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Abstract—Crop disease recognition is a fundamental keystone
in enabling disease control, limiting disease spread, and mit-
igating farmers’ losses. Recently, advanced image processing
techniques for crop disease detection, based on deep learning,
have gained significant popularity. However, the practical de-
ployment of these models in real farms remains challenging.
This is mostly due to the lack of Internet connectivity which
prevents the transmission of the acquired images to sufficiently
powerful edge/cloud servers to execute such complex models.
LoRa has emerged as a promising network solution for rural
areas, thanks to its extensive communication range and cost-
efficient deployment. However, the low data rate of this technol-
ogy prevents its effective application for the transmission of large
images for crop disease detection. In this paper, we propose a
LoRa-based framework called iCrop. iCrop enables high disease
classification accuracy while exploiting the cost-effectiveness of
LoRa transmission technologies. Specifically, iCrop is based
on a LoRa Node, which captures crop leaf images and pre-
processes them through image segmentation. The node selects and
transmits the most informative segments over LoRa to the LoRa
Edge Server. The server, in turn, runs the disease classification
using a Convolutional Nerual Network (CNN) deep learning
model empowered with majority voting among segments. To
prevent data losses, typical of LoRa transmission, we develop
a reliable transmission protocol on top of LoRa, which takes
care of retransmissions and efficient communication. Extensive
experiments on a real LoRa testbed show the advantages over
two comparison approaches with respect to several performance
metrics.

Index Terms—LoRa, Crop Disease Monitoring, Smart Farm-
ing, Precision Agriculture.

I. INTRODUCTION

The persistent threat of crop diseases poses a significant

challenge to crop productivity, quality, and farmers’ economic

stability [1] [2]. Early and accurate detection of diseases is

pivotal to effectively controlling their spread and mitigating

losses [3]–[5]. With the rapid developments in remote sensing

[6], digital imaging [7], and deep learning [8], advanced

image processing techniques for crop disease detection have

gained significant popularity. These techniques replace tradi-

tional time-consuming visual inspections and symptom-based

identification approaches [9]–[11].

Numerous research efforts have concentrated on enhancing

model performance to attain superior disease classification

accuracy. Notably, convolutional neural networks (CNN) have
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demonstrated exceptional capabilities in image processing and

classification [11]–[13]. Despite these advancements, the prac-

tical deployment of these models for fully automating disease

detection in real farms remains a challenge. Several solutions

have proposed training Deep Neural Network (DNN) models

with extensive datasets of manually captured crop leaf images

in controlled environments [11]–[13]. However, utilizing such

methods in practice necessitates on-site presence of farmers

for image acquisition, resulting in labor-intensive, costly, and

time-consuming monitoring.

To mitigate such challenges, alternative approaches have

been proposed, leveraging ground robots [14] or unmanned

aerial vehicles (UAVs) [15], [16] to automatically acquire

crop field images. Despite the potential advantages, these

approaches are limited by the connectivity bottleneck arising

when transmitting large images to a remote (edge) server

for analysis and classification. This bottleneck is due to the

challenge of providing connectivity in rural areas and the large

scale of such rural fields [17]. These make short-range connec-

tivity solutions, such as WiFi and Bluetooth, inadequate [18].

Often, 4G/5G services are also not a viable option for lack of

coverage [19]. This is because, despite the significant govern-

ment efforts to improve rural connectivity, such as in the USA

[20], there is still a lack of pervasive deployment in remote

areas [18]. Furthermore, these connectivity solutions often hide

unbearable expenses to be extensively adopted by farmers. To

address these connectivity issues, recent efforts have focused

on on-device AI, where machine learning models are executed

on end-devices to reduce the amount of transmitted data.

As an example, approaches include model compression and

quantization techniques, to facilitate the deployment of deep

neural networks on low-powered end-devices [21], as well as

TinyML solutions [22]. Despite advancements in this direction,

on-device AI still has notable challenges, including memory

restrictions for image data processing and low accuracy with

hard samples [23]. Consequently, as of today, data processing

using complex deep learning models at more powerful servers

remains necessary.

Long Range (LoRa) [24], has emerged as a promising

network solution for remote areas communications. Its ex-

ceptional abilities to provide extensive communication range

and cost-efficient deployment, make it the most promising

solution to tackle network coverage challenges in large-scale

rural farms. This, consequently, facilitates the development and
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Fig. 1. Transmission time vs compression ratio (a) and Crop disease
classification accuracy vs compression ratio with three different models (b).
Reducing the image size can decrease the transition time over LoRa but
results in a significant drop in crop disease classification accuracy even with
a complex CNN model.

deployment of precision agriculture solutions [25]. However,

existing works have primarily utilized LoRa for transmitting

small sensor scalar data such as temperature, humidity, carbon

dioxide levels, electrical conductivity, and illuminance [26]–

[28]. This is primarily because LoRa allows a longer commu-

nication range at the cost of a considerably narrow bandwidth.

As an example, even when utilizing the high data rate setting

with a spreading factor 7 and a bandwidth of 250KHz, the

resulting data rate remains only at approximately 5.7Kbit/s.

Consequently, precision agriculture applications that require

transmitting images, such as crop disease recognition and

insect detection, are still not benefiting from LoRa commu-

nications and on-device AI solutions [29].

Motivating Example. To show an example of LoRa’s limi-

tations in transmitting images and enabling effective precision

technology applications, in Figure 1 we report some prelimi-

nary experiments to motivate our work. Here, we transmitted

over LoRa an RGB image of a soybean leaf with a size of 5MB

from the Auburn Soybean Disease Image Dataset (ASDIAD)

[30]. We also adopt DenseNet201-based Convolutional Neural

Network (CNN) classifier proposed in [31]. Additionally, we

implement two TinyML models as on-device AI solutions.

Specifically, we adopt the MobileNetV3-Small, proposed in

[32], and a quantized version of MobileNetV3-Small, further

reducing its size.

In order to reduce the amount of transmitted and processed

data, we show the transmission time for a single image (Figure

1 (a)) and the overall classification accuracy (Figure 1 (b)), ver-

sus different Joint Photographic Experts Group (JPEG) image

compression factors. A compression factor of zero corresponds

to the original image. As the figure shows, it takes more than

100 minutes to transmit over Lora a single RGB image. Higher

level of compression allows to significantly reduce the image

size, and thus transmission time and the computational burden

for the end-device, but also incurs the risk of a significant drop

in classification accuracy. The best tradeoff for DenseNet201-

based, in this example, is a compression factor of 13, which

is able to provide an accuracy above 90%. However, this still

requires more than 13 minutes to transmit a single image,

clearly not scaling well with the hundreds of images required

to monitor an agricultural field. The TinyML models results in

a notable decrease in accuracy compared to DenseNet201 for

the soybean disease dataset, as depicted in Figure 1 (b). This

decline can be attributed to the inherent challenge faced by

TinyML in handling complex samples, exacerbated as image

size reduces.

Contributions. In this work, we propose a LoRa-based

autonomous framework, called iCrop. iCrop enables crop

disease classification by exploiting the cost-effectiveness of

LoRa transmission technologies while providing high disease

classification accuracy. Figure 2 shows an overview of iCrop.

The LoRa Node is an end computing device to be deployed

in the field, such as Raspberry Pi or Microcontroller Unit

(MCU) equipped with LoRa capability, which captures and

transmits crop leaf images. To minimize the data transmission

time, we propose an efficient image pre-processing technique

suitable for such end devices. Specifically, we resort on image

segmentation and we use an efficient approach to identify

informative segments within the original image. Only a few

informative segments are selected, compressed, and then trans-

mitted over LoRa. The LoRa Edge Server, equipped with suf-

ficient computing resources, performs the CNN deep learning

model training and testing for crop disease recognition. Upon

receiving image segments, the pre-trained deep learning model

generates disease predictions for each segment. Subsequently,

a majority voting mechanism consolidates these predictions,

yielding the final disease diagnosis.

Data loss happens frequently over LoRa networks due to

factors such as radio signal interference or obstacles. Since

the selected segments contain the most informative disease

features, any additional loss could decrease the accuracy.

Therefore, we also propose a reliable communication protocol,

running on top of LoRa, to ensure the receipt of all the

information within the selected segments.

We develop a real LoRa testbed to validate the proposed ap-

proach. Our experiments demonstrate that our approach yields

performance improvements of up to eightfold when compared

against two alternative methods across various performance

metrics.

In particular, the main contributions of this paper are:

• We present an end-to-end autonomous architecture for

crop disease detection, leveraging LoRa-based image

transmission and pairing it with the CNN-based deep

learning techniques.

• We propose an optimized image pre-processing approach,

designed for implementation on end devices and low-

data rate communication technologies, to minimize data

transmission time while achieving a high crop disease

classification accuracy.

• We introduce a reliable transmission protocol on top of

LoRa communication to handle the data loss caused by

radio interference or obstacles.

• We implement a lab-scale testbed, and conduct extensive

experiments to validate the performance of the proposed

framework against several LoRa metrics, i.e., spreading

factor, bandwidth, and distance.
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Fig. 2. The proposed end-to-end architecture for autonomous crop disease detection.

The rest of the paper is organized as follows. In Section II,

we present the architecture of iCrop, including the proposed

image preprocessing method, and the reliable communication

protocol. Section III describes the implementation of the lab

scale testbed and presents the performance results of the

evaluation conducted with the testbed. SectionIV provides a

literature review and identifies the research gaps of the existing

works. Finally, conclusions are drawn in Section V.

II. THE PROPOSED ARCHITECTURE: ICROP

In this section, we present iCrop, our end-to-end architecture

for automated crop disease detection based on low-cost image

transmission over LoRa. iCrop can significantly reduce the

amount of data transmission while offering high accuracy for

crop disease recognition.

As depicted in Figure 2, our system comprises two primary

components: the LoRa Node and the LoRa Edge Server. The

LoRa Node, serving as an end-device deployed in the crop

field, is powered by battery1. It facilitates LoRa transmission

and offers limited computing capabilities. This node can be

constructed using a Raspberry Pi or MCU, integrated with

a LoRa transceiver module for LoRa communication and an

RGB camera to capture images of crop leaves. The LoRa node

could also be mounted on a robot scouting the field [33].

On the other hand, the LoRa Edge Server is realized with

a LoRa transceiver to receive data transmitted by the LoRa

Node. It is equipped with more capable computing resources,

e.g., a laptop, capable of supporting the training and testing of

deep learning-based image processing models for crop disease

classification.

A. Image Preprocessing in LoRa Node

Crops affected by diseases often exhibit noticeable symp-

toms, such as discoloration, lesions, and spots. Image process-

ing techniques generally identify crop diseases by extracting

key features such as leaf color, texture, and shape patterns,

from parts of the original image. This implies that transmitting

every detail of the full image is unnecessary and results in

excessively long transmission time, as illustrated in Figure 1.

While compression can reduce the transmitted data, relying on

1Energy-harvesting-based solutions can also be potentially employed to
power the LoRa Node.

sole compression results in images that still contain significant

redundant information, such as the background, prolonging the

transmission time over LoRa.

To enhance the efficiency of image transmission, we intro-

duce an efficient image pre-processing method referred to as

Top K Segments Selection, executed by the LoRa node. This

method first divides the image into segments by splitting the

image into an n× n grid. We denote each of the segments as

Si. Figure 3 shows an example of an 8× 8 segmentation of a

soybean leaf afflicted with bacterial blight disease.

Next, we want to identify the most informative K segments

to transmit, where K is a predefined parameter. Intuitively, our

method is based on the realization that segments with the most

colors contain more information. As a result, for each segment

Si, we compute the set of colors Ti. Specifically, consider a

pixel pj = (r, g, b), where (r, g, b) are the red, green, and blue

channel values for pj . For each pj ∈ Si, we insert the tuple in

Ti, treating is as a mathematical set with no repetitions. As a

result, we define the informativeness wi of segment Si as the

cardinality of Ti, i.e. wi = |Ti|. Figure 3 also shows a value

of wi for each segment in the image.

Fig. 3. A segmentation example of a soybean leaf image affected by bacterial
blight disease and the assigned weight.

The next step of the segment selection picks the top K

segments with the highest weight. Figure 4 shows the selected

segments from Figure 3 with K = 5. Clearly, this simple

method is able to select the most informative segments.

Once the most informative segments are identified, these

are compressed using JPEG compression. Here we adopt
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a compression factor of 10. The compressed segments are

subsequently transmitted via LoRa.

Fig. 4. Segments selected by Top K = 5 Segments Selection.

B. Reliable Transmission Protocol over LoRa

Upon the selection and compression of the most informative

segments, the LoRa node initiates the transmission of these

segments to the LoRa Edge Server. To enhance the trans-

mission efficiency while adhering to bandwidth constraints,

we employ a strategy of dividing each segment into smaller

chunks, subsequently encapsulating them within data packets

as shown in Figure 5. Each data packet has a length of 64
bytes. The first two bytes represent the packet ID, PID,

while the remaining 62 bytes are the payload and contain the

encoded pixels of the segments. The advantage of relying on

packets lies in more efficient retransmission in case of packet

loss, since these are of much smaller size than segments.

Fig. 5. An example of segment split into small packets of length 64 bytes.

LoRa operates within unlicensed frequency bands [25],

making it vulnerable to interference and collisions, potentially

resulting in data loss. This is exacerbated by the constraints

of limited bandwidth and transmission power. Given that the

selected segments encapsulate vital information, any omission

could compromise the accuracy of predictions. To address

this concern, we design a reliable protocol layered on top

of LoRa communication. This protocol efficiently manages

packet loss by implementing a mechanism for retransmitting

missing packets, as depicted in in Figure 6.

Fig. 6. The proposed transmission protocol on top of LoRa communication.

Fig. 7. The structure of HELLO packet.

The transmission protocol works as follows. Initially, the

LoRa Node sends HELLO packets, to alert the LoRa Edge

Server of the intent of transmitting a segment. The structure

of the HELLO packet is depicted in Figure 7. These packets

also have a length of 64 bytes and include an “hello” label,

followed with SID of two bytes representing the segment

ID. The SID is followed by the Num of packets of four

bytes, indicating the number of packets within that segment,

and finally a padding2.

Upon receipt of a HELLO packet, the LoRa Edge Server

responds with an ACK containing the SID. Subsequently, the

LoRa Node starts sending the data packets of the segment

SID to the LoRa Edge Server. The LoRa Edge Server receives

and stores the packets. When no more packets are received for

a specified time period, the LoRa Edge Server assumes that

the LoRa nodes has completed the transmission and it checks

if all packets have been received correctly. If some packets are

lost or compromised, the LoRa Edge Server requests missing

packets from the LoRa Node, specifying the packet PIDs.

Upon receiving the request, the LoRa Node retransmits the

missing packets. This procedure is repeated until all packets

for that segment are received by the LoRa Edge Server. Finally,

the LoRa Edge Server signals the succesful receiption of

all packets for the current segment by transmitting a Fin.

The LoRa Edge Server then reconstructs the segment by

assembling all the received packets.

C. CNN-based Model for Crop Disease Classification

The CNN model for crop disease classification is built

upon DenseNet201. The architecture is depicted in Figure 8.

Specifically, we extend the model introduced in [31]. To this

purpose, the extended model works with segments obtained

through the image pre-processing method on the LoRa Node,

treating each segment within the image as an individual input.

For the CNN model, we employ a transfer learning approach.

Specifically, DenseNet201 is initialized with the pre-trained

ImageNet weights, and its layers are utilized for feature

extraction. The last fully-connected layer is removed, and a

global average pooling layer is added to reduce the number of

parameters. Subsequently, a fully connected layer comprising

128 neurons with a ReLU activation function and a dropout

rate of 0.2 is incorporated. This is followed by another fully

connected layer with 64 neurons, a ReLU activation, and a

dropout rate of 0.3. A softmax layer is then added to facilitate

the eight-disease classification for each segment.

2Our packets are encapsulated into LoRa packets, which handle framing
and transmission errors through checksum.
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Fig. 8. Proposed CNN-based crop disease classification model.

To determine the final crop disease class of each crop image,

a majority voting layer is integrated. The ultimate prediction

is made by selecting the label with the highest occurrence of

the K segments selected by the Lora Node. For instance, with

K = 5, if the outputs are {Bacterial Blight, Bacterial Blight,

Target Spot, Bacterial Blight, Target Spot}, the final output

will be Bacterial Blight.

III. EVALUATION

In this section, we first discuss the LoRa testbed developed

to evaluate iCrop. Then, we compare our approach with two

benchmarks to demonstrate its superior performance.

A. Testbed Implementation

We implement the LoRa Node using a Raspberry Pi 3

model B 3 [34], depicted in Figure 9. A touch screen is

added for visualization purposes and enhancing user interface

interactions. Furthermore, we equip the Raspberry Pi with an

RGB camera, to capture images and with a Heltec WiFi LoRa

32 V2 transceiver [35], to provide the LoRa communication

capabilities. LoRa transmits over license-free megahertz radio

frequency bands 915MHz (North America). The communica-

tion between the LoRa transceiver and the Raspberry Pi is

established through serial communication.

Fig. 9. The LoRa Node: a Raspberry Pi, with an RGB camera, touch screen,
and a Heltec WiFi LoRa 32 V2 transceiver.

3The LoRa Node can also be implemented with a more energy efficient
device such as MCU.

The implementation of the LoRa Edge Server is shown in

Figure 10. We use a Republic of Gamers laptop, to support the

CNN-based crop disease inference and mount the same LoRa

transceiver as in the LoRa Node to receive data. The specs of

the LoRa Edge server are summarized in Table I.

Fig. 10. LoRa Edge Server: a Republic of Gamers laptop and a Heltec WiFi
LoRa 32 V2 transceiver.

TABLE I
THE CONFIGURATION OF THE LORA EDGE SERVER

Model ROG Zephyrus G15 GA503RS GA503RS

Processor AMD Ryzen 9 6900HS with Radeon Graphics, 3301
Mhz, 8 Core(s), 16 Logical Processor(s)

GPU NVIDIA GeForce RTX 3080 Laptop GPU

RAM 16GB

B. Benchmarks

The first comparison corresponds to the transmission of full

original image. The classification is carried out with the CNN

approach proposed in [31]. We denote this approach as Full.

This approach can provide the best accuracy in crop disease

classification, at the expense of an extensive transmission time.

The second benchmark is based on the transmission of JPEG

compressed images. In this case, the LoRa Node compresses

the full image and transmits it to the LoRa Edge Server. Using

our preliminary experiments in Figure 1, we opt for a compres-

sion ratio of 13, since it represents the best tradeoff between

high accuracy and transmission time. Also in this case, the

classification is carried out with the CNN approach proposed

in [31], but the input images are the images compressed by

the LoRa Node. We denote this approach as JPEG13.

Note that, for fairness of comparisons, we adopt our trans-

mission protocol also for the benchmark comparisons. As a

result, all approaches benefit from reliable communication and

are able to transmit the images successfully, although with

different transmission times. We discuss the dataset, training

and testing of the classification models, in the next section.

C. Experiment Setup

1) Dataset: We utilize the publicly available Auburn Soy-

bean Disease Image Dataset (ASDIAD) [30]. This dataset

consists of 9, 648 images acquired during the 2020 and 2021
soybean seasons using a digital SLR camera and a smartphone

from three different research fields. The average size of

the images is 5 MB. There are eight categories of disease,
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including bacterial blight, cercospora leaf blight, downey

mildew, frogeye leaf spot, soybean rust, target spot, potassium

deficiency and healthy. The images were taken from multiple

locations in the field including within the canopy, on the

ground, and within a controlled lab environment. Furthermore,

we confirmed the data imbalance pointed out in [31]. As

a result, we employ data augmentation through horizontal

flipping on images representing bacterial blight, to increase

the low number of images within that category.

2) Training and Testing: We train three models for each of

the considered approaches. Specifically, we train the model for

Full with the original images in the dataset. Conversely, we

trained the model for JPEG13 using the same images com-

pressed with a JPEG factor of 13. Finally, in the experiments

we are adopting a segmentation of 8×8 for iCrop. As a result,

we split the original images in 64 segments and train the model

of iCrop accordingly. We also transmit K = 5 segments from

the LoRa Node to the LoRa Edge Server.

For all models, we divide the dataset into a 60-20-20 split,

with 60% designated for training, 20% for validation, and the

remaining 20% for testing. The splits are performed evenly

across categories as not to overfit any disease category. Each

model undergoes 50 training epochs, and the batch size is 32.

The training process is conducted using stochastic gradient

descent as the optimizer, with a learning rate set at 0.0001
and momentum at 0.9.

D. Experiment Results

Experiment I: Impact of LoRa’s Spreading Factor. In

this set of experiments, we evaluate the performance under

different settings of the spreading factor (SF). The SF is a

pivotal parameter in LoRa, where a higher SF extends the

communication range at the expense of a lower data rate. The

bandwidth is set at 250KHZ.

(a) (b)

Fig. 11. Experiment I: Impact of Spreading Factor: (a) Transmission time
and (b) Data Loss Rate.

Figure 11 (a) illustrates the average transmission time for a

single crop leaf image varying SF values from 7 to 12. These

times include the retransmission times for packet loss. Note

the log-scale in the y-axis. iCrop stands out by achieving

a one-minute transmission time with SF of 7, significantly

surpassing the performance of JPEG13 and Full. This is due

to the effectiveness of the image pre-processing technique

through segmentation and compression at the Lora Node. The

impact is accentuated with increasing SF, with iCrop providing

a transmission time around 8 times and 138 times smaller

compared to JPEG13 and Full, respectively. As SF increases,

all approaches exhibit a rise in transmission time. This is due

to the reduction in data rate, as shown in Table III.

Figure 11 (b) depicts the data loss rate varying the SF. We

calculate the loss rate considering the total number of packets

lost, including retransmission attempts, versus the number

of packets composing the original image being transmitted.

Notably, all approaches exhibit a relatively low packet loss

rate, consistently below 5%. This can be attributed to the

laboratory environment of this set of experiments, where the

proximity of the LoRa Node and the LoRa Edge Server results

in a strong signal strength, measured with Received Signal

Strength Indicator (RSSI), as indicated in Table III. However,

iCrop outperforms the other two approaches by achieving an

overall lower data loss rate. This is due to the reduced amount

of transmitted data, that implies less packets being lost, and

thus less retransmission attempts, and less data loss during the

retransmissions as well.

Next, we evaluate the performance of the CNN classification

model with respect to accuracy, precision, recall, and F-1

scores. Note that, thanks to our transmission protocol, all

approaches are able to transmit the images reliably to the

LoRa Server. As a result, the performance are not impacted

by the spreading factor, nor by other LoRa settings. Table II

summarizes the results.

TABLE II
CLASSIFICATION PERFORMANCE

Methods Accuracy Precision Recall F1

Full 94.34 94.54 94.35 94.34

JPEG13 92.38 92.77 92.28 92.39

iCrop 90.0 90.02 89.92 89.76

As expected, transmitting the Full image yields the highest

accuracy at 94.34%, along with superior precision, recall, and

F1-score. Conversely, the accuracy of JPEG13 experiences a

decline of approximately 2% across all metrics due to data

compression. The overall performance of iCrop is 2% lower

than that of JPEG13, attributed to the CNN classification

relying on partial information given by the only 5 segments

transmitted. Nevertheless, iCrop is able to achieve an accuracy

of 90% while requiring a transmission time that is up to 13
times lower.

Note that, since the CNN classification metrics are not im-

pacted by the LoRa settings thanks to our reliable transmission

protocol, we omit these results in the next experiments.

Experiment II: Impact of Bandwidth. In this set of experi-

ments, we assess the impact of bandwidth, another important

parameter of LoRa. The experiments are also conducted in the

laboratory environment, with the SF set at 7 while varying the

bandwidth from 62.5KHz to 500KHz. Figure 11 illustrates

the averaged transmission time for a single crop leaf image

for all three approaches. While the transmission time declines

with increasing bandwidth for all approaches, the Full image

approach still experiences prolonged transmission times due to
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TABLE III
LORA PERFORMANCE WITH DIFFERENT SETTINGS

Spreading Factor Bandwidth (KHz) Distances (m)

7 8 9 10 11 12 62.5 125 250 500 230 500 800

RSSI (dBm) -53.5 -61.5 -66.7 -67.8 -68.1 -53.4 -50.4 -65.8 -53.5 -65.6 -94.6 -136.1 -108.5

Data Rate (byte/s) 715.1 448.5 246.7 100.2 87.7 45.8 200.4 342.5 715.0 940.3 143.7 76.5 86.2

(a) (b)

Fig. 12. Experiment II: (a) Transmission time vs. bandwidth and (b) data
loss rate vs. bandwidth.

the necessity of transmitting the entire 5 MB data. Although

compression helps alleviate this issue, it still takes up to 10
times longer than iCrop. These results once again underscore

the advantages of segment selection performed by iCrop at

the LoRa Node, effectively reducing transmission times while

maintaining high classification accuracy.

Figure 12 (b) presents the averaged data loss rate across

different bandwidths. All approaches maintain a consistent

data loss rate with different bandwidths. This is attributed

to the stable connection between the LoRa node and LoRa

Edge server, with minimal signal interference owing to their

proximity. We can see from Table III that the signal strength

RSSI is similar across all the bandwidth settings. Nevertheless,

iCrop once again results in a reduced data loss rate due to less

re-transmission attempts thanks to less data being transmitted.

Experiment III: Impact of distance between LoRa Node

and LoRa Edge Server. In this set of experiments, we vary

the distance between the LoRa Node and the LoRa Edge

Server, with SF 8 and bandwidth 250KHZ. Specifically, the

LoRa Edge Server sits close to a window in our laboratory,

while the LoRa Node is positioned in three distinct locations

at distances of 230m, 500m, and 800m, respectively. Figure

13 shows these locations with respect to the Lora Edge Server.

For these experiments, we set the SF at 10 and bandwidth at

250KHz.

We first show the transmission time in Figure 14 (a).

Notably, the transmission time does not simply increase with

distance. This is due to the environment where the experiments

have been carried out, with buildings, trees, and other source

of interference affecting the communication. Specifically, at

location 1 with a distance of 230m, the LoRa Node has a line-

of-sight connectivity to the LoRa Edge Server. This results in

a stronger signal strength and a higher data rate, as indicated

in Table III, thereby leading to an overall shorter transmission

time for all approaches. Conversely, location 2 achieves longer

transmission times than location 3, despite the distance being

Fig. 13. Map of various LoRa Node locations.

(a) (b)

Fig. 14. Experiment III: (a) Transmission time vs. distance and (b) data loss
rate vs. distance.

lower. This is explained by the fact that in location 3, the

LoRa node is situated on the 5th floor of a library building,

providing a partial line-of-sight connectivity, while in location

2, it is positioned on the 3rd (top) floor of a classroom building,

facing obstacles such as buildings and trees in between. This is

clear also from Table III, where location 3 has a better RSSI.

Similar trends can also be observed in Figure 14 (b) for the

data loss rate: location 2 has a slightly higher data loss than

location 3, while location 1 has the lowest data loss.

In all the considered scenarios, iCrop significantly out-

performs Full and JPEG13. Numerically, iCrop achieves a

transmission time of less than 8.5 min, orders of magnitude

less than the other approaches. Similarly, the data loss rate is

below 3.6%, significantly lower than the comparisons. These

findings highlight the benegits of iCrop, particularly in longer-

distance scenarios, typical of agricultural settings.
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IV. RELATED WORK

In this section, we present the existing research works

concerning LoRa technology in the realm of agriculture and

the current developments in the field of crop disease detection.

A. LoRa-Enabled Smart Agriculture

LoRa technology offers expansive signal coverage, ranging

from 10Km to 15Km in rural line-of-sight scenarios and

3Km to 5Km in urban line-of-sight conditions, coupled with

low power consumption [25], [36]. Capitalizing on these

advantages, numerous research studies have delved into the

suitability and capabilities of LoRa for enhancing agricul-

tural management practices. For instance, the authors of [26]

developed a LoRa-based system for monitoring the tomato

growth environment within a greenhouse using temperature,

humidity, carbon dioxide levels, electrical conductivity, and

illuminance data. The authors of [28] propose a similar LoRa-

based smart agriculture management and monitoring system

to address the communication failure problems in rural farms

using sensor networks. Building upon real-time environmen-

tal sensor data acquired through LoRaWAN, the authors of

[27] introduce a smart decision support system aiming at

enhancing crop yield through the optimization of irrigation

and fertilizer practices. Similarly, paper [37] proposes a novel

approach to integrate LoRa connectivity with the existing

Programmable Logic Controllers (PLC) to automate various

processes and control farming machines. Furthermore, a recent

comprehensive survey [38] delved into the various applications

of LoRaWAN technology, exploring its usage in diverse fields

beyond agriculture, including smart cities, industrial monitor-

ing, and more.

However, little research has been done in terms of image

transmission using LoRa, and its effect on machine learning

models. While previous studies [39]–[42] have recommended

the utilization of image compression techniques, they still

result in significant transmission times as shown in this paper.

There remains a lack of work dedicated to exploring the

potential and overcoming challenges associated with LoRa-

based image transmission, especially in specific agricultural

applications, such as crop disease detection and insect identi-

fication.

B. Crop Disease Detection

Traditional methods for detecting crop diseases typically

involve manual processes, relying on visual inspections and

laboratory tests. Unfortunately, this approach is often time-

consuming and prone to inaccurate diagnoses. In response

to these challenges, machine learning techniques have been

employed for automatic disease recognition [9]. These models

are normally trained on datasets comprising images of both

healthy and diseased plants, with a primary focus on extracting

features such as color, shape, and texture.

Deep learning, and particularly CNNs, have gained popu-

larity and exhibited outstanding performance in crop disease

detection [10], [43]. For instance, in [11], six deep learning

architectures based on CNNs are evaluated for classifying

rice diseases using crop leaves. The authors of [31] intro-

duce a novel localization method aimed at improving CNN-

based crop disease identification through region of interest

segmentation. Paper [13] proposes a transfer learning approach

employing CNNs for datasets consisting of original field leaf

images. Other works propose the use of unmanned aerial

vehicles (UAVs) equipped with multispectral and/or hyper-

spectral sensors to collect spatial images for crop disease

detection [15], [44], [45]. Despite these advancements, the lack

of Internet connectivity in rural areas remains a problem for

the application of these techniques.

Recent efforts have focused on using On-device AI, where

inference models are executed on the end-device. For instance,

the authors of [21] introduced Deep Leaf for detecting diseases

in coffee plants. Deep Leaf employs model compression and

quantization techniques to facilitate the deployment of deep

neural networks on end devices. Similarly, in [22], TinyML

was proposed for olive fruit variety classification at the edge

controller. Despite advancements in on-device AI, notable

challenges persist, including memory restrictions for image

data processing and accuracy compromises with hard samples.

Consequently, the images collected in the field, manually or

automatically, need to be transmitted to a server in order to

execute complex deep learning models. The lack of cellular

coverage, paired with the large number and size of the col-

lected images, constitute a significant bottleneck in adopting

these technologies for crop disease classification. In our work,

we tackle these challenges by exploring the potential of a low-

cost and long-range LoRa-based network through image pre-

processing and segment selection.

V. CONCLUSION

In this paper, we introduce iCrop, an autonomous end-to-

end crop disease detection framework that leverages LoRa

technology and employs CNN-based deep learning models.

iCrop addresses challenges of limited internet coverage in

remote rural farms, significantly reducing the on-site mon-

itoring efforts and deployment costs, all while maintaining

a high accuracy in crop disease classification. Moreover,

the experimental results conducted with a real LoRa testbed

demonstrate the superior performance of iCrop compared to

existing approaches.
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