
 

A taxonomy of black-hole binary spin precession and nutation
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Binary black holes with misaligned spins will generically induce both precession and nutation of the
orbital angular momentum L about the total angular momentum J. These phenomena modulate the phase
and amplitude of the gravitational waves emitted as the binary inspirals to merger. We introduce a
“taxonomy” of binary black-hole spin precession that encompasses all the known phenomenology, then
present five new phenomenological parameters that describe generic precession and constitute potential
building blocks for future gravitational waveform models. These are the precession amplitude hθLi, the
precession frequency hΩLi, the nutation amplitude ΔθL, the nutation frequency ω, and the precession-
frequency variation ΔΩL. We investigate the evolution of these five parameters during the inspiral and
explore their statistical properties for sources with isotropic spins. In particular, we find that nutation ofL is
most prominent for binaries with high spins (χ ≳ 0.5) and moderate mass ratios (q ∼ 0.6).
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I. INTRODUCTION

The LIGO and Virgo gravitational-wave (GW) detectors
observed about 50 binary black hole (BBH) mergers to date
[1–6]. Hundreds (millions) more are expected in the next
few years (decades) as current interferomenters improve in
sensitivity and new detectors begin observations [7–10].
Spin precession is a key feature of BBH dynamics [11].

Although its detectability remains an area of active research
[12–14], spin precession is expected to be present across
the entire black hole (BH) mass spectrum. Stellar-mass
BBHs (m≲ 100 M⊙) generally originate either from
dynamical interactions in dense clusters [15] or from the
evolution of isolated binary stars [16]. Measurements of
spin precession may help to discriminate relative contri-
butions of each channel to the observed BBH population
[17–34]. In particular, dynamically formed BBHs are
expected to have isotropically oriented spins and thus
present generic precession features, while the spins of
BBHs formed in the isolated channel might be more closely
aligned with their orbital angular momentum. For super-
massive BBHs targeted by the LISA mission, spin pre-
cession might help discriminating between the gas-poor
and gas-rich nature of their galactic hosts [35–39].
Individual BBH merger events observed by LIGO and

Virgo do not currently show unambiguous evidence for
spin precession, but population constraints are more

promising. Phenomenological models find, at 90% credi-
bility, that half of a BBH population’s spins have modest
components in the orbital plane [40]. This is due to the
combination of many systems with weak in-plane spin
components rather than only a few systems with strong
precession dynamics. According to these models, perfect
spin alignment for the entire population is excluded
at > 99% credibility, with a preference for the cosines
of the spin-orbit misalignment angles to be positive.
The theoretical understanding of BBH spin precession

has received much attention in recent decades. As BBHs
inspiral towards merger, GW emission is described to
leading post-Newtonian (PN) order by the quadrupole
formula. Spin-orbit and spin-spin terms couple the binary
orbital angular momentum L and BBH spins S1 and S2,
modulating the polarization, phase, and amplitude of the
emitted GWs [11,41–43]. These effects are well understood
and form the basis of current data analysis of compact-
binary-coalescence GW signals [44–46]. The effects of
BBH spins are typically interpreted in terms of parameters
such as the projected effective spin χeff [47,48] and the
precession effective spin χp [14,49].
Furthermore, a variety of configurations where BBH

spin dynamics result in peculiar phenomenologies are now
known, including transitional precession [11,50], spin-orbit
resonances [51–53], dynamical instabilities [54–57], emer-
gence of new constants of motion [58,59], and large
nutation cycles [60,61]. This paper attempts to incorporate
this richness into a single, comprehensive framework and
presents five new parameters that encode the most generic
features of BBH spin precession.
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Before delving into the details of this study, we introduce
a new “taxonomy” of spin precession which encompasses
all of the known phenomenology. Our classification is
summarized in Fig. 1.
(1) Following Apostolatos et al. [11], we refer to

precession as “simple” when the direction of the
total angular momentum J ¼ Lþ S1 þ S2 is ap-
proximately constant. In this case, the direction of L
as it precesses about J can be specified by the polar
angle θL and azimuthal angle ΦL.
(a) If the total spin magnitude S ¼ jS1 þ S2j is

conserved on the precession timescale, then θL
and the precession frequency ΩL ≡ dΦL=dt are
also constant on this timescale. We refer to
this uniform precession of L on a cone about
J as “regular” following Landau and Lifshitz
[62]. Cases of regular precession include:

(i) a single nonzero spin [11],
(ii) the equal-mass (q ¼ 1) limit [11,58],
(iii) the spin-orbit resonances [51].

(b) In the “generic” case when S is not constant on
the precession timescale [52,63], neither are θL
nor ΩL, implying that L nutates as it precesses
about J.

(2) “Transitional” precession occurs when the direction
of J is not constant [11]. There are at least two
different but related scenarios when this can occur:
(a) If the ratio of the magnitudes of the total and

orbital angular momenta is less than the ratio of
the precession and radiation-reaction timescales
J=L≲ tpre=tRR ∝ ðr=MÞ−3=2, the direction of J
tumbles [11].

(b) At a nutational resonance [50] where the mean
precession frequency is an integer multiple of the
nutation frequency (i.e., hΩLi ¼ nω), coherent
GW emission tilts the direction of J.

The vast majority of the binaries at a given separation r
will undergo generic simple precession (1b), as the other
three cases are restricted to finely tuned (2a) or lower-
dimensional (1a, 2b) portions of BBH parameter space.
However, as the precession and nutation frequencies evolve
during the inspiral, an order-unity fraction of binaries will
pass through one or more nutational resonances for
comparable mass ratios (q≲ 1) [50].
In this paper, we step back from current GWanalyses and

waveform models and attempt to identify those parameters
that most naturally characterize the essential features of the
more common simple precession. Regular precession (1a)
of L on a cone about J can be described by the precession
amplitude θL and the precession frequency ΩL, which are
constant on the precession timescale. However, in the
generic case (1b), nonzero nutation implies that the
precession amplitude and frequency oscillate about their
precession-averaged values hΩLi and hθLi with nutation

amplitude ΔθL and precession-frequency variation ΔΩL at
common nutation frequency ω.
We stress that nutation is a generic feature of BBH spin

dynamics and as such deserves further attention. Our five
parameters provide a new framework to characterize
configurations in which precession and nutation both
significantly impact the dynamics and allow us to isolate
and analyze their respective contributions. We expect each
of these five parameters to imprint a distinct observational

FIG. 1. Proposed taxonomy of BBH spin precession. Simple (transitional) precession occurs when the direction of the total angular
momentum J is constant (varying). Simple precession is “regular”when the orbital angular momentumL precesses on a cone with fixed
opening angle (i.e., ΔθL ¼ 0) and frequency (i.e., ΔΩL ¼ 0) and is “generic” when nutation causes the opening angle and frequency to
vary (i.e., ΔθL ≠ 0, ΔΩL ≠ 0). Examples of regular precession include BBHs with a single spin, equal masses, and the spin-orbit
resonances of Ref. [51]. Transitional precession occurs for small values of the total angular momentum (J ≪ L) [11] or at nutational
resonances (hΩLi ¼ nω) [50].
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signature because of the dominant effect of the direction of
L on the quadrupole waveform [11], but we leave the
characterization of these signatures and the signal-to-noise
ratios needed to observe them to future work.
Our paper is structured as follows. Section II defines and

details the five precession parameters we propose.
Section III explores their behavior using numerical PN
evolutions. Section IV summarizes our findings and future
prospects. Some details are postponed to Appendixes A
and B. We use geometric units where G ¼ c ¼ 1.

II. FIVE PRECESSION PARAMETERS

A. Multitimescale analysis

We briefly review the multitimescale spin-precession
framework [52,63] that allows us to calculate our five
precession parameters at 2PN order. BBHs have component
masses m1;2, mass ratio q≡m2=m1 ≤ 1, total mass
M≡m1 þm2, and symmetric mass ratio η≡m1m2=M

2.
The BBH spins S1;2 determine the dimensionless Kerr
parameters χi ≡ Si=m

2
i and the misalignment angles

θi ≡ arccosðŜi · L̂Þ, where L is the Newtonian orbital
angular momentum.
BBH evolution occurs on three different timescales:
(1) The binary separation vector r changes direction on

the orbital timescale torb=M ∝ ðr=MÞ3=2.
(2) The spins S1;2 and orbital angular momentum L

precess about the total angular momentum J on the
precessional timescale tpre=M ∝ ðr=MÞ5=2.

(3) GW emission decreases the binary separation r on
the radiation-reaction timescale tRR=M ∝ ðr=MÞ4.

The PN approximation (r ≫ M) implies the timescale
hierarchy torb ≪ tpre ≪ tRR.
The evolution of the three vectors S1, S2, and L on the

precession timescale is a nine-parameter problem, but the
seven constraints provided by the constancy of the magni-
tudes S1, S2, and L, the total angular momentum J, and the
projected effective spin [47,64]

χeff ≡

�

ð1þ qÞS1 þ
�

1þ 1

q

�

S2

�

·
L̂

M2
ð1Þ

leave only two degrees of freedom.We choose the total spin
magnitude S and the azimuthal angle ΦL as generalized
coordinates to describe these degrees of freedom; S is an
intrinsic parameter, while ΦL is extrinsic.
The spin magnitude S oscillates between turning points

S� with a period

τ ¼ 2

Z

Sþ

S−

dS

jdS=dtj ; ð2Þ

where the turning points S� are functions of S and the
constants of motion,

dS

dt
¼ −

3

2

�

1 − q

1þ q

�

S1S2

MS

�

1 − χeff

�

M

r

�

1=2
��

r

M

�

−5=2

× sin θ1 sin θ2 sinΔΦ12; ð3Þ

and ΔΦ12 is the angle between the components of S1 and
S2 in the orbital plane. As S is the only intrinsic parameter,
we can define the precession average of any quantity
XðSÞ by

hXi≡ 2

τ

Z

Sþ

S−

XðSÞ
jdS=dtj dS: ð4Þ

Let us also define X� ≡ XðS�Þ for any quantity X.
The angular momentum L precesses about J with

precession frequency

ΩLðSÞ ¼
dΦL

dt
¼ J

2r3

�

1þ 3ð1þ qÞ
2q

�

1 − χeff

�

M

r

�

1=2
�

× f1þ q − ½J2 − ðL − SÞ2�−1½ðLþ SÞ2 − J2�−1

× ½4ð1 − qÞL2ðS2
1
− S2

2
Þ − ð1þ qÞðJ2 − L2 − S2Þ

× ðJ2 − L2 − S2 − 4ηM2LχeffÞ�g
�

; ð5Þ

During a period τ, L precesses by an angle α ¼ hΩLiτ
about J.
As the polar angle between L and J is given by

θLðSÞ ¼ arccos

�

J2 þ L2 − S2

2JL

�

; ð6Þ

the oscillation of Swith period τ leads to nutation ofLwith
frequency ω≡ 2π=τ.

B. Precession parameters

This formalism highlights five promising parameters to
describe simple precession:
(1) The precession amplitude given by the average hθLi

or median θ̄L ≡ ðθLþ þ θL−Þ=2.
(2) The precession frequency given by the average hΩLi

or median Ω̄L ≡ ðΩLþ þΩL−Þ=2.
(3) The nutation amplitude ΔθL ≡ ðθLþ − θL−Þ=2.
(4) The nutation frequency ω≡ 2π=τ.
(5) The precession-frequency variation ΔΩL≡

ðΩLþ −ΩL−Þ=2.
The nutation amplitude ΔθL and precession-frequency
variation ΔΩL vanish for regular precession (1a); θL and
ΩL oscillate with the same nutation frequency ω because S
is the only intrinsic parameter varying on the precession
timescale.

C. Leading PN behavior

We can develop intuition about our five precession
parameters by calculating their values at leading PN order
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(r=M → ∞). In this limit, 1.5PN spin-orbit coupling
dominates over 2PN spin-spin coupling [43]. The individ-
ual spins S1;2 precess regularly on cones about the orbital
angular momentum L with opening angles θ1∞ and θ2∞
and frequencies

Ω1∞ ¼ ð4þ 3qÞη
2M

�

r

M

�

−5=2

; ð7Þ

Ω2∞ ¼ ð4þ 3=qÞη
2M

�

r

M

�

−5=2

: ð8Þ

Defining X⊥ as the component of vector X perpendicular
to the total angular momentum J, the precession amplitude
hθLi in the limit r=M → ∞ is

hθLi∞ ¼ hS⊥i
L

¼
���

χ1 sin θ1∞
q

�

2

þ ðqχ2 sin θ2∞Þ2
�

M

r

�

1=2

: ð9Þ

The precession frequency hΩLi is bimodal in the limit
r=M → ∞ and given by

hΩLi∞ ¼
�

Ω1∞ if S1⊥ > S2⊥;

Ω2∞ if S1⊥ < S2⊥:
ð10Þ

This result, expressed in a different notation, was first
presented in Eqs. (46) and (47) of Ref. [50]. For a
population of BBHs with given values of q; χ1; χ2, and
isotropic spin directions, the fraction of sources with S1⊥ <
S2⊥ is given by [50]

f< ¼

8

<

:

jχ2
1
−q4χ2

2
j

4q2χ1χ2
ðsinhHC −HCÞ if S1 > S2;

jχ2
1
−q4χ2

2
j

4q2χ1χ2
ðsinhHS þHSÞ if S1 < S2;

ð11Þ

where

HC ¼ 2 cosh−1
�

χ1

jχ2
1
− q4χ2

2
j1=2

�

; ð12Þ

HS ¼ 2 sinh−1
�

χ1

jχ2
1
− q4χ2

2
j1=2

�

: ð13Þ

The nutation amplitude ΔθL in the limit r=M → ∞ is
similarly bimodal and given by

ΔθL∞ ¼ 1

2L
ðS1⊥ þ S2⊥ − jS1⊥ − S2⊥jÞ

¼

8

<

:

qχ2 sin θ2∞
�

M
r

	

1=2
if S1⊥ > S2⊥;

χ1
q
sin θ1∞

�

M
r

	

1=2
if S1⊥ < S2⊥:

ð14Þ

The nutation frequency ω in the limit r=M →∞ is

ω∞ ¼ Ω2∞ −Ω1∞ ¼ 3

2M

�

1 − q

1þ q

��

r

M

�

−5=2

; ð15Þ

which is independent of the BBH spins and vanishes in the
equal-mass limit q→ 1, consistent with the constancy of S
in this limit even at 2PN order [58]. This implies that θL and
ΩL are also constant and that Eqs. (9), (14), and (16) are
invalid in the precisely equal-mass limit.
The precession frequency ΩL� at S ¼ S� in the limit

r=M → ∞ is

ΩL�∞ ¼ χ1 sin θ1∞Ω1∞ � q2χ2 sin θ2∞Ω2∞

χ1 sin θ1∞ � q2χ2 sin θ2∞
; ð16Þ

implying that the precession-frequency variation ΔΩL in
the limit r=M →∞ is

ΔΩL∞ ¼ 1

2
ðΩLþ∞ −ΩL−∞Þ;

¼ q2χ1 sin θ1∞χ2 sin θ2∞
χ2
1
sin2 θ1∞ − q4χ2

2
sin2 θ2∞

ω∞: ð17Þ

III. NUMERICAL EVOLUTIONS

We now explore the evolution and distribution of our five
precession parameters. Numerical integrations are per-
formed with the PRECESSION code [65], which implements
2PN spin-precession equations [47] and 1.5 PN precession-
averaged radiation reaction [52,63]. Sources are evolved
from their asymptotic conditions at r=M → ∞ down to
r ¼ 10M, taken as the threshold for the breakdown of the
PN approximation.

A. Individual sources

Figure 2 displays two representative cases for the
evolution of our five parameters as functions of the
separation r. The key difference between these two systems
is whether J and L align at some point during the inspiral.
Because the function θLðSÞ given by Eq. (6) is monotonic,
the condition sin θLðSÞ ¼ 0 can only be satisfied if either
S− ¼ jJ − Lj or Sþ ¼ J þ L, which correspond to θL− ¼ 0

and θLþ ¼ π, respectively [50]. Appendix A shows our
proof that these two conditions cannot be satisfied simul-
taneously, i.e., maximal nutations ΔθL ¼ π are forbidden.

DARIA GANGARDT et al. PHYS. REV. D 103, 124026 (2021)

124026-4



This is unlike nutations of S1 and S1 which can have
maximal amplitude π during a single period τ [61].
The left panels of Fig. 2 show a binary for which θL

never reaches 0 or π. The average precession and nutation
amplitudes hθLi andΔθL are approximately proportional to
ðr=MÞ−1=2 as suggested by the leading-order behavior
given by Eqs. (9) and (14), while the three frequencies
hΩLi, ω, and ΔΩL are nearly proportional to ðr=MÞ−5=2
consistent with the leading-order behavior given by
Eqs. (10) and (15), and (17). The two precession averages
hθLi and hΩLi are well approximated by the median values
θ̄L and Ω̄L, as one would expect at small nutation amplitude
ΔθL where the oscillations are nearly sinusoidal.
The evolution of our five precession parameters is some-

what more complex if L and J reach coalignment at some
point during the inspiral. The right panels of Fig. 2 show
an example of such a binary where a cusplike minimum

θL− ¼ 0 and a corresponding cusplike local maximum in the
nutation amplitude ΔθL occur at r ≈ 27M. If Ω is the
precession vector, i.e., dL=dt ¼ Ω ×L, then the precession
frequency of Eq. (5) is

ΩL ¼ dL

dt
·
Ĵ × L̂⊥

L⊥

¼ Ω · ðĴ − L̂⊥ cot θLÞ: ð18Þ

In Appendix B, we show that Ω · L̂⊥ ≠ 0 for misaligned
spins, implying that the second term in Eq. (18) diverges and
thus ΩL− approaches �∞ as θL− approaches zero (or θLþ
approaches π) during the inspiral. As L passes through
alignment with J, L̂⊥ → −L̂⊥ and ΩL− goes to ∓ ∞

according to Eq. (18). This can be seen in the bottom right
panel of Fig. 2, where ΩL− jumps from −∞ to þ∞ as the
binary inspirals through r ≈ 27M at which θL− ¼ 0. The
precession-frequency variationΔΩL correspondingly jumps

FIG. 2. Evolution of our five precession parameters for two representative inspirals. These are the precession amplitude hθLi (dashed
green, top), the nutation amplitude ΔθL (solid blue; top), the precession frequency hΩLi (dashed green, bottom), the precession-
frequency variation ΔΩL (solid blue, bottom), and the nutation frequency ω (solid red, bottom). We also show the medians θ̄L and Ω̄L

(solid orange), as well as the allowed ranges θL� and ΩL� (gray curves and shaded areas). The two binaries shown in this figure are
characterized by the values of q; χ1; χ2; θ1∞, and θ2∞ listed in the top panels. The right (left) panels depict a case where sin θL does (not)
reach 0 at some point during the inspiral. This condition is marked by a vertical black line (r ≈ 27M for the binary on the right).
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from þ∞ to −∞. Integrating Eq. (18) with respect to time,
we find that this discontinuity causes the precession angle per
nutation period α≡

R

τ
0
ΩLdt to jump byΔα ¼ �2π and the

average precession frequency hΩLi ¼ α=τ to jump by
ΔhΩLi ¼ �ω as explored by Zhao et al. [50]. Careful
examination of the dashed green curve in the bottom right
panel of Fig. 2 reveals this discontinuity in hΩLi at the

vertical black line. Numerical exploration did not reveal
binaries with two or more of such LkJ crossings.

B. Parameter-space exploration

The dependence of the five precession parameters at
r ¼ 10M on the mass ratio q is shown in Fig. 3 for three
values of the spin magnitudes χ1 ¼ χ2 ¼ 1, 0.5, and 0.1.

FIG. 3. Distributions of the precession parameters ΔθL (top left), hθLi (middle left), ω (bottom left), ΔΩL (top right), and hΩLi
(middle right) as functions of the mass ratio q for isotropic distributions of spin directions at r ¼ 10M. The solid orange, blue, and green
lines show the median values for spin magnitudes χ1 ¼ χ2 ¼ 0.1, 0.5, and 1, while the shaded areas indicate the 90% interval of each
distribution. The bottom right panel shows the fraction of binaries with ΔΩL < 0 for the same BBHs.
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The binaries for which the nutation amplitude ΔθL is
largest have high spins but moderate mass ratio q ∼ 0.6.
This counterintuitive result constitutes one of the key
findings of this paper. Two-spin effects are, naïvely,
maximized for comparable-mass sources q≲ 1 because
the secondary’s spin S2 vanishes for q → 0. This is not the
case for nutations. The magnitude S becomes a constant of
motion in both the q→ 0 and the q → 1 limits, which
implies ΔθL ¼ ΔΩL ¼ 0. Nutation effects are set by the
variation of S and are more prominent for binaries with
moderate mass ratios.
As expected, large values ofΔθL are more likely for high

χ1 and χ2, because large spins can induce greater misalign-
ments between the total and orbital angular momenta (i.e.,
J −L ¼ S1 þ S2). Figure 3 also shows that the maximum
value of ΔθL occurs at smaller q if χ1 ¼ χ2 increases. This
can be understood in terms of the spin-precession mor-
phologies explored in depth in Refs. [52,63]. Nutation is
larger in the circulating morphology than the two librating
morphologies in which the spins merely oscillate about the
spin-orbit resonances (case 1a.iii of regular precession in
our taxonomy detailed in Sec. I). To maximize the nutation
amplitude ΔθL at higher χi, the mass ratio q must decrease
to suppress spin-spin coupling and maintain a large fraction
of binaries in the circulating morphology.
The precession-frequency variation ΔΩL also reaches its

largest values at moderate mass ratios. However, unlike for
the nutation amplitude ΔθL, smaller spins produce larger
variations ΔΩL. Comparing the leading PN behavior given
by Eqs. (14) and (17), we see that ΔθL∞ is linear in the spin
magnitudes, whileΔΩL∞ only depends on their ratio χ2=χ1.
This ratio is unity for all three spin distributions in Fig. 3, but
the weaker spin-spin coupling for smaller χi again implies a
higher fraction of binaries in the circulating morphology and
thus larger variationsΔΩL. The sharp decreases in the lower
boundaries of the shaded regions (the 5th percentile of each
distribution) approximately occur at the values of q at which
the fraction of binaries with ΔΩL < 0 reaches 0.05
(fΔΩL<0

¼ 0.05 in the bottom right panel of Fig. 3). In
the limit that spin-spin coupling is suppressed, this occurs at
q ≃ 0.62 where f< ¼ 0.05 according to Eq. (11).
This fraction fΔΩL<0

increases with q for χ1 ¼ χ2,
consistent with the leading PN behavior given by
Eq (17). This equation also shows that in the equal-mass
limit q → 1, ΔΩL∞ is equally likely to be positive or
negative, consistent with our numerical result that
fΔΩL<0

→ 0.5 in this limit. The fraction fΔΩL<0
is not

necessarily maximized at q ¼ 1 for χ1 ≠ χ2. For example,
we find that fΔΩL<0

reaches a maximum of ∼0.95 at q ≃

0.65 for χ1 ¼ 0.1 and χ2 ¼ 1.
The precession amplitude hθLi shown in the middle left

panel of Fig. 3 decreases monotonically with q and
increases monotonically with χi. In the extreme mass-ratio
limit q→ 0, L → 0, and S → S1, implying that hθLi →
π=2 for isotropic spin distributions. As q increases, the two

spins can more effectively cancel each other in the vector
sum S ¼ S1 þ S2 leading to smaller precession amplitudes
θL by Eq. (6). Larger spin magnitudes lead to larger
precession amplitudes both geometrically by Eq. (6) and
because enhanced spin-spin coupling increases the fraction
of binaries in the precession morphology in which the
components of the spins in the orbital plane librate about
alignment and thus add constructively.
The average precession frequency hΩLi is shown in the

middle right panel of Fig. 3. In the extreme mass-ratio limit
q→ 0, J → S1, and thereforeΩL ∝ χ1 according to Eq. (5).
The larger scatter in the distributions for larger spins in this
limit follows from the dependence of ΩL on the projected
effective spin χeff in this equation which spans a larger range
−χ1 ≤ χeff ≤ þχ1 for higher spins. As q increases, hΩLi
generally increases aswell, particularly for small spinswhere
the leading PN approximation of Eq. (10) is more accurate.
The sharp increases in the upper boundaries of the shaded
regions (the 95th percentile of each distribution) are essen-
tially the mirror image of the similar features in the lower
boundaries of the ΔΩL distributions in the top right panel.
This follows from the definitions of these parameters:
ΔΩL ≡ ðΩLþ −ΩL−Þ=2 and hΩLi≈ Ω̄L≡ ðΩLþþΩL−Þ=2.
The nutation frequencyω decreasesmonotonicallywithq,

consistent with the factor of ð1 − qÞ=ð1þ qÞ in Eqs. (3) and
(15). Its median value is largely independent of the spin
magnitude, also consistentwith Eqs. (2) and (15). Thewidths
of the ω distributions are roughly proportional to χi, which
follows from the termproportional to χeff inEq. (3), similar to
the scatter in hΩLi in the extreme mass-ratio limit.
In Fig. 4, we explore how our five precession parameters

at r ¼ 10M depend on spin orientation for five choices of
mass ratio q and spin magnitudes χ1 and χ2. We para-
metrize the spin orientations by the cosines of the misalign-
ment angles cos θ1∞ and cos θ2∞ in the limit r → ∞; these
parameters fully determine J and χeff at all separations as
discussed in Ref. [52] and can thus be used to calculate the
precession parameters as described in Sec. II. Isotropic spin
distributions remain isotropic as they inspiral [35] and are
thus specified by flat distributions of cos θ1∞ and cos θ2∞.
The top row of Fig. 4 shows the nutation amplitude ΔθL.

The boundaries of the plane (cos θ1∞ ¼ �1; cos θ2∞ ¼ �1)
correspond to the spin-orbit resonances [51] that undergo
regular precession for which ΔθL ¼ 0 (case 1a.iii of our
taxonomy). The nutation amplitude increases as one moves
inwards from the boundaries and is largest for the three
distributionswithq ¼ 0.5, consistentwith Fig. 3.All three of
these distributions possess distinct crests of large ΔθL that
extend from near the bottom right corner of each plot to the
top right corner. A line tracing along this crest corresponds to
the set of binaries with θL− ¼ 0 at r ¼ 10M; by minimizing
θL−, these binaries naturally have large values of the nutation
amplitudeΔθL ≡ ðθLþ − θL−Þ=2 (corresponding to the local
maximum of the solid blue curve in the top right panel of
Fig. 2).We address the consequences of the condition JkL in
greater detail in Sec. III C.
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The second row of Fig. 4 shows the precession amplitude
hθLi. These plots appear anticorrelated with those in
the first row, a consequence of the contribution of θL− to
these parameters: ΔθL ≡ ðθLþ − θL−Þ=2 and hθLi ≈ θ̄L≡

ðθLþ þ θL−Þ=2. The alternating constructive and destructive
addition in the vector sum S ¼ S1 þ S2 that maximizesΔθL
suppresses the precession-averaged hθLi.
The precession frequency ω shown in the third row of

Fig. 4 has the weakest dependence on spin orientation,
consistent with the spin-independent leading-order PN
result of Eq. (15). The higher-order dependence on spin
orientation can be largely explained through the term
proportional to χeff in Eq. (3). Another feature of these
plots, also apparent in the second row, is the weak
dependence on cos θ2∞ for small mass ratio q or χ2 ≪ χ1.

The fourth and fifth rows of Fig. 4 shows the precession-
frequency variation ΔΩL and the average precession fre-
quency hΩLi. Both are correlatedwith the nutation amplitude
ΔθL shown in the top row because of the features associated
with the set of binaries with JkL at r ¼ 10M.

C. Role of the JkL condition and the up-down

configuration

Figure 5 shows enlarged versions of the first and fourth
rows of the fourth column of Fig. 4. The dashed lines show
binaries for which θL− ¼ 0 (JkL) as r=M → ∞. This
condition can be expressed analytically by the hyperbola
χ1 sin θ1∞ ¼ q2χ2 sin θ2∞. The solid lines show binaries for
which θL− ¼ 0 (JkL) at r ¼ 10M. These lines were

FIG. 4. Precession parameters ΔθL, hθLi, ω, ΔΩL, and hθLi (top to bottom) at r ¼ 10M as a function of the asymptotic spin
misalignment angles θ1∞ and θ2∞. Each column corresponds to a set of values of mass ratio q and spin magnitudes χi. For visualization
purposes, the shading saturates above and below the thresholds indicated in the color bars.
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determined by setting χ1 sin θ1 ¼ q2χ2 sin θ2, ΔΦ12 ¼ π at
r ¼ 10M, then integrating the precession-averaged radia-
tion reaction backwards in time to determine the asymptotic
misalignment angles θi∞. It is fascinating how the gravi-
tational inspiral (in reverse) breaks the symmetry of this
analytic condition.
We denote binaries as being in the “up/down-up/down”

configuration if the primary-secondary spin is aligned
(“up”) or antialigned (“down”) with the orbital angular
momentumL. The “up-up,” “down-up,” and “down-down”
configurations remain stable throughout the inspiral and
can therefore be found at the top right, top left, and bottom
left corners, respectively, of the ðcos θ1∞ − cos θ2∞Þ plane.
However, for the parameter choices in Figs. 4 and 5, the
“up-down” configuration becomes unstable during the
inspiral [54–57]. The binary in the “up-down” configura-
tion at S ¼ S− at r ¼ 10M can instead be found on the
conserved dotted line in Fig. 5,

ð1þ qÞχeff ¼ χ1 cos θ1∞ þ qχ2 cos θ2∞ ¼ χ1 − qχ2; ð19Þ
at the point denoted by the empty circle. At this point, the
“up-down” configuration is an unstable equilibrium point

on the precession time scale implying hθLi → 0 and
ω→ 0; this can seen by the white shading at the location
of the empty circle in the second and third rows of the
fourth column of Fig. 4. The set of binaries with JkL and
cos θ1 > 0 at S ¼ S− and r ¼ 10M is marked by the solid
black curve connecting the unstable “up-down” configu-
ration (empty circle) to the stable “up-up” configuration in
the top right corner.
The asymmetric inspiral also has the effect of driving

binaries with JkL and cos θ1 < 0 at S ¼ S− at r ¼ 10M

into near complete antialignment of the primary spin
(cos θ1∞ ≃ −1) at r → ∞. This makes the second black
curve connecting the “down-up” and “down-down” con-
figurations nearly indistinguishable from the left edge of
the plots (the divergence in ΔΩL is slightly more pro-
nounced in the third and fifth columns of Fig. 4).
As they inspiral through r ¼ 10M, all of the binaries on

both of these curves experience:
(1) a local maximum in the nutation amplitude ΔθL,
(2) a divergence in the precession-frequency varia-

tion ΔΩL,
(3) a jump in the average precession frequency hΩLi

by �ω.
These features, seen in the first, fourth, and fifth rows of
Fig. 4, are the same as those that occur at r ≈ 27M for the
binary in the right panels of Fig. 2. The numerical results
presented in this paper suggest that, when unstable, the “up-
down” configuration maximizes the nutation amplitude
ΔθL as a function of spin orientation.
BBHs with isotropic spins are uniformly distributed in

the (cos θ1∞ − cos θ2∞) plane. As shown in Fig. 5, the set of
binaries with JkL is denoted by two curves within this
plane that evolve with binary separation from the dashed

FIG. 5. The nutation amplitudeΔθL and precession-frequency variation ΔΩL at r ¼ 10M as functions of the cosines of the asymptotic
misalignment angles cos θ1∞ and cos θ2∞ for q ¼ 0.5 and χ1 ¼ χ2 ¼ 1. The solid (dashed) black lines depict the asymptotic origin of
binaries which are found with JkL at r ¼ 10M (r=M → ∞). Binaries that precess through the unstable “up-down” configuration (i.e.,
cos θ1 ¼ − cos θ2 ¼ 1) are located on the dotted black line, with the binary in this configuration at r ¼ rudþ (r ¼ 10M) in the bottom-
right corner (white circle).

TABLE I. The fraction of binaries for which JkL at some
separation r > 10M during the inspiral for BBHs with the same
mass ratio q and spin magnitudes χ1;2 as those in Fig. 4.

q χ1 χ2 fJkL

0.2 1 1 0.02
0.5 1 0.5 0.06
0.5 0.5 1 0.16
0.5 1 1 0.15
0.95 1 1 0.40
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lines at r=M → ∞ to the solid lines at r ¼ 10M. The
fraction of an isotropic population of binaries that pass
through such a configuration during the inspiral (and thus
experience the three phenomena listed by bullet points in
the previous paragraph) is therefore given by the fraction of
the area of the (cos θ1∞ − cos θ2∞) plane bounded by the
solid, dashed, and dotted lines in Fig. 5. This fraction is
given in Table I for each of the parameter choices
corresponding to the five columns in Fig. 4. Its increase

with mass ratio q can be explained by the following
argument. The binary separation [54,56]

rudþ
M

¼ ð ffiffiffiffiffi

χ1
p þ ffiffiffiffiffiffiffi

qχ2
p Þ4

ð1 − qÞ2 ð20Þ

at which the “up-down” configuration becomes unstable
increases with mass ratio q, as does the slope of the line of
constant χeff given by Eq. (19). This implies that the solid

FIG. 6. Correlations between the five precession parameters assuming a set of BBHs with q ¼ 0.5, χ1 ¼ χ2 ¼ 1, r ¼ 10M, and
isotropic spins. 2D contour levels encompass 50%, 70%, and 90% of the BBHs. Medians and 90% intervals of the marginalized
distributions are indicated with vertical dashed lines. Long tails in the MΔΩL distribution have been excluded for clarity.
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curve in Fig. 5 with the white circle (denoting the “up-
down” configuration at r ¼ 10M) as one of its endpoints
can migrate further up and to the left, sweeping out more
area in the (cos θ1∞ − cos θ2∞) plane and thus encompass-
ing a higher fraction of binaries. This is most noticeable in
the fourth row, fifth column of Fig. 4, where the end point
of the curve marking divergences in ΔΩL has nearly
reached the top left corner of the plane.

D. Correlations

Fig. 6 shows the marginalized 1D and 2D probability
distribution functions (PDFs) for our five precession
parameters at r ¼ 10M for a population of BBHs with
q ¼ 0.5, χ1 ¼ χ2 ¼ 1, and isotropic spins. The 1D PDFs of
the average precession amplitude hθLi and precession
frequency hΩLi exhibit distinct bimodality, with subdomi-
nant peaks near the 5th percentile of hθLi and the 95th
percentile of hΩLi. A comparison with the second and fifth
rows of the fourth column of Fig. 4 reveals that this
subpopulation is the ≈15% of binaries that have passed
through alignment of the orbital and total angular momen-
tum (JkL) during the inspiral. The jump in hΩLi by the
nutation frequency ω as these binaries pass through this
alignment is the primary factor that sets this subpopulation
apart from the rest of the distribution. The 2D PDFs of hΩLi
with the other three precession parameters reveals that this
subpopulation disproportionately contributes to the high
ΔθL and low ω tails (like the unstable “up-down” con-
figuration which belongs to the subpopulation). It domi-
nates the negative ΔΩL tail, consistent with the behavior
seen in the bottom right panel of Fig. 5.
The main BBH population (those ≈85% of binaries that

never have JkL during the inspiral) exhibits many of the
correlations previously noted in the discussion of Fig. 4.
There is a positive correlation betweenΔθL andΔΩL, since
both increase as the amount of nutation increases. Both of
these quantities are anticorrelated with the precession
amplitude hθLi, as nutation causes the spins to cancel
out in the precession average rather than coherently
contribute to misalignment between J and L. The nutation
frequency ω is anticorrelated with χeff according to Eq. (3),
implying that it is anticorrelated with J for our isotropic
spin distributions. It is thus correlated with hθLi according
to Eq. (6) and anticorrelated with hΩLi according to Eq. (5).
We also note that the nutation amplitude ΔθL is anticorre-
lated with the nutation frequency ω and correlated with the
average precession frequency hΩLi. This is primarily driven
by the binaries near the solid curve in Fig. 5 that have not
quite reached JkL by r ¼ 10M. Like the unstable “up-
down” configuration, such binaries have long nutation
periods (small ω) during most of whichΩL is large because
of the smallness of the factor [ðLþ SÞ2 − J2] in the
denominator of Eq. (5).

IV. CONCLUSIONS

Spin precession is a prominent feature of the relativistic
dynamics of BBHs and a key signature of their astrophysi-
cal formation channel. While often simplified using the
term “precession,” the evolution of the direction of orbital
angular momentum L is made of a complex superposition
of azimuthal (precession) and polar (nutation) motions
when defined with respect to a fixed axis such as the
direction of the total angular momentum J. In this work, we
have shown that for generic BBHs with misaligned spins,
precession, and nutation are deeply correlated and occur on
the same timescale. Nutation is suppressed only in lower-
dimensional regions of the BBH parameter space.
In the construction of gravitational waveforms, the six

spin degrees of freedom are often modeled by a reduced set
of parameters such as the projected effective spin χeff
[47,48] and the effective precession spin χp [14,49]. These
parameters aim to capture the dominant spin effects and
reduce the computational cost of GW data analysis.
Motivated by the pioneering work of Apostolatos et al.

[11] on the effects of spin precession on gravitational
waveforms, we choose a different set of parameters that
better characterize the precession and nutation of the orbital
angular momentum L with respect to the total angular
momentum J. The five parameters we propose are the
precession amplitude hθLi, the nutation amplitude ΔθL, the
precession frequency hΩLi, the nutation frequency ω, and
the precession-frequency variation ΔΩL. Reference [39]
presented early predictions of the distribution of these
parameters in supermassive BBH mergers observable by
the LISA mission.
Our numerical investigation indicates that the nutation

amplitude ΔθL is largest for BBHs with:
(1) moderate mass ratios q ≈ 0.6,
(2) large spin magnitudes χi ≳ 0.5,
(3) spin orientations for which JkL at some point late in

the inspiral.
Systems that satisfy condition (3) also experience a diver-
gence in the precession-frequency variationΔΩL. GWevents
from BBHs satisfying these conditions might offer the best
chance to distinguish the effects of precession and nutation
and constrain our five parameters observationally.
The next step is to test this hypothesis by exploring the

effects of our five precession parameters on the observed
gravitational strain hðtÞ. Apostolatos et al. [11] investigated
how the changing direction of the orbital angular momen-
tumL leads to both frequency and amplitude modulation of
the gravitational waveform. Equation (28) of that paper
shows that the time derivative of the precessional correction
to the orbital phase δΦðtÞ is proportional to dL̂=dt, which
in our notation is given by

dL̂

dt
¼ _θLðcosθLL̂⊥−sinθLĴÞþΩL sinθLðĴ×L̂⊥Þ: ð21Þ
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We see that nutation (_θL ≠ 0) and precession (ΩL ≠ 0) each
provide corrections to the orbital and hence GW phase.
They also modulate the GWamplitude by introducing time
dependence into the factors of L̂ and polarization angle ψ
appearing in Eq. (19a) of [11].
In a complementary study, Cutler and Flanagan [42]

investigated the detectability of the lowest-order spin-
dependent correction to the GW phase, shown by Kidder
et al. [66] to be proportional to

β≡

�

113

12
Sþ 25

4

�

qS1 þ
1

q
S2

��

·
L̂

M2
;

¼ 19

6

J cos θL − L

M2
þ 25

4
χeff : ð22Þ

Nutation causes θL to oscillate with amplitude ΔθL and
frequency ω, imprinting an additional signature on the GW
phase distinct from that of precession. Although one
ultimately wishes to constrain the magnitudes and mis-
alignments of the individual BBH spins, we hypothesize
that the five phenomenological parameters presented in this
study can be more tightly constrained because of their more
direct connection to the waveform amplitude and phase. We
will explore these signatures of precession and nutation in
greater depth in an upcoming paper [67].
The possibility of measuring our five precession param-

eters in GW events provides a rich opportunity to identify
the astrophysical origin of these systems. Figure 6 shows
PDFs of these parameters for an isotropic spin distribution
as would be expected for BBHs formed in dynamical
interactions in dense clusters. An upcoming paper [68] will
explore the distributions of these parameters for BBHs
formed from isolated stellar binaries [69]. As current and
future GW observatories discover an increasing number of
BBH systems at higher signal-to-noise ratios, the effects of
precession and nutation will be detected unambiguously.
We hope that our new precession parameters will aid in the
characterization of these systems and help push the
frontiers of GW astronomy.
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APPENDIX A: MAXIMAL L NUTATIONS ARE

FORBIDDEN

In this Appendix, we prove that the nutation amplitude
cannot be maximal, i.e., ΔθL < π for all BBH configura-
tions. Our calculation mirrors that of Ref. [61] for θ1;2.
The condition ΔθL ¼ π is possible only if cos θL− ¼ 1

and cos θLþ ¼ −1. In those cases, Eq. (6) implies
S� ¼ jJ � Lj. If such a configuration exists, there needs
to be values of the constant of motion J and χeff which can
simultaneously satisfy S− ¼ jJ − Lj and Sþ ¼ J þ L.
Using Eq. (14) of Ref. [52] (where χeff is indicated as
ξ), these values are

J2 ¼ L2 þ ðS2
1
− S2

2
Þð1 − qÞ

1þ q
; ðA1Þ

and

χeff ¼ −

�

r

M

�

1=2

: ðA2Þ

Equation (A2) violates the limit jχeff j ≤ 1 in the PN regime
r > M, implying that ΔθL is strictly smaller than π for all
physical BBH configurations.

APPENDIX B: ΩL DIVERGES

WHEN L AND J ARE ALIGNED

At 2PN order, the precession vector is given by (e.g.,
[47])

Ω ¼ 1

2r3

��

4þ 3q − 3ð1þ qÞχeff
�

M

r

�

1=2
�

S1

þ
�

4þ 3

q
−
3

q
ð1þ qÞχeff

�

M

r

�

1=2
�

S2

�

: ðB1Þ

In the limit θL → 0 or π,

S · L̂⊥ ¼ 0⇒ S2 · L̂⊥ ¼ −S1 · L̂⊥: ðB2Þ

It follows that

Ω · L̂⊥ ¼ −
3ð1 − q2ÞS1 · L̂⊥

2qr3

�

1 − χeff

�

M

r

�

1=2
�

: ðB3Þ

For misaligned spins (S1 · L̂⊥ ≠ 0), this expression does
not approach zero as θL → 0 or π, implying that the second
term in Eq. (18) and thus ΩL diverges in this limit.
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