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Abstract—Satellite technologies have advanced drastically in

recent years, leading to a heated interest in launching small

satellites into low Earth orbit (LEOs) to collect massive data such

as satellite imagery. Downloading these data to a ground station

(GS) to perform centralized learning to build an AI model is not

practical due to the limited and expensive bandwidth. Federated

learning (FL) offers a potential solution but will incur a very

large convergence delay due to the highly sporadic and irregular

connectivity between LEO satellites and GS. In addition, there

are significant security and privacy risks where eavesdroppers or

curious servers/satellites may infer raw data from satellites’ model

parameters transmitted over insecure communication channels. To

address these issues, this paper proposes FedSecure, a secure FL

approach designed for LEO constellations, which consists of two

novel components: (1) decentralized key generation that protects

satellite data privacy using a functional encryption scheme, and

(2) on-orbit model forwarding and aggregation that generates

a partial global model per orbit to minimize the idle waiting

time for invisible satellites to enter the visible zone of the GS.

Our analysis and results show that FedSecure preserves the

privacy of each satellite’s data against eavesdroppers, a curious

server, or curious satellites. It is lightweight with significantly

lower communication and computation overheads than other

privacy-preserving FL aggregation approaches. It also reduces

convergence delay drastically from days to only a few hours, yet

achieving high accuracy of up to 85.35% using realistic satellite

images.

Index Terms—Low Earth orbit (LEO), satellite communication

(SatCom), federated learning (FL), privacy preservation.

I. INTRODUCTION

Background. The advancement of satellite technology has
enabled the launching of many small satellites into low Earth
orbits (LEOs). Equipped with multiple sensors and cameras,
these satellites gather extensive data about the Earth and space,
allowing large AI models to be trained to support various
applications such as monitoring remote areas like deserts,
forests, and maritime regions, as well as homeland security
like border surveillance and military reconnaissance. However,
the traditional approach of centralized learning, which requires
downloading the satellite data (e.g., imagery) to a ground
station (GS), is impractical due to the limited bandwidth, highly
intermittent connectivity between satellites and GS, and data
privacy.

Federated learning (FL) [1] offers a promising solution as
a distributed learning paradigm, which both saves bandwidth
and preserves privacy. In FL, each client (satellite in our
context) trains a local machine learning (ML) model onboard
and sends only the model parameters (instead of raw data) to
an aggregation server AS (GS in our context). The AS then
aggregates all the received local models into a global model and
sends it back to all the satellites for re-training. This procedure
repeats until the global model eventually converges.

†Corresponding author. This work was supported by the National Science
Foundation (NSF) under Grant No. 2008878.

FL-LEO Challenges. However, applying FL to satellite
communications (SatCom), or more specifically LEO constel-
lations, faces significant challenges. First, there is a large delay
in every communication round between satellites and AS and it
leads to a very slow FL convergence process which often takes
several days [2]. This delay is caused by the highly irregular
and sporadic connectivity between satellites and the AS , which
is attributed to the distinct Earth rotation and satellite orbiting
trajectories. Second, transmitting model parameters in FL may
appear “safe” but is in fact still vulnerable under certain attacks
such as model inversion and membership inference [3].

Contributions. To address the above challenges, we propose
FedSecure, a secure FL-LEO framework to ensure both fast
convergence and protection of privacy leakage, while main-
taining high accuracy of the global model. Specifically,
• FedSecure consists of a functional encryption-based aggre-

gation scheme that prevents the private satellite data from
being inferred and satellite models from being deciphered,
without requiring any trusted key distribution center (KDC)

to generate public/private keys or any secure channel to

distribute the keys among nodes.
• We also propose an on-orbit model forwarding and aggrega-

tion scheme that generates a partial global model per orbit
via intra-orbit collaboration, which significantly reduces the
waiting time for invisible satellites to enter the visible zone
of AS for model transmissions.

• Our extensive experiments on a real satellite imagery dataset
for semantic segmentation tasks demonstrate that FedSecure
achieves convergence in only 3 hours while maintaining
competitive accuracy across various performance metrics
including IoU and the Dice Coefficient. It is also lightweight
with low computation overhead (< 9 ms) and communication
overhead (497 MB).

II. RELATED WORK

Despite the relative youth of the FL-LEO research field, no-
table studies have made initial strides in this area [4–11]. In the
synchronous FL category [4–7], the AS waits to receive all the
satellites’ models in each training round. FedISL [4] uses inter-
satellite-link (ISL) to reduce the waiting time, but it achieves
fast convergence only when the AS is a GS located at the north
pole (NP) or a satellite in a medium Earth orbit (MEO) above
the Equator, otherwise it needs several days for convergence.
The work [5] removes these restrictions and, in order to reduce
delay, designates a sink satellite per orbit to collect models from
satellites in the same orbit. However, it requires each satellite
to run a distributed scheduler which incurs extra delay. In [6],
the authors proposed a method for dynamically aggregating
satellite models based on connection density, involving multiple
GSs collaboration. However, ensuring model consistency across
GSs is challenging and adds overhead. Lastly, the authors of
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Fig. 1: System model: an LEO constellation with multiple (4) orbits.

[7] proposed FedHAP which uses multiple airships or balloons
to act as ASs to collect models from satellites, but it requires
extra hardware (HAPs) to be deployed.

In the asynchronous FL category [8–10], the AS only
collects models from a subset of satellites in each training
round. One such approach is AsyncFLEO [8] which groups
satellites according to model staleness and selects only fresh
models from each group while down-weighting outdated mod-
els. So et al. proposed FedSpace [9], which aims to balance
the idle waiting in synchronous FL and the model staleness
in asynchronous FL by scheduling the aggregation process
based on satellite connectivity. However, it requires satellites to
upload a portion of raw data to the GS, which contradicts the
FL principles on communication efficiency and data privacy. In
[10], a graph-based routing and resource reservation algorithm
is introduced to optimize the delay in FL model parameter
transfer. The algorithm improves a storage time-aggregated
graph, providing a comprehensive representation of the satellite
networks’ transmission, storage, and computing resources.

To the best of our knowledge, our work is the first that
addresses security threats in FL-LEO against both internal
and external adversaries (cf. Section III-B). Although some
existing privacy-preserving and cryptographic techniques such
as homomorphic encryption [12] could be applied, these ap-
proaches have limitations such as large ciphertexts and high
communication overhead; also importantly, they require a
trusted KDC to generate and distribute public and private keys
which further requires a secure communication channel as well
between all clients and the AS . Other classical cryptographic
protocols such as differential privacy (DP) and secure multi-
party computation (SMC) can also be applied, but they suffer
from high encryption and communication overheads and can
degrade the accuracy of the global model (e.g., DP adds noise
to local models).

III. SYSTEM AND THREAT MODEL

Our objective is to develop a decentralized FL-LEO approach
that ensures both data and model privacy of LEO satellites,
without requiring a KDC (and the associated secure channel).

A. System Model

Our system model (Fig. 1) comprises:
1) LEO satellites: An LEO constellation K consists of multi-

ple satellites, indexed by i, orbiting the Earth in L orbits.
Each orbit l has a set of equally-spaced satellites. While

orbiting, each satellite i captures high-resolution images
for training an ML model for various classification tasks
(e.g., detecting forest fires or hurricanes, monitoring coun-
try borders, etc.). During each round of FL training, all
LEO satellites receive an (initial or updated) global model
from the AS during their respective visible windows, and
then (re)train the model using their own local data. After
training, they encrypt the model parameters and send them
back to the AS , which aggregates them into a global
model and then sends it back to all satellites again.

2) Aggregation Server AS: The AS initiates the FL pro-
cess by sending an initial (typically randomly initialized)
global model to all LEO satellites successively during
their respective visible windows. Then, after receiving the
retrained local models from the visible satellites succes-
sively, the AS aggregates them into an updated global
model, and broadcasts it back to visible satellites again
for another round of training. This process continues until
a termination criterion is met, such as reaching a target
accuracy or loss, maximum number of communication
rounds, or negligible change of model parameters.

B. Threat Model

Our threat model encompasses both external and internal
adversaries, as outlined below:

1) External adversaries. An adversary may eavesdrop on
the communication links between LEO satellites and the
AS to steal or monitor the model parameters, thereby
inferring sensitive information about satellite data from
their parameters.

2) Internal adversaries. The AS and LEO satellites are
honest-but-curious participants in FL training, meaning
that they follow the FL protocol honestly but may be curi-
ous to learn/infer sensitive information about the raw data
of some or all the satellites. In addition, we also consider
possible collusion between the AS and some satellites
(e.g., launched by an operator, to steal information from
satellites owned by another operator).

In general, the transmission of local model parameters may
leave LEO satellites vulnerable to attacks such as membership
inference, model inversion, etc., which are all subsumed by the
above threat model.

C. Design Goals

1) Privacy preservation: The solution should ensure the
confidentiality of the ML model parameters and prevent
any information leakage to attackers/eavesdroppers, the
AS , or other LEO satellites.

2) Efficiency: The available communication bandwidth
should be used efficiently. This may involve minimizing
the model size and exchange frequency between the AS

and satellites, as well as reducing communication over-
head.

3) Accuracy: The final global model resulting from FL
should still achieve competitive performance.

IV. FEDERATED LEARNING IN LEO CONSTELLATIONS

A. FL-LEO’s Computation Model

The overarching objective of the AS and all LEO satellites K
is to collaboratively train a global ML model, which involves
the following steps: (i) the AS initializes an ML model and
sends it to each individual satellite when that satellite enters the
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AS’ visible zone; (ii) each satellite then trains the model using
a local optimization method, typically mini-batch gradient
descent, w�,j+1

i = w�,j
i �⇣rFk(w

�,j
i ;Xj

i ), where w�,j
i is the

local model of satellite i at the j-th local iteration in a global
communication round �, ⇣ is the learning rate, Xj

i ⇢ Di is the
j-th mini-batch and Di is satellite i’s dataset; after training,
sends the updated model w�,J

i back to the AS; (iii) once the
AS receives the trained models from all satellites, it aggregates
them into an updated global model w�+1 =

P
i2K w�,J

i and
sends it back to all satellites during their respective visible
windows as in (i). The above process continues until the global
model converges.

B. FL-LEO’s Communication Model

Assuming line-of-sight (LoS) communication, a satellite i
and an AS s can only communicate with each other if
\(rs(t), (ri(t)�rs(t))) 

⇡
2 �↵min, where ri(t) and rs(t) are

their respective trajectories and ↵min is the minimum elevation
angle. Additionally, assuming the channel is affected by addi-
tive white Gaussian noise (AWGN), the signal-to-noise ratio
(SNR) between them is PGiGs

KBTBLi,s
where P is the transmitter

power, Gi, Gs are the antenna gain of i and s, respectively,
KB is the Boltzmann constant, T is the noise temperature,
B is the channel bandwidth, and Li,s is the free-space pass
loss which can be calculated as Li,s =

� 4⇡ki,sk2f
c

�2. Here,
ki, sk2 is the Euclidean distance between i and s that satisfies
ki, sk2  `i,s, where `i,s is the minimum distance between i
and s that enables them to communicate with each other, and
f is the carrier frequency.

C. Inner-Product Functional Encryption

Unlike conventional encryption methods, functional encryp-
tion (FE) is a cryptosystem that allows the holder of a decryp-
tion key to decrypt encrypted data but only obtain a function

of the data without revealing the input data itself [13]. Our
work focuses on inner product FE (IPFE) which is a specific
type of FE that performs a function of inner product operations
over encrypted data [13, 14]. With IPFE, given two ciphertext
vectors x0 and y0 which are encrypted from plaintext vectors
x and y, one can obtain the inner product hx,yi without
decrypting x0 or y0 or knowing any elements of x and y.
Compared to homomorphic encryption (HE) which requires
decrypting the ciphertext to obtain the plaintext result, IPFE
can directly obtain the final plaintext result.

V. FEDSECURE DESIGN

A. Overview

FedSecure is a synchronous FL approach designed for LEO
satellites to protect their data privacy while achieving high
accuracy and speeding up convergence. It works as follows:
(i) Each participating satellite i 2 K generates a private key
and a public key using the anonymous veto network (AV-net)
protocol [15]; (ii) The AS broadcasts the initial global model
to all visible LEO satellites; (iii) Each visible satellite forwards
the received global model to its neighbors on the same orbit
so that invisible satellites can have the global model without
waiting for their respective visible windows (see Fig. 2a); (iv)
Once receiving the model, each satellite retrains it using its
local data, and after training, encrypts the trained model’s
parameters using the AV-net protocol (Section V-C); (v) All
the satellites on the same orbit collaborate to generate a partial

global model by averaging their models and then encrypt and
send this partial model to a currently visible satellite on the
same orbit (Section V-B); (vi) This visible satellite per each
orbit sends the ciphertext of the partial model to the AS;
(vii) The AS averages the encrypted parameters to obtain an
updated global model without being able to read any satellite’s

local model parameters or infer any satellite’s training data

(Section V-C). A visualization of our on-orbit model forwarding
and aggregation is shown in Fig. 2.

B. On-Orbit Model Forwarding and Aggregation

We propose an on-orbit model forwarding and aggregation
scheme to merge all satellites’ local models on the same orbit
into a partial global model. The purpose is to overcome the
long idle waiting time for invisible satellites to (successively)
enter the AS’s visible zone for model exchange, as in tra-
ditional synchronous FL-LEO approaches [2]. Our proposed
scheme works as follows: (1) Each satellite i on the same
orbit trains the global model w� received as per steps (ii) and
(iii) of Section V-A, and obtains w�

i after training. (2) Then,
the first visible satellite, say #1, forwards its w�

1 to its next
neighbor (#2, which may be invisible, see Fig. 2b), who will
perform partial aggregation of its own w�

2 and the received w�
1

into a new w�
2 , and passes it onto its next neighbor #3; this

process continues until the final partial model w�
8 reaches the

originating satellite #1. (3) Finally, satellite #1 will forward this
partial model back to all satellites on the same orbit (but this
round without aggregation) so that any satellite who becomes
visible the first will send that model to the AS , for later global
aggregation among all orbits. See Fig. 2; more details are
provided below.

Fig. 2: On-orbit model forwarding and aggregation. (a) The visible
satellite (#1 in the example) broadcasts the received w� to all other
satellites (most are invisible) on the same orbit bi-directionally; (b)
it initiates model forwarding and aggregation by sending its trained
local model w�

1 to its neighbor satellite uni-directionally (either
clockwise or counterclockwise, predetermined); (c) after receiving the
final updated partial model from #8, it forwards the final partial model
to all satellites on the same orbit bi-directionally, until reaching a
visible satellite (#7 in the example).

Our on-orbit model forwarding and aggregation scheme
is inspired by the method proposed in [5] but differs from
it as follows. In [5], each orbit needs to schedule a sink

satellite to collect all local models and then perform partial
aggregation, which involves both scheduling overhead and the
waiting time for the sink satellite to become visible. But in
our scheme here, every satellite participates in partial model
aggregation without relying on a specific satellite, and hence
anyone can send the final partial model to AS . This makes our
aggregation scheme more time-efficient (the additional round
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of bi-directional forwarding as in Fig. 2c is very fast, taking a
few seconds only).

Upon receiving the global model w� generated by the AS

for a global round �, a visible satellite i in an orbit X
initiates a retraining process using its collected data (i.e., Earth
imagery) to update its local model w�

i . After updating its local
model, it forwards w� to all satellites in its orbit, including
invisible satellites. Subsequently, it transmits its updated local
model w�

i to its next-hop satellite i0 via Intra-plane ISL,
with the propagation direction pre-designated either clockwise
or counterclockwise. Then, the next-hop satellite i0 performs
partial model aggregation by combining its updated local model
w�

i0 with the received w�
i to generate a new local model

w�
i0 before transmitting it to i00 (the next-hop satellite in the

designated propagation direction) as follows:

w�
i0 = (1� ↵i0)w

�
i + ↵i0w

�
i0 (1)

where ↵i0 is a scaling factor, defined as the ratio between the
data size of satellite i0 and the sum of all previous satellites
(up to i)’s data size (each satellite will send its data size as
metadata to its neighbor together with its model). Consequently,
the visible satellite, say #1, who initiated the above model
forwarding process, will receive an updated on-orbit aggregated
partial model w�

k that has aggregated all the local models on
the same orbit, where k is the total number of satellites on
that orbit (see Fig. 2b). If the satellite #1 is still visible to the
AS , it will send w�

k to the AS . Otherwise, it initiates another
round of forwarding (but without aggregation) by sending w�

k
to its next-hop neighbors which will pass it onward further
until either (i) w�

k reaches a visible satellite, who will then
send the model to the AS immediately, or (ii) every satellite
on the same orbit has a copy of w�

k and the first satellite who
becomes visible will send the model to the AS .

To summarize, our on-orbit model forwarding and aggre-
gation scheme eliminates the requirement of each satellite
individually communicating with the AS as in conventional
FL-LEO approaches, and thus cuts down the substantial idle
waiting time for visible windows. Since this is entailed in every

communication round of FL training, our scheme will lead to
a significant acceleration of FL convergence.

C. Decentralized Secure Aggregation Scheme

Our novel secure model aggregation scheme allows building
a global model without the need for a KDC while protecting the
privacy of satellites. It encompasses three stages: system setup,
training and reporting partial model parameters, and global
parameter averaging.

TABLE I: System parameters.

Parameter Description
G Multiplicative cyclic group with prime order q

g 2 G Randomly chosen generator
Zq Finite field of order q

H : {0, 1}⇤ ! Zq Full-domain hash function onto Zq

1) System setup: Pertaining to our discussion in Sec-
tion V-B, one visible satellite in each of the L orbits (e.g., the
first visible one) generates its public and secret keys using the
AV-net protocol [15]. Given the system parameters in Table I,
the following steps are carried out:

(a) The visible satellite il chooses a private number xil 2 Zq

randomly, where il is the visible satellite i on orbit l.
(b) Then, satellite il broadcasts gxil to all other visible

satellites on different orbits (e.g., through the AS or the
Internet), where gxil is a public parameter. Note that this
is only needed once in the initialization phase.

(c) Each satellite il computes gyil as follows:

gyil =

il�1Y

z=1

gxz/
iLY

z=il+1

gxz , (2)

(d) A secret key sil 2 Zq is chosen by each satellite il to
be used in the computation of the subset aggregation key
Sil that will be sent to the AS . The Sil is computed as
follows:

Sil = gsil ⇥ (gyil )xil = gsil+xil
yil (3)

(e) After receiving Sil from all satellites, the AS computes
an aggregation key AKAS , which will be used in the
aggregation process as

AKAS =
iLY

il=1

Sil =
iLY

il=1

gsil+xil
yil

= gsi1+xi1yi1 ⇥ gsi2+xi2yi2 ⇥ ...⇥ gsiL+xiL
yiL

= g
PiL

il=1
sil+

PiL
il=1

xil
yil (4)

Since
PiL

il=1
xilyil= 0 as verified in [15], AKAS = g

PiL
il=1

sil .

2) Secure reporting of partially trained models: After a
visible satellite obtains the partial global model w�

il
[µ] in the

�-th FL round as in Fig. 2c, this satellite uses sil to encrypt
this partial model’s parameters before sending to the AS:

C�
il
[w[µ]] = gsilu`�

+w�
il
[µ]

2 G, µ = 0, ..., e� 1 (5)

where C�
il

is the ciphertext of model w�
il
[µ] which contains e

parameters represented by the vector (w�
il
[0], . . . ,w�

il
[e � 1]),

`� is a round identifier, and u`� = H(`�) 2 Zq .
3) Global parameter-averaging: This step is performed by

the AS . In each FL round �, the AS collects all the encrypted
partial models from visible satellites on all the orbits, and then
performs the following computation to calculate an aggregated
model (that is still encrypted):
QiL

il=1
(C�

il
[µ])

(AKAS)
u`�

=
QiL

il=1
(g

sil
u`�

+w
�
il

[µ]
)

(g
PiL

il=1
sil )

u`�

= g
PiL

il=1
w�

il
[µ] (6)

The AS then utilizes a discrete logarithm method, such as
Pollard’s rho algorithm, to compute the aggregated model
parameter

PiL
il=1

w�
il
[µ]. The average value is then calculated

by the AS , and the global model parameter w� [µ] is updated
accordingly. Finally, the AS sends the updated global model
back, in plaintext, to the satellites for subsequent training itera-
tions (cf. Section V-A); these steps continue until convergence.

VI. PERFORMANCE EVALUATION

A. Experiment setup

LEO Constellation & Communication Links. We examine
an LEO constellation that comprises 20 satellites divided into 4
orbits, all orbiting at an altitude of 1200 km with an inclination
angle of 70�. We consider a GS located in Rolla, Missouri,
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USA as the AS (it can be anywhere on Earth) with a mini-
mum elevation angle of 10�. We employ a Systems Tool Kit
simulator developed by AGI company to determine satellite-
GS connectivity. The communication parameters introduced
in Section IV-B are configured as: P=40 dBm, Gi=Gs=6.98
dBi, T=354.81K, B=50 MHz, and f=2.5 GHz. Satellites’
connectivity with the AS (GS) was established over a two-day
period to obtain the convergence results.

Satellites Training. Each LEO satellite trains a local ML
model using the DeepGlobe dataset [16], which includes 1146
high-resolution colored satellite images (2448×2448 pixels),
divided into training/validation/test sets (803/171/172 images).
The dataset covers a total area of 1716.9 km2 and has a pixel
resolution of 50 cm. Each image has a corresponding mask
image (which is the “label”) with annotations for land cover,
including 7 semantics represented in different colors: Urban,
AgricultureAgriculture, Rangeland, Forest, Water, BarrenBarren, and UnknownUnknown.
We augment and split the dataset evenly among 20 satellites.
Each satellite trains a DeepLabV3+ model using its assigned
data with a mini-batch size of 4, and a learning rate ⇣=0.00008.

Baselines. We compare FedSecure with most recent FL-LEO
approaches including FedISL [4], FedHAP [7], and FedSpace
[9] in terms of convergence speed and accuracy. Note that
FedSecure is the only approach that incorporates encryption.

B. Security and Privacy Analysis

FedSecure is a secure FL aggregation approach that elim-
inates the need for a trusted KDC. Thus, it is much more
resilient than FE-based methods [13] (including IPFE) which
require a KDC and a secure channel for generating and dis-
tributing secret keys to other nodes. Despite that, FedSecure
achieves the same level of security as FE/IPFE-based methods.
In the following, we explain how FedSecure protects privacy
against the threat model discussed in Section III-B:

• Although eavesdroppers may be able to intercept the
exchanged ciphertexts, they will not be able to gain access
to any information relevant to either the local model
parameters of LEO satellites or the training data. This
is because the model parameters are encrypted by the
satellites using their own secret keys, making it impossible
for anyone (including AS) to decipher the parameters.

• Using FedSecure, the AS can only obtain the updated
global model parameters using the aggregation key AKAS
given the encrypted model parameters received from the
LEO satellites, but is not able to compute the individual
model parameters. Moreover, despite possessing the subset
aggregation key Sil of each satellite, it is unable to obtain
their secret keys sil due to being masked by gxil

yil .
• FedSecure is resilient against collusion attacks that may

be launched among satellites that are owned by different
operators since they do not have access to the secret
keys of non-colluding satellites, thus preventing them from
decrypting their ciphertexts.

Thus, FedSecure ensures that sensitive satellite models remain
secure even in the face of potential internal and external attacks.

C. Computation & Communication Overhead Analysis

1) Computation overhead: We evaluate the computation
overhead by measuring the time it takes for the AS and
satellites to compute weights. We use the Python Charm library
to implement our IPFE-based encryption scheme and run it
on a 64-bit Ubuntu-based standard desktop computer with

4GB RAM and an Intel Core I3 CPU operating at 1.8GHz.
According to Eq. 5, each satellite in each FL round encrypts
e elements including weights and biases. Our measurement
shows that this computation takes less than 9 ms only, which
is dominantly driven by a single exponentiation operation.

2) Communication overhead: The communication overhead
of FedSecure is evaluated by examining the size and number
of messages transmitted between the AS and the satellites.
We employ a 160-bit security-level elliptic curve for the cryp-
tographic operations in our scheme. Each satellite transmits
encrypted matrices that represent its updated local model pa-
rameters (weights and biases) with a total number of elements
e. In accordance with Eq. 5 and given the DeepLabV3+ model
structure, each satellite sends a total of 992 MB of data in
each FL round. However, it has been demonstrated by [17]
that elliptic curve points can be condensed, hence resulting
in a smaller number of bits. This consequently leads to a
communication overhead of 497 MB using our scheme.

D. Efficiency and Convergence Analysis

We use the following performance metrics:
• Intersection over Union: IoU provides a pixel-wise score

for each class of objects in an image, ranging from 0 to 1.
A score of 1 denotes a perfect match between the predicted
and ground truth masks, while 0 indicates no overlap. The
IoU score can be calculated as

IoUb =

Pr
a=1 TPabPr

a=1 TPab +
Pr

a=1 FPab +
Pr

a=1 FNab
(7)

where TPab and FPab are the number of truly predicted and
falsely predicted pixels as class b in image a, respectively,
FNab is the number of falsely predicted pixels as other
classes in image a except for class b, and r is the total number
of images. Assuming g land cover classes, the final score is
the average of IoU across all classes, which can be expressed
as

mIoU =
1

g

gX

b=1

IoUb (8)

• Dice Coefficient: Similar to IoU, this also measures the
match between the predicted and the ground truth segmenta-
tion for each class, ranging from 0 (no overlap) to 1 (perfect
overlap). But the Dice score places more emphasis on true
positive predictions compared to false positives and false
negatives, which can be calculated as

Diceb =
2IoUb

1 + IoUb
(9)

Dice can be also averaged among all classes to obtain mDice,
similar to the way mIoU is calculated in Equation (8).

Note that in all cases, the classification output is a semantic
segmentation mask encoded in RGB format, where each pixel’s
color represents its class.

TABLE II: Performance of FedSecure.

Evaluation Communication round & accumulative time (h)
Metric 1 (1.51 h) 2 (1.73 h) 3 (2.18 h) 4 (2.76h) 5 (2.97 h)

mIoU 0.77896 0.78016 0.78075 0.78148 0.78248
mDice 0.85141 0.85192 0.85259 0.85308 0.85350

In Table II, we present FedSecure’s evaluation results in
terms of mIoU and mDice for the first five global epochs. In the
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first round, FedSecure achieved a high mIoU of 77.896% and
mDice of 85.141%, indicating that it can accurately classify
various target classes even after only one round (⇡1.5 hours).
This faster convergence speed can be attributed to our partial
aggregation scheme which enables all satellites’ models on the
same orbit to be aggregated before being encrypted and sent
to the AS . Subsequently, the precision of the global model
increases gradually during the following communication rounds
until it converges.

We also evaluated our global model’s effectiveness in clas-
sifying various land covers by testing it on unseen satellite

images from the DeepGlobe dataset. As shown in Fig. 3,
the results indicate that after just three hours of satellites-
AS communication, FedSecure successfully predicted masks
with a high rate of overlapping/matching with the ground truth
masks. This result further demonstrates the effectiveness of
FedSecure in achieving fast and high performance within a
few hours. Moreover, we also note that the predicted masks
can be improved further by allowing additional communication
rounds.

Fig. 3: Four examples showing the original satellite images, ground
truth masks, predicted masks, and predicted land heatmap, by FedSe-
cure after 3 hours of training.

Comparison with baselines. We compare FedSecure’s con-
vergence speed with the baselines using the MNIST dataset.
Our results indicate that FedSecure converges within 3 hours
with an accuracy of 88.76% whereas FedISL [4] archives
82.76% accuracy after 4 hours of training. Notably, we achieve
this level of accuracy when the AS (GS) is located in Rolla
as a more practical configuration, not at the NP like FedISL.
Moreover, when compared with FedHAP [7] and FedSpace
[9] which require 15 and 96 hours to converge, respectively,
our forwarding and aggregation scheme enables FedSecure to
converge ⇥5 and ⇥32 faster, respectively. Most importantly,
FedSecure ensures the security and privacy of satellite models,
which is not addressed in those baselines.

VII. CONCLUSION

This study proposes a novel FL-LEO framework, FedSecure,
that offers secure and efficient model aggregation for distributed

ML with satellites in the presence of attackers, eavesdroppers,
and collusion. Unlike prior work, FedSecure eliminates the
need for a key distribution center to generate private/public
keys and the need for a secure channel to distribute the
keys. Moreover, our on-orbit model forwarding and aggregation
enables invisible satellites to participate in the FL process
without waiting to become visible to the AS , and does not
require a sink satellite to collect models. Our simulation results
demonstrate that FedSecure achieves the same level of security
as existing methods while having low communication overhead
(497 Mb), computation overhead (< 9ms), and achieving fast
convergence in only 3 hours on real satellite imagery dataset
(DeepGlobe) with a classification accuracy of 85.35%.
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