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Detectability of strongly lensed gravitational waves using
model-independent image parameters
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Strong gravitational lensing of gravitational waves (GWs) occurs when the GWs from a compact binary
system travel near a massive object. The lensed waveform is given by the product of the lensing amplification
factor F and the unlensed waveform. For many axisymmetric lens models such as the point mass and singular
isothermal sphere that we consider, F can be calculated in terms of two lens parameters, the lens mass M; and
source position y. In the geometrical-optics approximation, lensing in these models produces at most two
discrete images which can be parametrized by two image parameters, the flux ratio / and time delay At,
between images. In the macrolensing regime for which Az, is large compared to the time 7" they spend within
the sensitivity band of GW detectors, it is natural to parametrize lensing searches in terms of these image
parameters. The functional dependence of the lensed signal on these image parameters is far simpler,
facilitating data analysis for events with modest signal-to-noise ratios, and constraints on / and Az, can be
inverted to constrain M; and y for any lens model. We propose that this use of image parameters can be
extended to the microlensing regime (Af, < T) in which the two interfering images are observed as a single
GW event. We use image parameters to determine the detectability of gravitational lensing in GW the
microlensing regime and find that for GW events with signal-to-noise ratios p and total mass M, lensing should

in principle be identifiable for flux ratios 7 = 2p~2 and time delays Az, > M~
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I. INTRODUCTION

The first direct detection of gravitational waves (GWs)
from merging compact objects was reported by the LIGO and
Virgo collaborations in 2016 [1]. To date, Advanced LIGO
[2] and Advanced Virgo [3] have reported about 90 events,
most of which are mergers between stellar-mass black holes,
during their first three observing runs [4]. Kamioka
Gravitational Wave Detector (KAGRA) [5-7] has joined
the preexisting ground-based GW detectors to form the
Advanced LIGO-Virgo-Kagra (LVK) network. The
increased sensitivity of detectors such as LVK has allowed
us to detect an increasing number of GW events and to
perform various general relativistic and cosmological tests
[8,9]. With the increasing sensitivity of the current ground-
based detector network and future detectors such as the
Cosmic Explorer (CE) [10], the Einstein Telescope (ET)
[11], the Deci-Hertz Interferometer Gravitational Wave
Observatory (DECIGO) [12], and the Laser Interferometer
Space Antenna (LISA) [13], the number of observed GW
events will increase dramatically, as will the probability of
observing new propagation effects such as gravitational
lensing that have yet to be detected [14].
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When GWs traveling through the Universe encounter a
massive object, such as a compact object, galaxy or galaxy
cluster, that can act as a lens, deflection of these GWs, i.e.
gravitational lensing, will occur [15-21]. Strong lensing of
GWs will arise when a lens is very close to the line of sight. In
the geometrical-optics approximation, strong lensing will
result in the GWs splitting into different lensed images, each
with its own magnification and phase [19,22]. There will also
be an associated time delay between the lensed images which
could range from seconds to years depending on the mass of
the lens and geometry of the lens system [23,24].

GW lensing, if detected, could facilitate several exciting
scientific studies. It could be used to extract information
about the existence of intermediate-mass (mass ranging
from ~10>-10°M o) [25] or primordial black holes [26,27]
and test general relativity [28-30], including through
constraints from GW polarization content [31]. In addition,
if a lensed electromagnetic (EM) counterpart of the lensed
GW event is observed, it could help to locate the host
galaxy at sub-arcsecond precision [32]. Combining the
information from the two messengers, i.e. GW and EM
lensing, could enable high-precision cosmography [33-38].

There are two major differences between the gravita-
tional lensing of EM waves and GWs from the point of
view of wave-optics effects. The first difference is in the
applicability of the geometrical-optics approximation. In
the case of EM waves, this approximation, typically valid
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when the wavelength 4 of the waves is much smaller than the
Schwarzchild radius R, of the lens, applies to the vast
majority of observations. This is not always the case for
GWs, since ground-based detectors such as the LVK network
observe at frequencies f in the range 10 Hz < f < 10* Hz,
lower than even the lowest-frequency radio telescopes. These
GWs have wavelengths longer than the Schwarzschild
radii of lenses with masses M; < 104MO, leading to non-
negligible wave-optics effects. The second difference is that
the GWs emitted by compact binaries, unlike most EM
sources, are coherent, causing interference between lensed
images when the signals overlap at the observer.

Lensing in the geometrical-optics approximation can be
classified as either macrolensing or microlensing, depend-
ing on whether the time delay
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between images is longer or shorter than the time [39]
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it takes quasi-circular binaries of chirp mass M emitting
GWs at frequency f to merge. As galaxies have masses
M; > 10'"M, they typically generate time delays of
hours to days when acting as gravitational lenses. This
implies that galactic lenses are deeply in the macrolensing
regime for LVK sources with typical parameters f 2 20 Hz
and M = 20M, though not necessarily for LISA sources
with typical parameters f > 10~ Hz and M ~ 10°M . For
LVK sources, the microlensing regime applies to lens
masses M; < 10°M, relevant to intermediate-mass black
holes and dark-matter halos too small to host galaxies. In
this paper, we focus on the microlensing of LVK sources by
such intermediate-mass objects. However, our treatment is
also applicable to the microlensing of LISA sources by
more massive galactic lenses.

In the frequency domain, the modulation of GWs due to
gravitational lensing is characterized by a multiplicative
factor known as the amplification factor. In the limit where
the geometrical-optics approximation is valid, this factor
can be expressed as a sum of terms, each of which
corresponds to a discrete image with its own magnification
and time delay. For two-image lenses like those considered
in this paper, the amplification factor is characterized up to
a normalization factor by two image parameters, the flux
ratio / and time delay At, between the two images. For a
particular axisymmetric lens model, / and Af; can be
calculated as invertible functions of two lens parameters,
the source position y and lens mass M; [17,19].

In the macrolensing regime, the goal of lensing searches
is to determine whether two GW events are really two
widely separated images of the same source. It is natural to
parametrize such searches [40—42] in terms of the image
parameters, as the searches are independent of the under-
lying lens model. In the microlensing regime, the goal of
lensing searches is to distinguish a single lensed GW event
from an unlensed event through the modulation induced by
the interference between the two simultaneously observed
images. A previous study [43] conducted model-dependent
microlensing searches in terms of the lens parameters M,
and y. Although this is necessary in the wave-optics regime,
we propose that microlensing can still be analyzed in terms
of the model-independent image parameters as long as the
geometrical-optics approximation is valid. Such model-
independent microlensing analyses improve computational
efficiency by eliminating the need to iterate through lens
models. They also reveal degeneracies between different
lens models that give rise to the same image parameters.
Using a match-filtering analysis, we explore the mismatch
between microlensed and unlensed GW waveforms in both
the lens and image parameter spaces and show that this
validates our proposal.

This paper is organized as follows. In Sec. II, we begin
with a pedagogical outline of gravitational lensing of GWs,
discussing the time delay and amplification factor due to
the lens. We then present the prescription used to generate
the GWs in the inspiral phase of binary compact objects
using the post-Newtonian approximation following [39]. In
Sec. III, we present a detailed analysis of the point mass
(PM) and singular isothermal sphere (SIS) axisymmetric
lens-mass profiles and introduce the model-independent
image parameters. In Sec. IV, we perform a match-filtering
analysis in which we calculate the mismatch between
lensed and unlensed GWs. Appendices A and B investigate
the mismatch between lensed GW source and unlensed
templates. Throughout the paper, we assume ¢ = G = 1.

I1. BASIC FORMALISM

In this section, we briefly review the basic theory of the
gravitational lensing of GWs.

A. Gravitational lensing

In the strong gravitational-lensing regime, we observe
multiple images (or a single very distorted image) of a
distant background source due to the presence of an
intervening massive astrophysical object known as a lens.
Lensing occurs when the GWs from a compact binary
system travel near a lens as shown for the general lensing
geometry in Fig. 1 [24]. The extents of the lens and the
source are taken to be much less than the observer-lens and
lens-source distances, in which case they can be localized
to the lens and source planes. An optic axis connects the
observer and the center of the lens. The lens and source
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FIG. 1. A typical gravitational lens system consisting of a
compact binary system in the source plane, a lens in the lens
plane, and an observer. D;, D; g and Dy are the angular-diameter
distances from observer to lens, lens to source, and observer to
source respectively. The vector € is the impact parameter in the
lens plane, and the vector # is the location of the source with
respect to the optic axis in the source plane. @ is the deflection
angle measured on the lens plane.

planes are at angular-diameter distances D; and Dy
respectively. The angular-diameter distance between the
lens and source planes is D;g. A GW source is located on
the source plane at displacement 5 with respect to the optic
axis. After being emitted by the source, the GWs travel to
the lens plane, with an impact parameter € and are
deflected through an angle @& by the gravitational potential
of the lens. x =§&/&, and y =#/(yDs/D;) are dimen-
sionless vectors on the lens and source plane respectively,
where &, is a model-dependent characteristic length scale
on the lens plane called the Einstein radius. GWs that reach
the observer satisfy the lens equation

y=x-a(x). o)
where
() = o8aEn) = V). )

is the scaled deflection angle at the observer. The lensing
potential y(x) is given by the two-dimensional Poisson
equation

2%(x)
ZCI‘ '

Vip(x) = (5)
where X is the surface mass density of the lens and X, =
Dg/4nD; D, ¢ is the critical surface mass density. For the
formation of multiple images, X/X.. > 1 is a sufficient, but
not necessary condition [44].

Gravitational lensing causes a time delay between the
lensed images at the observer. The arrival time has two
components, one arising from the geometry of the path
traveled, and the other due to the gravitational potential of
the lens known as the Shapiro time delay. The time delay at
the observer due to a lens at redshift z; is

_Dsf(z)(l +ZL) 1

t(x.y) =—F5F5——[5x

DD |2 -y -y (x)+d.(¥)|. (6)

where ¢,,(y) is chosen such that the minimum value of the
time delay is O.

The lensing amplification factor F(f) = h:(f)/h(f)
relates the lensed waveform A (f) to the unlensed wave-
form h(f) for GWs of frequency f. It is given by
Kirchhoff’s diffraction integral [19,24]

2
P = 2BUE] [ ox expiaaifiy ). ()

This integral over the lens plane accounts for all the
trajectories in which the wave can propagate; it is unity
in the absence of a lens.

1. Geometrical-optics approximation

In the geometrical-optics approximation, generally valid
for GW frequencies f and lens masses M, for which f >
M7 [45], discrete images form at the stationary points X;
of the time-delay function at which V,z,(x,y) = 0. Only
these points contribute to the lensing amplification factor

F(f)= Z|ﬂj|1/2 exp(2zifty(x;,y) —inn;),  (8)
J

where y; = 1/ det(dy/0x;) is the magnification of the jth
image and the Morse index n; has values of 0, 1/2, or 1
depending on whether x; is a minimum, saddle point, or
maximum respectively of the time-delay surface, 7,(x,y).

B. Gravitational waveform

We restrict our analysis to the inspiral phase of the GW
evolution from binary black hole (BBH) mergers and use
the post-Newtonian (PN) approximation to model our
unlensed waveform [39]

<ﬁ={%WW%4@”W,0<f<ﬂm
Ov fcut<fv

where D is the luminosity distance to the source, ¥(f) is
the GW phase, and the GW amplitude A is a function of sky
localization and source geometry of order unity as dis-
cussed in [46]. For a BBH system with masses m; and m,,
M = m, +m, is the total mass, = m;my/M? is the
symmetric mass ratio, M, = (1 4+ z)M is the redshifted
total mass, and M = ;13/ M . 1s the redshifted chirp mass.

h ©)
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The cutoff frequency fo, = 1/(6%/?2M.) is chosen to be
twice the orbital frequency at the innermost stable circular
orbit of a BH of mass M.

To 1.5PN order [39], the GW phase is

LP(f):272:fl‘c_¢c__

+ % (8zMf) {1 + 20 <m 11’1>x - 16ﬂx2}

9 \336 4
(10)

where 7, and ¢, are the coalescence time and phase and
x = (zM,f)*? is the PN expansion parameter.

Our restriction to the inspiral stage of waveforms is a
reasonable approximation for this study of microlensing, as
the interference between the two images can most readily be
observed as the binaries inspiral through a frequency range
Af = At;l. Although the merger and ringdown stages can
make significant contributions to the total signal-to-noise
ratio (SNR), they occur over a narrow range in frequencies
making the effects of microlensing degenerate with changes
to the luminosity distance D and coalescence phase ¢..

III. AXISYMMETRIC LENS MODELS

In this section, we discuss two axisymmetric lens
models, the singular isothermal sphere (SIS) and the point
mass (PM), that produce at most two images in the
geometrical-optics approximation. We introduce model-
independent image parameters that describe the amplifica-
tion factor F' in this approximation, and assess the validity
of these new parameters as the geometrical-optics approxi-
mation breaks down at low frequencies.

A. Singular isothermal sphere (SIS)

The SIS density profile (&) = 62/2¢&, where o, is the
velocity dispersion, is the most simple profile that can
effectively describe the flat rotation curves of galaxies [47].
It leads to the lensing potential y(x) = x by Eq. (5) and the
amplification factor [19,48]

F(f) = —iwe™"/2 /w dx xJo(wxy)
0

coxp (e s ¢m<y>)]

o0
_ EZW VA2, (v E F

n=0
i3\ no_ i,
X (2we'?)2, F, 1+§,1,—§Wy . (11)

by Eq. (7), where w = 8zM, f, ¢,,(y) = y + 1/2, J is the
Bessel function of zeroth order, 50 4r62D; D, s/ Dy is
the Einstein radius, and M; = 762(1 + z;,)&, is the lens
mass inside the Einstein radius.

B. Point mass (PM)

The PM is the simplest mass distribution for a gravita-
tional lens. It leads to a lensing potential y(x) = Inx and
amplification factor [19,49]

F(f):exp{ : +15{1n( )-24),,,( )]}
F(l—éw)lFl <;w 1L 2 y> (12)

where w = 8zM, f, ¢,,(y) = (x,, —y)?/2 —Inx,, x, =
(y+ (> +4)1/2)/2, and |F,(a,b;c) is the confluent
hypergeometric function. The Einstein radius &, for a
PM of lens mass M is & = [4M;D;D;s/Ds(1 + z,)]"/>.

C. Geometrical-optics approximation

In the limit where the geometrical-optics approximation is
valid, a source at position y creates a discrete number of
images at positions x ; which are stationary points of the time
delay 7,4(x,y) given by Eq. (6). For the SIS lens, only one
image is formed if the source is outside the unit circle (y > 1),
whereas two images are formed if the source is inside
(y < 1). The amplification factor F(f) in the geometrical-
optics approximation of Eq. (8) is given by [19]

|/l |l/2 _ i|ﬂ_|l/2€2nifAtd’ y < 1
Fu)={ (13)
| '3, y> 1,
where
1
Uy ==+1+4+—, (14a)
y
At; =8M,y. (14b)

As aPM lens can deflect photons by an arbitrarily large angle
for sufficiently small impact parameter, there are two images
for all source positions y. F(f) is given by [19]

F(f) = [p V2 = ilu_|'/2e>miF A, (15)
where
1 v +2
_1 y+s 16
S R N RITE (16a)
(2 +4)"2+y)
Aty =2M, L y(y* + 4 1/2—|—2ln{— .
¢ L{ ) (P +4)"2-y)
(16b)

Both the SIS and PM lens models can be parametrized by two
lens parameters, the source position y and lens mass M .
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FIG. 2. The magnitude of the amplification factor F(f) as a
function of frequency £ for an SIS with lens mass M; = 10°M,
and source positions y = 0.1, 0.5, 1.0, and 3.0 shown in red, blue,
green, and black. The solid lines are calculated using the exact
result of Eq. (11), while the dashed lines are calculated using the
geometrical-optics approximation of Eq. (13).

The amplification factor F(f) for the SIS is shown in
Fig. 2. In the low-frequency limit, F(f) converges to unity
because diffraction effects prevent long-wavelength GWs
from being affected by the presence of a lens [19,50]. In the
high-frequency limit, the geometrical-optics approximation
is valid and oscillatory behavior is observed due to interfer-
ence between the coherent lensed images. We assume that the
time delay At, is much less than the observing time of the
GW detector as is appropriate for the lens mass shown
in Fig. 2.

Figure 3 shows the unlensed waveform /(f) and lensed
waveform A% (f) = F(f)h(f) as functions of frequency f.
The unlensed waveform given by Eq. (9) is parametrized by
the GW amplitude A, redshifted chirp mass M, symmetric
mass ratio 7, source luminosity distance D, coalescence time
t., and coalescence phase ¢.; we choose fiducial values of
A=021, M=20Mg, n=025,t. =¢.=0, and D =
1 Gpc for these source parameters. It is proportional to £~/
according to Eq. (9) and appears as a straight line in this log-
log plot. The lensed waveform is calculated for a SIS with
lens parameters y = 0.5 and M; = 10*°M and displays
oscillatory behavior due to interference between the two
terms in Eq. (13).

D. Model-independent image parameters

When the amplification factor F(f) is given by Eq. (15),
i.e. the source position is such that two images are formed
and the geometrical-optics approximation is valid, we can
express this factor directly in terms of the flux ratio
I =|u_|/|p,| and time delay Ar; between the images.
These “image parameters” are model-independent in
that they fully specify the amplification factor for any

Lensed Waveform

Unlensed Waveform

T
=
2 x 10! 3x 10" 4 x 10 6 x 10! 10
f [Hz]
FIG. 3. Waveform magnitudes as functions of frequency f for

our default source parameters of A =021, M =20M,
n=20.25,1t.=¢.=0,and D =1 Gpc. The orange line shows
the unlensed waveform /(f), while the blue curve shows the
lensed waveform i (f) = F(f)h(f) for the amplification factor
F(f) of a SIS with lens parameters y = 0.5 and M = 10*M,,
calculated in the geometrical-optics approximation.

two-image lens model up to an overall normalization that is
observationally degenerate with the GW amplitude A. The
relationship between these image parameters and lens
parameters like the source position y and lens mass M
is model dependent; these relations for the SIS and PM lens
models are given by Egs. (14) and (16) respectively.

In Fig. 4, we plot the flux ratio I and time delay Az, as
parametric functions of the source position y for our two

0.05F j : 25 ]
X 1=025At; =28x10"2s
PM (M, = 10°M,)
1 3
ool PM (M, = 1.2 x 10°M)
ffffffffff SIS (M, = 10°M,)
7777777777 SIS (M, = 1.2 x 10°My)
— 0.03}
=z
<
0.02f
0.01f

0.0 0.2 0.4 0.6 0.8

FIG. 4. The flux ratio / and time delay Af, as parametric
functions of the source position y for two-image lens models of
varying lens mass M. The solid (dashed) curves correspond to
the PM (SIS) lens model, while the red (green) curves are for a
lens mass M, = 103M, (1.2 x 10°M,). The blue cross indicates
the point (I = 0.25, At; = 2.8 x 1072 s) where curves for the
PM and SIS models intersect.
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axisymmetric lens models and two choices of the lens mass
M . The blue cross indicates specific, potentially observ-
able values (I =0.25 and At; =2.8 x 1072 s) of the
model-independent image parameters. According to
Egs. (14) and (16), these values can be obtained in both
the SIS and PM lens models, albeit with different lens
parameters, M; ~ 1.2 x 10°M and y~ 0.6 for the SIS
lens and M; ~ 10°M, and y ~ 0.7 for the PM lens. This
analysis reveals that apart from any observational errors
associated with measuring the image parameters / and Az,
there is a ~20% model dependence with which lens
parameters like M; and y can be reconstructed.

To further illustrate that the same image parameters can be
produced by different choices of lens parameters in different
lens models, in Fig. 5 we show the ratio of the lens mass MM
in the PM model to the lens mass M3™ in the SIS model that
produce the same flux ratio / = |u_|/|u,| and time delay
At,. To obtain this ratio, we invert Egs. (14a) and (16a) to
obtain the source distances y®' and y™ in the SIS and PM
models, respectively. We then equate Eqs. (14b) and (16b)
and insert these source distances to obtain the ratio
MP™ /M3 The fact that this ratio is less than unity could
be interpreted as indicated that the more compact PM model
is amore powerful lens than the SIS model; it can produce the
same image parameters at a smaller lens mass. The difference
between this mass ratio and unity provides a lower bound on
the systematic fractional uncertainty with which the lens
mass can be measured in microlensing events due to model
uncertainty, even if the image parameters were measured
with arbitrary precision.

A recent study [43] investigated whether a GW150914-like
GW event microlensed by a point mass with MP™ = 10°M

10r

0.8f

PM SIS
ML / ML
g
(=)}

e
~
T

0.2r

OjO 0j2 Oj4 0j6 0:8 le
|
FIG. 5. The mass ratio MYM/M3S of point-mass (PM) to
singular-isothermal-sphere (SIS) models producing the same
flux ratio I for equal time delay Az, The vertical blue dashed

line corresponds to I = 0.25 like the vertical blue dot-dashed line
in Fig. 4.

and source position y*™M = 1 could be distinguished from
lensing by a SIS lens model. Parameter estimation was
performed for this event in both the correct PM and incorrect
SIS models. The input parameters were accurately recovered
in the PM model, but in the SIS model the best-fit parameters
were M3 = 1468M, and y5' = 0.72. Assuming that the
geometrical-optics approximation held for this event, we
would predict image parameters

M 345

WM 345
V5+1
V5 -1

for this event. A SIS model with lens parameters

=0.146

(17a)

Aty =2M, {\/§+2ln< ﬂ —41.6ms, (17b)

1-1
ySIS = 1——|—I = 0.745 (183)
Aty
M = 55 = 1396Mo, (18b)

would yield the same image parameters. We see that these
estimates are very close to the best-fit parameters in the SIS
model, despite the fact that w = 8zM; f = 0.25 is not that
large at the bottom of the LVK sensitivity band at f = 20 Hz,
suggesting that wave-optics effects may be significant. The
validity of these estimates supports our contention that the use
of image parameters is still valuable in the microlensing
regime despite the absence of two widely separated images.

IV. MATCHED-FILTERING ANALYSIS

In this section, we perform a matched-filtering analysis
to quantify the difference between lensed and unlensed
GWs. The mismatch e between two waveforms /; and h, is
defined as [39]

(hy|hy)
eh,h)) =1 —-—max——————. 19
(1, o) tebe \/(hy |y ) (holho) 19)

The noise-weighted inner product (h;|h,) between the
waveforms i, and h, is defined as

(hilhy) = 4Re/‘fc‘"‘ df%(hfz)(f)’

where S, (f) is the noise power spectral density (PSD). We
use the PYCBC.FILTER package [51] to evaluate the mis-
match between waveforms. The two waveforms 4, and h,
can be distinguished when their mismatch e > p~2, where
p = (h|h)!/? is the SNR of a waveform 4 [39,52,53].
Figure 6 shows contour plots of the mismatch e between
lensed GW source and unlensed templates as functions of the
model-dependent lens parameters y and M; (left panels) and
the model-independent image parameters / and Af,; (right

(20)
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FIG. 6. Contour plots of the mismatch e between lensed and unlensed GWs for PM lenses (top panels) and SIS lenses (bottom panels).
The left panels show e as a function of the model-dependent source distance y and lens mass M, while the right panels show € as a
function of the model-independent flux ratio / and time delay At,. The unlensed waveforms are calculated using the default source

parameters M = 20M,, n = 0.25, and ¢, = ¢, = 0.

panels) for PM lenses (top panels) and SIS lenses (bottom
panels). We use the same source parameters for the lensed
and unlensed templates and the noise PSD appropriate for a
single two-armed detector with alLIGO design sensitivity.
The mismatches as functions of the lens parameters
are qualitatively similar for the PM (top left panel) and
SIS (bottom left panel) models. For a vanishing lens mass
(M; — 0), diffraction causes the amplification factor to
approach unity (F — 1) and the mismatch to vanish
(e = 0) according to Eq. (19) for h; = h,. The biggest
difference between the two models occurs in the limity — 1,
where |u_| — 0 for the SIS model according to Eq. (14a) but
|#_| = 0.17 for the PM model according to Eq. (16a). This
accounts for the much smaller mismatches for the SIS model
compared to the PM model in this limit.

The PM and SIS models become qualitatively indistin-
guishable when the mismatch is expressed as a function of
the image parameters of / and At,; as shown in the right
panels of Fig. 6. Although the top and bottom panels appear
the same in the regions where they overlap, the PM model
extends to larger values of the time delay A?, than the SIS
model at small flux ratios /. This occurs because the

mappings Eqs. (14) and (16) between the lens parameter
space in the left panels and the image parameter space in
the right panels are model-dependent.

The better agreement between the mismatches in the
PM and SIS lens models when expressed as functions
of the image parameters / and Az, can be seen even more
clearly in Fig. 7. This figure shows the difference Ae =
lepm — €s1s| between the mismatches for PM and SIS lens
models shown in the top and bottom panels of Fig. 6. The
left panel of Fig. 7 shows large differences Ae = 0.15
between the two lens models for source distances y 2 0.7
where the flux ratio / vanishes in the SIS model but not the
PM model. However, when the mismatch difference is
expressed as a function of the image parameters in the right
panel, the amplification factors and thus the mismatches
only have significant differences for Az; < 0.02 s where
the geometrical-optics approximation breaks down.

The right panels of Fig. 6 also reveal that the crests and
troughs of the oscillations in € occur on lines of constant
time delay A7, We examine these oscillations and the
general dependence of the mismatch on our lens and image
parameters for the SIS model in Fig. 8. The top left (right)
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FIG. 7. The difference Ae = |epy — €g15| between the mismatches between lensed and unlensed waveforms for PM and SIS lens
models shown in the top and bottom panels of Fig. 6 as functions of the source position y and lens mass M, (left panel) and the flux ratio
I and time delay Az, (right panel).
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FIG. 8. The mismatch e between lensed and unlensed waveforms with source parameters M = 20My, n = 0.25, and t, = ¢p. = O in
the SIS lens model as a function of lens mass M; (top left panel), source position y (top right panel), time delay At, (bottom left panel),
and flux ratio 7 (bottom right panel). In the top (bottom) left panel, the blue, green, and red curves correspond to y = 0.2, 0.6, and 1.0
(I =0.2,0.4, and 0.6). In the top (bottom) right panel, the gray, cyan, and magenta curves correspond to M; =2 x 103M, 4 x 10°M,
and 6 x 10°Mg, (At; = 0.1'5,0.15 s, and 0.2 s). The dotted curves in the bottom panels show the mismatch e ~ 1 — (1 + 1)~/ in the
extreme geometrical-optics limit derived in Appendix A.
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panels of Fig. 8 show vertical (horizontal) slices of the
bottom left panel of Fig. 6 along lines of constant y (M).
The dependence of the mismatch e on these lens parameters
is non-monotonic and difficult to interpret, exhibiting
oscillations of varying amplitude, frequency, and phase
and a deep valley. The dependence of ¢ on the image
parameters Az, and / shown in the bottom panels is far
easier to interpret. The bottom left panel shows that € — 0
in the diffraction limit Az, — 0, while in the opposite
extreme geometrical-optics limit Az; — o0, € > 1 — (1 +
1)71/2 as derived in Appendix A. The crests and troughs of
the oscillations, as well as the deep valley at Ar; =~ 0.015 s
are all aligned in this panel, reinforcing our contention that
these oscillations are purely functions of the time delay Atz,,.
They are absent in the bottom right panel, where A¢, is held
constant and the mismatch depends smoothly on the flux
ratio / in reasonable agreement with the extreme geomet-
rical-optics limit € — 1 — (1 +1)71/2,

We investigate the oscillations in the mismatch € as a
function of the time delay Ar; in Appendix B. These
oscillations result from the number and location of the peaks
of the amplification factor F(f) shown in Fig. 2 within the
sensitivity band of the detector changing as At, varies. For
our approximate waveform of Eq. (9), the sharpest feature in
the detector response is a cutoff in the strain A(f) above a
frequency fo = (63/22M_)~". According to Eq. (B3), this
cutoff couples to the peaks of the amplification factor to
create oscillations in the mismatch with frequency as a
function of the time delay with frequency f ., and amplitude
proportional to I3/2/(1 + I). Numerical-relativity simula-
tions reveal that true waveforms transition smoothly to a
ringdown rather than experiencing such a sharp cutoff
[54-56], but the merger should still imprint a feature leading
to oscillations in the mismatch between a lensed GW source
and unlensed templates. Our analysis suggests that these
oscillations may be significant for large flux ratios 7 (small
source distances y), implying that serendipity between the
lens parameters and source mass may facilitate the discovery
of lensing in GW events.

V. DISCUSSION

In the geometrical-optics approximation, strong gravita-
tional lensing produces multiple images. The lensing ampli-
fication factor F(f) can be expressed as a summation over
these images, each with its own magnification y;, time delay
14 j> and Morse index n; as given by Eq. (8). In any given lens
model, these image parameters can be calculated as functions
of the lens parameters such as the source position y and the
lens mass M;. Lensing of transient events can further be
classified as either microlensing or macrolensing, depending
on whether the time delay between images is shorter or
longer than the duration of the transient. In the latter case,
two distinct GW events are observed and it is natural to

characterize these events using image parameters. We
propose that, even in the microlensing regime, observational
searches for strong lensing in GW events, as well as
theoretical studies of their feasibility, should be conducted
in terms of these model-independent image parameters rather
than the model-dependent lens parameters provided that the
geomertrical-optics approximation still holds.

In this paper, we investigate this proposal by considering
two well-known axisymmetric lens models: the singular
isothermal sphere (SIS) and the point mass (PM). The SIS
model has a density profile p o r~2 appropriate for a galaxy
or stellar cluster, while the PM model could describe an
individual star or compact object. In the geometrical-optics
approximation, the SIS produces two images for source
positions y < 1, while the PM always produces two
images. For the case of two images, the amplification
factor is given by Eq. (15) for both models, but the
mappings between the image parameters (the flux ratio
I = |u_|/|p,| and the time delay Az;) and the lens param-
eters (the source distance y and the lens mass M ) are model
dependent and given by Egs. (14) and (16) respectively. This
implies that uncertainty in the lens model will translate
into uncertainty in the lens parameters, even if the image
parameters could be measured with arbitrary precision. We
illustrate this in Fig. 4, where the SIS and PM models can
generate images with identical flux ratios and time delays
despite have lens parameters that differ by ~20%. This
represents a conservative estimate of the systematic error in
the lens parameters associated with uncertainty in the lens
model, as the PM model is more compact than any real
galaxy or halo. Figure 5 reveals that this systematic error gets
even larger as the flux ratio decreases.

Lensed GW events with finite signal-to-noise ratios p can
be distinguished from unlensed templates if the minimum
mismatch e between the lensed signal and members of the
template bank exceeds p~2 [39,52,53]. The oscillatory
features induced in the waveform by lensing in the
geometrical-optics limit depicted in Fig. 3 have little
degeneracy with the source parameters specifying the
unlensed waveform in Egs. (9) and (10), so we approximate
this minimum mismatch by that between lensed and
unlensed waveforms with the same source parameters. In
this approximation, the mismatch can be approximated by
ex1—(1+1)""/? according to Eq. (AS5) and lensing
should in principle be identifiable for flux ratios =
2p72 and time delays At, > foi. We further showed in
the right panel of Fig. 7 that the amplification factor of
Eq. (15) is an excellent approximation to both the SIS and
PM lens models in the geometrical-optics limit, suggesting
that it should be suitable for model-independent searches
for strong lensing in GW events.

The geometrical-optics approximation describes micro-
lensing for lens masses in the range M, < M; S M,
where
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M pin = (87f)~! = 400M (ﬁ) _1, (21)

M = 5(8f )3 M

£\ M\
=3x10°M, (20 Hz) 20Mg . (22)

This complements electromagnetic observations of strong
lensing which are only sensitive to lens masses M; > 10°M
[57-59]. GW lensing observations thus extend our sensitivity
to isolated low-mass dark-matter halos by roughly three
orders of magnitude. This is particularly important because
cosmological observations challenge the ACDM model on
these small scales [59,60]. This has motivated investigations
of alternatives to cold dark matter which suppress the matter
power spectrum or halo mass function on small scales.
Although gravitational lensing has not been detected in
any of the GW events observed in the first three runs of the
LVK detector network [14], recent estimates [61] suggest
that ~10° strongly lensed GW events could be observed
each year by future third-generation detectors like the
proposed Cosmic Explorer (CE) [10] and Einstein
Telescope (ET) [11]. The detection of gravitational lensing
in GW events would be of tremendous scientific interest
because it could test general relativity [28-30], probe the
distribution of dark matter [62,63], and improve the
precision of cosmological constraints [31] We propose
that GW templates based on model-independent image
parameters will be a valuable tool in this effort. In
upcoming studies, we will investigate how effectively these
GW templates can be used to identify additional images
created by nonaxisymmetric lenses [64] and distinguish the
effects of lensing from those of spin precession [65].
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APPENDIX A: MISMATCH IN THE EXTREME
GEOMETRICAL-OPTICS LIMIT At; — o

We define the overlap O between a lensed waveform
h"(f) and unlensed template A(f) as

S (1051100 N
VO RN

For a lensed waveform with the amplification factor F(f)
of Eq. (15) appropriate for a two-image lens in the geomet-
rical-optics approximation and an unlensed waveform with
the same source parameters, this overlap becomes

(A1)

Ay

" VRA (A2
where
il 2
n=f df|5(8|)(|ﬂ+”2 T |2 sin2nfAL), (A3a)

_ A (f)? 12
Ay= [ df (| =+ || 4 2|pp_| /= sin 2z f Aty),

(A3b)
Ay = / df|g§8|) . (A3c)

In the extreme geometrical-optics limit Af; — oo, the
oscillatory terms do not contribute to the integrals implying
Ay = |py|'?As, Ay = (lug| + [u-|)As, and

|12 1

O - =
Vi + ] VIT+I

(A4)

where I = |u_|/ || is the flux ratio between the two images.
Although the match 1-€ is normally calculated by maximizing
the overlap over the coalescence time ¢, and phase ¢,. as in
Eq. (19), it is independent of these parameters in the limit
At; — oo. This implies that the mismatch takes the limiting
value

1
1+1

es>1-0=1- (AS)

APPENDIX B: INVESTIGATING OSCILLATIONS
IN THE MISMATCH

In this Appendix, we examine the oscillations in the
mismatch e as a function of the time delay Az, seen in the
bottom left panel of Fig. 8. We reproduce the / = 0.2 curve
from this figure in Fig. 9 above. In the geometrical-optics
approximation, lensing induces an oscillatory contribution
to the GW phase that is poorly matched by a linear change
to the GW phase resulting from a shift in the coalesence
time ¢, and phase ¢, according to Eq. (10). As such, the
mismatch is well approximated as e ~ 1 — O, where the
overlap O is given by Egs. (A1)-(A3). The crests and
troughs of the oscillations in the mismatch as a function of
the time delay Az, will therefore occur where

de o O L dAz i dA]
dAt, \2A,dAt; A, dAty,

=0 |ﬂ+|1/2_l dAl
A, A, ) dAr,

vanishes.
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FIG. 9. The mismatch ¢ between a lensed GW source and
unlensed templates for an SIS lens as a function of time delay Az,
for flux ratio / = 0.2. The BBH system has source parameters
M =20Mq,n = 0.25,and t, = ¢. = 0. The vertical dashed and
dotted lines indicate the locations of the crests and troughs listed
in Table L.

We show further that

dA, 12 /fcm \h(f)?
= |u_ df —="-2xf cos2nfAt B2a)
lp|'2 <f7(f>|2> ,
~ WSINW + Cosw) |y B2b
27zA1% \ S, (f) ( i (B2b)
A
~ |ﬂ—|1/2 A—;Sin Weuts (BZC)
where we have defined w =2xnfAr;, approximated

|h(f)>/S,(f) by a constant in angular brackets equal to
its average value, and assumed w,, > w,,, > 1 as will be
true for small redshifted source masses in the geometrical-
optics limit. Inserting these into Eq. (B1) and using the
extreme geometrical-optics approximation described in
Appendix A, we find

de P o in
= - —— SIN Wy
dAty, 1+ 1At aut

(B3)

This result implies that the crests [troughs] in the mismatch
€ will occur at time delays At, . [At,,] for which w , =
2nz [(2n + 1)x], ie.

TABLE I. The five columns in this table list: (1) the index n of
the crests and troughs, (2) the numerically determined time delay
of the crest, (3) the time delay of the crest predicted by Eq. (B4a),
(4) the numerically determined time delay of the trough, and
(5) the time delay of the trough predicted by Eq. (B4b). The lens
and source parameters are the same as those in Fig. 9.

Crests Troughs
Numerical Predicted Numerical Predicted
n At, [ms] At, . [ms] Aty [ms] Aty [ms]
1 11.51 10.47 1591 15.71
2 21.31 20.94 26.12 26.18
3 32.52 31.41 36.72 36.65
4 42.13 41.88 47.33 47.12
5 53.53 52.36 57.13 57.59
6 63.54 62.83 68.34 68.06
7 73.75 73.30 78.15 78.53
8 84.75 83.77 88.95 89.01
9 94.36 94.24 99.56 99.48
10 105.8 104.7 109.6 109.9
11 115.4 115.2 120.8 120.4
12 126.2 125.7 130.6 130.9
13 136.6 136.1 141.8 141.4
14 146.6 146.6 151.8 151.8
15 157.8 157.1
At, . =nfzt =nx1047 ms| —— ), B4a
d,c fcut <459M@> ( )
1 1 M
Aty,=(n+=)fzl=(n+=)1047 ms| ——).
ds < +2>f cut < +2> <45.9Mo)
(B4b)

Figure 9 reproduces the blue curve shown in the bottom
left panel of Fig. 8 corresponding to the mismatch €
between a lensed GW source and unlensed templates in
the SIS model for flux ratio / = (0.2 and source parameters
M =20My, n =025, and ¢, =¢p.=0. The dashed
(dotted) vertical lines indicate the values of the time delay
at which maxima (minima) of the mismatch occur. These
numerically determined values are listed in Table I, where
they are compared to the values predicted by Eqs. (B4a) and
(B4b). We see that there is excellent agreement between our
numerical results and analytical predictions, and that this
agreement improves for larger times delays Af; at which
the extreme geometrical-optics approximation becomes
increasingly valid.
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