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Abstract. In this paper, we solve the p-Dirichlet problem for Besov
boundary data on unbounded uniform domains with bounded bound-
aries when the domain is equipped with a doubling measure satisfying a
Poincaré inequality. This is accomplished by studying a class of transfor-
mations that have been recently shown to render the domain bounded
while maintaining uniformity. These transformations conformally de-
form the metric and measure in a way that depends on the distance to
the boundary of the domain and, for the measure, a parameter p. We
show that the transformed measure is doubling and the transformed do-
main supports a Poincaré inequality. This allows us to transfer known
results for bounded uniform domains to unbounded ones, including trace
results and Adams-type inequalities, culminating in a solution to the
Dirichlet problem for boundary data in a Besov class.
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1. Introduction

In studying Dirichlet and Neumann boundary-value problems on domains
in metric measure spaces of bounded geometry, existence of the solution
via the direct method of the calculus of variations requires that we are
able to bound the Lp-norm of a Sobolev function on the domain (with zero
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boundary values) by the Sobolev energy norm of the function, thus ensuring
the boundedness in the Sobolev norm of an energy minimizing sequence of
Sobolev functions in the domain. When the domain is a bounded uniform
domain, this is always possible thanks to the Poincaré inequality, for we
can then envelop the domain in a sufficiently large ball. Bounded uniform
domains play a central role in potential theory as many of the classical
results about Dirichlet problems on smooth Euclidean domains hold for
such domains in metric measure spaces. In particular, they are extension
domains for several function spaces [7, 35] and traces, to the boundary, of
Sobolev-class functions on the domain belong to certain Besov classes [32]
of functions on the boundary. However, when the domain, albeit uniform,
is not bounded, these properties might not hold. Therefore, it is beneficial
to have a transformation of the domain into a bounded uniform domain.

One such transformation is sphericalization as defined in the work of [8],
which transforms an unbounded metric space X into a bounded metric space
whose completion is topologically its one-point compactification. A gener-
alization of the familiar stereographic projection, sphericalization has been
used in the study of quasiconformal geometry, including the study of quasi-
Möbius maps and Gromov hyperbolic spaces, see for example [9, 10, 21, 29,
37]. Sphericalization is known to preserve many desirable properties of the
metric space X, see for example [12, 13]. In particular, if X is a uniform
domain (or a uniform space, in the language of [8]), then its sphericalization
is also a uniform domain, see [10].

On the other hand, sphericalization distorts the metric of X everywhere,
including near its boundary if X is not complete. This poses a problem if
one is interested in gaining information about, or preserving the geometry
of, the boundary of the original unbounded domain X when ∂X = X \ X
itself is bounded, for example as in [11]. This issue was addressed in [15],
where a class of transformations was identified such that unbounded uni-
form domains are transformed to bounded uniform domains in such a way
that the inner length metric is not perturbed, locally, near the boundary.
The purpose of the present paper is to explore potential theory on these
transformed domains, with the view of applying this in ongoing work on
boundary-value problems on unbounded domains.

The setting: We consider a locally compact, non-complete metric space
(Ω, d), equipped with a doubling measure µ, and supporting a Poincaré
inequality, at least for balls with radius at most some fixed constant times the
distance from its center to the boundary. We assume that Ω is unbounded
and is uniform in its completion Ω with bounded boundary ∂Ω := Ω \ Ω,
and we fix a monotone decreasing continuous function φ : (0,∞) → (0,∞)
that will act as a dampening function, see Definition 2.1 for the specific
assumptions on φ. As Ω is a uniform domain, it is rectifiably connected,
that is, pairs of points in Ω can be connected by curves in Ω of finite length.
As such, we may use φ to construct a new metric dφ on Ω by setting

dφ(x, y) := inf
γ

∫

γ
φ ◦ dΩ ds,
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with the infimum ranging over all rectifiable curves in Ω with end points
x, y ∈ Ω. Here,

∫
γ h ds :=

∫
γ h(γ(·)) ds is the path integral with respect to

the arc-length parametrization of the rectifiable curve γ, see for example [20,
Chapter 5], and dΩ is defined by dΩ(x) = dist(x, ∂Ω). We fix 1 ≤ p < ∞
and also construct a new measure µφ supported on Ω, absolutely continuous
with µ, with Radon-Nikodym derivative φ(dΩ(x))p.

In [15], it was shown that Ωφ := Ω ∪ ∂Ω
φ
\∂Ω, where A

φ
is the completion

of A ⊂ Ω with respect to the metric dφ, differs from Ω by one point, which
we denote by ∞. The transformed space (Ωφ, dφ) was shown to be uniform
in its completion and to have boundary ∂Ωφ = ∂Ω. Moreover, dφ and d
are uniformly locally bi-Lipschitz near ∂Ω. The present paper begins by
showing the following (see Theorems 4.11 and 6.3).

Theorem 1.1. The metric measure space (Ωφ, dφ, µφ) is doubling and sup-

ports a p-Poincaré inequality.

In the process of proving the above theorem, we verify that Ωφ\{∞} is also
a uniform domain (see Theorem 5.2), supplementing the results from [15].

With these tools in hand, in Sections 7 and 8 we proceed to study potential
theory on the domain Ωφ. We show that a function is p-harmonic on (Ω, d, µ)
if and only if it is p-harmonic on (Ωφ \ {∞}, dφ, µφ). Furthermore, when p

is sufficiently large and φ(t) = min{1, t−β} for t > 0 and some fixed large
enough β > 1, p-harmonic functions on (Ωφ \ {∞}, dφ, µφ) can be extended
to become p-harmonic on all of (Ωφ, dφ, µφ). We show in Proposition 7.7
that when the index p is small, the p-capacity of {∞} is zero; but if p is
sufficiently large, then the p-capacity of {∞} is positive. We also show that
when the measure on ∂Ω satisfies a codimensionality condition with respect
to µ, the trace class of the Dirichlet-Sobolev space D1,p(Ω, d, µ) is a Besov
space of functions on ∂Ω, see Proposition 8.3, and an Adams-type inequality
holds for the measure on ∂Ω and functions in D1,p(Ω, d, µ), see Theorem 8.7.
Interestingly, it turns out that under this codimensionality condition for the
boundary, each (relative) ball in ∂Ω has positive p-capacity in Ωφ

φ
, see

Proposition 8.2.
Using the potential theory developed in Sections 7 and 8, we obtain the

following culminating theorem regarding the Dirichlet problem in Section 9.

In what follows, the boundary data f is taken to be in the Besov space B
1−θ/p
p,p

on the boundary ∂Ω with respect to a codimensional measure ν, see Defini-
tion 3.12 for the definition of the Besov space and Proposition 3.13 regarding
the trace operator T acting on the Dirichlet-Sobolev space D1,p(Ω, µ); for
the description of D1,p, we refer the reader to the paragraph before Defini-
tion 3.4 below.

Theorem 1.2. Let 1 < p < ∞ and ν be a measure on ∂Ω that is θ-
codimensional with respect to the measure µ on Ω with 0 < θ < p, as de-

scribed at the beginning of Section 8. Let f ∈ B
1−θ/p
p,p (∂Ω, ν). Then there is

a function u ∈ D1,p(Ω, µ) such that

• u is p-harmonic in (Ω, d, µ),
• Tu = f on ∂Ω ν-a.e..
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If Ω is p-parabolic, then the solution u is unique. If Ω is p-hyperbolic, then
for each solution u of the problem we have limΩ∋y→∞ u(y) exists; this limit

uniquely determines the solution.
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2. Construction of the transformation of metric and measure

Let (Ω, d) be an unbounded, locally compact, non-complete metric space
such that Ω is a uniform domain in its completion Ω. A uniform domain
is one for which there exists a constant CU ≥ 1 satisfying the following
property: for each x, y ∈ Ω with x ̸= y, there is a uniform curve with end
points x and y, that is, a curve γ such that

• the length (with respect to the metric d) of the curve γ satisfies
ℓd(γ) ≤ CU d(x, y),

• for each z in the trajectory of γ, we have

min{ℓd(γ[x, z]), ℓd(γ[z, y])} ≤ CU dΩ(z).

Here, for two points w1, w2 in the trajectory of γ, we represent each segment
of γ with end points w1, w2 by γ[w1, w2]. Moreover, dΩ(x) := dist(x, ∂Ω) for
x ∈ Ω, and ∂Ω = Ω \ Ω.

Throughout this paper, we set n0 to be the smallest integer such that

2n0−1 ≤ CU < 2n0 .

We will also assume that ∂Ω is bounded, that µ is a doubling Radon measure
supported on Ω with doubling constant Cµ ≥ 1, and that (Ω, d, µ) supports
a sub-Whitney p-Poincaré inequality for some fixed 1 ≤ p < ∞, see Section 3
for the definitions.

The notation A ≲ B will be used to mean that there exists a constant
C > 0, depending only on structural data, such that A ≤ CB; furthermore,
the notation A ≈ B means that A ≲ B and A ≳ B.

Definition 2.1. In this paper, we fix a monotone decreasing continuous
function φ : (0,∞) → (0, 1] such that the following hold:

(1) φ(t) = 1 when 0 < t ≤ 1.
(2) We have ∫ ∞

0
φ(t) dt < ∞. (2.2)
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(3) There is a constant Cφ ≥ 1 for which we have φ(t) ≤ Cφ φ(2t) for
all t > 0 (that is, φ satisfies a reverse doubling condition).

(4) There is some τ > 2 such that φ(t) ≥ τφ(2t) (thus requiring Cφ > 2,
as well).

(5) For all positive integers m, we have

2mφ(2m) ≤
∞∑

n=m

2nφ(2n) ≲ 2mφ(2m) (2.3)

(and, indeed, this condition follows from Condition (4) above, but
we list it here for it is used extensively in this paper).

(6) For all positive integer m,

φ(2m)pµ(Ωm) ≤
∞∑

n=m

φ(2n)pµ(Ωn) ≲ φ(2m)pµ(Ωm), (2.4)

where, for n > 0,

Ωn := {x ∈ Ω : 2n−1 < dΩ(x) ≤ 2n}.

The last condition is needed in order to know that µφ is finite and dou-
bling, see below for the definition of µφ. Examples of functions φ satis-

fying all the necessary conditions include φ(t) = min{1, t−β} or φ(t) =
min{1, t−β log(e− 1 + t)} for some sufficiently large fixed β > 1 depending
on p and the doubling property of µ (see the condition on β in Lemma 7.6).

Construction: For 1 ≤ p < ∞, we wish to transform the geometry of Ω
by weighting both the metric and the measure on Ω using φ in the following
way.

We transform the metric d on Ω into dφ by setting

dφ(x, y) := inf
γ
ℓφ(γ) := inf

γ

∫

γ
φ(dΩ(γ(t))) dt

with the infimum ranging over all rectifiable curves γ in Ω with end points
x and y in Ω. Note that Ω is rectifiably connected as it is uniform. The
notation Bdϕ and Bd will be used for balls taken with respect to the metric
dφ and d, respectively. All balls will be assumed to come with a prescribed
center and radius.

The measure µ on Ω is transformed into the measure µφ, absolutely con-
tinuous with respect to µ, with

dµφ(x) = φ(dΩ(x))p dµ.

Note that µφ depends not only on φ but also on the choice of p; however,
1 ≤ p < ∞ is fixed and we suppress the dependence on p in the notation.
We credit [4] for the idea of considering transformations of measures that
are allowed to depend on p.

Now we have two identities for Ω; namely, (Ω, d, µ) and (Ω, dφ, µφ). Con-

sider the set Ωφ := Ω ∪ ∂Ω
φ
\∂Ω, where the completion is taken with respect

to dφ and ∂Ω := Ω \Ω. In [15], it was shown that there is only one point in
Ωφ\Ω, which we denote by ∞. Moreover, ∂Ωφ = ∂Ω and (Ωφ, dφ) is uniform
in its completion. In [15], the uniform domain properties of the transformed
domain Ωφ were studied; many of the tools developed there will be used in
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the present paper. The goal of this paper is to investigate properties related
to µφ, and apply these properties to the study of potential theory and the
Dirichlet problem on unbounded uniform domains with bounded boundaries.

Basic Lemmas: We now recall some preliminary lemmas from [15] as well
as some simple consequences that will be useful throughout the paper. In
what follows, we very often break up Ω into bands in the following way.

Definition 2.5. We set

Ω0 := {x ∈ Ω : dΩ(x) ≤ 1},

and for positive integers n we set

Ωn := {x ∈ Ω : 2n−1 < dΩ(x) ≤ 2n}.

Note that Ω =
⋃

n≥0 Ωn.

Since Ωφ
φ

is compact, see Proposition 4.12, we have that Ωφ is locally
compact, and hence a simple topological argument gives the following lemma.

Lemma 2.6. Let x ∈ Ωm for some positive integer m. Then there is a

geodesic in Ωφ, with respect to the metric dφ, connecting x and ∞.

As a consequence of the above lemma, we can show that every pair of
points in

⋃
n≥1 Ωn can be connected in Ωφ by a dφ-geodesic curve.

We next show that ∂Ω being bounded implies that consecutive bands
have comparable measure. This follows from the fact that each band has
bounded diameter. Indeed, setting L = diamd(∂Ω), it follows from the
triangle inequality that 2n−1 ≤ diamd(Ωn) ≤ 2n+1 +L for each non-negative
integer n, and so we can find a constant CL > 0 such that

C−1
L 2n ≤ diamd(Ωn) ≤ CL 2n. (2.7)

Lemma 2.8. Let n be a non-negative integer. Then there exists a constant

C0 > 0 such that

C−1
0 µ(Ωn) ≤ µ(Ωn+1) ≤ C0 µ(Ωn), (2.9)

where C0 depends solely on the doubling constant of µ and the constant CL.

Moreover, there exists a yn ∈ Ωn such that µ(Ωn) ≈ µ(Bd(yn, 2
n)).

Proof. Take x ∈ Ωn+1 for which dΩ(x) = 3
2 2n and γ a uniform curve with

respect to the metric d with one end point in ∂Ω and the other at x. The
existence of such a curve is guaranteed by the uniformity of Ω with respect
to d. We can then find yn in the trajectory of γ so that yn ∈ Ωn with
dΩ(yn) = 2n, and so, by (2.7) and the doubling property of µ,

µ(Ωn) ≤ µ(Bd(yn, CL 2n)) ≲ µ(Bd(yn, 2
n)) ≲ µ(Bd(x, 2n/CL)) ≲ µ(Ωn+1).

A similar argument gives us the opposite direction. □

Lemma 2.10 (Lemma 2.10 of [15]). Let x ∈ Ωm for some integer m ≥ n0+2.
Then

5

11

∞∑

n=m+1

2nφ(2n) ≤ dφ(x,∞) ≤ CUCφ

∞∑

n=m−n0

2nφ(2n).
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Thanks to the above lemma, we know that (Ωφ, dφ) is bounded. Under the
additional conditions imposed on φ in this paper (in particular, conditions
(3) and (5) in Definition 2.1 above) as compared to [15], we obtain the
following.

Lemma 2.11. There exists a constant κ > 1 such that for all non-negative

integers m and x ∈ Ωm, we have

κ−1 2mφ(2m) ≤ dφ(x,∞) ≤ κ 2mφ(2m).

Here κ depends only on CU , Cφ, and the implied constant from (2.3).

Proof. We begin by assuming that m ≥ n0 +2 and show that it follows from
Lemma 2.10 that

dφ(x,∞) ≈
∞∑

n=m

2n φ(2n), (2.12)

where the implicit constants depend only on CU , Cφ, and n0. Indeed, since
φ is decreasing and satisfies Condition (3) of Definition 2.1, it follows that

m−1∑

n=m−n0

2nφ(2n) ≤ n02
m−1φ(2m−n0) ≤

n0

2
Cn0
φ 2mφ(2m),

and so
∞∑

n=m−n0

2nφ(2n) ≤
n0

2
Cn0
φ 2mφ(2m) +

∞∑

n=m

2nφ(2n)

≤
[n0

2
Cn0
φ + 1

] ∞∑

n=m

2nφ(2n).

Similarly,
∞∑

n=m

2nφ(2n) ≤
Cφ

2

∞∑

n=m+1

2mφ(2n),

and so (2.12) follows from Lemma 2.10. The desired result then follows from
(2.3).

Finally, if m ≤ n0 + 1, then 1 ≳ dφ(x,∞) ≳ φ(2n0+2) 2n0 , and so again
the above inequality holds even if m ≤ n0 + 1. □

Lemma 2.13 (Lemma 2.8 of [15]). Let x ∈ Ωm for some non-negative

integer m. There exist constants CA ≥ 1 and 0 < c < 1, depending solely

on Cφ and CU , such that if y ∈ Ω satisfies dφ(x, y) < cφ(2m) 2m, then

C−1
A φ(2m) d(x, y) ≤ dφ(x, y) ≤ CAφ(2m) d(x, y).

3. Background related to metric measure spaces

In this section, we give the definitions of the notions associated with
measures and first order calculus in metric measure spaces. Namely, we give
the definition of doubling measures, first-order calculus on metric measure
spaces using the approach of upper gradients, and then discuss associated
Poincaré inequalities. We also discuss moduli of families of curves, and
variational capacities related to the first-order calculus.
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In this section we let U be an open and connected subset of a complete
metric measure space (Z, dZ , µZ). In the rest of the paper, U will stand at
various points for Ω, Ω, Ω∪{∞}, or Ω∪{∞}, while dZ stands in for either the
original metric d or the transformed metric dφ, and µZ stands in for either
the original measure µ or the transformed measure µφ. Observe that as the

completion Ω of Ω is the metric space in which Ω is a subset, necessarily Ω
is open in the topology of Ω. Moreover, as Ω is locally compact, it follows
that Ω is also open in the topology of Ω.

Recall that 1 ≤ p < ∞ is fixed throughout the paper.

Definition 3.1. We say that µZ is a locally uniformly doubling measure on
U if µZ is a Radon measure and there is a constant Cd ≥ 1 and for each
x ∈ U there exists rx > 0 such that whenever 0 < r ≤ rx we have

0 < µZ(B(x, 2r) ∩ U) ≤ Cd µZ(B(x, r) ∩ U) < ∞.

If there is some constant A > 1 such that we can choose rx = 1
A dist(x, ∂U),

then we say that µZ is sub-Whitney doubling on U . We say that µZ is
doubling on Z if U = Z and rx = ∞ for each x ∈ U . Note that if µZ is
doubling on Z, then whenever U ⊂ Z is an open set with ∂U ̸= ∅, we must
have that µZ is sub-Whitney doubling on U . A ball B(x, r) with x ∈ U is
said to be a sub-Whitney ball if 0 < r ≤ 1

A dist(x, ∂U).

A metric measure space (Z, dZ , µZ) with a doubling measure is a doubling

metric space, that is, there exists some positive integer N such that for each
r > 0 and x0 ∈ Z, and for each A ⊂ B(x0, r) such that for each z, w ∈ A with
z ̸= w we have dZ(z, w) ≥ r/2, then A has at most N number of elements.
On the other hand, there are doubling metric spaces that do not support a
doubling measure. If the doubling metric space is complete, however, then it
does support a doubling measure, see for example [30, 36]. The completion
of a doubling metric space is also doubling, and complete doubling metric
spaces are proper (that is, closed and bounded subsets are compact).

Definition 3.2. The p-modulus of a collection Γ of non-constant, compact,
and rectifiable curves in U is

Modp(Γ;U) := inf
ρ

∫

U
ρ p dµZ ,

where the infimum is taken over all admissible ρ, that is, all non-negative
Borel functions ρ such that

∫
γ ρ ds ≥ 1 for each γ ∈ Γ. A useful property

is that Modp(Γ;U) = 0 if and only if there is a non-negative Borel function
ρ ∈ Lp(U) such that

∫
γ ρ ds = ∞ for every γ ∈ Γ, see [20, 28]. Note that a

countable union of zero p-modulus collections of curves is also of p-modulus
zero. When U = Z, we simply write Modp(Γ;U) = Modp(Γ).

In subsequent sections of this paper, Modp will denote the p-modulus
with respect to the metric d and measure µ, while Modφ

p will denote the
p-modulus with respect to the metric dφ and measure µφ.

Definition 3.3. Following [19, 20], we say that a Borel function g : U →
[0,∞] is an upper gradient of a function u : U → R if

|u(y) − u(x)| ≤

∫

γ
g ds
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whenever γ is a non-constant compact rectifiable curve in U , with x and y
denoting the two end points of γ . For 1 ≤ p < ∞, we say that g is a p-weak
upper gradient of u if the collection Γ of non-constant compact rectifiable
curves for which the above inequality fails is of p-modulus zero.

It is not difficult to see that if g1 and g2 are both p-weak upper gradients
of u, then so is λg1 + (1 − λ)g2 whenever 0 ≤ λ ≤ 1. Let Dp(u) denote
the collection of all p-weak upper gradients of u; then Dp(u) ∩ Lp(U) is a
closed convex subset of Lp(U), and so if Dp(u) ∩ Lp(U) is non-empty, then
it has a unique element gu of smallest Lp-norm; this function gu is called the
minimal p-weak upper gradient of u in U . We invite the interested readers
to see [20] for more details on p-weak upper gradients.

In subsequent sections of the paper, when the minimal p-weak upper
gradient of u is taken with respect to the metric d, it will be denoted by
gu,d, while gu,φ will denote the minimal p-weak upper gradient when taken
with respect to dφ.

We say that u is in the Dirichlet-Sobolev class D1,p(U) if Dp(u) ∩ Lp(U)
is non-empty. We say that u is in the Newton-Sobolev class N1,p(U) if
u ∈ D1,p(U) with

∫
U |u|p dµZ finite.

Definition 3.4. We say that U supports a uniformly local p-Poincaré in-

equality if there are constants CP > 0, λ ≥ 1, and for each x ∈ U there
exists rx > 0, such that whenever 0 < r ≤ rx and u ∈ D1,p(U), we have

∫

B(x,r)∩U
|u− uB(x,r)∩U | dµZ ≤ CP r

(∫

B(x,λr)∩U
gpu dµZ

)1/p

,

where

uB(x,r)∩U :=

∫

B(x,r)∩U
u dµZ :=

1

µZ(B(x, r) ∩ U)

∫

B(x,r)∩U
u dµZ .

Moreover, U supports a sub-Whitney p-Poincaré inequality if there is a con-
stant A ≥ 1 such that for each x ∈ U we can choose rx = 1

A dist(x, ∂U). We
say that Z supports a p-Poincaré inequality if U = Z and we can choose
rx = ∞ for each x ∈ U .

Remark 3.5. If U is bounded and supports a uniformly local p-Poincaré in-
equality, then D1,p(U) = N1,p(U) as vector spaces, but their norms are nat-
urally different. The norm on N1,p(U) incorporates the Lp-norm of the func-
tion in addition to the energy seminorm inherited from D1,p(U); for a func-

tion u ∈ D1,p(U), its energy seminorm is ∥u∥D1,p(U) := infg
(∫

U gp dµZ

)1/p
,

where the infimum is over all upper gradients g of u. To turn D1,p(U), with
this energy seminorm, into a normed space, one would have to form a quo-
tient space where to functions u1, u2 ∈ D1,p(U) are said to be equivalent if
∥u1 − u2∥D1,p(U) = 0; in particular, two functions that differ by a constant
would have to be considered to be equivalent. We do not wish to do so, and
hence D1,p(U) is only a seminormed space.

Definition 3.6. Given two sets E,F ⊂ U , the variational p-capacity of the
condenser (E,F ;U) is the number

capp(E,F ;U) := inf
u

∫

U
gpu dµZ ,
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where the infimum is over all functions u ∈ N1,p(U) with u ≥ 1 on E and
u ≤ 0 on F . When U = Z, we simply write capp(E,F ;U) = capp(E,F ).

For a set A ⊂ U , by Capp(A) we mean the Sobolev p-capacity

Capp(A) := inf
u

∫

U
[|u|p + gpu] dµZ ,

where the infimum is over all functions u ∈ N1,p(U) with u ≥ 1 on A.

Should U support a local p-Poincaré inequality, then functions in D1,p(U)
are necessarily p-quasicontinuous. Hence, in the above definitions of capac-
ities, we can also insist on the admissible functions u satisfying u ≥ 1 in a
neighborhood of the sets E, A, respectively, and u ≤ 0 in a neighborhood
of the set F ; see for example [24] or [3, Theorem 6.11]. Moreover, by [3,
Proposition 1.48], we have that Capp(A) = 0 if and only if µZ(A) = 0 and
Modp(ΓA) = 0, where ΓA consists of all non-constant compact rectifiable
curves in U that intersect A.

Remark 3.7. By [20, Corollary 9.3.2], we know that

capp(E,F ;U) = Modp(Γ(E,F ;U);U) =: Modp(E,F ;U),

where Γ(E,F ;U) is the collection of all rectifiable curves in U that intersect
both E and F .

As with the modulus, the notation capp,Capp will be used throughout
the paper when taken with respect to the metric d and measure µ, and
capφ

p ,Capφ
p when taken with respect to the metric dφ and measure µφ.

Next we recall the definition of p-harmonic functions on a metric measure
space.

Definition 3.8. A function u on U is said to be a p-minimizer if u ∈ D1,p(U)
and whenever v ∈ D1,p(U) has compact support V contained in U , then

∫

V
gpu dµZ ≤

∫

V
gpv dµZ .

If (U, dZ , µZ) is locally doubling and locally supports a p-Poincaré inequal-
ity, then there is a locally Hölder continuous representative of u, see for
example [26]. Continuous p-minimizers are called p-harmonic functions.

Definition 3.9. For t ≥ 0, the t–codimensional Hausdorff measure of a set
A ⊂ U is defined as

H−t(A;U) = lim
ε→0+

H−t
ε (A;U),

where for each ε > 0,

H−t
ε (A;U) = inf

{
∞∑

i=1

µZ(B(xi, ri) ∩ U)

rti
: A ⊂

∞⋃

i=1

B(xi, ri), ri < ε

}
.

Lemma 3.10. Let f ∈ Lp(U), 0 < t < p, and M > 0. If µZ is locally

uniformly doubling on U , then H−t(EM ) = 0, where

EM =

{
x ∈ U : lim sup

r→0+
rt
∫

B(x,r)∩U
|f |p dµZ > Mp

}
.
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In the above lemma, the conclusion is valid even if t ≥ p, but in our use
of this lemma in the proof of Proposition 3.11 below we require that t < p.
However, when t is larger than the lower mass bound exponent of µZ as
discussed in Section 7, then it can be shown from the fact that f ∈ Lp(U)
that EM is empty.

Proof. Fix ε > 0. From continuity of the integral there exists δ > 0 such
that for all measurable V ⊂ U ,

µZ(V ) < δ =⇒

∫

V
|f |p dµZ < ε.

By the Lebesgue differentiation theorem and the fact that t > 0, we see that
µZ(EM ) = 0 and so there exists an open set W ⊂ U with EM ⊂ W for
which µZ(W ) < δ. It follows that

∫
W∩U |f |

p dµZ < ε.
We construct a cover of EM by balls in the following way. For each

x ∈ EM , select rx > 0 such that

(1) 0 < rx < ε/5,
(2) B(x, 5rx) ⊂ W ,

(3) rtx

∫

B(x,rx)∩U
|f |p dµZ > Mp.

This follows from the definition of EM and the fact that W is open. An
application of the basic 5r-covering lemma (see for example [18, Theo-
rem 1.2]) yields a countable pairwise disjoint subcollection {B(xi, ri)} such
that EM ⊂

⋃
B(xi, 5ri). Hence,

H−t
ε (EM ) ≤

∑

i

µZ(B(xi, 5ri))

(5ri)t
≤

C3
d

5t

∑

i

µZ(B(xi, ri))

rti

<
C3
d

5tMp

∫

W∩U
|f |p dµZ <

C3
d

5tMp
ε.

The result follows by sending ε → 0+. □

The following proposition relates the p-capacity of a set to its codimen-
sional Hausdorff measure. In the Euclidean setting, the following proposition
can be found in [14, Section 4.7.2, Theorem 4].

Proposition 3.11. Let U support a uniformly local p-Poincaré inequality,

and let µZ be a locally uniformly doubling measure on U . If Capp(A) = 0

for A ⊂ U , then H−t(A) = 0 for all 0 < t < p.

Proof. If Capp(A) = 0, then for each k ∈ N there exists a function uk ∈

N1,p(U) such that uk ≥ 1 on a neighborhood of A, 0 ≤ uk ≤ 1 on U , and∫

U
[upk + gpk] dµZ <

1

2kp
,

where gk := guk
. Define u =

∑
k uk. Then g =

∑
k gk is a p-weak upper

gradient of u with
(∫

U
[up + gp] dµZ

)1/p

≤
∑

k

(∫

U
[upk + gpk] dµZ

)1/p

<
∑

k

1

2k
< ∞.

It follows that u ∈ N1,p(U).
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Since each uk is at least 1 on a neighborhood of A, we have that for
M ≥ 1, A ⊂ {u ≥ M}◦. Hence, for x ∈ A there exists rx > 0 such that
B(x, rx) ⊂ {u ≥ M}, and so uB(x,r)∩U ≥ M for 0 < r ≤ rx. Since this is

true for all M ≥ 1, it follows that uB(x,r)∩U → ∞ as r → 0+ for each x ∈ A.
Fix x ∈ A and assume that

lim sup
r→0+

rt
∫

B(x,λr)∩U
gp dµZ < ∞.

Then for all 0 < r ≤ 1 there is some M ≥ 1 for which

rt
∫

B(x,λr)∩U
gp dµZ ≤ Mp.

By the Poincaré inequality,

∫

B(x,r)∩U
|u− uB(x,r)∩U | dµZ ≤ CP r

(∫

B(x,λr)∩U
gp dµZ

)1/p

≤ CPMr1−t/p.

It follows then that

|uB(x,r/2)∩U − uB(x,r)∩U | ≤ CdCP Mr1−t/p

and so, for k > j,

|uB(x,r/2k)∩U − uB(x,r/2j)∩U | ≤ CdCP Mr1−t/p
k∑

i=j+1

2(i−1)(1−t/p).

As 0 ≤ t < p, 1 − t
p > 0 and so this is the tail of a convergent geometric

series. From this we have that {uB(x,r/2k)∩U} is a Cauchy sequence in R,

contradicting the fact that uB(x,r)∩U → ∞ as r → 0+. Therefore,

lim sup
r→0+

rt
∫

B(x,r)∩U
gp dµZ = ∞.

Since this is true for each x ∈ A, we have that A ⊂ EM for any M ≥ 1, each
of which has t-codimensional Hausdorff measure zero by Lemma 3.10. The
result follows. □

We end this section by defining two notions that are tools in the study of
potential theory.

Definition 3.12. For α > 0 and 1 ≤ p < ∞, we set the Besov space Bα
p,p(Z)

to be the class of all functions f ∈ L1
loc(Z) such that

∥f∥pBα
p,p(Z) :=

∫

Z

∫

Z

|f(y) − f(x)|p

dZ(x, y)αp µZ(B(x, dZ(x, y)))
dµZ(y) dµZ(x) < ∞.

It was shown in [11] that functions in the Besov class are in Lp(Z, µZ)
if Z is bounded. Besov spaces arise naturally as the trace class of Sobolev
spaces. While this is well-known in the setting of Euclidean spaces, see for
example [23] or [33, Chapter 10], the following extension to the setting of
metric spaces is found in [32, Theorem 1.1].



DIRICHLET PROBLEM ON UNBOUNDED DOMAINS 13

Proposition 3.13. Suppose that (Z, dZ , µZ) is doubling and supports a p-
Poincaré inequality for some 1 ≤ p < ∞, and let U ⊂ Z be a bounded

uniform domain such that µZ |U is also doubling. Suppose that there is a

measure ν on ∂U and some positive θ < p such that for each w ∈ ∂U and

0 < r ≤ diam ∂U , we have

ν(B(w, r) ∩ ∂U) ≈
µZ(B(w, r) ∩ U)

rθ
.

Then there is a bounded linear surjective operator T : N1,p(U) → B
1−θ/p
p,p (∂U)

such that for ν-a.e. x ∈ ∂U ,

lim
r→0+

∫

B(x,r)∩U
|u− Tu(x)|p dµZ = 0.

Moreover, there is a bounded linear operator E : B
1−θ/p
p,p (∂U) → N1,p(U)

such that T ◦ E is the identity operator on B
1−θ/p
p,p (∂U).

Definition 3.14. For a non-negative function u, we define the Riesz poten-

tial of u relative to U as

I1,Uu(x) =

∫

U

u(y)dZ(x, y)

µZ(B(x, dZ(x, y)))
dµZ(y).

The following proposition is an application of [31, Corollary 4.2] to the
setting where X = U and ν is the measure, as in Proposition 3.13 above,
supported on ∂U . In this proposition, Q−

Z plays the role of the lower mass
bound exponent for the measure µZ |U :

( r

R

)Q−

Z
≲

µZ(B(x, r) ∩ U)

µZ(B(x,R) ∩ U)

for all x ∈ U and 0 < r < R < ∞.

Proposition 3.15. With U and ν as in Proposition 3.13, and let 1 < p̄ < q̄
such that

Q−
Z + q̄ −

Q−
Z q̄

p̄
= θ.

Then there is a constant C ≥ 1 such that for all balls B ⊂ Z centered at

points in U , setting B0 := B ∩ U and all f ∈ Lp̄(B0, µZ), we have

(∫

B0

(I1,B0
|f |)q̄ dν

)1/q̄

≤ C µZ(B0)
1/q̄−1/p̄ rad(B)1−θ/q̄

(∫

B0

|f |p̄ dµZ

)1/p̄

.

4. Doubling property of µφ

In this section we establish the doubling property of the measure µφ.
Recall the constant κ > 1 established in Lemma 2.11. Since it follows
from (2.2) that

∑∞
n=1 2nφ(2n) is finite, we can find r0 > 0 such that whenever

m is a positive integer with 2mφ(2m) ≤ κ r0 we have that m > n0 + 2. Here,
as in Section 2, n0 is the positive integer satisfying 2n0−1 ≤ CU < 2n0 .

From Lemma 2.11 we know that if x ∈ Bdϕ(∞, r)\{∞} with r ≤ r0, then
necessarily x ∈ Ωm for some m > n0 + 2.
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Lemma 4.1. For 0 < r < r0,

µφ(Bdϕ(∞, r)) ≤
[
MCMp

φ CM+1
0 + 1

] ∞∑

n=m

φ(2n)p µ(Ωn),

and

µφ(Bdϕ(∞, r)) ≥
[
MCMp

φ CM+1
0 + 1

]−1
∞∑

n=m

φ(2n)p µ(Ωn),

where M = log(κ2)
log(τ/2) and m is any non-negative integer such that for some

x ∈ Ω with dφ(x,∞) = r we have x ∈ Ωm. Moreover, if k is also a non-

negative integer such that Ωk contains a point z with dφ(z,∞) = r, then

|k −m| ≤ M .

Proof. Let m1 be the smallest non-negative integer such that 2m1φ(2m1) ≤
κr and m2 be the largest non-negative integer such that κ2m2φ(2m2) ≥ r.
As r ≤ r0, we have that m1 > n0+2 and m2 ≥ n0+2. Since for each m ≥ 1,
every point in Ωm can be connected to ∞ by a dφ-geodesic by Lemma 2.6,
there is some x ∈ Ω such that dφ(x,∞) = r. With m a positive integer
such that x ∈ Ωm, by Lemma 2.11 we know that m1 ≤ m ≤ m2. From
Lemma 2.11 again, we have that

Bdϕ(∞, r) ⊂
∞⋃

n=m1

Ωn and

∞⋃

n=m2

Ωn ⊂ Bdϕ(∞, r),

from where it follows from the construction of µφ and Condition (3) that

µφ(Bdϕ(∞, r)) ≤
∞∑

n=m1

µφ(Ωn) ≤ Cp
φ

∞∑

n=m1

φ(2n)p µ(Ωn) (4.2)

and, this time from the fact that φ is decreasing, that

µφ(Bdϕ(∞, r)) ≥
∞∑

n=m2

µφ(Ωn) ≥
∞∑

n=m2

φ(2n)p µ(Ωn). (4.3)

We now estimate m−m1 and m2 −m. Invoking Lemma 2.11, we have that

κ2 2mφ(2m) ≥ 2m1φ(2m1),

and so

κ22m−m1φ(2m) ≥ φ(2m1) ≥ τm−m1φ(2m),

from where it follows that (recall that τ > 2)

0 ≤ m−m1 ≤
log(κ2)

log(τ/2)
= M.
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Similarly, we have 0 ≤ m2−m ≤ M . Now by combining (2.9) with (4.2) we
obtain

µφ(Bdϕ(∞, r)) ≤
∞∑

n=m

φ(2n)pµ(Ωn) +

m−1∑

n=m1

φ(2n)pµ(Ωn)

≤
∞∑

n=m

φ(2n)pµ(Ωn) + M CMp
φ φ(2m)pCM+1

0 µ(Ωm)

≤
[
1 + M CMp

φ CM+1
0

] ∞∑

n=m

φ(2n)pµ(Ωn).

By combining (2.9) with (4.3) instead, we obtain

∞∑

n=m

φ(2n)pµ(Ωn) ≤
∞∑

n=m2

φ(2n)pµ(Ωn) +

m2−1∑

n=m

φ(2n)pµ(Ωn)

≤
∞∑

n=m2

φ(2n)pµ(Ωn) + M CMp
φ φ(2m2)pCM+1

0 µ(Ωm2
)

≤
[
1 + M CMp

φ CM+1
0

] ∞∑

n=m2

φ(2n)pµ(Ωn)

≤
[
1 + M CMp

φ CM+1
0

]
µφ(Bdϕ(∞, r)),

completing the proof. □

We are now ready to prove the doubling property of µφ, and we do so via
the following series of lemmata. The first lemma deals with balls centered
at ∞, the next two lemmata deal with balls that are far away from ∞, and
the final lemma deals with intermediate balls.

Lemma 4.4. For 0 < r ≤ r0/2, we have

µφ(Bdϕ(∞, 2r)) ≤ C1 µφ(Bdϕ(∞, r)),

where

C1 =
[
MCMp

φ CM+1
0 + 1

]2 [
M̂CM̂p

φ CM̂+1
0 + 1

]

with

M̂ =
log(2κ2)

log(τ/2)
,

M is as in Lemma 4.1, and κ > 1 is as in Lemma 2.11.

Proof. Let m, m̂ be the largest positive integers such that there is some
x ∈ Ωm and y ∈ Ωm̂ with dφ(x,∞) = r and dφ(y,∞) = 2r. Note then
that m ≥ m̂. Moreover, by the choice of r0, we know that m̂ ≥ n0 + 2. By
Lemma 4.1, we have

[
MCMp

φ CM+1
0 + 1

]
µφ(Bdϕ(∞, r)) ≥

∞∑

n=m

φ(2n)p µ(Ωn)

and

µφ(Bdϕ(∞, 2r)) ≤
[
MCMp

φ CM+1
0 + 1

] ∞∑

n=m̂

φ(2n)p µ(Ωn).
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We now use the fact that m ≥ n0 + 2 to estimate the size of m − m̂ in the
same way as we estimated m−m1 and m2 −m in the proof of Lemma 4.1.
From Lemma 2.11 it follows that

κ2m φ(2m) ≥ r =
1

2
(2r) ≥

1

2κ
2m̂ φ(2m̂),

and so
2κ2 2m−m̂φ(2m) ≥ φ(2m̂) ≥ τm−m̂φ(2m),

from where it follows that (recall that τ > 2)

m− m̂ ≤
log(2κ2)

log(τ/2)
= M̂.

Thus,

m−1∑

n=m̂

φ(2n)p µ(Ωn) ≤ (m− m̂)φ(2m̂)pCm−m̂+1
0 µ(Ωm)

≤ M̂ CM̂p
φ φ(2m)pCM̂+1

0 µ(Ωm),

and so
∞∑

n=m̂

φ(2n)p µ(Ωn) =
m−1∑

n=m̂

φ(2n)p µ(Ωn) +
∞∑

n=m

φ(2n)p µ(Ωn)

≤
[
M̂CM̂p

φ CM̂+1
0 + 1

] ∞∑

n=m

φ(2n)p µ(Ωn).

Combining this with Lemma 4.1, we obtain the desired inequality. □

Lemma 4.5. Let x ∈ Ωm for some positive integer m. For 0 < r < r0/2, if
∞ ∈ Bdϕ(x, r/2), then

µφ(Bdϕ(x, 2r)) ≤ C2 µφ(Bdϕ(x, r)),

where C2 depends on the constant C1 from Lemma 4.4 above.

Proof. It follows from ∞ ∈ Bdϕ(x, r/2) that Bdϕ(∞, r/2) ⊂ Bdϕ(x, r) and
Bdϕ(x, 2r) ⊂ Bdϕ(∞, 4r). Combining this with Lemma 4.4 yields

µφ(Bdϕ(x, 2r)) ≤ µφ(Bdϕ(∞, 4r)) ≲ µφ(Bdϕ(∞, r/2)) ≤ µφ(Bdϕ(x, r)).

□

Now we consider balls that are far away from ∞.

Lemma 4.6. Let x ∈ Ω and 0 < r ≤ r0/2 such that ∞ ̸∈ Bdϕ(x,C∗r),
where C∗ = 4κ/c with κ from Lemma 2.11 and c from Lemma 2.13. Then

µφ(Bdϕ(x, 2r)) ≤ C3 µφ(Bdϕ(x, r)),

where C3 depends only on the structural constants Cµ, M̂ from Lemma 4.4,

and CA from Lemma 2.13.

Moreover, with m a non-negative integer such that x ∈ Ωm, we have that

Bdϕ(x, 2r) ⊂ Bd(x, 2CAφ(2m)−1r) and Bd(x,C−1
A φ(2m)−1r) ⊂ Bdϕ(x, r).

Furthermore, for all y ∈ Bdϕ(x, 2r) we have that φ(2m) ≈ φ(dΩ(y)), with
comparison constant independent of x, y, r,m.
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It follows from the above lemma that Bdϕ(x, r) is a quasiball with re-
spect to the metric d, which is to say that there exists a constant C > 0,
independent of x and r, such that Bd(x,C−1r) ⊂ Bdϕ(x, r) ⊂ Bd(x,Cr).

Proof. Since ∞ ̸∈ Bdϕ(x,C∗r), from Lemma 2.11 we have that x ∈ Ωm with

r ≤
κ

C∗
2mφ(2m).

Note that as r ≤ r0, by the choice of r0, the above inequality holds if
m ≤ n0 + 1. So we needed Lemma 2.11 only for the case that m ≥ n0 + 2.
By our choice of C∗, which is greater than 2κ/c, for all y ∈ Bdϕ(x, 2r),

dφ(x, y) < 2r ≤
2κ

C∗
2mφ(2m) < c 2mφ(2m),

and so it follows from Lemma 2.13 that

1

CA
φ(2m) d(x, y) ≤ dφ(x, y) ≤ CA φ(2m) d(x, y). (4.7)

Therefore,

Bdϕ(x, 2r) ⊂ Bd(x, 2CAφ(2m)−1r) and Bd(x,C−1
A φ(2m)−1r) ⊂ Bdϕ(x, r).

The latter inclusion is seen by noting that, thanks to Lemma 2.13 and (4.7),
we must have Bd(x,C−1

A φ(2m)−1r) ∩ Bdϕ(x, 2r) ⊂ Bdϕ(x, r), and as balls
with respect to the metric d are connected with respect to both metrics d
and dφ, we must have that Bd(x,C−1

A φ(2m)−1r) ⊂ Bdϕ(x, 2r) for otherwise,

Bd(x,C−1
A φ(2m)−1r) ∩Bdϕ(x, 2r) \Bdϕ(x, r) would be non-empty.

Suppose first that m ≥ n0 + 2. As in the proof of the previous two
lemmata, we have that if y ∈ Bdϕ(x, r) and m̃ ∈ N such that y ∈ Ωm̃, then

|m− m̃| ≤ M̃ . Indeed, in Lemma 2.13 we can fix the choice of CA and then
always make c smaller and thus C∗ larger, and so without loss of generality
we have that CAκ/C∗ < 1/2. We also have from the limitation on r and
from (4.7) that d(x, y) < CA

κ
C∗

2m. It follows from the fact that x ∈ Ωm and

y ∈ Ωm̃ that dΩ(x) ≥ 2m and dΩ(y) ≤ 2m̃+1; so by the triangle inequality,

2m − 2m̃+1 ≤ CA
κ

C∗
2m < 2m−1,

whence we obtain 2m−1 ≤ 2m̃+1, that is, m− m̃ ≤ 2. Similarly we have that
2m̃ − 2m+1 < 2m−1, and so 2m̃ < 2m+2, that is, m̃ −m < 2. So the choice

of M̃ = 2 satisfies the above statement about |m− m̃|. It follows now from
the assumptions on φ that φ(2m) ≈ φ(2m̂) for all y ∈ Bdϕ(x, 2r), and so by
the doubling property of µ,

µφ(Bdϕ(x, 2r)) ≲ φ(2m)p µ(Bdϕ(x, 2r))

≲ Ck0
µ φ(2m)p µ(Bd(x,C−1

A φ(2m)−1r))

≲ Ck0
µ φ(2m)p µ(Bdϕ(x, r))

≲ Ck0
µ µφ(Bdϕ(x, r)).

Here, k0 = log(2C2
A).

Finally, we take care of the case that m ≤ n0 + 1. In this case, by Con-
dition (3) of Definition 2.1, we have 1 ≥ φ(2m) ≥ φ(2n0+1) ≥ Cn0+1

φ φ(1) =
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Cn0+1
φ , that is, for m ≤ n0 + 1 we have that φ(2m) ≈ 1. By Lemma 2.13

again, we have that whenever y ∈ Bdϕ(x, 2r), necessarily

d(x, y) ≤
2CA

φ(2m)
r ≤

2CA

φ(2m)
r0,

and so by choosing a positive integer k1 such that 2k1 >
2C2

A
φ(2m) r0, we have

that each y ∈ Bdϕ(x, 2CAr) is in some Ωn with n < k1, and so φ(dΩ(y)) ≈ 1
as well. Therefore,

µφ(Bdϕ(x, 2r)) ≈ µ(Bdϕ(x, 2r)) ≤ µ(Bd(x, 2CAφ(2m)−1r))

≲ µ(Bd(x,C−1
A φ(2m)−1r))

≲ µ(Bdϕ(x, r))

≲ µφ(Bdϕ(x, r)),

finishing the proof. □

Finally, we take care of the intermediate balls. In what follows, set

T =
2CA

c
. (4.8)

Lemma 4.9. Let x ∈ Ω and 0 < r ≤ r0
8(C∗+1) such that ∞ ∈ Bdϕ(x,C∗r) \

Bdϕ(x, r/2), where C∗ is as in Lemma 4.6, then

µφ(Bdϕ(x, 2r)) ≤ C4 µφ(Bdϕ(x, r)).

Moreover, with m a non-negative integer such that x ∈ Ωm and fixing CΛ ≥
1, independent of x, m, and r, so that

2m φ(2m)

CΛ
≤ r ≤ CΛ 2m φ(2m),

for each y ∈ Bdϕ(x, r/(8TCΛ)) we have φ(dΩ(y)) ≈ φ(2m) and

µ(Ωm) ≈ µ(Bd(x, 2m/(8TC2
ΛCA))),

and

Bd(x, 2m/(8TC2
ΛCA)) ⊂ Bdϕ(x, r/(8TCΛ)).

The constant C4 depends only on the structural constants Cµ, Cφ, and the

constants C0 from Lemma 2.8, κ from Lemma 2.11, CA from Lemma 2.13,

and M from Lemma 4.1.

Proof. By our assumptions, Bdϕ(x, 2r) ⊂ Bdϕ(∞, (C∗ + 2)r). Therefore

µφ(Bdϕ(x, 2r)) ≤ µφ(Bdϕ(∞, 2(C∗ + 1)r)).

Since 2(C∗ + 1)r ≤ r0/4, it follows from Lemma 4.1 that with the choice of
m so that x ∈ Ωm,

µφ(Bdϕ(x, 2r)) ≲
∞∑

n=m

φ(2n)pµ(Ωn) ≲ φ(2m)pµ(Ωm), (4.10)

and as dφ(x,∞) ≥ r/2, we have that dφ(x,∞) ≈ r. Now by Lemma 2.11
we have that

2m φ(2m) ≈ dφ(x,∞) ≈ r.
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Thus there is a constant CΛ > 1, which is independent of x, m, and r, so
that

2m φ(2m)

CΛ
≤ r ≤ CΛ 2m φ(2m).

Thus with our choice of T from (4.8), from Lemma 2.13 we have that if
y ∈ Ω such that dφ(x, y) ≤ r

8TCΛ
, then

d(x, y)

CA
φ(2m) ≤ dφ(x, y) ≤ CA d(x, y)φ(2m).

It follows that d(x, y) ≤ CA 2m

8T . By our choice of T , we know that T > CA,

and so we have that d(x, y) < 2m−3. Therefore

dΩ(y) ≥ dΩ(x) − 2m−3 ≥ 2m−2 and dΩ(y) ≤ dΩ(x) + 2m−3 ≤ 2m+1.

It follows that for each y ∈ Bdϕ(x, r/(8TCΛ)) we have φ(dΩ(y)) ≈ φ(2m).
Hence

µφ(Bdϕ(x, r/(8TCΛ))) ≈ φ(2m)p µ(Bdϕ(x, r/(8TCΛ))).

Moreover, if y ∈ Ω such that d(x, y) < 2m/(8TC2
ΛCA), then dφ(x, y) <

r/(8TCΛ), and so y ∈ Bdϕ(x, r/(8TCΛ)). By the doubling property of µ,
we know that with ζ ∈ ∂Ω (and, without loss of generality, assuming that
diamd(∂Ω) ≤ 1),

µ(Bd(x, 2m/(8TC2
ΛCA))) ≈ µ(Bd(ζ, 2m+1)) ≈ µ

(
m+1⋃

n=0

Ωn

)
,

and so we have that

µ(Ωm) ≲ µ(Bd(x, 2m/(8TC2
ΛCA))).

From the above discussion, we now have that

φ(2m)pµ(Ωm) ≲ φ(2m)pµ(Bd(x, 2m/(8TC2
ΛCA)))

≲ φ(2m)p µ(Bdϕ(x, r/(8TCΛ)))

≈ µφ(Bdϕ(x, r/(8TCΛ))).

Combining the above estimate with (4.10) we obtain

µφ(Bdϕ(x, 2r) ≲ φ(2m)p µ(Ωm) ≲ µφ(Bdϕ(x, r/(8TCΛ))) ≤ µφ(Bdϕ(x, r)),

as desired. □

The above lemmata together prove that µφ is a uniformly locally doubling
measure on (Ωφ, dφ). In fact, µφ is globally doubling as the assumption that

∂Ω is bounded implies the compactness of Ωφ
φ

= Ω ∪ {∞} with respect to
the metric dφ. We summarize this in the following theorem.

Theorem 4.11. The metric measure space (Ωφ, dφ, µφ) is doubling.

Conversely, Ωφ
φ

cannot be compact with respect to dφ (hence µφ cannot
be doubling on Ωφ) without ∂Ω being bounded, as we will see now.

Proposition 4.12. Ωφ
φ

= Ω ∪ {∞} is compact with respect to the metric

dφ if and only if ∂Ω is bounded with respect to the metric d.
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Proof. Assume that ∂Ω is bounded with respect to d. Consider a sequence
(xk) ⊂ Ωφ

φ
. If infinitely-many of the terms in the sequence equal ∞ or if

lim inf dφ(xk,∞) = 0, then there is a subsequence of (xk) converging to in-
finity with respect to dφ. As such, we assume without loss of generality that

(xk) ⊂ Ω and that dφ(xk,∞) ≥ τ
2 for all k, where τ := lim inf dφ(xk,∞) > 0.

It follows from Lemma 2.11 that there is some N0 for which

xk ∈
N0⋃

n=0

Ωn =

N0⋃

n=0

Ωn

for all k. Each set Ωn is closed in Ω with respect to d and bounded since
diamd(Ωn) ≤ 2n+2 +diamd(∂Ω) < ∞. Hence, Ωn is compact with respect to
d as Ω is proper. By Lemma 2.13, d and dφ are locally bi-Lipschitz equivalent

and so the two metrics are homeomorphic on Ωn. Hence,
⋃N

n=0 Ωn is compact
with respect to dφ. Therefore, there exists a dφ-convergent subsequence of
(xk).

Assume now that ∂Ω is unbounded with respect to d. Then we may find
a sequence (ζk) ⊂ ∂Ω such that d(ζk, ζj) ≥ τ ∈ (0, 1

10 ] for all k ̸= j. It
follows from the local isometry of d and dφ on ∂Ω (see Lemma 2.6 of [15])

that dφ(ζk, ζj) ≥ τ for all k ̸= j, and so (ζk) cannot converge in Ω with
respect to dφ. Moreover, dφ(ζk,∞) ≥ 1 for all k and so cannot converge to
∞ with respect to dφ. □

5. Uniformity of Ωφ \ {∞}

In [15] it was shown that Ωφ = Ω∪{∞} is a uniform domain with respect
to the metric dφ and that ∂Ωφ = ∂Ω. It is not always the case that the
removal of a point from a uniform domain results in a uniform domain, as
seen by the example domain (−1, 0]× [0, 1)∪ [0, 1)× (−1, 0] ⊂ X where the
metric space X = R

2 \ ((−1, 0)2 ∪ (0, 1)2). However, in our setting, ∞ ∈ Ωφ

has a special role, given the fact that Ω itself is a uniform domain with
respect to the metric d.

In the rest of this section, by increasing the uniformity constant K if
needed, we can find uniform curves for which every subcurve is also a uniform
curve (all with respect to the metric dφ), see [8, Theorem 2.10]. In the
remainder of this section, when we choose a K-uniform curve with respect
to the metric dφ, we will also implicitly assume that every subcurve is also
K-uniform with respect to dφ.

Lemma 5.1. Let 0 < r ≤ r0/C and x, y ∈ Bdϕ(∞, r) \Bdϕ(∞, r/2), where

C = 2κ2CUCφ. Then there is a curve β ⊂ Bdϕ(∞, Cr) \ Bdϕ(∞, r/C) with

end points x, y such that ℓφ(β) ≈ dφ(x, y).

Proof. Let m be a positive integer such that x ∈ Ωm. Then by (2.3) and by
Lemma 2.11 we know that dφ(x,∞) ≈ 2mφ(2m). Thus, with y ∈ Ωk we also

have 2kφ(2k) ≈ 2mφ(2m). It follows that there is some N0 ∈ N such that
|k −m| ≤ N0, see the proof of Lemma 4.1 above. Moreover, by the choice
of r0 we also have that k ≥ 2n0 and m ≥ 2n0.

Let β be a CU -uniform curve in Ω, with respect to the original metric
d, connecting x to y. Then, from (2.7) we see that d(x, y) ≲ 2m, and so
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ℓd(β) ≲ 2m+n0 . Hence

β ⊂
m+n0+N0⋃

j=m−n0−N0

Ωj ,

whence we obtain

ℓφ(β) ≈ φ(2m)ℓd(β) ≈ φ(2m) d(x, y) ≲ φ(2m) 2m ≈ r.

By Lemma 2.11 above and our choice of C, we have

β ⊂ Bdϕ(∞, Cr) \Bdϕ(∞, r/C).

It also follows that dφ(x, y) ≈ φ(2m) d(x, y) ≈ ℓφ(β), thus completing the
proof. □

In what follows, let K ≥ 1 denote the uniformity constant of Ωφ. If γ1 is
a curve with end points x and y, and γ2 is a curve with end points y and z,
then we denote by γ1 +γ2 the concatenation of two curves γ1 and γ2, having
end points x and z.

Theorem 5.2. The set Ωφ \ {∞} is a uniform domain with respect to the

metric dφ.

Proof. From [15] we know that (Ωφ, dφ) is a uniform domain. Let x, y ∈
Ωφ \ {∞} with x ̸= y, and let γ be a K-uniform curve in Ωφ, with the
uniformity with respect to the metric dφ, with end points x, y. Without loss
of generality let dφ(x,∞) ≤ dφ(y,∞). We now consider two cases.

Case 1: We suppose first that

γ ⊂ Ωφ \Bdϕ(∞, dφ(x,∞)/4CK),

where C = 2κ2CUCφ is from Lemma 5.1 above. In this case, for z ∈
Bdϕ(∞, 4dφ(x,∞)) ∩ γ, we have that

dφ(x,∞)

4CK
≤ dφ(z,∞) < 4dφ(x,∞)

and so

ℓφ(γ[x, z]) ≤ K dφ(x, z) < 5K dφ(x,∞) ≤ 20CK2 dφ(z,∞).

For z ∈ γ \Bdϕ(∞, 4dφ(x,∞)), we have that

ℓφ(γ[x, z]) ≤ K dφ(x, z) ≤ K[dφ(x,∞) + dφ(z,∞)] ≤ 2K dφ(z,∞).

Combining the above two subcases, we have that for each z ∈ γ,

dφ(z,∞) ≥
1

20CK2
ℓφ(γ[x, z]) ≥

1

20CK2
min{ℓφ(γ[x, z]), ℓφ(γ[z, y])}.

Case 2: If, instead, we have

γ ∩Bdϕ(∞, dφ(x,∞)/4CK) ̸= ∅,

then let w1, w2 ∈ γ such that

γ[x,w1] ∪ γ[w2, y] ⊂ Ωφ \Bdϕ(∞, dφ(x,∞)/2CK)

and

dφ(∞, w1) = dφ(∞, w2) =
dφ(x,∞)

2CK
.
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Let β be a curve from Lemma 5.1 with end points w1, w2. For z ∈
γ[x,w1], a repetition of the argument of Case 1 above yields dφ(z,∞) ≥

1
20CK2 ℓφ(γ[x, z]). For z ∈ β, we have that

dφ(z,∞) ≥
dφ(x,∞)

2C2K
,

and

ℓφ(γ[x,w1]) + ℓφ(β[w1, z]) ≤ K dφ(x,w1) + ℓφ(β)

≲ dφ(x,w1) + dφ(w1, w2)

≲ dφ(x,∞) + 2dφ(w1,∞) + dφ(w2,∞)

≲ dφ(x,∞).

It follows that dφ(z,∞) ≳ ℓφ(γ[x,w1] + β[w1, z]). For z ∈ γ[w2, y] ∩
Bdϕ(∞, 4dφ(x,∞)), we have that

dφ(z,∞) ≥
dφ(x,∞)

2CK
,

and

ℓφ(γ[x,w1] + β + γ[w2, z]) ≲ dφ(x,∞) + 4dφ(x,∞) ≲ dφ(x,∞),

and therefore

dφ(z,∞) ≳ ℓφ(γ[x,w1] + β + γ[w2, z]).

For z ∈ γ[w2, y] \Bdϕ(∞, 4dφ(x,∞)), we have

ℓφ(γ[w2, z]) ≤ K dφ(w2, z) ≤ K[dφ(w2,∞) + dφ(z,∞)]

= K[dφ(x,∞)/(2CK) + dφ(z,∞)]

≲ dφ(z,∞).

Observe also from the above discussion that

ℓφ(γ[x,w1] + β) ≲ dφ(x,∞) ≲ dφ(z,∞).

It then again follows that dφ(z,∞) ≳ ℓφ(γ[x,w1] +β+γ[w2, z]). Combining
the above four possibilities in this case, we obtain for each z ∈ γ̂ := γ[x,w1]+
β + γ[w2, y] that

dφ(z,∞) ≳ ℓφ(γ̂[x, z]).

From Cases 1 and 2 above we see that there is a curve γ̂ with end points
x, y such that for each z ∈ γ̂ we have that

dφ(z,∞) ≳ ℓφ(γ̂[x, z]),

and moreover, ℓφ(γ̂) ≲ dφ(x, y). Here, in Case 1 above, we merely set
γ̂ = γ, the original uniform curve with respect to dφ, connecting x to y.
So in Case 1 we have from the K-uniformity of γ with respect to dφ that
ℓφ(γ̂) ≤ K dφ(x, y). In Case 2 we have that ℓφ(γ̂) ≤ ℓφ(γ) + ℓφ(β) ≤
K dφ(x, y) + ℓφ(β). Moreover, by the choice of β, we have that ℓφ(β) ≲
dφ(w1, w2) ≤ ℓφ(γ) because w1, w2 belong to γ, and hence again we have
that ℓφ(γ̂) ≲ dφ(x, y), thus justifying the inequality given above. Thus to
show that γ̂ is a uniform curve in Ωφ \ {∞}, it now only remains to check
distφ(z, ∂Ω) for each z ∈ γ̂.
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In the situation considered in Case 1 above, the curve γ̂ is also a K-
uniform curve in Ωφ with respect to dφ, and so we immediately have

distφ(z, ∂Ω) ≥ 1
K min{ℓφ(γ̂[x, z]), ℓφ(γ̂[z, y])}

as desired. In the situation considered in Case 2, the above inequality holds
also when z ∈ γ[x,w1] ∪ γ[w2, y]. We set r = dφ(x,∞)/2CK. Note that
then ℓφ(γ[x,w1]) ≥ (2CK − 1)r, and hence by the uniformity of the curve
γ, we have that

distφ(w1, ∂Ω) ≥
2CK − 1

K
r.

Hence, for each z ∈ β, we obtain

distφ(z, ∂Ω) ≥ distφ(w1, ∂Ω) − dφ(w1,∞) − dφ(z,∞)

≥
2CK − 1

K
r − r − Cr

= (C − 1 −K−1) r.

Here we used the fact that β ⊂ Bdϕ(∞, Cr) \ Bdϕ(∞, r/C). Note that
ℓφ(γ[x,w1] + β) ≲ r. As C > 2, we now have the desired inequality
distφ(z, ∂Ω) ≳ ℓφ(γ[x,w1] + β). The claim follows. □

Remark 5.3. The proof of the above theorem can be modified to show that
if Ω is a uniform domain and z0 ∈ Ω is such that annular quasiconvexity as
in Lemma 5.1 holds with z0 playing the role of ∞, then Ω \ {z0} is also a
uniform domain.

Remark 5.4. The utility of uniformity of Ωφ \ {∞} stems from the fact
that when we transform Ω under the metric dφ and the measure µφ, all the
functions u in the Dirichlet-Sobolev class D1,p(Ω) belong to the Dirichlet-
Sobolev class of the transformed space D1,p(Ωφ \ {∞}); note that as sets,
Ω = Ωφ \ {∞}. In order to gain control over the behavior of transformed
functions in the uniform domain Ωφ, we need to know that functions in
D1,p(Ωφ\{∞}) also have an extension to ∞ that belongs to D1,p(Ωφ); see the
discussion in Section 7 and Proposition 7.5 below. Knowledge of uniformity
of Ωφ \ {∞}, together with the information that Ωφ \ {∞} satisfies a p-
Poincaré inequality when Ω itself does (see Section 6 below) aids us in this
extension.

6. Poincaré inequalities

The goal of this section is to demonstrate that (Ωφ, dφ, µφ) supports a
p-Poincaré inequality when (Ω, d, µ) supports a sub-Whitney p-Poincaré in-
equality as in Definition 3.4. This result can be proved using a variant of
the Boman chain condition method that Haj lasz and Koskela [17] used to
prove that if all balls satisfy a Poincaré inequality, then all sets satisfying a
chain condition also satisfy a Poincaré inequality. We do not know a priori

whether all balls in (Ω, dφ, µφ) satisfy a Poincaré inequality, but all balls in
Ωφ can be covered with chains of smaller (i.e., sub-Whitney) balls on which
φ is approximately constant and which therefore inherit a Poincaré inequal-
ity from (Ω, d, µ). We will also see that these small balls (with respect to
the metric d) that make up the chain are quasiballs with respect to the
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metric dφ, as for example in the proof of Lemma 4.6. For the readers’ con-
venience, we provide a complete proof here. Our proof uses an application
of [7, Theorem 4.4]. We start with the following chain condition.

Definition 6.1. Let B be a family of balls in a metric measure space X
and λ,M ≥ 1 and a > 1. We say that A ⊂ X satisfies the chain condition
C(B, λ,M, a) if there exists a distinguished ball B0 ⊂ A that belongs to B
such that for every x ∈ A there exists an infinite sequence of balls {Bi}

∞
i=0 ⊂

B (called a “chain”) with the following properties:

(i) λBi ⊂ A for i = 0, 1, 2, . . . and Bi is centered at x for all sufficiently
large i;

(ii) for i ≥ 0, the radius ri of Bi satisfies M−1(diamA) a−i ≤ ri ≤
M(diamA) a−i; and,

(iii) the intersection Bi ∩Bi+1 contains a ball B′
i such that Bi ∪Bi+1 ⊂

MB′
i for all i ≥ 0.

In this section, we consider sub-Whitney balls corresponding to the con-
stant 2λM , see Definition 3.1.

Remark 6.2. Given a uniform domain Ω, we set the collection B to consist
of balls centered at points in Ω and with radii such that the ball is also
contained in Ω. Then [7, Lemma 4.3] tells us that when Ω is a uniform
domain, there are constants a, λ and M such that for each x ∈ Ω and r > 0,
the set B(x, r) ∩ Ω satisfies the chain condition C(B, λ,M, a) with x the
center of the distinguished ball B0. The above chain condition is equivalent
to the chain condition given in [7, Lemma 4.3]. While the chain of balls in [7]
are not of strictly dyadically decreasing radii, there are at most L balls of the
same radius, with L depending solely on the uniformity constant of Ω and
the choice of λ; hence, for sufficiently large M in our definition above, the
chains constructed in [7, Lemma 4.3] satisfy the conditions in Definition 6.1.
Therefore we can exploit [7, Theorem 4.4].

Theorem 6.3. The uniform domains Ωφ \ {∞} and Ωφ, as well as Ωφ
φ
,

equipped with the metric dφ and the measure µφ, all satisfy p-Poincaré in-

equality if (Ω, d, µ) satisfies a sub-Whitney p-Poincaré inequality.

Proof. We wish to choose σ > 1 in applying [7, Lemma 4.3] such that when
x ∈ Ωm and r > 0 such that ∞ ̸∈ Bdϕ(x, 4σr), then ∞ ̸∈ Bdϕ(x, 5C2

Aλr)

and 4C2
Aλr < c 2mφ(2m), where c, CA are the constants from Lemma 2.13.

We do this as follows.
Clearly the first condition is satisfied if Bdϕ(x, 5C2

Aλr) ⊂ Bdϕ(x, 4σr),

that is, whenever σ ≥ 5C2
Aλ/4. To make sure that the second condition is

also satisfied, we only consider the radii r for which ∞ ̸∈ Bdϕ(x, 4σr), that
is, dφ(x,∞) ≥ 4σr. Combining this with Lemma 2.11, we obtain

4σr ≤ dφ(x,∞) ≤ κ 2mφ(2m).

If σ ≥ C2
Aλκ/c, the above inequality implies that the second condition

4C2
Aλr < c 2mφ(2m) is satisfied. Henceforth, we fix a choice of

σ > max

{
5C2

Aλ

4
,
C2
Aλκ

c

}
.
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For each ball Bdϕ in Ωφ \ {∞} (that is, it is the intersection of a ball in

Ωφ with Ωφ \ {∞}), we can appeal to [7, Lemma 4.3] to construct chains of
balls Bi = Bdϕ(xi, ri), i ∈ N, corresponding to the above choice of σ. From
the above discussion and by Lemma 2.13, we have that

Bi ⊂ Bd(xi,
CA

φ(2m)ri) ⊂ C2
ABi ⊂ Ωφ \ {∞}.

As C2
ABi ⊂ Bdϕ and ∞ ̸∈ Bdϕ , the last inclusion above holds. Moreover, the

weight φ(dΩ(y))p is approximately constant on C2
ABi, with the comparison

constant independent of the ball. Therefore,

u
Bd

(
x,

CA
φ(2m) r

) :=

∫

Bd

(
x,

CA
φ(2m) r

) u dµφ ≈

∫

Bd

(
x,

CA
φ(2m) r

) u dµ =: cu.

In what follows, by gu,d we mean the minimal p-weak upper gradient of u
with respect to the metric d, while gu,φ denotes the minimal p-weak upper
gradient with respect to dφ. Hence, by the sub-Whitney Poincaré inequality
for (Ω, d, µ), we have

∫

Bi

|u− cu|dµφ ≲

∫

Bd(x,
CA

φ(2m) r)
|u− cu|dµ

≲ diamd(Bd(x, CA
φ(2m)r))



∫

Bd(x,
CA

φ(2m) r)
gpu,ddµ




1/p

≲ ri

(∫

C2
ABi

gpu,φdµφ

)1/p

.

Here we use the estimate

diamd(Bd(x, CA
φ(2m)r)) ≈ φ(2m)−1diamφ(Bd(x, CA

φ(2m)r)) ≈ φ(2m)−1 ri

from Lemma 2.13, together with

gu,d ≈ φ(2m)gu,φ

to justify the last step. It follows that (Ωφ \ {∞}, dφ, µφ) satisfies a sub-
Whitney p-Poincaré inequality, i.e., with respect to the balls Bi. See Defini-
tion 3.4 above for these concepts. Recall that Ωφ\{∞} is a uniform domain,
see Theorem 5.2 above. Now we invoke [7, Theorem 4.4] to conclude that
(Ωφ \ {∞}, dφ, µφ) satisfies a p-Poincaré inequality with respect to all balls.
While the statement of [7, Theorem 4.4] requires that p-Poincaré inequality
be valid with respect to all balls in an ambient space containing the uniform
domain, the proof there only needed the validity of p-Poincaré inequality with

respect to the balls in the chain.

Now the remaining claims follow from [1, Proposition 7.1], for we have

that Ωφ \ {∞} ⊂ Ωφ ⊂ Ωφ
φ

= Ωφ \ {∞}
φ
. □

7. Transformation of potentials

In this section, we return to the original motivation for the problems stud-
ied in the prior sections of this paper. We assume that Ω is a unbounded
locally compact, non-complete uniform domain with bounded boundary,
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equipped with a doubling measure µ that supports a sub-Whitney p-Poincaré
inequality for some fixed 1 ≤ p < ∞. Here, of course, we extend the measure
µφ to ∂(Ωφ \ {∞}) by zero.

Recall that as a set, Ω = Ωφ \{∞}. From the results in the prior sections,
we know that (Ωφ \ {∞}, dφ, µφ) is doubling and supports a p-Poincaré
inequality; hence by [1] we know that

N1,p(Ωφ \ {∞}, dφ, µφ) = N1,p(Ωφ, dφ, µφ) = N1,p(Ωφ
φ
, dφ, µφ). (7.1)

With gu,d the minimal p-weak upper gradient of a function u ∈ N1,p(Ω, d, µ)
with respect to the original metric d, and gu,φ the minimal p-weak upper
gradient of u with respect to the metric dφ, we have the relationship

gu,φ =
1

φ ◦ dΩ
gu,d. (7.2)

It follows that ∫

Ωϕ

gpu,φ dµφ =

∫

Ω
gpu,d dµ. (7.3)

As a consequence of (7.2), we have the following proposition (see Defini-
tion 3.8 for the definition of p-harmonicity).

Proposition 7.4. A function u is p-harmonic in the metric measure space

(Ω, d, µ) if and only if it is p-harmonic in (Ωφ \ {∞}, dφ, µφ).

Also from (7.2) we obtain the following proposition.

Proposition 7.5. Let u ∈ D1,p(Ω, d, µ). Then u ∈ Lp(Ω, µφ) with
∫

Ω
|u− cu|

p (φ ◦ dΩ)p dµ ≤ C

∫

Ω
gpu,d dµ.

Here cu =
∫
Ω u dµφ. In particular, u ∈ N1,p(Ωφ, dφ, µφ).

As Ω is unbounded with respect to the metric d, we cannot conclude
that u ∈ Lp(Ω, µ). Note that with the choice of φ(t) = min{1, t−β} for
sufficiently large fixed β > 1, the above lemma is an analog of a Hardy-

Sobolev inequality with distance to ∂φΩ
d

= {∞} playing the role of distance
to the boundary. Readers interested in the topic of Hardy-Sobolev spaces
are referred to [33, Section 1.3.3], [27] (for the Euclidean setting), and [6,
Corollary 6.1] (for a metric setting) and the references therein.

Proof. Since u ∈ D1,p(Ω, d, µ), we know that the minimal p-weak upper
gradient gu,d of u in Ω, with respect to the metric d, is in Lp(Ω, µ). Then
by (7.2) above, we know that u ∈ D1,p(Ωφ \ {∞}, dφ, µφ), recalling that
Ω = Ωφ \ {∞}. Note that then u ∈ N1,p(Ωφ \ {∞}, dφ, µφ) by Remark 3.5.
From Theorem 6.3 and Theorem 4.11, we know that Ωφ \ {∞} is bounded
with respect to the metric dφ, and supports a p-Poincaré inequality with
respect to dφ and µφ. Thus, for any x ∈ Ωφ \ {∞} and for sufficiently large
R > 0, we have Ωφ \ {∞} = Bdϕ(x,R), and moreover, (Ωφ \ {∞}, dφ, µφ)
also supports the following (p, p)-Poincaré inequality, see [17, Theorem 5.1],
[20, Theorem 9.1.2]: for u ∈ N1,p(Ωφ \ {∞}, dφ, µφ), we have by (7.3) that

∫

Ωϕ\{∞}
|u− cu|

p dµφ ≤ C

∫

Ωϕ\{∞}
gpu,φ dµφ = C

∫

Ω
gpu,d dµ.
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Note that C also depends on R. Now the desired conclusion follows from
noting that, by definition, dµφ = (φ ◦ dΩ)p dµ and by using (7.1). □

As µ is doubling, there exists some Q−
µ > 0, called the lower mass bound

exponent of µ, such that

µ(Bd(x, r))

µ(Bd(y,R))
≳
( r

R

)Q−

µ

for all x, y ∈ Ω with x ∈ Bd(y,R) and 0 < r ≤ R < ∞, where the implied
constant depends only on Cµ, the doubling constant of µ, see for instance [18,
(4.16)] or [20, Lemma 8.1.13]. Moreover, as Ω is connected, there exists
Q+

µ > 0, called the upper mass bound exponent of µ, such that

µ(Bd(x, r))

µ(Bd(y,R))
≲
( r

R

)Q+
µ

for all x, y ∈ Ω with x ∈ Bd(y,R) and 0 < r ≤ R < ∞, see [3, Corollary 3.8].
Note that Q+

µ ≤ Q−
µ .

Lemma 7.6. Let 1 ≤ p < ∞, and φ(t) = min{1, t−β} for t > 0 and β > 1
such that βp > Q−

µ . For all 0 < r ≤ R < r0, where r0 is as in Section 4,

( r

R

)Q+

β
≳

µφ(Bdϕ(∞, r))

µφ(Bdϕ(∞, R))
≳
( r

R

)Q−

β
,

where Q−
β =

βp−Q+
µ

β−1 and Q+
β =

βp−Q−

µ

β−1 . Moreover, the function φ satisfies

the conditions of Definition 2.1.

Proof. Fix 0 < r < R < r0. Take non-negative integers mr and mR such
that Ωmr contains a point xr satisfying dφ(xr,∞) = r and ΩmR contains
a point xR satisfying dφ(xR,∞) = R. By Lemma 4.1 and the assumption
(2.4),

µφ(Bdϕ(∞, r))

µφ(Bdϕ(∞, R))
≈

∑∞
n=mr

φ(2n)pµ(Ωn)∑∞
n=mR

φ(2n)pµ(Ωn)
≈

(
φ(2mr)

φ(2mR)

)p µ(Ωmr)

µ(ΩmR)

=

(
2mRβ

2mrβ

)p
µ(Ωmr)

µ(ΩmR)
.

From Lemma 2.8, there exist yr ∈ Ωmr with dΩ(yr) = 2mr and yR ∈ ΩmR

with dΩ(yR) = 2mR , so that

µ(Ωmr)

µ(ΩmR)
≈

µ(Bd(yr, 2
mr))

µ(Bd(yR, 2mR))
.

As ∂Ω is bounded with respect to d, we can consider an integer upper bound
K for diamd(∂Ω). The ball Bd(yr, 2K2mr) engulfs ∂Ω and therefore also
Bd(yR, 2

mR) since from the above estimates we can conclude that 2mR ≲
2mr . Hence, by the doubling property of µ,

µ(Bd(yr, 2
mr))

µ(Bd(yR, 2mR))
≈

µ(Bd(yr, 2K2mr))

µ(Bd(yR, 2mR))
.
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Applying the upper and lower mass bound estimates for µ to this right-hand
quantity, we arrive at

(
2mr

2mR

)Q+
µ

≲
µ(Bd(yr, 2

mr))

µ(Bd(yR, 2mR))
≲

(
2mr

2mR

)Q−

µ

.

By Lemma 2.11, we have that r = dφ(xr,∞) ≈ 2mrφ(2mr) = 2mr(1−β) and
similarly for R. Therefore,

µφ(Bdϕ(∞, r))

µφ(Bdϕ(∞, R))
≳

(
2mR

2mr

)βp−Q+
µ

≈

(
R

1

1−β

r
1

1−β

)βp−Q+
µ

=
( r

R

)βp−Q+
µ

β−1
,

with the opposite relationships holding with Q+
µ replaced by Q−

µ .
The first five conditions of Definition 2.1 are clear for this choice of φ.

Condition (6) of that definition follows from Lemma 2.8. Indeed, in this case,
for n,m ∈ N with n > m > n0, we have the existence of points yn ∈ Ωn and
ym ∈ Ωm such that µ(Ωm) ≈ µ(Bd(ym, 2m)) and µ(Ωn) ≈ µ(Bd(yn, 2

n)).
Moreover, Bd(ym, 2m) intersects Bd(yn, 2

n), and so we have that

µ(Ωn)

µ(Ωm)
≲

µ(Bd(yn, 2
n))

µ(Bd(ym, 2m))
≲

(
2n

2m

)Q−

µ

,

and so
∞∑

n=m

φ(2n)p µ(Ωn) ≲
∞∑

n=m

2−βpn 2(n−m)Q−

µ µ(Ωm)

= 2−mQ−

µ µ(Ωm)

∞∑

n=m

2n(Q
−

µ −βp)

= 2−βpm µ(Ωm)
∞∑

j=0

2j(Q
−

µ −βp).

Since βp > Q−
µ , the latter series converges, and hence Condition (6) follows.

□

Proposition 7.7. Let 1 ≤ p < ∞, φ(t) = min{1, t−β} for t > 0 and β > 1
such that βp > Q−

µ , and let Q+
β , Q

−
β be as in Lemma 7.6. Let Γ be the

collection of all curves in Ωφ that are non-constant, compact, and rectifiable

with respect to the metric dφ, and ending at ∞.

(1) If p > Q−
β , then Modφ

p (Γ) > 0.

(2) If p < Q+
β or 1 < p = Q+

β , then Modφ
p (Γ) = 0.

Note that p > Q−
β if and only if p < Q+

µ , and p < Q+
β if and only if

p > Q−
µ .

Proof. We first prove (1). Fix 0 < r < R < r0, and choose a positive inte-
ger k0 such that µφ(Bdϕ(∞, R))/µφ(Bdϕ(∞, 2k0−1R)) ≤ 1/2. We begin by

showing that Modp(Bdϕ(∞, r); Ωφ \ Bdϕ(x0, R)) ≥ CRQ−

β −p for some con-
stant C > 0 that is independent of r. Since the p-modulus of the condenser
is equal to the variational p-capacity of the condenser with U = Ωφ (see Re-
mark 3.7), we will work with the latter and utilize the Poincaré inequality.
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To this end, consider a function u ∈ N1,p(Ωφ) satisfying u = 1 on

Bdϕ(∞, r) and u = 0 in Ωφ \ Bdϕ(∞, R). Then, ∞ is a Lebesgue point

of u, and so for each positive integer k setting Bk = Bdϕ(∞, 2k0−kR), we
have that

1 − uB1
= |u(∞) − uB1

| ≤
∞∑

k=1

|uBk
− uBk+1

|

≲

∞∑

k=1

2k0−kR

(∫

Bk

gpu,φ dµφ

)1/p

≲ µφ(B1)
−1/p

∞∑

k=1

(2k0−kR)
1−

Q−

β

p

(∫

Bk

gpu,φ dµφ

)1/p

,

where we used Lemma 7.6 in the last step. From the choice of k0,

uB1
=

1

µφ(Bdϕ(∞, 2k0−1R))

∫

Bk0

u dµφ ≤
µφ(Bdϕ(∞, R))

µφ(Bdϕ(∞, 2k0−1R))
≤

1

2
.

Since p > Q−
β , from the above we obtain

1

2
≤ 1 − uB1

≲ µφ(B1)
−1/pR

1−
Q−

β

p

(∫

Ωϕ

gpu,φ dµφ

)1/p

,

from where it follows that

2−p µφ(B1)R
Q−

β −p ≲

∫

Ωϕ

gpu,φ dµφ,

and, taking the infimum over all such u,

capp(Bdϕ(∞, r),Ωφ \Bdϕ(x0, R)) ≳ µφ(B1)R
Q−

β −p > 0.

Letting r → 0+, from the Choquet property of variational p-capacity (see
[3, Theorem 6.7(viii)]) we obtain

capp({∞},Ωφ \Bdϕ(x0, R)) ≳ µφ(B1)R
Q−

β −p > 0.

The result then follows from Remark 3.7.
We now move to proving (2). Fix 0 < r < R

4 < R < r0, and let nr be

the unique positive integer such that 2−nrR ≤ r < 21−nrR. Let ρ be the
function on Ωφ given by ρ(x) = 2 [nrdφ(x,∞)]−1χBdϕ (∞,R)\Bdϕ (∞,r). For

each γ ∈ Γ(Bdϕ(∞, r),Ωφ \Bdϕ(∞, R),Ωφ), we have
∫
γ ρ dsφ ≥ 1.

Setting Bk = Bdϕ(∞, 21−kR) for k = 1, · · · , nr, we see that

∫

Ωϕ

ρp dµφ ≤
nr∑

k=1

∫

Bk\Bk+1

2p

np
rdφ(x,∞)p

dµφ(x) ≤
nr∑

k=1

2(1+k)p

np
rRp

µφ(Bk \Bk+1)

since x /∈ Bk+1 implies that dφ(x,∞) ≥ 2−kR. We now estimate µφ(Bk \
Bk+1). From Lemma 2.11, it follows that Bk \ Bk+1 ⊂ Ωmk

for some non-

negative integer mk; moreover, 2−kR ≈ dφ(x,∞) ≈ 2mk(1−β) for x ∈ Bk \
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Bk+1. Thus, for some yk ∈ Ωmk
(see Lemma 2.8),

µφ(Bk \Bk+1) =

∫

Bk\Bk+1

dΩ(x)−pβ dµ ≈ 2−mkpβµ(Bk \Bk+1)

≤ 2−mkpβµ(Ωmk
) ≤ 2−mkpβµ(Bd(yk, 2

mk))

≲ 2−mkpβ(2mk)Q
−

µ

where the lower-mass bound on µ was used in the last step.
From here, we have

∫

Ωϕ

ρp dµφ ≲

nr∑

k=1

2kp

np
rRp

2mk(Q
−

µ −pβ) ≈
RQ+

β −p

np
r

nr∑

k=1

(2k)p−Q+

β . (7.8)

Recall that Q+
β =

pβ−Q−

µ

β−1 and 2mk ≈ (2−kR)
1

1−β .

If 1 < p = Q+
β , then the sum on the right-hand side of (7.8) equals nr,

and so

Modφ
p (Bdϕ(∞, r); Ωφ \Bdϕ(x0, R)) ≲ n1−p

r ≈

[
log

(
R

r

)]1−p

,

the right side of which tends to zero as r → 0+. If p < Q+
β , then the sum on

the right-hand side of (7.8) is dominated by the convergent series obtained
by summing over all positive integers k, and so

Modφ
p (Bdϕ(∞, r); Ωφ \Bdϕ(x0, R)) ≲ n−p

r ≈

[
log

(
R

r

)]−p

,

the right side of which also tends to zero as r → 0+.
In either case, it then follows that Modφ

p ({∞}; Ωφ \ Bdϕ(∞, R)) = 0.
From this it follows that the p-modulus (with respect to dφ and µφ) of the
collection of all non-constant compact rectifiable curves in Ωφ that intersect
∞ is zero as well. □

Remark 7.9. As a consequence of the above results and by [2], we have that if
u is p-harmonic in (Ω, d, µ) and p > Q−

µ or p = Q−
µ > 1, then u is p-harmonic

in (Ωφ, dφ, µφ). From [2, Proposition 7.2] it also follows that when p < Q+
µ

and the Sobolev p-capacity Capp(∂Ω) is positive, then there is a bounded p-
harmonic function in (Ωφ \ {∞}, dφ, µφ) which has no p-harmonic extension
to Ωφ.

8. Connecting potential theory on Ω to functions on ∂Ω

Let ν be a Borel regular measure on ∂Ω = ∂Ωφ and θ ≥ 0. We say that
ν is θ-codimensional to µφ if

ν(Bdϕ(ζ, r) ∩ ∂Ω) ≈
µφ(Bdϕ(ζ, r) ∩ Ωφ)

rθ

for all ζ ∈ ∂Ω and 0 < r < 2 diamdϕ(∂Ω). Note that as µφ is doubling on
Ωφ \ {∞}, we must necessarily have that ν is doubling on ∂Ω with respect
to the metric dφ (and equivalently, with respect to the metric d).
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Lemma 8.1. Assume there exists a Borel regular measure ν on ∂Ω that

is θ-codimensional to µ for some θ ≥ 0. Then, H−θ(A; Ω) ≈ ν(A) for all

A ⊂ ∂Ω.

If θ > 0, then µ̂φ(∂Ω) = 0 for any doubling measure µ̂φ on Ω
φ
φ such that

µ̂φ = µφ on Ωφ and ν(Bdϕ(ζ, r) ∩ ∂Ω) ≈
µ̂ϕ(Bdϕ (ζ,r))

rθ
for all ζ ∈ ∂Ω and

0 < r < 2 diamdϕ(∂Ω).

As both dφ and d are bi-Lipschitz equivalent on ∂Ω and µ = µφ on Ω0,

computing the codimensional Hausdorff measure H−θ of a subset of ∂Ω (as
in Definition 3.9 with U = Ω) with respect to the metric d and the measure
µ is equivalent to computing it with respect to dφ and µφ. In doing the

computation of H−θ(A; Ω), we extend the measures µ and µφ by zero to ∂Ω
so that µ(∂Ω) = 0.

Proof. We fix A ⊂ ∂Ω.
For each ε > 0 let {Bdϕ(xi, ri)} be a cover of A with ri ≤ ε and xi ∈ A.

Then
∑

i

µφ(Bdϕ(xi, ri))

rθi
≳
∑

i

ν(Bdϕ(xi, ri) ∩ ∂Ω) ≥ ν(A).

Taking the infimum over all such covers, and then letting ε → 0+, this
implies that H−θ(A; Ωφ) ≳ ν(A).

Since ν is Borel regular, it follows that for each η > 0 there is a set U ⊃ A
such that U is open in Ω and ν(U) ≤ ν(A) + η. Fix ε > 0, and consider a
cover {Bdϕ(xi, ri)} of A with ri ≤ ε/5, xi ∈ A, and Bdϕ(xi, 5ri) ⊂ U . By
the basic 5r-covering lemma as in [18, Theorem 1.2], there is a countable
pairwise disjoint subcollection {Bdϕ(xj , rj)} such that {Bdϕ(xj , 5rj)} covers
A. Then, by the doubling property of ν,

H−θ
ε (A; Ωφ) ≤

∑

j

µφ(Bdϕ(xj , 5rj))

(5rj)θ
≲
∑

j

µφ(Bdϕ(xj , rj))

rθj

≲
∑

j

ν(Bdϕ(xj , rj) ∩ ∂Ω)

= ν(
⋃

j

Bdϕ(xj , rj) ∩ ∂Ω)

≤ ν(U ∩ ∂Ω) ≤ ν(A) + η.

Letting ε → 0+, we obtain H−θ(A; Ωφ) ≲ ν(A) + η. Letting η → 0+ now
yields the desired conclusion of the first part of the lemma.

To prove the second claim of the lemma, we suppose that θ > 0 and
argue as in the above proof to obtain that for each ε > 0 and any cover
{Bdϕ(xi, ri)} of ∂Ω with xi ∈ ∂Ω and ri ≤ ε, to see that

µ̂φ(∂Ω)

εθ
≤

∑
i µ̂φ(Bdϕ(xi, ri))

εθ
≤
∑

i

µφ(Bdϕ(xi, ri))

rθi
≲ ν(∂Ω) + η,

from which we obtain that µ̂φ(∂Ω) ≲ εθ [ν(∂Ω) + η]. Letting ε → 0+ yields
the conclusion as ν(∂Ω) is finite (note that ∂Ω is bounded). □



32 GIBARA, KORTE, SHANMUGALINGAM

Proposition 8.2. Let 1 ≤ p < ∞, and assume there exists a Borel regular

measure ν on ∂Ω that is θ-codimensional to µφ for 0 < θ < p. Then, for all

ζ ∈ ∂Ω and r > 0, we have Capφ
p (Bdϕ(ζ, r) ∩ ∂Ω) > 0.

Proof. From Theorem 4.11 and Theorem 6.3 we have that Ω
φ
, equipped with

the metric dφ and the measure µφ, is doubling and supports a p-Poincaré
inequality. Note that µ = µφ on Ω0 and dφ is bi-Lipschitz equivalent to d
on Ω0 ∪ ∂Ω.

Due to Proposition 3.11, it suffices to show that H−θ(Bdϕ(ζ, r)∩∂Ω) > 0.

From Lemma 8.1, H−θ(Bdϕ(ζ, r) ∩ ∂Ω) ≈ ν(Bdϕ(ζ, r) ∩ ∂Ω), which must be
positive because ν is doubling. □

Recall that the space D1,p(Ω, d, µ) consists of measurable functions on Ω
which have an upper gradient in Lp(Ω, µ). This space is naturally equipped
with the seminorm ∥u∥D1,p(Ω,d,µ) := ∥gu,d∥Lp(Ω,µ); note from (7.2) that
∥gu,d∥Lp(Ω,µ) = ∥gu,φ∥Lp(Ωϕ,µϕ).

Proposition 8.3. Let 1 ≤ p < ∞, and assume there exists a Borel regular

measure ν on ∂Ω that is θ-codimensional to µ for 0 < θ < p. For every

u ∈ D1,p(Ω, d, µ) there exists Tu ∈ B
1−θ/p
p,p (∂Ω, ν) such that

lim
r→0+

∫

Bd(ζ,r)∩Ω
|u(x) − Tu(ζ)| dµ(x) = 0 (8.4)

for ν-a.e. ζ ∈ ∂Ω. Moreover, the operator u 7→ Tu is bounded from

D1,p(Ω, d, µ) to B
1−θ/p
p,p (∂Ω, ν).

Recall that since ∂Ω is bounded, B
1−θ/p
p,p (∂Ω, ν) ⊂ Lp(∂Ω, ν).

Proof. By Lemma 7.5 and (7.1), it suffices to look at u ∈ N1,p(Ωφ, dφ, µφ).
Since Ωφ is a uniform domain with compact closure (see Proposition 4.12), it

follows from Proposition 3.13 that there exists Tu ∈ B
1−θ/p
p,p (∂Ω, ν) satisfying

lim
r→0+

∫

Bdϕ (ζ,r)∩Ωϕ

|u(x) − Tu(ζ)| dµφ(x) = 0 (8.5)

for ν-a.e. ζ ∈ ∂Ω and ∥Tu∥
B

1−θ/p
p,p (∂Ω,ν)

≲ ∥u∥D1,p(Ωϕ,dϕ,µϕ) = ∥u∥D1,p(Ω,d,µ).

For ζ ∈ ∂Ω and for sufficiently small r > 0, we have that µφ = µ on
Bd(ζ, r) which is bi-Lipschitz equivalent to Bdϕ(ζ, r). Therefore, (8.5) is
equivalent to (8.4). □

We now turn our attention to proving an Adams-type inequality on Ωφ
φ

with respect to the measure ν supported on ∂Ω.

Remark 8.6. From Theorems 4.11 and 6.3, it follows that (Ωφ
φ
, dφ, µφ) is

doubling and supports a p-Poincaré inequality. Hence by [25] (see also [20,

Theorem 12.3.9]), (Ωφ
φ
, dφ, µφ) also supports a p̃-Poincaré inequality for

some 1 ≤ p̃ < p.

In the following, Q−
µϕ

is the lower mass bound for the measure µφ.
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Theorem 8.7. Let 1 < p < ∞, and assume there exists a Borel regular

measure ν on ∂Ω that is θ-codimensional to µφ with 0 < θ < p < Q−
µϕ

, and

let q > p be a real number given by

θ = −
Q−

µϕ
q

p
+ Q−

µϕ
+

q

p̃
,

where 1 ≤ p̃ < p is from Remark 8.6. Then for every u ∈ N1,p(Ωφ
φ
, dφ, µφ)

and ball Bdϕ ⊂ Ωφ
φ
,

inf
c∈R

(∫

Bdϕ

|u− c|q dν

)1/q

≲
raddϕ(Bdϕ)1−θ/q

µφ(Bdϕ)1/p−1/q

(∫

2Bdϕ

gpu,φ dµφ

)1/p

.

In particular,

inf
c∈R

(∫

∂Ω
|u− c|q dν

)1/q

≲
diamdϕ(Ωφ)1−θ/q

µφ(Ωφ)1/p−1/q

(∫

Ωϕ

gpu,φ dµφ

)1/p

.

Proof. Fix a ball Bdϕ := Bdϕ(y, r) ⊂ Ωφ
φ

and u ∈ Lip(Ωφ
φ
). Since Ωφ

φ
is a

compact length space, it follows that it is a geodesic space, and compactness
implies that u is a bounded continuous function. Moreover, it satisfies a p̃-
Poincaré inequality by Remark 8.6. Hence, setting

u2Bdϕ
:=

∫

2Bdϕ

u dµφ,

it follows from [18, Theorem 9.5] that

|u(x) − u2Bdϕ
|p̃ ≲ rp̃−1I2Bdϕ

(gp̃u,φ)(x)

for x ∈ Bdϕ , where I2Bdϕ
is the Riesz potential, see Definition 3.14.

Integrating and using Proposition 3.15 with p̄ = p
p̃ and q̄ = q

p̃ yields

(∫

Bdϕ

|u− u2Bdϕ
|q dν

)1/q

=

(∫

Bdϕ

(|u− u2Bdϕ
|p̃)q/p̃ dν

)1/q

≲ r
p̃−1

p̃



(∫

2Bdϕ

I2Bdϕ
(gp̃u,φ)q/p̃ dν

)p̃/q



1/p̃

≲ r
p̃−1

p̃
+

Q−

µϕ
p

−
Q−

µϕ
q µφ(2Bdϕ)1/q−1/p



(∫

2Bdϕ

(gp̃u,φ)p/p̃ dµφ

)p̃/p



1/p̃

≲ r
p̃−1

p̃
+

Q−

µϕ
p

−
Q−

µϕ
q µφ(Bdϕ)1/q−1/p

(∫

2Bdϕ

gpu,φ dµφ

)1/p

.

The result follows from the density of the Lipschitz functions in N1,p(Ωφ
φ
),

see, for example, [20, Theorem 8.2.1]. □

The above Adams-type inequality also gives us a way to link traces, to
∂Ω, of Dirichlet-Sobolev functions on Ω, and through this, we will see next
that the relative capacities of compact subsets of ∂Ω are governed by the
ν-measure of those subsets. As a consequence of the above Adams-type
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inequality, we have the following corollary giving us a lower bound on relative
capacities of subsets of ∂Ω.

Given a domain Ω and a point x ∈ ∂Ω, the point x is called a regular

point for the domain if for each continuous function f : ∂Ω → R we have

lim
Ω∋y→x

HΩf(y) = f(x),

where HΩf is the Perron solution to the Dirichlet problem of finding p-
harmonic functions on Ω with trace f . We refer the interested reader to [3,
Chapter 10–11] or [5] for more on classification of boundary points and
Perron solutions.

Corollary 8.8. Let 1 < p < ∞. For each 0 < r ≤ min{1, diamdϕ(∂Ω)}/2
and ζ ∈ ∂Ω, we have

ν(Bdϕ(ζ, r) ∩ ∂Ω) ≲ rp−θ capφ
p (Bdϕ(ζ, r) ∩ ∂Ω, Bdϕ(ζ, 2r)).

Consequently, as 0 < θ < p, then each point of ∂Ω is a regular point for the

domain Ωφ.

Recall that µφ is doubling, and Ωφ
φ

is connected, and so we have a reverse
doubling property: there is a positive constant c < 1 such that for all x ∈
Ωφ

φ
and 0 < r < 1

2 diamdϕ(Ωφ), we have µφ(Bdϕ(x, r)) ≤ c µφ(Bdϕ(x, 2r)).

Proof. Fix ζ and r as in the statement of the corollary. Let u ∈ N1,p(Ωφ, dφ, µφ)
such that u = 1 on Bdϕ(ζ, r) ∩ ∂Ω, 0 ≤ u ≤ 1 on Ωφ, and u = 0 on
Ωφ \Bdϕ(ζ, 2r). Then,

ν(Bdϕ(ζ, r) ∩ ∂Ω)1/q ≤

(∫

Bdϕ (ζ,r)
uq dν

)1/q

≤

(∫

Bdϕ (ζ,4r)
uq dν

)1/q

≲

(∫

Bdϕ (ζ,4r)
|u− uBdϕ (ζ,4r)|

q dµ

)1/q

≲ r1−θ/qµφ(Bdϕ(ζ, 4r))1/q−1/p

(∫

Bdϕ (ζ,2r)
gpu,φ dµφ

)1/p

.

In obtaining the penultimate inequality, we used Hölder’s inequality and the
reverse doubling property of µφ, while in the ultimate inequality we used
Theorem 8.7 applied to Bdϕ(ζ, 4r) and the doubling property of µφ. Now an
application of the codimensionality relationship between ν and µ together
with the fact that for r < 1/2 the measure µφ = µ, and then taking the
infimum over all such u on the right-hand side, yields the desired inequality.

To verify the second claim of the corollary, we use the results of [6]. Note
that from [3], for each ζ ∈ ∂Ω and r > 0, we have

capφ
p (Bdϕ(ζ, r), Bdϕ(ζ, 2r)) ≈

µφ(Bdϕ(ζ, r))

rp
.
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So if 0 < r < 1/2, then using the codimensionality of ν with respect to µ
(and hence µφ), we see that

capφ
p (Bdϕ(ζ, r), Bdϕ(ζ, 2r)) ≈

ν(Bdϕ(ζ, r) ∩ ∂Ω)

rp−θ

≲ capφ
p (Bdϕ(ζ, r) ∩ ∂Ω, Bdϕ(ζ, 2r)).

Thus, ∂Ω is uniformly p-fat with respect to the domain Ωφ, that is,

capφ
p (Bdϕ(ζ, r) ∩ ∂Ω, Bdϕ(ζ, 2r))

capφ
p (Bdϕ(ζ, r), Bdϕ(ζ, 2r))

≳ 1,

and so by the results in [6, Theorem 5.1] the conclusion follows. □

9. Effect on the Dirichlet problem for (Ω, d, µ)

Now we have the tools necessary to verify Theorem 1.2. We split the
proof into two theorems below.

To show existence of solutions to a Dirichlet problem for bounded domains
can be done via the direct method of calculus of variations: any sequence of
functions, with the same boundary value, and with p-energy converging to
the infimum of the p-energies of the class of all Dirichlet-Sobolev functions
satisfying the fixed boundary conditions is done by first showing that this
sequence is bounded in the Sobolev class (which is reflexive), and this in turn
is accomplished by using the Poincaré inequality, as the domain is bounded
and hence sits inside a large ball to which the Poincaré inequality can be
applied. See [34] for details regarding this method in the setting of metric
spaces. When the domain is unbounded however, this method cannot work.

In this final section of the paper, we use the tools developed in the previous
two sections to study existence and uniqueness issues related to solutions
to the Dirichlet problem regarding p-harmonic functions on an unbounded
domain whose boundary is bounded. In [16] a Perron method from [5]
was adapted to solve the Dirichlet problem corresponding to continuous
boundary data on unbounded domains that were p-parabolic. As in [22], an
unbounded domain Ω is p-parabolic if Modp(Γ∞) = 0, where Γ∞ consists

of all locally rectifiable curves in Ω that leave every compact subset of Ω
d
.

Note that in our setting, curves in Γ∞ are the restriction to Ω of the curves
in Γ studied in Proposition 7.7, and so by (7.2), the domain Ω is p-parabolic
in the sense of [16] if and only if Modφ

p (Γ) = 0. The domain is said to be
p-hyperbolic if it is not p-parabolic.

The following theorem extends the result of [16] to boundary data in
Besov classes.

Theorem 9.1. Let 1 < p < ∞, (Ω, d, µ) be a doubling metric measure space

satisfying a p-Poincaré inequality such that (Ω, d) is a locally compact, non-

complete, unbounded uniform domain with bounded boundary, and ν a Borel

regular measure that is θ-codimensional with respect to µ for some 0 < θ < p.

Suppose that Ω is p-parabolic. Then, for every f ∈ B
1−θ/p
p,p (∂Ω, ν), there

is a unique function u ∈ D1,p(Ω, µ) such that

• u is p-harmonic in (Ω, d, µ),
• Tu = f on ∂Ω ν-a.e..
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Proof. Recall from Proposition 7.5 that

D1,p(Ω, d, µ) = N1,p(Ωφ, dφ, µφ).

Hence it suffices to find a function u ∈ N1,p(Ωφ, dφ, µφ) that is p-harmonic
in (Ωφ, dφ, µφ), for p-harmonicity in this metric measure space implies p-
harmonicity in the original metric measure space (Ω, d, µ) thanks to Propo-
sition 7.4.

Since f ∈ B
1−θ/p
p,p (∂Ω, ν), and this Besov space is the trace space of

N1,p(Ωφ) by the proof of Proposition 8.3, and as Capφ
p (∂Ω) > 0 by Propo-

sition 8.2, the direct method of calculus of variations as described in the
comment before the statement of the theorem applies; note that we also
have (Ωφ, dφ, µφ) is doubling and supports a p-Poincaré inequality. Thus
there is a function u ∈ N1,p(Ωφ, dφ, µφ) that is p-harmonic in Ωφ with re-
spect to the metric dφ and the measure µφ, such that Tu = f .

Now suppose that v is also a p-harmonic function in (Ω, d, µ) with Tv = f .
We also have that v is p-harmonic in Ωφ \ {∞} by Proposition 7.4. As
Capφ

p ({∞}) = 0 by the assumption of p-parabolicity, it follows from [2] (see
Remark 7.9 above) that v is p-harmonic in Ωφ. By the uniqueness of solu-
tions to Dirichlet problem in (Ωφ, dφ, µφ) (see [34]), we see that necessarily
v = u in Ωφ and hence in Ω. This demonstrates the uniqueness of the
solution. □

Theorem 9.2. Let 1 < p < ∞, (Ω, d, µ) be a doubling metric measure space

satisfying a p-Poincaré inequality such that (Ω, d) is a locally compact, non-

complete, unbounded uniform domain with bounded boundary, and ν a Borel

regular measure that is θ-codimensional with respect to µ for some 0 < θ < p.

Suppose that Ω is p-hyperbolic. Then, for every f ∈ B
1−θ/p
p,p (∂Ω, ν), there

is a function u ∈ D1,p(Ω, µ) such that

• u is p-harmonic in (Ω, d, µ),
• Tu = f on ∂Ω ν-a.e.,
• limΩ∋y→∞ u(y) exists as a real value.

In the above theorem, by limΩ∋y→∞ u(y) we mean a real number τ such
that for some (and hence each) x0 ∈ Ω, for each ε > 0 we can find R > 0
such that |u(y) − τ | < ε whenever y ∈ Ω with d(x0, y) > R.

Proof. As in the proof of Theorem 9.1, we see that solutions do exist, but
unlike in that theorem, we do not have uniqueness. However, as Ω is p-
hyperbolic, we have that Capφ

p ({∞}) > 0. Let v be any such p-harmonic

solution; then v ∈ N1,p(Ωφ, dφ, µφ) by Proposition 7.5. Thus, extending

f ∈ B
1−θ/p
p,p (∂Ω, ν) to ∞ by setting

f(∞) := lim
r→0+

∫

Bdϕ (∞,r)
v dµφ,

and noting that p-capacity almost every point is a Lebesgue point of v
(see [20, Theorem 9.2.8]), the above extension is well-defined. Thus v solves
the Dirichlet problem on (Ωφ \ {∞}, dφ, µφ) with boundary data as the
extended function f , with f continuous at (and hence, as ∞ is an iso-
lated point of ∂[Ωφ \ {∞}], in a neighborhood of) ∞. By Corollary 8.8, we



DIRICHLET PROBLEM ON UNBOUNDED DOMAINS 37

know that ∞ is a regular point for the domain (Ωφ \ {∞}, dφ, µφ). Hence
limΩ∋y→∞ v(y) = f(∞) exists. □

We in fact obtain more; if v and u are both solutions to the original
problem, and if limΩ∋y→∞ v(y) = limΩ∋y→∞ u(y), then necessarily v = u in
Ω by the uniqueness of solutions to Dirichlet problem in (Ωφ \ {∞}, dφ, µφ)
with boundary data on ∂[Ωφ \ {∞}] = ∂Ω ∪ {∞}. Moreover, of all the
solutions to the Dirichlet problem on Ω with boundary data f , there is only
one solution that is also a solution in the domain Ωφ with respect to the
metric dφ and the measure µφ.

10. Some illustrative examples

In this section, we consider some examples.

Example 10.1. Let Z = [−1, 1] × [0,∞), equipped with the restriction of
the Euclidean metric and the 2-dimensional Lebesgue measure from R

2, and
Ω = [−1, 1] × (0,∞). Then ∂Ω = [−1, 1] × {0} is bounded. We have that
the measure on Z is doubling and supports the strongest of all Poincaré
inequality, the 1-Poincaré inequality. Moreover, Ω is a uniform domain that
is also unbounded. For β > 1, with the choice of φ(t) = min{1, t−β} for
t > 0, the domain Ω is transformed into Ωφ = Ω ∪ {∞}. Note that in
the proof of Proposition 7.7, we need only consider the indices Q−

µ and

Q+
µ corresponding to large values of r and R; and in this case, we can set

Q−
µ = Q+

µ = 1, though when considering all scales of r, we have Q−
µ = 2

and Q+
µ = 1. So reading the hypotheses of Proposition 7.7 in this setting,

when 1 = Q±
µ < p, we are in the case (2) of the proposition, and then

Modφ
p (Γ) = 0. It follows that Ω is p-parabolic, and the solution to the

Dirichlet problem on Ω is unique. Note that ν = H1|[−1,1]×{0} has co-
dimensional relation with respect to the 2-dimensional Lebesgue measure at
scales 0 < r ≤ R0 with θ = 1. Solutions to the Dirichlet problem satisfy a
homogeneous Neumann condition on the half-lines {±1}× (0,∞) when seen
as a function on (−1, 1) × (0,∞). For p > 1 = θ, the Dirichlet problem is
always solvable, and the solution is unique.

Example 10.2. Z := {(x, y) ∈ R
2 : y ≥ max{0, |x|−1}} again be equipped

the restriction of the Euclidean metric and Lebesgue measure from R
2, and

Ω = Z \ [−1, 1] × {0}. In this case, at all scales of r and R, we have
Q−

µ = Q+
µ = 2, and Ω is p-parabolic when p ≥ 2 and is p-hyperbolic when

1 ≤ p < 2. Moreover, we again have θ = 1. Here solutions to the Dirichlet
problem on Ω satisfy a homogeneous Neumann condition on the rays {(x, x−
1) : x > 1} and {(x, 1−x) : x < −1}. Here, for p > 1 the Dirichlet problem
is always solvable, but the solution is unique only when p ≥ 2.

On the other hand, if, with Z as above, we have Ω = Z \K × {0} with
K the standard 1/3-rd Cantor set, then again Ω is a uniform domain that
is p-parabolic when p ≥ 2 and p-hyperbolic when 1 ≤ p < 2, but now with
ν the log 2

log 3 -dimensional Hausdorff measure supported on K × {0} = ∂Ω, we

have that θ = 2 − log 2
log 3 > 1. In this case, the Dirichlet problem is always

solvable when p > 2 − log 2
log 3 , but the solution is unique only when p ≥ 2.
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Solutions to the Dirichlet problem on Ω satisfy the homogeneous Neumann
condition on the two above-mentioned rays, but in addition, they also satisfy
that Neumann condition on ([−1, 1] \K) × {0}.

In contrast to the above examples, the domain Ω = {(x, y) ∈ R
2 : |y| >

max{0, |x| − 1}} ∪ (−1, 1) × {0}, considered as a domain in Z = R
2, is not

a uniform domain and hence the mechanisms developed in this paper do
not apply to such Ω. However, from the fact that this domain is obtained
by gluing two copies of the second example domain along their common
boundary, we see that Ω is p-hyperbolic precisely when 1 ≤ p < 2, and this
example indicates that Ω should have a two-point compactification rather
than the one-point compactification considered here. We will not address
this issue further in the present paper.

Example 10.3. With Z = R
2 equipped with the 2-dimensional Lebesgue

measure and the Euclidean metric, let Ω = Z \ (K × K), where K is the
standard 1/3-rd Cantor set. Then Ω is a uniform domain, and it is p-
hyperbolic precisely when 1 ≤ p < 2. In this case, ν is the restriction,
to ∂Ω = K × K, of the log 2

log 3 -dimensional Hausdorff measure; thus θ =

2[1− log 2
log 3 ] < 1. In this case the Dirichlet problem is solvable for each p > 1,

but the solution is unique only for p ≥ 2.
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