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ABSTRACT. In this paper, we solve the p-Dirichlet problem for Besov
boundary data on unbounded uniform domains with bounded bound-
aries when the domain is equipped with a doubling measure satisfying a
Poincaré inequality. This is accomplished by studying a class of transfor-
mations that have been recently shown to render the domain bounded
while maintaining uniformity. These transformations conformally de-
form the metric and measure in a way that depends on the distance to
the boundary of the domain and, for the measure, a parameter p. We
show that the transformed measure is doubling and the transformed do-
main supports a Poincaré inequality. This allows us to transfer known
results for bounded uniform domains to unbounded ones, including trace
results and Adams-type inequalities, culminating in a solution to the
Dirichlet problem for boundary data in a Besov class.
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1. INTRODUCTION

In studying Dirichlet and Neumann boundary-value problems on domains
in metric measure spaces of bounded geometry, existence of the solution
via the direct method of the calculus of variations requires that we are
able to bound the LP-norm of a Sobolev function on the domain (with zero
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boundary values) by the Sobolev energy norm of the function, thus ensuring
the boundedness in the Sobolev norm of an energy minimizing sequence of
Sobolev functions in the domain. When the domain is a bounded uniform
domain, this is always possible thanks to the Poincaré inequality, for we
can then envelop the domain in a sufficiently large ball. Bounded uniform
domains play a central role in potential theory as many of the classical
results about Dirichlet problems on smooth Euclidean domains hold for
such domains in metric measure spaces. In particular, they are extension
domains for several function spaces [7, 35| and traces, to the boundary, of
Sobolev-class functions on the domain belong to certain Besov classes [32]
of functions on the boundary. However, when the domain, albeit uniform,
is not bounded, these properties might not hold. Therefore, it is beneficial
to have a transformation of the domain into a bounded uniform domain.

One such transformation is sphericalization as defined in the work of [§],
which transforms an unbounded metric space X into a bounded metric space
whose completion is topologically its one-point compactification. A gener-
alization of the familiar stereographic projection, sphericalization has been
used in the study of quasiconformal geometry, including the study of quasi-
Mobius maps and Gromov hyperbolic spaces, see for example [9, 10, 21, 29,
37]. Sphericalization is known to preserve many desirable properties of the
metric space X, see for example [12, 13]|. In particular, if X is a uniform
domain (or a uniform space, in the language of [8]), then its sphericalization
is also a uniform domain, see [10].

On the other hand, sphericalization distorts the metric of X everywhere,
including near its boundary if X is not complete. This poses a problem if
one is interested in gaining information about, or preserving the geometry
of, the boundary of the original unbounded domain X when 90X = X \ X
itself is bounded, for example as in [11]. This issue was addressed in [15],
where a class of transformations was identified such that unbounded uni-
form domains are transformed to bounded uniform domains in such a way
that the inner length metric is not perturbed, locally, near the boundary.
The purpose of the present paper is to explore potential theory on these
transformed domains, with the view of applying this in ongoing work on
boundary-value problems on unbounded domains.

The setting: We consider a locally compact, non-complete metric space
(Q,d), equipped with a doubling measure p, and supporting a Poincaré
inequality, at least for balls with radius at most some fixed constant times the
distance from its center to the boundary. We assume that €2 is unbounded
and is uniform in its completion Q with bounded boundary 9Q := Q\ Q,
and we fix a monotone decreasing continuous function ¢ : (0,00) — (0, 00)
that will act as a dampening function, see Definition 2.1 for the specific
assumptions on . As 2 is a uniform domain, it is rectifiably connected,
that is, pairs of points in ) can be connected by curves in §2 of finite length.
As such, we may use ¢ to construct a new metric d, on €) by setting

dy(x,y) := inf /gpon ds,
Ty
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with the infimum ranging over all rectifiable curves in 2 with end points
z,y € Q. Here, [ hds:= [ h(y(-))ds is the path integral with respect to
the arc-length parametrization of the rectifiable curve -, see for example [20,
Chapter 5], and dq is defined by do(x) = dist(z,02). We fix 1 < p < o0
and also construct a new measure f, supported on €2, absolutely continuous
with u, with Radon-Nikodym derivative ¢(dq(x))P.

In [15], it was shown that Q, := QU 90"\, where A” is the completion
of A C Q with respect to the metric d,, differs from 2 by one point, which
we denote by co. The transformed space (£, d,) was shown to be uniform
in its completion and to have boundary 0§}, = 9. Moreover, d, and d
are uniformly locally bi-Lipschitz near 0€2. The present paper begins by
showing the following (see Theorems 4.11 and 6.3).

Theorem 1.1. The metric measure space (S, dy, i) is doubling and sup-
ports a p-Poincaré inequality.

In the process of proving the above theorem, we verify that Q,\{oo} is also
a uniform domain (see Theorem 5.2), supplementing the results from [15].

With these tools in hand, in Sections 7 and 8 we proceed to study potential
theory on the domain €2,. We show that a function is p-harmonic on (2, d, ;1)
if and only if it is p-harmonic on (€2, \ {oo}, d,, ity,). Furthermore, when p
is sufficiently large and ¢(t) = min{1,¢+=?} for t > 0 and some fixed large
enough £ > 1, p-harmonic functions on (€2, \ {00}, dy, ) can be extended
to become p-harmonic on all of (£,,d,, ). We show in Proposition 7.7
that when the index p is small, the p-capacity of {oco} is zero; but if p is
sufficiently large, then the p-capacity of {oco} is positive. We also show that
when the measure on 0 satisfies a codimensionality condition with respect
to u, the trace class of the Dirichlet-Sobolev space D'P(Q,d, ) is a Besov
space of functions on 0f2, see Proposition 8.3, and an Adams-type inequality
holds for the measure on 9 and functions in DYP(Q, d, i), see Theorem 8.7.
Interestingly, it turns out that under this codimensionality condition for the
boundary, each (relative) ball in 90 has positive p-capacity in STPQO, see
Proposition 8.2.

Using the potential theory developed in Sections 7 and 8, we obtain the
following culminating theorem regarding the Dirichlet problem in Section 9.
In what follows, the boundary data f is taken to be in the Besov space B;;,a/ P
on the boundary 9€) with respect to a codimensional measure v, see Defini-
tion 3.12 for the definition of the Besov space and Proposition 3.13 regarding
the trace operator T acting on the Dirichlet-Sobolev space D (), u); for
the description of D', we refer the reader to the paragraph before Defini-
tion 3.4 below.

Theorem 1.2. Let 1 < p < oo and v be a measure on O0S) that is 0-
codimensional with respect to the measure p on € with 0 < 0 < p, as de-
scribed at the beginning of Section 8. Let [ € B;,;G/p(asz, v). Then there is
a function u € DYP(Q, i) such that

e u is p-harmonic in (,d, ),
o Tu=f on 0N v-a.e..
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If Q) is p-parabolic, then the solution u is unique. If Q is p-hyperbolic, then
for each solution u of the problem we have limgsy o0 u(y) exists; this limit
uniquely determines the solution.
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2. CONSTRUCTION OF THE TRANSFORMATION OF METRIC AND MEASURE

Let (€2, d) be an unbounded, locally compact, non-complete metric space
such that Q is a uniform domain in its completion . A uniform domain
is one for which there exists a constant Cy > 1 satisfying the following
property: for each x,y € Q with x # y, there is a uniform curve with end
points x and y, that is, a curve v such that

e the length (with respect to the metric d) of the curve v satisfies

ta(y) < Cyd(z,y),
e for each z in the trajectory of 7, we have

min{Ca(r[, 1), Ca([2,9])} < Cur ().

Here, for two points w1, ws in the trajectory of -, we represent each segment
of v with end points wy, wy by y[wi, ws]. Moreover, do(z) := dist(z, 9f2) for
r €, and 00 = Q\ Q.

Throughout this paper, we set ng to be the smallest integer such that

om0l < Oy < 2M0,

We will also assume that 92 is bounded, that p is a doubling Radon measure
supported on Q with doubling constant C,, > 1, and that (€2, d, u) supports
a sub-Whitney p-Poincaré inequality for some fixed 1 < p < 00, see Section 3
for the definitions.

The notation A < B will be used to mean that there exists a constant
C > 0, depending only on structural data, such that A < CB; furthermore,
the notation A =~ B means that A < B and A 2 B.

Definition 2.1. In this paper, we fix a monotone decreasing continuous
function ¢ : (0, 00) — (0, 1] such that the following hold:

(1) ¢(t) =1 when 0 <t <1.
(2) We have

/ ot dt < oo, (2.2)
0



DIRICHLET PROBLEM ON UNBOUNDED DOMAINS 5

(3) There is a constant C, > 1 for which we have p(t) < C, p(2t) for
all ¢ > 0 (that is, ¢ satisfies a reverse doubling condition).

(4) There is some 7 > 2 such that ¢(t) > 7¢(2t) (thus requiring Cy, > 2,
as well).

(5) For all positive integers m, we have

oo
27p(2™) < ) 2"p(2") S 2" (2™) (2.3)
n=m
(and, indeed, this condition follows from Condition (4) above, but
we list it here for it is used extensively in this paper).
(6) For all positive integer m,
o0
PP () <Y 02N i(0) S (27 (), (2.4)
n=m
where, for n > 0,
Qpi={recQ: 2" <do(x) <2"}.

The last condition is needed in order to know that u,, is finite and dou-
bling, see below for the definition of u,. Examples of functions ¢ satis-
fying all the necessary conditions include ¢(t) = min{l,t7%} or p(t) =
min{1,¢% log(e — 1 +t)} for some sufficiently large fixed 3 > 1 depending
on p and the doubling property of u (see the condition on § in Lemma 7.6).

Construction: For 1 < p < oo, we wish to transform the geometry of 2
by weighting both the metric and the measure on 2 using ¢ in the following
way.

We transform the metric d on € into d, by setting

dp(x,y) :=inf Lo(7) := igfLw(dn(v(t))) dt

with the infimum ranging over all rectifiable curves v in Q with end points
z and y in 2. Note that  is rectifiably connected as it is uniform. The
notation By, and By will be used for balls taken with respect to the metric
d, and d, respectively. All balls will be assumed to come with a prescribed
center and radius.

The measure p on (2 is transformed into the measure ., absolutely con-
tinuous with respect to p, with

dpp () = p(da(z))” dp.
Note that ., depends not only on ¢ but also on the choice of p; however,
1 < p < o is fixed and we suppress the dependence on p in the notation.
We credit [4] for the idea of considering transformations of measures that
are allowed to depend on p.

Now we have two identities for €2; namely, (2, d, u) and (€2, d,, jt,). Con-
sider the set Q, := QU 8Q¢\8Q, where the completion is taken with respect
to d, and 9 := Q\ Q. In [15], it was shown that there is only one point in
Q,\Q, which we denote by co. Moreover, 0§, = 02 and (€, d,,) is uniform
in its completion. In [15], the uniform domain properties of the transformed
domain 2, were studied; many of the tools developed there will be used in
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the present paper. The goal of this paper is to investigate properties related
to pe, and apply these properties to the study of potential theory and the
Dirichlet problem on unbounded uniform domains with bounded boundaries.

Basic Lemmas: We now recall some preliminary lemmas from [15] as well
as some simple consequences that will be useful throughout the paper. In
what follows, we very often break up {2 into bands in the following way.

Definition 2.5. We set
Qo :={x €N : do(z) <1},
and for positive integers n we set
Qpi={recQ: 2" <dg(x) <2"}.
Note that Q = J,,5q Q-

Since STP@ is compact, see Proposition 4.12, we have that (), is locally
compact, and hence a simple topological argument gives the following lemma.

Lemma 2.6. Let x € Q,, for some positive integer m. Then there is a
geodesic in Q,, with respect to the metric d,, connecting x and oo.

As a consequence of the above lemma, we can show that every pair of
points in |J,,~; 2, can be connected in €2, by a d,-geodesic curve.

We next show that 9 being bounded implies that consecutive bands
have comparable measure. This follows from the fact that each band has
bounded diameter. Indeed, setting L = diamg(0f), it follows from the
triangle inequality that 2"~! < diamg(£2,) < 2"*! + L for each non-negative
integer n, and so we can find a constant Cy, > 0 such that

Cpt2m < diamg(Q,) < Cp 2" (2.7)

Lemma 2.8. Let n be a non-negative integer. Then there exists a constant
Co > 0 such that

CO_1 () < pu(Qnt1) < Co (), (2.9)

where Cy depends solely on the doubling constant of u and the constant Cp.
Moreover, there exists a yn, € Qy, such that u(Qy) ~ u(Ba(yn,2")).

Proof. Take z € Q11 for which dg(z) = 32" and 7 a uniform curve with
respect to the metric d with one end point in 92 and the other at x. The
existence of such a curve is guaranteed by the uniformity of 2 with respect
to d. We can then find ¥, in the trajectory of v so that y, € €, with

da(yn) = 2", and so, by (2.7) and the doubling property of p,
1(€) < p(Ba(yn, CL2")) < w(Ba(yn,2")) < m(Ba(z,2"/CL)) < 1(Qnt1).

A similar argument gives us the opposite direction. U

Lemma 2.10 (Lemma 2.10 of [15]). Let x € Q,, for some integer m > no+2.
Then
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Thanks to the above lemma, we know that (€, d,) is bounded. Under the
additional conditions imposed on ¢ in this paper (in particular, conditions
(3) and (5) in Definition 2.1 above) as compared to [15], we obtain the
following.

Lemma 2.11. There exists a constant k > 1 such that for all non-negative
integers m and x € Q,, we have

KTE2M(2™) < dy(x,00) < K 2™p(2™).
Here k depends only on Cy,Cy, and the implied constant from (2.3).

Proof. We begin by assuming that m > ng+ 2 and show that it follows from
Lemma 2.10 that

do(w,00) & > 2" p(2"), (2.12)

where the implicit constants depend only on Cy, Cy, and ng. Indeed, since
¢ is decreasing and satisfies Condition (3) of Definition 2.1, it follows that

m—1
> 2%(2") < ne2" (2 T) < DO ame(2m),
n=m-—ng
and so

o n o

S 2mp(em) < 500;}02%(27”) + ) 2mp(27)
n=m-—ngo n=m

n o
< [700;}0 + 1} 3 2mo(2n).
n=m
Similarly,

oo C o0
n n ¥ m n

D 2@ <2 Y 2Me(2Y),

n=m n=m+1
and so (2.12) follows from Lemma 2.10. The desired result then follows from
(2.3).

Finally, if m < ng + 1, then 1 > dy(z,00) 2 ¢©(2"%2) 2" and so again

the above inequality holds even if m < ng + 1. O

Lemma 2.13 (Lemma 2.8 of [15]). Let x € Q,, for some non-negative
integer m. There exist constants Cy > 1 and 0 < ¢ < 1, depending solely
on Cy, and Cy, such that if y € Q satisfies dy(x,y) < cp(2™) 2™, then

Chle(2™) d(z,y) < do(z,y) < Cap(2™) d(z,y).

3. BACKGROUND RELATED TO METRIC MEASURE SPACES

In this section, we give the definitions of the notions associated with
measures and first order calculus in metric measure spaces. Namely, we give
the definition of doubling measures, first-order calculus on metric measure
spaces using the approach of upper gradients, and then discuss associated
Poincaré inequalities. We also discuss moduli of families of curves, and
variational capacities related to the first-order calculus.
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In this section we let U be an open and connected subset of a complete
metric measure space (Z,dz, puz). In the rest of the paper, U will stand at
various points for Q, Q, QU{oc}, or QU{oc}, while dz stands in for either the
original metric d or the transformed metric d,, and pz stands in for either
the original measure p or the transformed measure p,. Observe that as the
completion € of € is the metric space in which € is a subset, necessarily
is open in the topology of . Moreover, as (2 is locally compact, it follows
that Q is also open in the topology of Q.

Recall that 1 < p < oo is fixed throughout the paper.

Definition 3.1. We say that uz is a locally uniformly doubling measure on
U if pz is a Radon measure and there is a constant Cy; > 1 and for each
x € U there exists r; > 0 such that whenever 0 < r < r, we have

0<pz(B(z,2r)NU) < Cquz(Blx,r)NU) < oo.

If there is some constant A > 1 such that we can choose r, = % dist(z, 9U),
then we say that pz is sub-Whitney doubling on U. We say that pyz is
doubling on Z if U = Z and r, = oo for each x € U. Note that if py is
doubling on Z, then whenever U C Z is an open set with OU # (), we must
have that pyz is sub-Whitney doubling on U. A ball B(z,r) with z € U is
said to be a sub-Whitney ball if 0 < r < % dist(z, U).

A metric measure space (Z,dz, pz) with a doubling measure is a doubling
metric space, that is, there exists some positive integer NV such that for each
r > 0and 29 € Z, and for each A C B(xg, r) such that for each z,w € A with
z # w we have dz(z,w) > r/2, then A has at most N number of elements.
On the other hand, there are doubling metric spaces that do not support a
doubling measure. If the doubling metric space is complete, however, then it
does support a doubling measure, see for example [30, 36]. The completion
of a doubling metric space is also doubling, and complete doubling metric
spaces are proper (that is, closed and bounded subsets are compact).

Definition 3.2. The p-modulus of a collection I' of non-constant, compact,
and rectifiable curves in U is

Mod,(I'; U) = inf/ pPduy,
rJu

where the infimum is taken over all admissible p, that is, all non-negative
Borel functions p such that f7 pds > 1 for each v € I'. A useful property
is that Mod,(I'; U) = 0 if and only if there is a non-negative Borel function
p € LP(U) such that fﬂ/pds = oo for every v € I, see [20, 28]. Note that a
countable union of zero p-modulus collections of curves is also of p-modulus
zero. When U = Z, we simply write Mod,(I'; U) = Mod,(I").

In subsequent sections of this paper, Mod, will denote the p-modulus
with respect to the metric d and measure p, while Modg will denote the
p-modulus with respect to the metric d, and measure fi,.

Definition 3.3. Following [19, 20|, we say that a Borel function g : U —
[0, 00] is an upper gradient of a function u : U — R if

fu(y) — u(z)| < / gds

~
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whenever v is a non-constant compact rectifiable curve in U, with  and y
denoting the two end points of v . For 1 < p < oo, we say that g is a p-weak
upper gradient of u if the collection I' of non-constant compact rectifiable
curves for which the above inequality fails is of p-modulus zero.

It is not difficult to see that if g1 and go are both p-weak upper gradients
of u, then so is Ag1 + (1 — A)g2 whenever 0 < XA < 1. Let Dp(u) denote
the collection of all p-weak upper gradients of u; then D,(u) N LP(U) is a
closed convex subset of LP(U), and so if D,(u) N LP(U) is non-empty, then
it has a unique element g, of smallest LP-norm; this function g, is called the
minimal p-weak upper gradient of w in U. We invite the interested readers
to see [20] for more details on p-weak upper gradients.

In subsequent sections of the paper, when the minimal p-weak upper
gradient of u is taken with respect to the metric d, it will be denoted by
Gu,d, While g, , will denote the minimal p-weak upper gradient when taken
with respect to d,.

We say that u is in the Dirichlet-Sobolev class DVP(U) if Dy(u) N LP(U)
is non-empty. We say that u is in the Newton-Sobolev class NYP(U) if
uw e DYP(U) with [;; |ulP duz finite.

Definition 3.4. We say that U supports a uniformly local p-Poincaré in-

equality if there are constants Cp > 0, A > 1, and for each « € U there
exists r, > 0, such that whenever 0 < r < 7, and u € D*P(U), we have

1/p
][ |’LL - uB(x,r)ﬂU‘ dpz < Cpr (][ gg dMZ> >
B(z,r)NU B(z \r)nU

where
1

UB(z.r = udpy = / udpz.
Blar)ny ][B(I,T)HU 1 pz(B(z,m)NU) B(z,r)nU -

Moreover, U supports a sub- Whitney p-Poincaré inequality if there is a con-
stant A > 1 such that for each z € U we can choose r, = % dist(x,9U). We
say that Z supports a p-Poincaré inequality if U = Z and we can choose
r, = oo for each x € U.

Remark 3.5. If U is bounded and supports a uniformly local p-Poincaré in-
equality, then D'P(U) = N1P(U) as vector spaces, but their norms are nat-
urally different. The norm on N*P(U) incorporates the LP-norm of the func-

tion in addition to the energy seminorm inherited from D?(U); for a func-

tion u € DYP(U), its energy seminorm is |ul[ pre(ry = infy (f; 9" duz)l/p,

where the infimum is over all upper gradients g of u. To turn D%P(U), with
this energy seminorm, into a normed space, one would have to form a quo-
tient space where to functions uj,us € DYP(U) are said to be equivalent if
|ur — u2||prr@y = 0; in particular, two functions that differ by a constant
would have to be considered to be equivalent. We do not wish to do so, and
hence D'P(U) is only a seminormed space.

Definition 3.6. Given two sets F, F' C U, the variational p-capacity of the
condenser (E, F;U) is the number

Ca‘pp(EaF;U) = H&f/Ugg d:U’Z’
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where the infimum is over all functions v € N?(U) with v > 1 on E and
u <0on F. When U = Z, we simply write cap,(E, I';U) = cap,(E, F).
For a set A C U, by Cap,(A4) we mean the Sobolev p-capacity

Capy (4) i=int [ [JuP+ gt) duz
U
where the infimum is over all functions u € N'P(U) with u > 1 on A.

Should U support a local p-Poincaré inequality, then functions in D1?(U)
are necessarily p-quasicontinuous. Hence, in the above definitions of capac-
ities, we can also insist on the admissible functions v satisfying v > 1 in a
neighborhood of the sets F, A, respectively, and v < 0 in a neighborhood
of the set F; see for example [24] or [3, Theorem 6.11]. Moreover, by [3,
Proposition 1.48], we have that Cap,(A) = 0 if and only if y1z(A) = 0 and
Mod,(I'4) = 0, where I'4 consists of all non-constant compact rectifiable
curves in U that intersect A.

Remark 3.7. By [20, Corollary 9.3.2], we know that
cap,(E, F;U) = Mod,(I'(E, F;U); U) =: Mod,(E, F;U),

where I'(E, F; U) is the collection of all rectifiable curves in U that intersect
both E and F.

As with the modulus, the notation cap,, Cap, will be used throughout
the paper when taken with respect to the metric d and measure p, and
capy, Cap; when taken with respect to the metric dy, and measure fi,.

Next we recall the definition of p-harmonic functions on a metric measure
space.

Definition 3.8. A function u on U is said to be a p-minimizer if u € D'P(U)
and whenever v € D%P(U) has compact support V contained in U, then

/gﬁduz < /gﬁduz-
\% \4

If (U,dz, p1z) is locally doubling and locally supports a p-Poincaré inequal-
ity, then there is a locally Holder continuous representative of u, see for
example [26]. Continuous p-minimizers are called p-harmonic functions.

Definition 3.9. For t > 0, the t—codimensional Hausdorff measure of a set
A C U is defined as

H YA U) = lim HH(A;U),

e—0t

where for each € > 0,

HZU(A;U) = inf {Z pz(B(ziri) NU) tAC U B(zi,r;), ri < 5} .
i=1

t
Y
d i=1

Lemma 3.10. Let f € LP(U), 0 <t < p, and M > 0. If py is locally
uniformly doubling on U, then H™t(Ey) = 0, where

Ey = xEU:limsuprt][ |fIP duz > MP 5.
B(xz,r)NU

r—0t
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In the above lemma, the conclusion is valid even if ¢ > p, but in our use
of this lemma in the proof of Proposition 3.11 below we require that t < p.
However, when t is larger than the lower mass bound exponent of uyz as
discussed in Section 7, then it can be shown from the fact that f € LP(U)
that E)ys is empty.

Proof. Fix € > 0. From continuity of the integral there exists § > 0 such
that for all measurable V C U,

(V) <6 —> /f|pduz<e.
1%

By the Lebesgue differentiation theorem and the fact that ¢t > 0, we see that
wz(Ey) = 0 and so there exists an open set W C U with Eyy € W for
which pz(W) < §. It follows that [, |fIPduz < e.
We construct a cover of Ej; by balls in the following way. For each
x € Eyy, select r, > 0 such that
(1) 0 <ry <e/b,
(2) B(z,5ry) C W,
(3) 72 [fIP dpz > MP.
B(x,re )NU
This follows from the definition of Ej; and the fact that W is open. An
application of the basic 5r-covering lemma (see for example [18, Theo-
rem 1.2]) yields a countable pairwise disjoint subcollection {B(z;,r;)} such
that Eyy C |J B(xg, 5r;). Hence,

Zuz wufm ) o Ca N~ rz(Bl@i,ri)

T B & rt
o , i
The result follows by sending £ — 0+. O

The following proposition relates the p-capacity of a set to its codimen-
sional Hausdorff measure. In the Euclidean setting, the following proposition
can be found in [14, Section 4.7.2, Theorem 4].

Proposition 3.11. Let U support a uniformly local p-Poincaré inequality,
and let pz be a locally uniformly doubling measure on U. If Cap,(A) =0
for AC U, then H7t(A) =0 for all 0 < t < p.

Proof. If Cap,(A) = 0, then for each k € N there exists a function u; €
NYP(U) such that uj, > 1 on a neighborhood of A, 0 < u; <1 on U, and

1
/U[“ZJFQQ] dpz < Sk’

where gi, = gy,. Define u = ), ui. Then g = ), gr is a p-weak upper

gradient of u with
1/p 1
</U[u£+g£]duz> <Z2—k<oo.

(/U[up + 9] duz)l/p <> k

k
It follows that u € NP(U).
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Since each wy is at least 1 on a neighborhood of A, we have that for
M >1, A C {u> M}°. Hence, for x € A there exists r, > 0 such that
B(z,7:) C {u > M}, and 80 up(yynuy = M for 0 < r < r,. Since this is
true for all M > 1, it follows that up(, ,)ny — 0o asr — 0" for each x € A.

Fix z € A and assume that

lim sup rt]l g duy < co.
B(z,Ar)NU

r—0+

Then for all 0 < r <1 there is some M > 1 for which

T‘t][ gPduy < MP.
B(z Ar)nU

By the Poincaré inequality,

1/p
][ [u — up(z vl duz < Cpr ][ P duy < CpMpi=tP,
B(z,r)nU B(z,Ar)NU

It follows then that

(U200 — Upannw] < CaCp Mri=/?
and so, for k > 7,

k
U B(r /20900 — UB(arj2ryw| < Ca Cp My =HP = o= DU=H/p),
i=j+1
AsO0<t<p, 11— % > 0 and so this is the tail of a convergent geometric
series. From this we have that {up(,,,
contradicting the fact that up oy — 00 asr — 0". Therefore,

okynu t is a Cauchy sequence in R,

limsuprt][ gP duy = co.
r—0t B(z,r)NU

Since this is true for each x € A, we have that A C F); for any M > 1, each
of which has t-codimensional Hausdorff measure zero by Lemma 3.10. The
result follows. O

We end this section by defining two notions that are tools in the study of
potential theory.

Definition 3.12. For a > 0 and 1 < p < oo, we set the Besov space By),,(Z)
to be the class of all functions f € L} (Z) such that

loc

p _ [f(y) = )P
W=, J, 7051 g B dr gy ) k) <
It was shown in [11] that functions in the Besov class are in LP(Z, uy)
if Z is bounded. Besov spaces arise naturally as the trace class of Sobolev
spaces. While this is well-known in the setting of Euclidean spaces, see for
example [23] or [33, Chapter 10], the following extension to the setting of
metric spaces is found in [32, Theorem 1.1].
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Proposition 3.13. Suppose that (Z,dz, puz) is doubling and supports a p-
Poincaré inequality for some 1 < p < oo, and let U C Z be a bounded
uniform domain such that pz|y is also doubling. Suppose that there is a
measure v on OU and some positive § < p such that for each w € OU and
0 < r <diamoU, we have

~ pz(B(w,r) N U).

v(B(w,r)NoU) 0

Then there is a bounded linear surjective operator T : N'P(U) — B;;H/p(aU)
such that for v-a.e. x € OU,

lim |u — Tu(x)|P duz = 0.

r—=0% J B(z,r)nU
Moreover, there is a bounded linear operator E : B;;G/p(aU) — NLP(U)
such that T o E is the identity operator on B;fpe/p(aU).

Definition 3.14. For a non-negative function u, we define the Riesz poten-
tial of u relative to U as

_ u(y)dz(z,y)
howe) = [y )

The following proposition is an application of [31, Corollary 4.2] to the
setting where X = U and v is the measure, as in Proposition 3.13 above,
supported on OU. In this proposition, (), plays the role of the lower mass
bound exponent for the measure pz|y:

(z)QE < pz(B(x,r)NU)
®) ~uz(BR)ND)

forallz e U and 0 <r < R < o0.

Proposition 3.15. With U and v as in Proposition 3.13, and let 1 < p < g
such that
~ .- Qzq
QZ +q— L, =40.
Then there is a constant C' > 1 such that for all balls B C Z centered at
points in U, setting By := BNU and all f € LP(By, piz), we have

1/q 1/p
([ i) < cuzmo e rmaam=2 ([ 150au)
Bo Bo

4. DOUBLING PROPERTY OF fi,

In this section we establish the doubling property of the measure .
Recall the constant x > 1 established in Lemma 2.11. Since it follows
from (2.2) that >~ | 2"¢(2") is finite, we can find r¢ > 0 such that whenever
m is a positive integer with 2™¢(2™) < kry we have that m > ny+2. Here,
as in Section 2, ng is the positive integer satisfying 20~! < Cpy < 270,

From Lemma 2.11 we know that if z € By, (o0, 7)\ {oo} with r < rq, then
necessarily x € €, for some m > ng + 2.



14 GIBARA, KORTE, SHANMUGALINGAM

Lemma 4.1. For 0 <r < rg,

o0

po(Ba, (00,1)) < [MCAP I 1] 37 (2P (@),
and
1 =
po(Ba, (00,1) = [MCAP CYIH 1) 37 02" (),
where M = % and m is any non-negative integer such that for some

x € Q with dy(x,00) = r we have x € Qp,. Moreover, if k is also a non-
negative integer such that §y, contains a point z with dy(z,00) = r, then
|k —m| < M.

Proof. Let m; be the smallest non-negative integer such that 2™1p(2"1) <
kr and mgy be the largest non-negative integer such that x2"2p(22) > r.
As r < rg, we have that m1 > ng+2 and mo > ng+2. Since for each m > 1,
every point in €2, can be connected to oo by a d,-geodesic by Lemma 2.6,
there is some z € Q such that d,(z,00) = r. With m a positive integer
such that =z € Q,,, by Lemma 2.11 we know that m; < m < msg. From
Lemma 2.11 again, we have that

By, (c0,7) C U Q, and U Qn C By, (00,71),

n=mji n=msy

from where it follows from the construction of p, and Condition (3) that

Hp(Ba, (00,7)) < Y o) S CE Y o(2") u(Sn) (4.2)

and, this time from the fact that ¢ is decreasing, that

Ho(Ba, (00,7)) 2 Y p() = Y 927 u(n). (4.3)

We now estimate m —m; and mg —m. Invoking Lemma 2.11, we have that
R22Mp(2) 2 2™ p(2™),
and so
RE2MTMO(2M) 2 p(2M1) 2 T T p(2™M),

from where it follows that (recall that 7 > 2)

2

~ log(7/2)
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Similarly, we have 0 < mg —m < M. Now by combining (2.9) with (4.2) we
obtain

m—1
pp(Ba, (00,1) < ) (2P () + D (2" ()

IN

NERINGE
3
Il
E

Q2" () + M CYP(2™)P Y ()

m

n
oo

< [1 +MCMP 05‘“1} S o@")Pu(@).
n=m
By combining (2.9) with (4.3) instead, we obtain
o] 0 mo—1

D@ () £ Y @ () + D (2P u()

n=m n=mo n=m
< @M u(Qn) + M CYPE(2m2)P CY T u(Qny)

n=msy

IN

1+ M Chr ce] i P(2")P ()

n=m:
< [14+ MY G pp(Ba, (o0,7)),

completing the proof. O

We are now ready to prove the doubling property of u,, and we do so via
the following series of lemmata. The first lemma deals with balls centered
at 0o, the next two lemmata deal with balls that are far away from oo, and
the final lemma deals with intermediate balls.

Lemma 4.4. For 0 <r <ry/2, we have

/J'QO(Bdga (OO? 27’)) S Cl /J/(p(Bdgp(oo7 7’)),
where ) L
Cy = MYyt 4] [Merel 41
with
7 — log(2ﬁ2)7
log(7/2)
M is as in Lemma 4.1, and k > 1 is as in Lemma 2.11.
Proof. Let m,m be the largest positive integers such that there is some
x € Oy and y € Qp with dy(x,00) = 7 and dy(y,00) = 2r. Note then
that m > m. Moreover, by the choice of rg, we know that m > ng + 2. By
Lemma 4.1, we have

NE

[MCY? Y 1] o (Ba,(50,7)) = 3 (2" ()

n=

3

and

P(2")P 1(2n)-

WE

j1o(Ba, (00,2r)) < [Mcj)fp oMy 1}

Il
3

n
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We now use the fact that m > ng + 2 to estimate the size of m — m in the
same way as we estimated m — m1 and msy — m in the proof of Lemma 4.1.
From Lemma 2.11 it follows that

K2 G(2™) > = () > 09T (27,
and so

267 2 Tp(2T) > p(27) > T p(2™),
from where it follows that (recall that 7 > 2)

__log(2k?)  —

-—m<—=——==M.
= 0g(r/2)
Thus,
m—1 R R
P(2") 1) < (m —m)p(2™)P 5" ()
< MCYP o2 O (),

and so

) m—1 o0

e Q) = Y o2 () + Y 9(27)P u(€2)

< [MEIPCy 4 1] 3 w2 p(@).

Combining this with Lemma 4.1, we obtain the desired inequality. O

Lemma 4.5. Let x € Q,, for some positive integer m. For 0 < r < ry/2, if
o € By, (z,7/2), then

pp(Ba, (7,2r)) < Co pup(Ba, (z,7)),
where Cy depends on the constant C1 from Lemma 4.4 above.

Proof. Tt follows from oo € By, (z,7/2) that By, (c0,7/2) C By, (z,7) and
Bg,(x,2r) C By, (00,4r). Combining this with Lemma 4.4 yields
(B, (2,2)) < s (Ba, (00,47)) S (B, (00,7/2)) < pig(Ba (7).
(]

Now we consider balls that are far away from oo.

Lemma 4.6. Let x € Q and 0 < r < ro/2 such that oo & By, (z,Cyr),
where Cy = 4k /c with k from Lemma 2.11 and ¢ from Lemma 2.153. Then

“%(Bd¢ (:L'v 2’/“)) < C3 IULP(BCLP (1}, T‘)),

where C3 depends only on the structural constants C,,, M from Lemma 4.4,
and C'4 from Lemma 2.13.

Moreover, with m a non-negative integer such that x € )y, we have that
By, (x,2r) C Bd(a:,2CA<p(2m)_17“) and Bd(ZC,CZIQO(Qm)_l’I“) C Ba,(z,7).

Furthermore, for all y € Bg,(x,2r) we have that ©(2™) ~ o(da(y)), with
comparison constant independent of x,y,r, m.
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It follows from the above lemma that Bg,(z,7) is a quasiball with re-
spect to the metric d, which is to say that there exists a constant C' > 0,
independent of  and 7, such that By(z,C~1r) C Bg,(z,r) C By(z,Cr).

Proof. Since oo € By, (x,Cyr), from Lemma 2.11 we have that = € 2, with
r< Ci 2mp(2™M),

Note that as r < rg, by the choice of rg, the above inequality holds if
m < mng—+ 1. So we needed Lemma 2.11 only for the case that m > ng + 2.
By our choice of Cy, which is greater than 2x/c, for all y € By, (=, 2r),

2
do(a,y) < 2r < - 2Mp(27) < c2Mp(2),

and so it follows from Lemma 2.13 that
1 m m
o e(2M)d(z,y) < dyp(x,y) < Cae(2™)d(z,y). (4.7)

Therefore,
Ba,(%,2r) C By(z,2C49(2™)"'r) and By(z,Cy (2™ 'r) € By, (x,r).
The latter inclusion is seen by noting that, thanks to Lemma 2.13 and (4.7),
we must have Bg(x, Oy p(2™) 1) N Bg,(x,2r) C Bg,(x,7), and as balls
with respect to the metric d are connected with respect to both metrics d
and d,,, we must have that By(z, C; ¢(2™)"'r) C By, (x,2r) for otherwise,
Ba(z,C e (2™)71r) N Bg,(x,2r) \ Bg,(x,r) would be non-empty.

Suppose first that m > ng + 2. As in the proof of the previous two
lemmata, we have that if y € By, (z,7) and m € N such that y € Qz, then

|m —m| < M. Indeed, in Lemma 2.13 we can fix the choice of C4 and then
always make ¢ smaller and thus C, larger, and so without loss of generality
we have that Cax/Cy < 1/2. We also have from the limitation on r and
from (4.7) that d(x,y) < Cad-2™. It follows from the fact that = € Q;, and

y € Q5 that do(z) > 2™ and dg(y) < 271 so by the triangle inequality,
2m _ 2’r~n+1 < CAi 2m < 2m—1
— C* )
whence we obtain om—1 < 277”:1, that is, m —m < 2. Similarly we have that
2m — om+l « 9m=1 and so 2™ < 2™*2 that is, m — m < 2. So the choice
of M = 2 satisfies the above statement about |m — m|. It follows now from
the assumptions on ¢ that p(2™) &~ p(2™) for all y € By, (v, 2r), and so by
the doubling property of u,
tp(Ba, (,2r)) S ¢(27) p(Ba, (z,2r))
S CR (2™ u(Ba(z, Cytp(2™)7'r))
S G0 o(2™) u(Ba, (x,7))
< C° pio(Ba, (x,7)).
Here, ko = log(2C%).

Finally, we take care of the case that m < ng+ 1. In this case, by Con-
dition (3) of Definition 2.1, we have 1 > (2™) > (2") > CRotlp(1) =



18 GIBARA, KORTE, SHANMUGALINGAM

Coot1 that is, for m < ng + 1 we have that ¢(2™) ~ 1. By Lemma 2.13
again, we have that whenever y € By, (z,2r), necessarily
2C 4 2C 4
r<
p(2m) T p(2m
2
and so by choosing a positive integer k; such that 2%t > 502(5;2) ro, we have

that each y € By, (z,2C4r) is in some Q,, with n < ki1, and so p(da(y)) ~ 1
as well. Therefore,

d(.’L‘,y) < ) To,

pio(Ba, (€, 2r)) & p(Ba, (z,2r)) < p(Ba(x,2Ca0(2™) 7))
< w(Ba(w, Oyl p(2™) 7))
S w(Bay, (x,1))
S pe(Ba, (7)),
finishing the proof. O

Finally, we take care of the intermediate balls. In what follows, set
T=——. 4.8
: (48)
Lemma 4.9. Let x € Q and 0 < r < ﬁ such that oo € By, (x, Cir) \
By, (w,7/2), where Cy is as in Lemma 4.6, then

o (Ba, (@,2r)) < Ci iy (Ba (,7).

Moreover, with m a non-negative integer such that x € €, and fixzing Cp >
1, independent of x, m, and r, so that

2 p(2™)
Ca
for each y € By, (z,7/(8TCy)) we have p(da(y)) ~ »(2™) and

#(Qn) =~ p(Ba(z, 2™/ (8TCXCa))),

<r < Cp2™ 90(2m)7

and
Bqa(z,2™/(8TCRCa)) C By, (z,r/(8TCy)).

The constant Cy depends only on the structural constants C,, Cy,, and the
constants Cy from Lemma 2.8, k from Lemma 2.11, Cy from Lemma 2.13,
and M from Lemma 4.1.

Proof. By our assumptions, By, (z,2r) C By, (00, (Cs + 2)r). Therefore

HQD(Bde (LIZ‘, 27“)) < :U‘QO(Bdgp(oov 2(0* + 1)T))
Since 2(Cx + 1)r < rg/4, it follows from Lemma 4.1 that with the choice of
m so that x € Q,,,
Ho(Ba, (2,2r)) S 3 @(2")P () S (27 i), (4.10)
and as dy(x,00) > r/2, we have that d,(x,00) ~ r. Now by Lemma 2.11
we have that
2™ p(2™) = dy(z,00) = 7.
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Thus there is a constant Cy > 1, which is independent of x, m, and r, so
that
2™ p(2™)
Ca
Thus with our choice of T from (4.8), from Lemma 2.13 we have that if
y € Q such that dy(z,y) < sTC,» then
d(z,y)

O ©(2™) < dy(z,y) < Cad(z,y) (2™).
A

It follows that d(x,y) < Cg‘%m. By our choice of T', we know that T > Cjy,

and so we have that d(z,y) < 2™~3. Therefore
do(y) > dao(z) —2m3 > 272 and do(y) < do(z)+ 2" 3 < 2m+L,

It follows that for each y € By, (z,7/(8TCy)) we have ¢(da(y)) =~ ¢(2™).
Hence

<1< Cp 2™ p(2M).

tip(Ba, (z,7/(8TCy))) = @(2™)P u(Ba, (x,r/(8TCy))).

Moreover, if y € Q such that d(z,y) < 2™/(87C3C4), then dy(z,y) <
r/(8TCy), and so y € Bg,(x,7/(87Cy)). By the doubling property of p,
we know that with ¢ € 99 (and, without loss of generality, assuming that
diamy(09Q) < 1),

m—+1
#(Ba(w,2™/(8TCRCa))) ~ p(Ba(¢, 2™ ) = ( U Qn) :
n=0

and so we have that
() S p(Ba(w, 2™/ (8TCRCa)))-
From the above discussion, we now have that
2" Pu(Qm) S 9(2™)Pu(Ba(x, 2™ /(BTCRCa)))
< 0(2™)P w(By, (z,7/(8TCy)))
~ pp(Ba, (x.7/(8TC1))).
Combining the above estimate with (4.10) we obtain
pp(Ba, (x,2r) S 0 (2") () S prp(Ba, (x,7/(8TCY))) < pp(Ba, (x,7)),
as desired. O

The above lemmata together prove that j, is a uniformly locally doubling
measure on (£2,,d,). In fact, u, is globally doubling as the assumption that
0%} is bounded implies the compactness of Qig,w = QU {occ} with respect to
the metric d,. We summarize this in the following theorem.

Theorem 4.11. The metric measure space (S, dy, i) is doubling.

Conversely, QSD(P cannot be compact with respect to d,, (hence p, cannot
be doubling on €2,) without 90 being bounded, as we will see now.

Proposition 4.12. Q,” = QU {00} is compact with respect to the metric
dy if and only if O€) is bounded with respect to the metric d.
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Proof. Assume that 0f) is bounded with respect to d. Consider a sequence
(zx) C QTD@. If infinitely-many of the terms in the sequence equal oo or if
lim inf dy, (), 00) = 0, then there is a subsequence of (x}) converging to in-
finity with respect to d,. As such, we assume without loss of generality that
(z) C Q and that dy(wg, 00) > T for all k, where 7 := lim inf d, (2, 00) > 0.
It follows from Lemma 2.11 that there is some Ny for which

No No
T € LJSle LJ(E;
n=0 n=0
for all k. Each set Q, is closed in  with respect to d and bounded since

diamg(2,) < 2772 + diamg(09) < co. Hence, Q,, is compact with respect to
d as §) is proper. By Lemma 2.13, d and d, are locally bi-Lipschitz equivalent

and so the two metrics are homeomorphic on 2,,. Hence, UfLO Q,, is compact
with respect to d,. Therefore, there exists a d,-convergent subsequence of
(k).

Assume now that 0f2 is unbounded with respect to d. Then we may find
a sequence ((;) C 9Q such that d((x, () > 7 € (0,15) for all k& # j. It
follows from the local isometry of d and d, on 0 (see Lemma 2.6 of [15])
that dy,(C,¢j) > 7 for all k # j, and so (() cannot converge in  with
respect to dy,. Moreover, d,((x,00) > 1 for all k and so cannot converge to
oo with respect to d,,. O

5. UNIFORMITY OF £, \ {oo}

In [15] it was shown that 2, = QU {oo} is a uniform domain with respect
to the metric d, and that 02, = 0Q. It is not always the case that the
removal of a point from a uniform domain results in a uniform domain, as
seen by the example domain (—1,0] x [0,1)U[0,1) x (—1,0] C X where the
metric space X = R?\ ((—1,0)2U (0, 1)?). However, in our setting, oo €
has a special role, given the fact that  itself is a uniform domain with
respect to the metric d.

In the rest of this section, by increasing the uniformity constant K if
needed, we can find uniform curves for which every subcurve is also a uniform
curve (all with respect to the metric d,), see [8, Theorem 2.10]. In the
remainder of this section, when we choose a K-uniform curve with respect
to the metric d,, we will also implicitly assume that every subcurve is also
K-uniform with respect to d,,.

Lemma 5.1. Let 0 <r < ro/C and x,y € By, (o0,r) \ Bg,(00,7/2), where
C = 2k*CyCy,. Then there is a curve 3 C Bg, (00, Cr) \ B, (c0,r/C) with
end points x,y such that £,(B) = dy(x,y).

Proof. Let m be a positive integer such that x € €2,,,. Then by (2.3) and by
Lemma 2.11 we know that d,(x, 00) = 2™¢(2™). Thus, with y € Q) we also
have 2Fp(2F) ~ 2mp(2™). Tt follows that there is some Ny € N such that
|k — m| < Ny, see the proof of Lemma 4.1 above. Moreover, by the choice
of ro we also have that & > 2ng and m > 2ng.

Let 8 be a Cy-uniform curve in €2, with respect to the original metric
d, connecting = to y. Then, from (2.7) we see that d(z,y) < 2™, and so
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0q(B) < 2m+no. Hence
m+no+No

B C U Qj,
j=m—ng—Np
whence we obtain

Lo(B) = @(27)La(B) = ¢(2™) d(z,y) < 0(2™) 27 ~ 1.
By Lemma 2.11 above and our choice of C', we have
ﬁ C BdW(OO,CT) \Bdw(OO,T’/C).

It also follows that dy(x,y) = ¢(2™)d(x,y) ~ £,(3), thus completing the
proof. O

In what follows, let K > 1 denote the uniformity constant of Q. If v; is
a curve with end points x and y, and 2 is a curve with end points y and z,
then we denote by 1 42 the concatenation of two curves v; and 72, having
end points x and z.

Theorem 5.2. The set Q, \ {oo} is a uniform domain with respect to the
metric d.

Proof. From [15] we know that (£, d,) is a uniform domain. Let x,y €
Qy \ {oo} with  # y, and let v be a K-uniform curve in €, with the
uniformity with respect to the metric d,, with end points z,y. Without loss
of generality let d,(x,00) < dy(y,00). We now consider two cases.

Case 1: We suppose first that
v C QCP \ Bdw (007 dlp(‘rv OO)/4CK),

where C' = 2%2CUC¢ is from Lemma 5.1 above. In this case, for z €
By, (00,4d,(z,00)) Ny, we have that

dy (2, 00)

<
10K S dy(z,00) < 4dy(x, 00)

and so
lo(V]r, 2]) < Kdy(z,2) < 5K dy(x,00) < 20CK?d,(z,00).
For z € v\ By, (00,4d,(x,00)), we have that
lo(v]z, 2]) < Kdy(x,2) < Kldy(x,00) + dy(2,00)] < 2K dy(z,00).

Combining the above two subcases, we have that for each z € 7,

dp(2,00) > gy (o0, 2]) 2 51 min{Cp(0lr, 2], £o(r12 ).
Case 2: If, instead, we have
¥ N By, (00, dy(x,00)/4CK) # 0,
then let wi,wy € v such that
Y[z, wi] Uylwe,y] C Qy \ By, (00, dy(z,00)/2CK)

and
dy(x,00)

dyl00,wn) = dy(o0,w) = 522
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Let 8 be a curve from Lemma 5.1 with end points wi, we. For z €
vlz,wi], a repetition of the argument of Case 1 above yields d,(z,00) >
W%(V[% z]). For z € 3, we have that

dip(,00)

>
diP(Z,OO) - 202}—( ’

and

=
o

Lo (V]m, wi]) + Lo (Blwr, 2]) (2, w1) + Ly (B)

z,wy) + dy(wi, wa)

x, oo) + 2d (w1, 00) + dy (w2, 00)
00).

It follows that dy(z,00) 2 &P(*y[x,wl] + Blwi, z]). For z € ylws,y] N
By, (00,4d,(x,00)), we have that

S

®

AR VAR AN
Q. Q. A

S

dy(x,00)
> Py o
dSO(Z7OO) - 2CK 9

and
lo(Y[z, wr] + B+ v[ws, 2]) S dy(x,00) + ddy(z,00) < dy(,00),
and therefore
dso(zv OO) Z &P(’Y[x7 wl] + ﬁ + ’7[1172, Z])
For z € y[ws,y] \ Ba, (00, 4d,(x,00)), we have

lo(Vw2, 2]) < K dy(w2, 2) < K[dy(w2,00) + dp(z,00)]
= Kldy(z,00)/(2CK) + dy(z,0)]
S dy(z,00).

Observe also from the above discussion that

Lo(y[z,un] + B) S dp(,00) S dp(2, 00).

It then again follows that dy(z, 00) 2 £, (v[x, w1]+ B +7[ws, z]). Combining
the above four possibilities in this case, we obtain for each z € 7 := [z, w|+
B+ y|we, y] that

dy(z,00) 2 Lo (3, 2]).

From Cases 1 and 2 above we see that there is a curve 4 with end points
x,y such that for each z € 4 we have that

dp(2,00) Z Lo (V[z, 2]),

and moreover, {,(y) < dy(z,y). Here, in Case 1 above, we merely set
A = 7, the original uniform curve with respect to d,, connecting x to y.
So in Case 1 we have from the K-uniformity of v with respect to d, that
l,(7) < Kdy(z,y). In Case 2 we have that (,(7) < lo(v) + £o(B) <
K dy(xz,y) + £,(8). Moreover, by the choice of 3, we have that {,(8) <
dy(wi,w2) < Ly(7y) because wi,wy belong to 7, and hence again we have
that l,(7) < dy(z,y), thus justifying the inequality given above. Thus to
show that 7 is a umform curve in €, \ {oo}, it now only remains to check
dist, (2, 012) for each z € 7.
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In the situation considered in Case 1 above, the curve 7 is also a K-
uniform curve in €, with respect to d,, and so we immediately have

dist,(2,09) > % min{l, (3lz, 2]), LT[z, 9])}
as desired. In the situation considered in Case 2, the above inequality holds
also when z € y[z,wi| U y[ws,y]. We set r = dy(z,00)/2CK. Note that
then £, (y[z, wi]) > (2CK — 1)r, and hence by the uniformity of the curve

v, we have that
2CK -1
el

disty, (w1, 00Q) > e

Hence, for each z € 3, we obtain
disty, (2, 08) > disty, (w1, 00) — dy (w1, 00) — dy(2,00)
S 2CK —1

=(C—-1-KYHr

Here we used the fact that 8 C By, (o0,Cr) \ Bg,(co,r/C). Note that
lo(y[z,un] + B) S r. As C > 2, we now have the desired inequality
disty,(z,00) 2 Ly(y][x, wi] + ). The claim follows. O

r—r—Cr

Remark 5.3. The proof of the above theorem can be modified to show that
if Q is a uniform domain and zy € €2 is such that annular quasiconvexity as
in Lemma 5.1 holds with 2o playing the role of oo, then Q\ {2} is also a
uniform domain.

Remark 5.4. The utility of uniformity of €, \ {oco} stems from the fact
that when we transform (2 under the metric d, and the measure ., all the
functions v in the Dirichlet-Sobolev class D'?(€) belong to the Dirichlet-
Sobolev class of the transformed space D'P(§, \ {00}); note that as sets,
Q= Q. \ {oo}. In order to gain control over the behavior of transformed
functions in the uniform domain €2,, we need to know that functions in
D'?7(Q,\{oc}) also have an extension to co that belongs to D1 (€1,); see the
discussion in Section 7 and Proposition 7.5 below. Knowledge of uniformity
of Q, \ {oo}, together with the information that Q, \ {oo} satisfies a p-
Poincaré inequality when € itself does (see Section 6 below) aids us in this
extension.

6. POINCARE INEQUALITIES

The goal of this section is to demonstrate that (€,d,, 1,) supports a
p-Poincaré inequality when (€2, d, 1) supports a sub-Whitney p-Poincaré in-
equality as in Definition 3.4. This result can be proved using a variant of
the Boman chain condition method that Hajlasz and Koskela [17] used to
prove that if all balls satisfy a Poincaré inequality, then all sets satisfying a
chain condition also satisfy a Poincaré inequality. We do not know a priori
whether all balls in (€, dy, p,) satisfy a Poincaré inequality, but all balls in
Q, can be covered with chains of smaller (i.e., sub-Whitney) balls on which
 is approximately constant and which therefore inherit a Poincaré inequal-
ity from (€,d, ). We will also see that these small balls (with respect to
the metric d) that make up the chain are quasiballs with respect to the
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metric dy, as for example in the proof of Lemma 4.6. For the readers’ con-
venience, we provide a complete proof here. Our proof uses an application
of [7, Theorem 4.4]. We start with the following chain condition.

Definition 6.1. Let B be a family of balls in a metric measure space X
and A\, M > 1 and a > 1. We say that A C X satisfies the chain condition
C(B, X\, M, a) if there exists a distinguished ball By C A that belongs to B
such that for every € A there exists an infinite sequence of balls {B;}°, C
B (called a “chain”) with the following properties:

(i) AB; C Afori=0,1,2,... and B; is centered at x for all sufficiently
large i;
(ii) for 4 > 0, the radius 7; of B; satisfies M~!(diam A)a~" < r; <
M (diam A) a™%; and,
(iii) the intersection B; N B;4; contains a ball B] such that B; U B;y; C
M B for all i > 0.

In this section, we consider sub-Whitney balls corresponding to the con-
stant 2AM, see Definition 3.1.

Remark 6.2. Given a uniform domain €2, we set the collection B to consist
of balls centered at points in 2 and with radii such that the ball is also
contained in 2. Then [7, Lemma 4.3] tells us that when Q is a uniform
domain, there are constants a, A and M such that for each x € 2 and r > 0,
the set B(z,r) N Q satisfies the chain condition C(B, A, M,a) with = the
center of the distinguished ball By. The above chain condition is equivalent
to the chain condition given in [7, Lemma 4.3]. While the chain of balls in [7]
are not of strictly dyadically decreasing radii, there are at most L balls of the
same radius, with L depending solely on the uniformity constant of {2 and
the choice of A; hence, for sufficiently large M in our definition above, the
chains constructed in [7, Lemma 4.3] satisfy the conditions in Definition 6.1.
Therefore we can exploit [7, Theorem 4.4].

Theorem 6.3. The uniform domains Qy, \ {oo} and Q, as well as Q,7,
equipped with the metric d, and the measure p,, all satisfy p-Poincaré in-
equality if (2, d, ) satisfies a sub- Whitney p-Poincaré inequality.

Proof. We wish to choose o > 1 in applying [7, Lemma 4.3] such that when
z € Qp and 7 > 0 such that oo & Bg,(z,407), then oo & By, (x,5C3\r)
and 4C%\r < ¢2™p(2™), where ¢, Oy are the constants from Lemma 2.13.
We do this as follows.

Clearly the first condition is satisfied if By, (z,5C%\r) C By (T, 4o7),
that is, whenever o > 5C%\/4. To make sure that the second condition is
also satisfied, we only consider the radii r for which oo & By, (x,40r), that
is, dy(x,00) > 4or. Combining this with Lemma 2.11, we obtain

dor < dy(z,00) < K2Mp(2™).

If o > Ci)\n/c, the above inequality implies that the second condition
4C%\r < ¢2™p(2™) is satisfied. Henceforth, we fix a choice of
5C% A C’f‘/\/f}

o > max
{ 4 7 ¢



DIRICHLET PROBLEM ON UNBOUNDED DOMAINS 25

For each ball By, in Q, \ {oo} (that is, it is the intersection of a ball in
Q, with Q \ {o0}), we can appeal to [7, Lemma 4.3] to construct chains of
balls B; = Bg, (i, i), i € N, corresponding to the above choice of o. From
the above discussion and by Lemma 2.13, we have that

B; C By(w;, %W) C C4Bi C O, \ {o0}.
As C%4B; C By , and co € By, the last inclusion above holds. Moreover, the
weight ¢(dq(y))P is approximately constant on C% B;, with the comparison
constant independent of the ball. Therefore,

U c ::][ udp %][ wdp =: cy.
Bd(m’Wé”)r) By (m,r(czjﬁq)’r) v By (I’ip(c’?én)r)

In what follows, by g, 4 we mean the minimal p-weak upper gradient of u
with respect to the metric d, while g, , denotes the minimal p-weak upper
gradient with respect to d,. Hence, by the sub-Whitney Poincaré inequality
for (2,d, ), we have

ju=culdiy 5 § 1= culdp
][Bz‘ Bd(%(p(%?n)r)

1/p

S diama(Bate. ;G | £ ey G
d\T

p2m)"
1/p
< g D d .
~ T <]Z;%Bl gu,cp MQD)

Here we use the estimate

diama(Bq(z, -Gyr) ~ 9(2"™) " diam(Ba(z, “Gsr) ~ 0(2™)

from Lemma 2.13, together with

Gu,d = (10(2m)gu,<p

to justify the last step. It follows that (2, \ {oo},d, 1) satisfies a sub-
Whitney p-Poincaré inequality, i.e., with respect to the balls B;. See Defini-
tion 3.4 above for these concepts. Recall that Q. \ {oco} is a uniform domain,
see Theorem 5.2 above. Now we invoke [7, Theorem 4.4] to conclude that
(Q4 \ {00}, dy, 1) satisfies a p-Poincaré inequality with respect to all balls.
While the statement of [7, Theorem 4.4] requires that p-Poincaré inequality
be valid with respect to all balls in an ambient space containing the uniform
domain, the proof there only needed the validity of p-Poincaré inequality with
respect to the balls in the chain.

Now the remaining claims follow from [1, Proposition 7.1], for we have

that €, \ {oo} € Q, € 2,7 =Q, \ {oo}’. O

7. TRANSFORMATION OF POTENTIALS

In this section, we return to the original motivation for the problems stud-
ied in the prior sections of this paper. We assume that €2 is a unbounded
locally compact, non-complete uniform domain with bounded boundary,
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equipped with a doubling measure u that supports a sub-Whitney p-Poincaré
inequality for some fixed 1 < p < co. Here, of course, we extend the measure
e to (2, \ {o0}) by zero.

Recall that as a set, 2 = Q,\ {oo}. From the results in the prior sections,
we know that (Q, \ {00}, dy, p1,) is doubling and supports a p-Poincaré
inequality; hence by [1] we know that

lep(QSO \ {00}7 d(p? utp) = lep(QQOJ dgo; MQO) = NLP(@‘P, dt/h /’LQO) (71)

With g, ¢ the minimal p-weak upper gradient of a function v € N Lr(Q,d, 1)
with respect to the original metric d, and g, , the minimal p-weak upper
gradient of u with respect to the metric d,, we have the relationship

1
Ju,p = m Gu,d- (7.2)

It follows that

/ o /Q ¢ 4. (7.3)

®
As a consequence of (7.2), we have the following proposition (see Defini-
tion 3.8 for the definition of p-harmonicity).

Proposition 7.4. A function u is p-harmonic in the metric measure space
(Q,d, ) if and only if it is p-harmonic in (Q, \ {00}, dy, f1,)-

Also from (7.2) we obtain the following proposition.

Proposition 7.5. Let u € DYP(Q,d, iu). Then u € LP(S2, uy,) with

/Q |u — cul? (podg)?du < C /ngd du.
Here ¢, = fqudpug. In particular, u € NYP(Qo, dop, i)

As Q is unbounded with respect to the metric d, we cannot conclude
that u € LP(Q, ). Note that with the choice of ¢(t) = min{1,¢t=%} for
sufficiently large fixed 8 > 1, the above lemma is an analog of a Hardy-

Sobolev inequality with distance to Qpﬁd = {00} playing the role of distance
to the boundary. Readers interested in the topic of Hardy-Sobolev spaces
are referred to [33, Section 1.3.3], [27] (for the Euclidean setting), and [6,
Corollary 6.1] (for a metric setting) and the references therein.

Proof. Since u € D'P(,d, 1), we know that the minimal p-weak upper
gradient g, 4 of u in Q, with respect to the metric d, is in LP(§2, u). Then
by (7.2) above, we know that u € DP(Q, \ {00}, dy, iy, recalling that
Q= Q, \ {co}. Note that then u € N1P(Q, \ {oo}, dy, p1,) by Remark 3.5.
From Theorem 6.3 and Theorem 4.11, we know that €, \ {oo} is bounded
with respect to the metric d,, and supports a p-Poincaré inequality with
respect to dy, and fi,. Thus, for any x € Q, \ {oo} and for sufficiently large
R >0, we have Q, \ {oo} = Bg,(x, R), and moreover, (2, \ {00}, dy, 11y)
also supports the following (p, p)-Poincaré inequality, see [17, Theorem 5.1],
[20, Theorem 9.1.2]: for u € N¥P(Q, \ {00}, dy, p,), we have by (7.3) that

/ [u — cyu|P dpy, < C gy o Ay = C / gﬁ,d dp.
Qp\{oo} Qp\{oo} Q
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Note that C also depends on R. Now the desired conclusion follows from
noting that, by definition, du, = (¢ o dg)? dp and by using (7.1). O

As 1 is doubling, there exists some @, > 0, called the lower mass bound
exponent of u, such that

p(Ba(z,r)) (r)Q;

u(Ba(y, R)) ~ \R

for all z,y € Q with x € By(y, R) and 0 < r < R < oo, where the implied
constant depends only on C,,, the doubling constant of 1, see for instance [18,
(4.16)] or [20, Lemma 8.1.13]. Moreover, as ) is connected, there exists
QZ > 0, called the upper mass bound exponent of i, such that

p(Ba(z,r)) _ (T>Qﬁ
n(Baly, R)) ~ \R

forall z,y € Q with z € By(y,R) and 0 < r < R < o0, see [3, Corollary 3.8].

Note that Q,f < Q.

Lemma 7.6. Let 1 < p < oo, and ¢(t) = min{1,t=#} fort >0 and 3 > 1
such that fp > Q,,. For all 0 <r < R <o, where ro is as in Section 4,

r\Q o Heo(Ba,(00,7)) T\ @5
(E)Qﬂ < /Z,(Bci(oo,R)) < (E)Qﬂ ’

—OF —0°
where QE = B%f’f" and QE = %. Moreover, the function ¢ satisfies

the conditions of Definition 2.1.

Proof. Fix 0 < r < R < rg. Take non-negative integers m, and mpg such
that €2, contains a point x, satisfying dy(x,,00) = r and §,,, contains
a point xp satisfying d,(zr,00) = R. By Lemma 4.1 and the assumption
(2.4),

pe(Ba, (00,7) Y nZm, P(2")Pu(Sa) (@(2’“’“))? 1(Qm,.)
fip(Ba, (00, R)) >0 0(2M)Pu(Qs)  \w(2mR) ) p(Qny)

2mnf M(QmR)
From Lemma 2.8, there exist y, € Qy,, with do(y,) = 2™ and yr € O,
with dg(yr) = 2™E, so that

() 1(Balyr, 2™))

1) w(Ba(yr, 2™7))
As 09 is bounded with respect to d, we can consider an integer upper bound
K for diamg(09). The ball By(y,,2K2™") engulfs 002 and therefore also

By(ygr,2™k) since from the above estimates we can conclude that 2MF <
2™r. Hence, by the doubling property of u,

p(Balyr,2™)) _ p(Balyr, 2K2™"))
1(Ba(yr,2m7)) — p(Ba(yr,2™m7))
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Applying the upper and lower mass bound estimates for u to this right-hand
quantity, we arrive at

<2W)QI _ 1(Balyn 2")) _ (2““)@“
2mn ™ p(Ba(ygr, 2mr)) ~ \ 2R
By Lemma 2.11, we have that r = d,(z,,00) = 2" p(2™") = omr(1-8) and

similarly for R. Therefore,

1\ Br—Qf _ot
to(Ba,, (00,7)) S <2mR>ﬁpQI _ (}piﬁ) " - (T>ﬁl;3?u
~ - = (= ,

HSD(Bd<p(OO’R)) oA 2mr R

with the opposite relationships holding with Q:[ replaced by Q.

The first five conditions of Definition 2.1 are clear for this choice of .
Condition (6) of that definition follows from Lemma 2.8. Indeed, in this case,
for n,m € N with n > m > ng, we have the existence of points y, € €2, and
Ym € S such that ((Qm) ~ u(Ba(ym,2™)) and p(2n) = p(Ba(yn,2")).
Moreover, By(ym,2™) intersects By(yn,2"), and so we have that

1(S2n) < #(Ba(yn,2")) <2n>Q;7

ri-8

1) ~ 1(Ba(ym,2m)) ~ \2m
and so
D @M u(n) S 27 ot ()

=27 Q) Z 2J(Q —bp)
j=0

Since Sp > @Q,,, the latter series converges, and hence Condition (6) follows.
O

Proposition 7.7. Let 1 < p < oo, o(t) = min{1,t=5} fort >0 and g > 1
such that Bp > Q,, and let QE,QE be as in Lemma 7.6. Let T' be the
collection of all curves in Q, that are non-constant, compact, and rectifiable
with respect to the metric dy,, and ending at oo.

(1) If p> Q4 , then Modf(I') > 0.
(2) If p< QE orl<p= Qg, then Mod?(I") = 0.

Note that p > Qg if and only if p < Q:[, and p < Qg if and only if
p>Q,.
Proof. We first prove (1). Fix 0 < r < R < rp, and choose a positive inte-
ger ko such that p,(Bg, (00, R))/pe(Ba, (00,271 R)) < 1/2. We begin by
showing that Mod,(Bq, (c0,7); Q \ Bg, (z0, R)) > CR“ P for some con-
stant C' > 0 that is independent of r. Since the p-modulus of the condenser

is equal to the variational p-capacity of the condenser with U = Q, (see Re-
mark 3.7), we will work with the latter and utilize the Poincaré inequality.
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To this end, consider a function u € N'P(Q,) satisfying u = 1 on
Bg,(co,r) and u = 0 in Q, \ By, (00, R). Then, oo is a Lebesgue point
of u, and so for each positive integer k setting By = By, (00,2F0FR), we
have that

oo
1 —up, = |u(c0) —up,| < Z ’uBk - uBk+1|
k=1

© 1/p
< 2k kR < ][ 9, d/«o)
k=1 By

1 = ko—k 1*% e
S pp(B) VPN (2R FR) T (/B 95,@du¢> ,
k

k=1
where we used Lemma 7.6 in the last step. From the choice of ky,

up, = ! / wdp, < M¢(Bd“"(oo’R))
" pp(Ba, (00,207 R)) Jp, " T pp(Ba, (00, 25071 R))

IN

1
5"

Since p > QE, from the above we obtain

. Q5 1/p
<l-up I H«p(Bl)_l/pR p (/ gﬁ,go dﬂ@) )
Q

@

N |

from where it follows that
277 pp(Bi) RO P N /Q 95739 diie,
©

and, taking the infimum over all such u,
cap,(Ba, (00,7), Q2 \ Ba, (20, R)) Z p(B1) R 77 > 0.

Letting r — 071, from the Choquet property of variational p-capacity (see
[3, Theorem 6.7(viii)]) we obtain

Capp({oo}, QSO \ Bd¢(x07 R)) Z Map(Bl) RQE—p > 0.

The result then follows from Remark 3.7.

We now move to proving (2). Fix 0 < r < % < R < rg, and let n, be
the unique positive integer such that 27" R < r < 2! R. Let p be the
function oniﬂgj given by p(z) = 2[nrd@(;r,oo)]_ledw(oo’R)\Bdw(oo’T). For
each v € T'(Bg,(c0,7), \ By, (o0, R),,), we have f,ypdsg, > 1.

Setting By, = Bg, (oo, 21=kR) for k =1,--- ,n,, we see that

" o(1+k)p

Ny op
/ pPdpy < Z/ 55 () < Z PR to(Bi \ Bi+1)
Q k=178 =1 T

& \Brt1 nfdw(x, o0)

since x ¢ Byy1 implies that dy(x,00) > 27FR. We now estimate (B \
Biy1). From Lemma 2.11, it follows that By \ Bit+1 C £y, for some non-
negative integer my; moreover, 27 *R ~ d,(z,00) = 2m(1=8) for 2 € By \
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Biy1. Thus, for some yj € Qyy,, (see Lemma 2.8),

poBi\ Bu) = [ da(a) dp 2 (B Ba)
Bi\Bg41

< 27 Q) < 272 Ba(yr, 27))
< 2—mkp/3(2mk)Q;
where the lower-mass bound on p was used in the last step.
From here, we have
=+ Ny

o~ 2 i), BT Ip-QF
/Qppdu@gznpmz vQind) o BD DSl (1)
@ k=1 "

ek
T k=1

Recall that Q} = 2% and 27+ ~ (27 R)T5.
Ifl<p= Q;, then the sum on the right-hand side of (7.8) equals n,,

and so

_ R\1tP
Mod]f(Bdw (00,7); Q4 \ Ba, (20, R)) S n,ln_p ~ [log ()] ,
,
the right side of which tends to zero as r — 0. If p < QE, then the sum on
the right-hand side of (7.8) is dominated by the convergent series obtained
by summing over all positive integers k, and so

. _ R -p
Modg (B, (3¢, 11582, \ Ba, v 1) S i = [tog ()]

the right side of which also tends to zero as r — 0%.

In either case, it then follows that Modf ({oo}; 2, \ By, (o0, R)) = 0.
From this it follows that the p-modulus (with respect to d, and p,) of the
collection of all non-constant compact rectifiable curves in €, that intersect
oo is zero as well. O

Remark 7.9. As a consequence of the above results and by [2], we have that if
u is p-harmonic in (£2, d, p) and p > @, or p = @, > 1, then u is p-harmonic
in (Q, dy, p1p). From [2, Proposition 7.2] it also follows that when p < Q}F
and the Sobolev p-capacity Cap,(02) is positive, then there is a bounded p-
harmonic function in (Q, \ {00}, dy, 1) which has no p-harmonic extension
to Q.

8. CONNECTING POTENTIAL THEORY ON {2 TO FUNCTIONS ON 0f?

Let v be a Borel regular measure on 92 = 02, and ¢ > 0. We say that
v is 0-codimensional to i, if

M@(Bd«p (¢,r)N Qcp)

7t

v(Bqg,(¢,r)NON) =~

for all ¢ € 9Q and 0 < r < 2diamg, (952). Note that as u, is doubling on
Q, \ {00}, we must necessarily have that v is doubling on 99 with respect
to the metric d, (and equivalently, with respect to the metric d).
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Lemma 8.1. Assume there exists a Borel reqular measure v on 0S) that
is -codimensional to p for some 6 > 0. Then, H(A;Q) ~ v(A) for all
A C of.

If 6 > 0, then [1,(092) = 0 for any doubling measure [i, on ﬁ:ﬁ such that

He = pip on Qg and v(Bg,(¢,7) N 0N) ~ M for all ¢ € 00 and
0 <r < 2diamg, (092).

As both dy, and d are bi-Lipschitz equivalent on 92 and p = p, on €y,
computing the codimensional Hausdorff measure H~? of a subset of 99 (as
in Definition 3.9 with U = Q) with respect to the metric d and the measure
i is equivalent to computing it with respect to d, and p,. In doing the
computation of H~?(A;Q), we extend the measures p and o by zero to O€
so that p(9Q) = 0.

Proof. We fix A C 09Q2.
For each £ > 0 let {Bg,(xi,7:)} be a cover of A with r; < e and z; € A.
Then
3 Ho(Ba, (@i 1)) S U(Ba, (wimi) N OQ) = v(A).
i " i
Taking the infimum over all such covers, and then letting ¢ — 0T, this
implies that H9(A4; Q) > v(A).

Since v is Borel regular, it follows that for each n > 0 there isaset U D A
such that U is open in Q and v(U) < v(A) + 7. Fix ¢ > 0, and consider a
cover {Bg,(wi,m;)} of A with r; <e/5, x; € A, and By, (x;,5r;) C U. By
the basic 5r-covering lemma as in [18, Theorem 1.2], there is a countable
pairwise disjoint subcollection { By, (z;,7;)} such that { By, (z;,57;)} covers
A. Then, by the doubling property of v,

AQ <Z/‘¢Bd %,57"3 <Z#so %vrj))

< Zl/ By, iL‘j,’I"j) N o)
J
= v({JBa,(x;,r;) N0Q)
J
<v(UNoN) < v(A)+n.

Letting ¢ — 0T, we obtain H~%(4;Q,) < v(A) +n. Letting n — 0% now
yields the desired conclusion of the first part of the lemma.

To prove the second claim of the lemma, we suppose that # > 0 and
argue as in the above proof to obtain that for each ¢ > 0 and any cover
{Ba,(xi,r;)} of 92 with z; € 0 and r; < ¢, to see that

ﬁw(éQ) E ,Ugo(Bd (131,7“@ N@(Bd (wiari))
0 0 SZ”—6§V(89)+77,
from which we obtain that fi,(09) < ¥ [v(9Q) + n]. Letting ¢ — 07 yields
the conclusion as v(9€2) is finite (note that 92 is bounded). O
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Proposition 8.2. Let 1 < p < 0o, and assume there exists a Borel regular
measure v on 0S) that is 0-codimensional to p, for 0 < 0 < p. Then, for all
¢ €99 and r > 0, we have Capy(Bq,(¢,r) N IQ) > 0.

Proof. From Theorem 4.11 and Theorem 6.3 we have that ﬁw, equipped with
the metric d, and the measure p,, is doubling and supports a p-Poincaré
inequality. Note that p = p, on €0 and d, is bi-Lipschitz equivalent to d
on Qo U 09.

Due to Proposition 3.11, it suffices to show that H_G(Bd(p (¢,m)NoN) > 0.

From Lemma 8.1, H_Q(de(g, 7) N ONY) = v(By, (¢, r) N ON), which must be
positive because v is doubling. O

Recall that the space D (Q,d, 1) consists of measurable functions on 2
which have an upper gradient in LP(2, ). This space is naturally equipped
with the seminorm |lulpir(au) = llgudllLr@u); note from (7.2) that

Gu,dllLr @) = N GuellLr @y u,)-
Proposition 8.3. Let 1 < p < 0o, and assume there exists a Borel reqular

measure v on 9N that is 0-codimensional to p for 0 < 8 < p. For every
u € DYP(Q,d, 1) there exists Tu € B;;@/p(aﬂ, v) such that

lim lu(z) — Tu(C)| du(x) =0 (8.4)
r=0% J By(¢,r)nQ

for v-a.e. ( € 0). Moreover, the operator u +— Tu is bounded from
DYP(Q,d, p) to Bay'/P(09,v).

Recall that since 012 is bounded, B;;f/p(afz, v) C LP(0Q,v).

Proof. By Lemma 7.5 and (7.1), it suffices to look at u € N'P(Qy,dy, ).
Since €, is a uniform domain with compact closure (see Proposition 4.12), it

follows from Proposition 3.13 that there exists Tu € B;;e/ P(0Q, v) satisfying

lim [u(z) — Tu(Q)| dup(x) =0 (8.5)
r—0+ By, (¢,r)NQy

fOI‘ V-a.e. C & 89 and HTUHB;;,GM(GQ,V) S HUHDl’p(Q¢,d¢,/L¢) = HUHDl’P(Q,d,M)'
For ¢ € 99 and for sufficiently small » > 0, we have that p, = p© on

By(¢,r) which is bi-Lipschitz equivalent to By, ((,7). Therefore, (8.5) is
equivalent to (8.4). O

We now turn our attention to proving an Adams-type inequality on waso
with respect to the measure v supported on 0f).

Remark 8.6. From Theorems 4.11 and 6.3, it follows that (@¢,d¢,u@) is
doubling and supports a p-Poincaré inequality. Hence by [25] (see also [20,

Theorem 12.3.9]), (Q@w,d@,/w) also supports a p-Poincaré inequality for
some 1 < p < p.

In the following, Q;w is the lower mass bound for the measure .
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Theorem 8.7. Let 1 < p < 00, and assume there exists a Borel regular
measure v on O€) that is 0-codimensional to pu, with 0 <0 <p < Q and
let ¢ > p be a real number given by

@, q

He?

q

0= Q2

where 1 < p < p is from Remark 8.6. Then for every u € N'P(Q,% dy, piy)
and ball By, C Q,7,

1/q _ 1/p
d, (B, \1-9/a
wf ([ u-drar) g2 dcFe) | )
CER Bd#’ IU’SD(BdLP) 2Bd¢

In particular,

Ve g Q0. )1-0/4 e
inf < u— C!"dV) S it 1717)—1/q / G dpe |
ceR \ Joq () Q,

Proof. Fix a ball By, := Bg,(y,r) C Q,7 and u € Lip(Q,7). Since Q7 is a
compact length space, it follows that it is a geodesic space, and compactness
implies that u is a bounded continuous function. Moreover, it satisfies a p-
Poincaré inequality by Remark 8.6. Hence, setting

UZBd(P = ][ Udﬂso’
2Bq,,

it follows from [18, Theorem 9.5] that

u() — uzp, P S 17 o (6D,)()
for z € By, where IgBdw is the Riesz potential, see Definition 3.14.
Integrating and using Proposition 3.15 with p = % and ¢ = 1% yields

1/q
/ ]u—uzBd ’qdl/ = /
B ¢ Ba,

- - - p/q
<7 ( | 6 dv)
2B,

Quy

_ p/p
< rpTlJr » . M@(2Bdw)1/q—1/p (/23 (ggw)p/ﬁducp>
dep

EJ’_Q’:@_% 1 —1 1/p
P e T Ta (B, /QB 9 dpiy .
dep

The result follows from the density of the Lipschitz functions in N'7(Q,7),
see, for example, [20, Theorem 8.2.1]. O

1/q
(lu = uag,, [)¥/7 dV)
dep
1/p

1/p

N

The above Adams-type inequality also gives us a way to link traces, to
0, of Dirichlet-Sobolev functions on 2, and through this, we will see next
that the relative capacities of compact subsets of 02 are governed by the
v-measure of those subsets. As a consequence of the above Adams-type
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inequality, we have the following corollary giving us a lower bound on relative
capacities of subsets of 0f.

Given a domain ) and a point x € 952, the point x is called a regular
point for the domain if for each continuous function f : 92 — R we have

JAim Haf(y) = /(@)

where Hqf is the Perron solution to the Dirichlet problem of finding p-
harmonic functions on 2 with trace f. We refer the interested reader to [3,
Chapter 10-11] or [5] for more on classification of boundary points and
Perron solutions.

Corollary 8.8. Let 1 < p < oo. For each 0 < r < min{1, diamg,(02)}/2
and ¢ € 090, we have

v(Ba, (¢,r) N 0Q) S rP7% capf(Ba, (¢,r) N 09, By, (¢, 2r)).

Consequently, as 0 < 0 < p, then each point of XY is a regular point for the
domain €.

Recall that p, is doubling, and Qisf is connected, and so we have a reverse
doubling property: there is a positive constant ¢ < 1 such that for all z €
Q.7 and 0 < r < %diamdv(Qsa), we have p,(Ba,(z,7)) < cpy(Ba, (z,2r)).

Proof. Fix ( and r as in the statement of the corollary. Let u € vap(Q@, dy, thy)
such that v = 1 on By, ((,r) N 92, 0 < u < 1 on Q, and u = 0 on
Q, \ Bq,(¢,2r). Then,

1/q
v(Bg, (¢,r) N OQ)H1 < < / u? dy)
Bdgp((ﬂﬂ)
1/q
< </ ul dl/)
Bd¢(cv4r)
1/q
S u—u n|?du
</Bd¢ (C.4r) = by () )

1/p
S Tlie/qu(Bdw(Ca 47“))1/(171/77 (/B gg,tp d#w) .

In obtaining the penultimate inequality, we used Holder’s inequality and the
reverse doubling property of f,, while in the ultimate inequality we used
Theorem 8.7 applied to By, (¢, 4r) and the doubling property of 1,. Now an
application of the codimensionality relationship between v and p together
with the fact that for » < 1/2 the measure p, = p, and then taking the
infimum over all such u on the right-hand side, yields the desired inequality.

To verify the second claim of the corollary, we use the results of [6]. Note
that from [3], for each ¢ € 9Q and r > 0, we have

B )
capf (Ba, (C,7), Ba, (¢, 2r)) = W

dp (<’2T)
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So if 0 < r < 1/2, then using the codimensionality of v with respect to p
(and hence p,), we see that

B oY)
capf (B, (¢, ). Ba, (¢, 2m)) ~ 20261 000

5 Capf(B@, (ga 7’) N 897 Bdw (Cv 27’))
Thus, 0f2 is uniformly p-fat with respect to the domain €, that is,
cap]f(Bd(p(C,r) N o, Bdw(C, 2r)) S
Capﬁf(Bdg; (Ca T)? Bd¢ (Cv 27")) ~

and so by the results in [6, Theorem 5.1] the conclusion follows. O

9. EFFECT ON THE DIRICHLET PROBLEM FOR (€, d, )

Now we have the tools necessary to verify Theorem 1.2. We split the
proof into two theorems below.

To show existence of solutions to a Dirichlet problem for bounded domains
can be done via the direct method of calculus of variations: any sequence of
functions, with the same boundary value, and with p-energy converging to
the infimum of the p-energies of the class of all Dirichlet-Sobolev functions
satisfying the fixed boundary conditions is done by first showing that this
sequence is bounded in the Sobolev class (which is reflexive), and this in turn
is accomplished by using the Poincaré inequality, as the domain is bounded
and hence sits inside a large ball to which the Poincaré inequality can be
applied. See [34] for details regarding this method in the setting of metric
spaces. When the domain is unbounded however, this method cannot work.

In this final section of the paper, we use the tools developed in the previous
two sections to study existence and uniqueness issues related to solutions
to the Dirichlet problem regarding p-harmonic functions on an unbounded
domain whose boundary is bounded. In [16] a Perron method from [5]
was adapted to solve the Dirichlet problem corresponding to continuous
boundary data on unbounded domains that were p-parabolic. As in [22], an
unbounded domain Q is p-parabolic if Mod,(I'ss) = 0, where I' consists

of all locally rectifiable curves in ) that leave every compact subset of [0
Note that in our setting, curves in I'y, are the restriction to ) of the curves
in I" studied in Proposition 7.7, and so by (7.2), the domain 2 is p-parabolic
in the sense of [16] if and only if Mod7(I') = 0. The domain is said to be
p-hyperbolic if it is not p-parabolic.

The following theorem extends the result of [16] to boundary data in
Besov classes.

Theorem 9.1. Let 1 < p < 00, (Q,d, p) be a doubling metric measure space
satisfying a p-Poincaré inequality such that (Q,d) is a locally compact, non-
complete, unbounded uniform domain with bounded boundary, and v a Borel
reqular measure that is -codimensional with respect to p for some 0 < 6 < p.
Suppose that Q is p-parabolic. Then, for every f € B;;,e/p(OQ, v), there

is a unique function u € DYP(Q, i) such that

e u is p-harmonic in (,d, ),

o Tu=f on 0N v-a.e..
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Proof. Recall from Proposition 7.5 that
DLP(Q’ d7 /.L) = NLp(Q(P? d<p> MQD)

Hence it suffices to find a function u € NP (Q4, dy, f1p) that is p-harmonic
in (Qy,dy, f1,), for p-harmonicity in this metric measure space implies p-
harmonicity in the original metric measure space (£, d, 1) thanks to Propo-
sition 7.4.

Since f € B,l,,;e/ P(0Q,v), and this Besov space is the trace space of
N1P(Q,) by the proof of Proposition 8.3, and as Cap; (02) > 0 by Propo-
sition 8.2, the direct method of calculus of variations as described in the
comment before the statement of the theorem applies; note that we also
have (Qg,dy, f1,) is doubling and supports a p-Poincaré inequality. Thus
there is a function u € NVP(Qy, dy, pip) that is p-harmonic in €, with re-
spect to the metric d, and the measure p,, such that T'u = f.

Now suppose that v is also a p-harmonic function in (€, d, ) with Tv = f.
We also have that v is p-harmonic in Q, \ {oo} by Proposition 7.4. As
Capf ({oo}) = 0 by the assumption of p-parabolicity, it follows from [2] (see
Remark 7.9 above) that v is p-harmonic in €,. By the uniqueness of solu-
tions to Dirichlet problem in (€, d,, 1) (see [34]), we see that necessarily
v = u in €, and hence in Q. This demonstrates the uniqueness of the
solution. O

Theorem 9.2. Let 1 < p < 00, (2,d, ) be a doubling metric measure space
satisfying a p-Poincaré inequality such that (2, d) is a locally compact, non-
complete, unbounded uniform domain with bounded boundary, and v a Borel
reqular measure that is 0-codimensional with respect to p for some 0 < 8 < p.
Suppose that € is p-hyperbolic. Then, for every f € B;;Q/p(aﬁ, v), there

is a function uw € DYP(Q, 1) such that

e v is p-harmonic in (2, d, p),

e Tu=f on N v-a.e.,

o limosy o0 u(y) exists as a real value.

In the above theorem, by limgs,—oc u(y) we mean a real number 7 such
that for some (and hence each) z¢ € €, for each € > 0 we can find R > 0
such that |u(y) — 7| < € whenever y € Q with d(zo,y) > R.

Proof. As in the proof of Theorem 9.1, we see that solutions do exist, but
unlike in that theorem, we do not have uniqueness. However, as {2 is p-
hyperbolic, we have that Capy({oc}) > 0. Let v be any such p-harmonic
solution; then v € NYP(Q,,d,, u,) by Proposition 7.5. Thus, extending

fe B;fpe/p(@(l, v) to oo by setting

f(o0) := lim vdjig,
r—0+ Ba,, (c0,r)
and noting that p-capacity almost every point is a Lebesgue point of v
(see [20, Theorem 9.2.8]), the above extension is well-defined. Thus v solves
the Dirichlet problem on (€, \ {oo},dy, f1,) with boundary data as the
extended function f, with f continuous at (and hence, as oo is an iso-
lated point of 9[€2, \ {oo}], in a neighborhood of) co. By Corollary 8.8, we
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know that oo is a regular point for the domain (€, \ {c0},d,, it,). Hence
limosy—00 v(y) = f(00) exists. O

We in fact obtain more; if v and u are both solutions to the original
problem, and if limgsy 00 v(y) = limgsy— 00 u(y), then necessarily v = u in
Q2 by the uniqueness of solutions to Dirichlet problem in (€, \ {c0}, d.,, ty)
with boundary data on 0[S, \ {oo}] = 0Q U {oco}. Moreover, of all the
solutions to the Dirichlet problem on 2 with boundary data f, there is only
one solution that is also a solution in the domain (), with respect to the
metric d, and the measure f,.

10. SOME ILLUSTRATIVE EXAMPLES
In this section, we consider some examples.

Example 10.1. Let Z = [—1,1] x [0,000), equipped with the restriction of
the Euclidean metric and the 2-dimensional Lebesgue measure from R?, and
Q =[-1,1] x (0,00). Then 92 = [—1,1] x {0} is bounded. We have that
the measure on Z is doubling and supports the strongest of all Poincaré
inequality, the 1-Poincaré inequality. Moreover, {2 is a uniform domain that
is also unbounded. For B > 1, with the choice of ¢(t) = min{1,¢ %} for
t > 0, the domain € is transformed into €, = Q U {oo}. Note that in
the proof of Proposition 7.7, we need only consider the indices @), and
Q;’ corresponding to large values of » and R; and in this case, we can set
Q, = Q:[ = 1, though when considering all scales of 7, we have @, = 2
and Q: = 1. So reading the hypotheses of Proposition 7.7 in this setting,
when 1 = Qi < p, we are in the case (2) of the proposition, and then
Modf(T") = 0. It follows that  is p-parabolic, and the solution to the
Dirichlet problem on € is unique. Note that v = 7—[1|[_171]X{0} has co-
dimensional relation with respect to the 2-dimensional Lebesgue measure at
scales 0 < r < Ry with # = 1. Solutions to the Dirichlet problem satisfy a
homogeneous Neumann condition on the half-lines {£1} x (0, o0) when seen
as a function on (—1,1) x (0,00). For p > 1 = 6, the Dirichlet problem is
always solvable, and the solution is unique.

Example 10.2. Z := {(z,y) € R? : y > max{0, |z| — 1}} again be equipped
the restriction of the Euclidean metric and Lebesgue measure from R?, and
Q= Z\[-1,1] x {0}. In this case, at all scales of r and R, we have
Q. = Q:{ = 2, and € is p-parabolic when p > 2 and is p-hyperbolic when
1 < p < 2. Moreover, we again have § = 1. Here solutions to the Dirichlet
problem on (2 satisfy a homogeneous Neumann condition on the rays {(z, z—
1) : > 1} and {(z,1—2) : * < —1}. Here, for p > 1 the Dirichlet problem
is always solvable, but the solution is unique only when p > 2.

On the other hand, if, with Z as above, we have Q = Z \ K x {0} with
K the standard 1/3-rd Cantor set, then again (2 is a uniform domain that
is p-parabolic when p > 2 and p-hyperbolic when 1 < p < 2, but now with

v the iggg—dimensional Hausdorff measure supported on K x {0} = 09, we

have that 6§ = 2 — igg > 1. In this case, the Dirichlet problem is always

log 2
log 3>

solvable when p > 2 — but the solution is unique only when p > 2.
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Solutions to the Dirichlet problem on € satisfy the homogeneous Neumann
condition on the two above-mentioned rays, but in addition, they also satisfy
that Neumann condition on ([—1,1] \ K) x {0}.

In contrast to the above examples, the domain Q = {(z,y) € R? : |y| >
max{0, |z| — 1}} U (—1,1) x {0}, considered as a domain in Z = R?, is not
a uniform domain and hence the mechanisms developed in this paper do
not apply to such 2. However, from the fact that this domain is obtained
by gluing two copies of the second example domain along their common
boundary, we see that €2 is p-hyperbolic precisely when 1 < p < 2, and this
example indicates that ) should have a two-point compactification rather
than the one-point compactification considered here. We will not address
this issue further in the present paper.

Example 10.3. With Z = R? equipped with the 2-dimensional Lebesgue
measure and the Euclidean metric, let @ = Z \ (K x K), where K is the
standard 1/3-rd Cantor set. Then 2 is a uniform domain, and it is p-
hyperbolic precisely when 1 < p < 2. In this case, v is the restriction,

to 00 = K x K, of the iggg—dimensional Hausdorff measure; thus 6 =

2[1— igg%] < 1. In this case the Dirichlet problem is solvable for each p > 1,

but the solution is unique only for p > 2.
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