the

PM and SIS models intersect.
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axisymmetric lens models and two choices of the lens mass

ML. The blue cross indicates specific, potentially observ-

able values (I ¼ 0.25 and Δtd ¼ 2.8 × 10−2 s) of the

model-independent image parameters. According to

Eqs. (14) and (16), these values can be obtained in both

the SIS and PM lens models, albeit with different lens

parameters, ML ≈ 1.2 × 103M⊙ and y ≈ 0.6 for the SIS

lens and ML ≈ 103M⊙ and y ≈ 0.7 for the PM lens. This

analysis reveals that apart from any observational errors

associated with measuring the image parameters I and Δtd,
there is a ∼20% model dependence with which lens

parameters like ML and y can be reconstructed.

To further illustrate that the same image parameters can be

produced by different choices of lens parameters in different

lensmodels, in Fig. 5we show the ratio of the lensmassMPM
L

in the PMmodel to the lens massMSIS
L in the SIS model that

produce the same flux ratio I ≡ jμ−j=jμþj and time delay

Δtd. To obtain this ratio, we invert Eqs. (14a) and (16a) to

obtain the source distances ySIS and yPM in the SIS and PM

models, respectively. We then equate Eqs. (14b) and (16b)

and insert these source distances to obtain the ratio

MPM
L =MSIS

L . The fact that this ratio is less than unity could

be interpreted as indicated that the more compact PMmodel

is amore powerful lens than the SISmodel; it can produce the

same image parameters at a smaller lensmass. The difference

between this mass ratio and unity provides a lower bound on

the systematic fractional uncertainty with which the lens

mass can be measured in microlensing events due to model

uncertainty, even if the image parameters were measured

with arbitrary precision.

A recent study [43] investigatedwhether aGW150914-like

GWevent microlensed by a point mass withMPM
L ¼ 103M⊙

and source position yPM ¼ 1 could be distinguished from

lensing by a SIS lens model. Parameter estimation was

performed for this event in both the correct PM and incorrect

SIS models. The input parameters were accurately recovered

in the PMmodel, but in the SISmodel the best-fit parameters

were MSIS
L ¼ 1468M⊙ and ySIS ¼ 0.72. Assuming that the

geometrical-optics approximation held for this event, we

would predict image parameters

I ¼ jμPM− j
jμPMþ j ¼

3 −
ffiffiffi

5
p

3þ
ffiffiffi

5
p ¼ 0.146 ð17aÞ

Δtd ¼ 2ML

�

ffiffiffi

5
p

þ 2 ln

�

ffiffiffi

5
p

þ 1
ffiffiffi

5
p

− 1

��

¼ 41.6 ms; ð17bÞ

for this event. A SIS model with lens parameters

ySIS ¼ 1 − I

1þ I
¼ 0.745 ð18aÞ

MSIS
L ¼ Δtd

8ySIS
¼ 1396M⊙; ð18bÞ

would yield the same image parameters. We see that these

estimates are very close to the best-fit parameters in the SIS

model, despite the fact that w ¼ 8πMLf ¼ 0.25 is not that

large at the bottom of the LVK sensitivity band at f ¼ 20 Hz,

suggesting that wave-optics effects may be significant. The

validity of these estimates supports our contention that the use

of image parameters is still valuable in the microlensing

regime despite the absence of two widely separated images.

IV. MATCHED-FILTERING ANALYSIS

In this section, we perform a matched-filtering analysis

to quantify the difference between lensed and unlensed

GWs. The mismatch ϵ between two waveforms h1 and h2 is
defined as [39]

ϵðh1; h2Þ≡ 1 −max
tc;ϕc

hh1jh2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh1jh1ihh2jh2i
p : ð19Þ

The noise-weighted inner product hh1jh2i between the

waveforms h1 and h2 is defined as

hh1jh2i ¼ 4Re

Z

fcut

flow

df
h1ðfÞh�2ðfÞ

SnðfÞ
; ð20Þ

where SnðfÞ is the noise power spectral density (PSD). We

use the PYCBC.FILTER package [51] to evaluate the mis-

match between waveforms. The two waveforms h1 and h2
can be distinguished when their mismatch ϵ≳ ρ−2, where

ρ ¼ hhjhi1=2 is the SNR of a waveform h [39,52,53].

Figure 6 shows contour plots of the mismatch ϵ between

lensedGWsource and unlensed templates as functions of the

model-dependent lens parameters y andML (left panels) and

the model-independent image parameters I and Δtd (right

FIG. 5. The mass ratio MPM
L =MSIS

L of point-mass (PM) to

singular-isothermal-sphere (SIS) models producing the same

flux ratio I for equal time delay Δtd. The vertical blue dashed

line corresponds to I ¼ 0.25 like the vertical blue dot-dashed line

in Fig. 4.
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panels) for PM lenses (top panels) and SIS lenses (bottom

panels). We use the same source parameters for the lensed

and unlensed templates and the noise PSD appropriate for a

single two-armed detector with aLIGO design sensitivity.

The mismatches as functions of the lens parameters

are qualitatively similar for the PM (top left panel) and

SIS (bottom left panel) models. For a vanishing lens mass

(ML → 0), diffraction causes the amplification factor to

approach unity (F → 1) and the mismatch to vanish

(ϵ → 0) according to Eq. (19) for h1 ¼ h2. The biggest

difference between the twomodels occurs in the limit y → 1,

where jμ−j → 0 for the SIS model according to Eq. (14a) but

jμ−j → 0.17 for the PM model according to Eq. (16a). This

accounts for the much smaller mismatches for the SIS model

compared to the PM model in this limit.

The PM and SIS models become qualitatively indistin-

guishable when the mismatch is expressed as a function of

the image parameters of I and Δtd as shown in the right

panels of Fig. 6. Although the top and bottom panels appear

the same in the regions where they overlap, the PM model

extends to larger values of the time delay Δtd than the SIS

model at small flux ratios I. This occurs because the

mappings Eqs. (14) and (16) between the lens parameter

space in the left panels and the image parameter space in

the right panels are model-dependent.

The better agreement between the mismatches in the

PM and SIS lens models when expressed as functions

of the image parameters I and Δtd can be seen even more

clearly in Fig. 7. This figure shows the difference Δϵ ¼
jϵPM − ϵSISj between the mismatches for PM and SIS lens

models shown in the top and bottom panels of Fig. 6. The

left panel of Fig. 7 shows large differences Δϵ≳ 0.15

between the two lens models for source distances y≳ 0.7

where the flux ratio I vanishes in the SIS model but not the

PM model. However, when the mismatch difference is

expressed as a function of the image parameters in the right

panel, the amplification factors and thus the mismatches

only have significant differences for Δtd ≲ 0.02 s where

the geometrical-optics approximation breaks down.

The right panels of Fig. 6 also reveal that the crests and

troughs of the oscillations in ϵ occur on lines of constant

time delay Δtd. We examine these oscillations and the

general dependence of the mismatch on our lens and image

parameters for the SIS model in Fig. 8. The top left (right)

FIG. 6. Contour plots of the mismatch ϵ between lensed and unlensed GWs for PM lenses (top panels) and SIS lenses (bottom panels).

The left panels show ϵ as a function of the model-dependent source distance y and lens mass ML, while the right panels show ϵ as a

function of the model-independent flux ratio I and time delay Δtd. The unlensed waveforms are calculated using the default source

parameters M ¼ 20M⊙, η ¼ 0.25, and tc ¼ ϕc ¼ 0.
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FIG. 7. The difference Δϵ ¼ jϵPM − ϵSISj between the mismatches between lensed and unlensed waveforms for PM and SIS lens
models shown in the top and bottom panels of Fig. 6 as functions of the source position y and lens massML (left panel) and the flux ratio
I and time delay Δtd (right panel).

FIG. 8. The mismatch ϵ between lensed and unlensed waveforms with source parameters M ¼ 20M⊙, η ¼ 0.25, and tc ¼ ϕc ¼ 0 in
the SIS lens model as a function of lens massML (top left panel), source position y (top right panel), time delay Δtd (bottom left panel),
and flux ratio I (bottom right panel). In the top (bottom) left panel, the blue, green, and red curves correspond to y ¼ 0.2, 0.6, and 1.0

(I ¼ 0.2, 0.4, and 0.6). In the top (bottom) right panel, the gray, cyan, and magenta curves correspond toML ¼ 2 × 103M⊙, 4 × 103M⊙,

and 6 × 103M⊙ (Δtd ¼ 0.1 s, 0.15 s, and 0.2 s). The dotted curves in the bottom panels show the mismatch ϵ ≈ 1 − ð1þ IÞ−1=2 in the
extreme geometrical-optics limit derived in Appendix A.
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panels of Fig. 8 show vertical (horizontal) slices of the

bottom left panel of Fig. 6 along lines of constant y (ML).

The dependence of the mismatch ϵ on these lens parameters

is non-monotonic and difficult to interpret, exhibiting

oscillations of varying amplitude, frequency, and phase

and a deep valley. The dependence of ϵ on the image

parameters Δtd and I shown in the bottom panels is far

easier to interpret. The bottom left panel shows that ϵ → 0

in the diffraction limit Δtd → 0, while in the opposite

extreme geometrical-optics limit Δtd → ∞, ϵ → 1 − ð1þ
IÞ−1=2 as derived in Appendix A. The crests and troughs of

the oscillations, as well as the deep valley at Δtd ≈ 0.015 s

are all aligned in this panel, reinforcing our contention that

these oscillations are purely functions of the time delayΔtd.
They are absent in the bottom right panel, whereΔtd is held
constant and the mismatch depends smoothly on the flux

ratio I in reasonable agreement with the extreme geomet-

rical-optics limit ϵ → 1 − ð1þ IÞ−1=2.
We investigate the oscillations in the mismatch ϵ as a

function of the time delay Δtd in Appendix B. These

oscillations result from the number and location of the peaks

of the amplification factor FðfÞ shown in Fig. 2 within the

sensitivity band of the detector changing as Δtd varies. For
our approximate waveform of Eq. (9), the sharpest feature in

the detector response is a cutoff in the strain hðfÞ above a

frequency fcut ¼ ð63=2πMzÞ−1. According to Eq. (B3), this

cutoff couples to the peaks of the amplification factor to

create oscillations in the mismatch with frequency as a

function of the time delay with frequency fcut and amplitude

proportional to I3=2=ð1þ IÞ. Numerical-relativity simula-

tions reveal that true waveforms transition smoothly to a

ringdown rather than experiencing such a sharp cutoff

[54–56], but the merger should still imprint a feature leading

to oscillations in the mismatch between a lensed GW source

and unlensed templates. Our analysis suggests that these

oscillations may be significant for large flux ratios I (small

source distances y), implying that serendipity between the

lens parameters and source mass may facilitate the discovery

of lensing in GW events.

V. DISCUSSION

In the geometrical-optics approximation, strong gravita-

tional lensing produces multiple images. The lensing ampli-

fication factor FðfÞ can be expressed as a summation over

these images, each with its own magnification μj, time delay

td;j, andMorse index nj as given byEq. (8). In any given lens

model, these image parameters can be calculated as functions

of the lens parameters such as the source position y and the

lens mass ML. Lensing of transient events can further be

classified as either microlensing or macrolensing, depending

on whether the time delay between images is shorter or

longer than the duration of the transient. In the latter case,

two distinct GW events are observed and it is natural to

characterize these events using image parameters. We

propose that, even in the microlensing regime, observational

searches for strong lensing in GW events, as well as

theoretical studies of their feasibility, should be conducted

in terms of thesemodel-independent image parameters rather

than the model-dependent lens parameters provided that the

geomertrical-optics approximation still holds.

In this paper, we investigate this proposal by considering

two well-known axisymmetric lens models: the singular

isothermal sphere (SIS) and the point mass (PM). The SIS

model has a density profile ρ ∝ r−2 appropriate for a galaxy
or stellar cluster, while the PM model could describe an

individual star or compact object. In the geometrical-optics

approximation, the SIS produces two images for source

positions y < 1, while the PM always produces two

images. For the case of two images, the amplification

factor is given by Eq. (15) for both models, but the

mappings between the image parameters (the flux ratio

I ¼ jμ−j=jμþj and the time delay Δtd) and the lens param-

eters (the source distance y and the lens massML) are model

dependent and given by Eqs. (14) and (16) respectively. This

implies that uncertainty in the lens model will translate

into uncertainty in the lens parameters, even if the image

parameters could be measured with arbitrary precision. We

illustrate this in Fig. 4, where the SIS and PM models can

generate images with identical flux ratios and time delays

despite have lens parameters that differ by ∼20%. This

represents a conservative estimate of the systematic error in

the lens parameters associated with uncertainty in the lens

model, as the PM model is more compact than any real

galaxy or halo. Figure 5 reveals that this systematic error gets

even larger as the flux ratio decreases.

Lensed GWevents with finite signal-to-noise ratios ρ can

be distinguished from unlensed templates if the minimum

mismatch ϵ between the lensed signal and members of the

template bank exceeds ρ−2 [39,52,53]. The oscillatory

features induced in the waveform by lensing in the

geometrical-optics limit depicted in Fig. 3 have little

degeneracy with the source parameters specifying the

unlensed waveform in Eqs. (9) and (10), so we approximate

this minimum mismatch by that between lensed and

unlensed waveforms with the same source parameters. In

this approximation, the mismatch can be approximated by

ϵ ≈ 1 − ð1þ IÞ−1=2 according to Eq. (A5) and lensing

should in principle be identifiable for flux ratios I ≳

2ρ−2 and time delays Δtd ≳ f−1cut. We further showed in

the right panel of Fig. 7 that the amplification factor of

Eq. (15) is an excellent approximation to both the SIS and

PM lens models in the geometrical-optics limit, suggesting

that it should be suitable for model-independent searches

for strong lensing in GW events.

The geometrical-optics approximation describes micro-

lensing for lens masses in the range Mmin ≲ML ≲Mmax,

where
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Mmin ¼ ð8πfÞ−1 ¼ 400M⊙

�

f

20 Hz

�

−1

; ð21Þ

Mmax ¼ 5ð8πfÞ−8=3M−5=3

¼ 3 × 105M⊙

�

f

20 Hz

�

−8=3
�

M

20M⊙

�

−5=3

: ð22Þ

This complements electromagnetic observations of strong

lensingwhich are only sensitive to lensmassesML ≳ 106M⊙

[57–59].GWlensing observations thus extendour sensitivity
to isolated low-mass dark-matter halos by roughly three
orders of magnitude. This is particularly important because
cosmological observations challenge the ΛCDM model on
these small scales [59,60]. This has motivated investigations
of alternatives to cold dark matter which suppress the matter
power spectrum or halo mass function on small scales.
Although gravitational lensing has not been detected in

any of the GW events observed in the first three runs of the
LVK detector network [14], recent estimates [61] suggest

that ∼103 strongly lensed GW events could be observed
each year by future third-generation detectors like the
proposed Cosmic Explorer (CE) [10] and Einstein
Telescope (ET) [11]. The detection of gravitational lensing
in GW events would be of tremendous scientific interest
because it could test general relativity [28–30], probe the
distribution of dark matter [62,63], and improve the
precision of cosmological constraints [31] We propose
that GW templates based on model-independent image
parameters will be a valuable tool in this effort. In
upcoming studies, we will investigate how effectively these
GW templates can be used to identify additional images
created by nonaxisymmetric lenses [64] and distinguish the
effects of lensing from those of spin precession [65].
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APPENDIX A: MISMATCH IN THE EXTREME

GEOMETRICAL-OPTICS LIMIT Δtd → ∞

We define the overlap O between a lensed waveform

h̃LðfÞ and unlensed template h̃ðfÞ as

O≡
hh̃LðfÞjh̃ðfÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh̃LðfÞjh̃LðfÞihh̃ðfÞjh̃ðfÞi
q : ðA1Þ

For a lensed waveform with the amplification factor FðfÞ
of Eq. (15) appropriate for a two-image lens in the geomet-

rical-optics approximation and an unlensed waveform with

the same source parameters, this overlap becomes

O ¼ A1
ffiffiffiffiffiffiffiffiffiffi

A2A3

p ; ðA2Þ

where

A1 ≡

Z

df
jh̃ðfÞj2
SnðfÞ

ðjμþj1=2 þ jμ−j1=2 sin 2πfΔtdÞ; ðA3aÞ

A2 ≡

Z

df
jh̃ðfÞj2
SnðfÞ

ðjμþj þ jμ−j þ 2jμþμ−j1=2 sin 2πfΔtdÞ;

ðA3bÞ

A3 ≡

Z

df
jh̃ðfÞj2
SnðfÞ

: ðA3cÞ

In the extreme geometrical-optics limit Δtd → ∞, the

oscillatory terms do not contribute to the integrals implying

A1 → jμþj1=2A3, A2 → ðjμþj þ jμ−jÞA3, and

O →
jμþj1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jμþj þ jμ−j
p ¼ 1

ffiffiffiffiffiffiffiffiffiffiffi

1þ I
p ðA4Þ

where I ¼ jμ−j=jμþj is the flux ratio between the two images.

Although thematch1-ϵ is normally calculated bymaximizing

the overlap over the coalescence time tc and phase ϕc as in

Eq. (19), it is independent of these parameters in the limit

Δtd →∞. This implies that the mismatch takes the limiting

value

ϵ → 1 −O ¼ 1 −
1
ffiffiffiffiffiffiffiffiffiffiffi

1þ I
p : ðA5Þ

APPENDIX B: INVESTIGATING OSCILLATIONS

IN THE MISMATCH

In this Appendix, we examine the oscillations in the

mismatch ϵ as a function of the time delay Δtd seen in the

bottom left panel of Fig. 8. We reproduce the I ¼ 0.2 curve

from this figure in Fig. 9 above. In the geometrical-optics

approximation, lensing induces an oscillatory contribution

to the GW phase that is poorly matched by a linear change

to the GW phase resulting from a shift in the coalesence

time tc and phase ϕc according to Eq. (10). As such, the

mismatch is well approximated as ϵ ≈ 1 −O, where the

overlap O is given by Eqs. (A1)–(A3). The crests and

troughs of the oscillations in the mismatch as a function of

the time delay Δtd will therefore occur where

dϵ

dΔtd
¼ O

�

1

2A2

dA2

dΔtd
−

1

A1

dA1

dΔtd

�

¼ O

�jμþj1=2
A2

−
1

A1

�

dA1

dΔtd
ðB1Þ

vanishes.
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We show further that

dA1

dΔtd
¼ jμ−j1=2

Z

fcut

flow

df
jh̃ðfÞj2
SnðfÞ

2πf cos 2πfΔtd ðB2aÞ

≈
jμ−j1=2
2πΔt2d

	jh̃ðfÞj2
SnðfÞ




ðw sinwþ coswÞjwcut
wlow

ðB2bÞ

≈ jμ−j1=2
A3

Δtd
sinwcut; ðB2cÞ

where we have defined w≡ 2πfΔtd, approximated

jh̃ðfÞj2=SnðfÞ by a constant in angular brackets equal to

its average value, and assumed wcut ≫ wlow ≫ 1 as will be

true for small redshifted source masses in the geometrical-

optics limit. Inserting these into Eq. (B1) and using the

extreme geometrical-optics approximation described in

Appendix A, we find

dϵ

dΔtd
¼ −

I3=2

1þ I

O

Δtd
sinwcut: ðB3Þ

This result implies that the crests [troughs] in the mismatch

ϵ will occur at time delays Δtd;c [Δtd;t] for which wcut ¼
2nπ [ð2nþ 1Þπ], i.e.

Δtd;c ¼ nf−1cut ¼ n × 10.47 ms

�

Mz

45.9M⊙

�

; ðB4aÞ

Δtd;t ¼
�

nþ1

2

�

f−1cut ¼
�

nþ1

2

�

10.47ms

�

Mz

45.9M⊙

�

:

ðB4bÞ

Figure 9 reproduces the blue curve shown in the bottom

left panel of Fig. 8 corresponding to the mismatch ϵ

between a lensed GW source and unlensed templates in

the SIS model for flux ratio I ¼ 0.2 and source parameters

M ¼ 20M⊙, η ¼ 0.25, and tc ¼ ϕc ¼ 0. The dashed

(dotted) vertical lines indicate the values of the time delay

at which maxima (minima) of the mismatch occur. These

numerically determined values are listed in Table I, where

they are compared to the values predicted by Eqs. (B4a) and

(B4b). We see that there is excellent agreement between our

numerical results and analytical predictions, and that this

agreement improves for larger times delays Δtd at which

the extreme geometrical-optics approximation becomes

increasingly valid.

TABLE I. The five columns in this table list: (1) the index n of

the crests and troughs, (2) the numerically determined time delay

of the crest, (3) the time delay of the crest predicted by Eq. (B4a),

(4) the numerically determined time delay of the trough, and

(5) the time delay of the trough predicted by Eq. (B4b). The lens

and source parameters are the same as those in Fig. 9.

Crests Troughs

n
Numerical

Δtd [ms]

Predicted

Δtd;c [ms]

Numerical

Δtd [ms]

Predicted

Δtd;t [ms]

1 11.51 10.47 15.91 15.71

2 21.31 20.94 26.12 26.18

3 32.52 31.41 36.72 36.65

4 42.13 41.88 47.33 47.12

5 53.53 52.36 57.13 57.59

6 63.54 62.83 68.34 68.06

7 73.75 73.30 78.15 78.53

8 84.75 83.77 88.95 89.01

9 94.36 94.24 99.56 99.48

10 105.8 104.7 109.6 109.9

11 115.4 115.2 120.8 120.4

12 126.2 125.7 130.6 130.9

13 136.6 136.1 141.8 141.4

14 146.6 146.6 151.8 151.8

15 157.8 157.1 � � � � � �

FIG. 9. The mismatch ϵ between a lensed GW source and

unlensed templates for an SIS lens as a function of time delay Δtd
for flux ratio I ¼ 0.2. The BBH system has source parameters

M ¼ 20M⊙, η ¼ 0.25, and tc ¼ ϕc ¼ 0. The vertical dashed and

dotted lines indicate the locations of the crests and troughs listed

in Table I.
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