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Abstract—Crop disease recognition is a fundamental keystone
in enabling disease control, limiting disease spread, and mit-
igating farmers’ losses. Recently, advanced image processing
techniques for crop disease detection, based on deep learning,
have gained significant popularity. However, the practical de-
ployment of these models in real farms remains challenging.
This is mostly due to the lack of Internet connectivity which
prevents the transmission of the acquired images to sufficiently
powerful edge/cloud servers to execute such complex models.
LoRa has emerged as a promising network solution for rural
areas, thanks to its extensive communication range and cost-
efficient deployment. However, the low data rate of this technol-
ogy prevents its effective application for the transmission of large
images for crop disease detection. In this paper, we propose a
LoRa-based framework called iCrop. iCrop enables high disease
classification accuracy while exploiting the cost-effectiveness of
LoRa transmission technologies. Specifically, iCrop is based
on a LoRa Node, which captures crop leaf images and pre-
processes them through image segmentation. The node selects and
transmits the most informative segments over LoRa to the LoRa
Edge Server. The server, in turn, runs the disease classification
using a Convolutional Nerual Network (CNN) deep learning
model empowered with majority voting among segments. To
prevent data losses, typical of LoRa transmission, we develop
a reliable transmission protocol on top of LoRa, which takes
care of retransmissions and efficient communication. Extensive
experiments on a real LoRa testbed show the advantages over
two comparison approaches with respect to several performance
metrics.

Index Terms—ILoRa, Crop Disease Monitoring, Smart Farm-
ing, Precision Agriculture.

I. INTRODUCTION

The persistent threat of crop diseases poses a significant
challenge to crop productivity, quality, and farmers’ economic
stability [1] [2]. Early and accurate detection of diseases is
pivotal to effectively controlling their spread and mitigating
losses [3]-[5]. With the rapid developments in remote sensing
[6], digital imaging [7], and deep learning [8], advanced
image processing techniques for crop disease detection have
gained significant popularity. These techniques replace tradi-
tional time-consuming visual inspections and symptom-based
identification approaches [9]-[11].

Numerous research efforts have concentrated on enhancing
model performance to attain superior disease classification
accuracy. Notably, convolutional neural networks (CNN) have

Jackson Butcher is an undergraduate student in the Computer Science
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demonstrated exceptional capabilities in image processing and
classification [11]-[13]. Despite these advancements, the prac-
tical deployment of these models for fully automating disease
detection in real farms remains a challenge. Several solutions
have proposed training Deep Neural Network (DNN) models
with extensive datasets of manually captured crop leaf images
in controlled environments [11]-[13]. However, utilizing such
methods in practice necessitates on-site presence of farmers
for image acquisition, resulting in labor-intensive, costly, and
time-consuming monitoring.

To mitigate such challenges, alternative approaches have
been proposed, leveraging ground robots [14] or unmanned
aerial vehicles (UAVs) [15], [16] to automatically acquire
crop field images. Despite the potential advantages, these
approaches are limited by the connectivity bottleneck arising
when transmitting large images to a remote (edge) server
for analysis and classification. This bottleneck is due to the
challenge of providing connectivity in rural areas and the large
scale of such rural fields [17]. These make short-range connec-
tivity solutions, such as WiFi and Bluetooth, inadequate [18].
Often, 4G/5G services are also not a viable option for lack of
coverage [19]. This is because, despite the significant govern-
ment efforts to improve rural connectivity, such as in the USA
[20], there is still a lack of pervasive deployment in remote
areas [18]. Furthermore, these connectivity solutions often hide
unbearable expenses to be extensively adopted by farmers. To
address these connectivity issues, recent efforts have focused
on on-device AI, where machine learning models are executed
on end-devices to reduce the amount of transmitted data.
As an example, approaches include model compression and
quantization techniques, to facilitate the deployment of deep
neural networks on low-powered end-devices [21], as well as
TinyML solutions [22]. Despite advancements in this direction,
on-device Al still has notable challenges, including memory
restrictions for image data processing and low accuracy with
hard samples [23]. Consequently, as of today, data processing
using complex deep learning models at more powerful servers
remains necessary.

Long Range (LoRa) [24], has emerged as a promising
network solution for remote areas communications. Its ex-
ceptional abilities to provide extensive communication range
and cost-efficient deployment, make it the most promising
solution to tackle network coverage challenges in large-scale
rural farms. This, consequently, facilitates the development and
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Fig. 1. Transmission time vs compression ratio (a) and Crop disease
classification accuracy vs compression ratio with three different models (b).
Reducing the image size can decrease the transition time over LoRa but
results in a significant drop in crop disease classification accuracy even with
a complex CNN model.

deployment of precision agriculture solutions [25]. However,
existing works have primarily utilized LoRa for transmitting
small sensor scalar data such as temperature, humidity, carbon
dioxide levels, electrical conductivity, and illuminance [26]-
[28]. This is primarily because LoRa allows a longer commu-
nication range at the cost of a considerably narrow bandwidth.
As an example, even when utilizing the high data rate setting
with a spreading factor 7 and a bandwidth of 250KHz, the
resulting data rate remains only at approximately 5.7Kbit/s.
Consequently, precision agriculture applications that require
transmitting images, such as crop disease recognition and
insect detection, are still not benefiting from LoRa commu-
nications and on-device Al solutions [29].

Motivating Example. To show an example of LoRa’s limi-
tations in transmitting images and enabling effective precision
technology applications, in Figure 1 we report some prelimi-
nary experiments to motivate our work. Here, we transmitted
over LoRa an RGB image of a soybean leaf with a size of 5SMB
from the Auburn Soybean Disease Image Dataset (ASDIAD)
[30]. We also adopt DenseNet201-based Convolutional Neural
Network (CNN) classifier proposed in [31]. Additionally, we
implement two TinyML models as on-device Al solutions.
Specifically, we adopt the MobileNetV3-Small, proposed in
[32], and a quantized version of MobileNetV3-Small, further
reducing its size.

In order to reduce the amount of transmitted and processed
data, we show the transmission time for a single image (Figure
1 (a)) and the overall classification accuracy (Figure 1 (b)), ver-
sus different Joint Photographic Experts Group (JPEG) image
compression factors. A compression factor of zero corresponds
to the original image. As the figure shows, it takes more than
100 minutes to transmit over Lora a single RGB image. Higher
level of compression allows to significantly reduce the image
size, and thus transmission time and the computational burden
for the end-device, but also incurs the risk of a significant drop
in classification accuracy. The best tradeoff for DenseNet201-
based, in this example, is a compression factor of 13, which
is able to provide an accuracy above 90%. However, this still
requires more than 13 minutes to transmit a single image,
clearly not scaling well with the hundreds of images required

to monitor an agricultural field. The TinyML models results in
a notable decrease in accuracy compared to DenseNet201 for
the soybean disease dataset, as depicted in Figure 1 (b). This
decline can be attributed to the inherent challenge faced by
TinyML in handling complex samples, exacerbated as image
size reduces.

Contributions. In this work, we propose a LoRa-based
autonomous framework, called iCrop. iCrop enables crop
disease classification by exploiting the cost-effectiveness of
LoRa transmission technologies while providing high disease
classification accuracy. Figure 2 shows an overview of iCrop.
The LoRa Node is an end computing device to be deployed
in the field, such as Raspberry Pi or Microcontroller Unit
(MCU) equipped with LoRa capability, which captures and
transmits crop leaf images. To minimize the data transmission
time, we propose an efficient image pre-processing technique
suitable for such end devices. Specifically, we resort on image
segmentation and we use an efficient approach to identify
informative segments within the original image. Only a few
informative segments are selected, compressed, and then trans-
mitted over LoRa. The LoRa Edge Server, equipped with suf-
ficient computing resources, performs the CNN deep learning
model training and testing for crop disease recognition. Upon
receiving image segments, the pre-trained deep learning model
generates disease predictions for each segment. Subsequently,
a majority voting mechanism consolidates these predictions,
yielding the final disease diagnosis.

Data loss happens frequently over LoRa networks due to
factors such as radio signal interference or obstacles. Since
the selected segments contain the most informative disease
features, any additional loss could decrease the accuracy.
Therefore, we also propose a reliable communication protocol,
running on top of LoRa, to ensure the receipt of all the
information within the selected segments.

We develop a real LoRa testbed to validate the proposed ap-
proach. Our experiments demonstrate that our approach yields
performance improvements of up to eightfold when compared
against two alternative methods across various performance
metrics.

In particular, the main contributions of this paper are:

o« We present an end-to-end autonomous architecture for
crop disease detection, leveraging LoRa-based image
transmission and pairing it with the CNN-based deep
learning techniques.

« We propose an optimized image pre-processing approach,
designed for implementation on end devices and low-
data rate communication technologies, to minimize data
transmission time while achieving a high crop disease
classification accuracy.

o We introduce a reliable transmission protocol on top of
LoRa communication to handle the data loss caused by
radio interference or obstacles.

o We implement a lab-scale testbed, and conduct extensive
experiments to validate the performance of the proposed
framework against several LoRa metrics, i.e., spreading
factor, bandwidth, and distance.
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Fig. 2. The proposed end-to-end architecture for autonomous crop disease detection.

The rest of the paper is organized as follows. In Section II,
we present the architecture of iCrop, including the proposed
image preprocessing method, and the reliable communication
protocol. Section III describes the implementation of the lab
scale testbed and presents the performance results of the
evaluation conducted with the testbed. SectionlV provides a
literature review and identifies the research gaps of the existing
works. Finally, conclusions are drawn in Section V.

II. THE PROPOSED ARCHITECTURE: ICROP

In this section, we present iCrop, our end-to-end architecture
for automated crop disease detection based on low-cost image
transmission over LoRa. iCrop can significantly reduce the
amount of data transmission while offering high accuracy for
crop disease recognition.

As depicted in Figure 2, our system comprises two primary
components: the LoRa Node and the LoRa Edge Server. The
LoRa Node, serving as an end-device deployed in the crop
field, is powered by battery'. It facilitates LoRa transmission
and offers limited computing capabilities. This node can be
constructed using a Raspberry Pi or MCU, integrated with
a LoRa transceiver module for LoRa communication and an
RGB camera to capture images of crop leaves. The LoRa node
could also be mounted on a robot scouting the field [33].
On the other hand, the LoRa Edge Server is realized with
a LoRa transceiver to receive data transmitted by the LoRa
Node. It is equipped with more capable computing resources,
e.g., a laptop, capable of supporting the training and testing of
deep learning-based image processing models for crop disease
classification.

A. Image Preprocessing in LoRa Node

Crops affected by diseases often exhibit noticeable symp-
toms, such as discoloration, lesions, and spots. Image process-
ing techniques generally identify crop diseases by extracting
key features such as leaf color, texture, and shape patterns,
from parts of the original image. This implies that transmitting
every detail of the full image is unnecessary and results in
excessively long transmission time, as illustrated in Figure 1.
While compression can reduce the transmitted data, relying on

'Energy-harvesting-based solutions can also be potentially employed to
power the LoRa Node.

sole compression results in images that still contain significant
redundant information, such as the background, prolonging the
transmission time over LoRa.

To enhance the efficiency of image transmission, we intro-
duce an efficient image pre-processing method referred to as
Top K Segments Selection, executed by the LoRa node. This
method first divides the image into segments by splitting the
image into an n X n grid. We denote each of the segments as
S;. Figure 3 shows an example of an 8 x 8 segmentation of a
soybean leaf afflicted with bacterial blight disease.

Next, we want to identify the most informative K segments
to transmit, where K is a predefined parameter. Intuitively, our
method is based on the realization that segments with the most
colors contain more information. As a result, for each segment
S;, we compute the set of colors 7;. Specifically, consider a
pixel p; = (r, g,b), where (, g, b) are the red, green, and blue
channel values for p;. For each p; € S;, we insert the tuple in
T, treating is as a mathematical set with no repetitions. As a
result, we define the informativeness w; of segment S; as the
cardinality of 7;, i.e. w; = |T;|. Figure 3 also shows a value
of w; for each segment in the image.

% 01154192)
e i e A

e

W, ddul
Sl
o kel

Fig. 3. A segmentation example of a soybean leaf image affected by bacterial
blight disease and the assigned weight.

The next step of the segment selection picks the top K
segments with the highest weight. Figure 4 shows the selected
segments from Figure 3 with K = 5. Clearly, this simple
method is able to select the most informative segments.

Once the most informative segments are identified, these
are compressed using JPEG compression. Here we adopt
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a compression factor of 10. The compressed segments are
subsequently transmitted via LoRa.

Fig. 4. Segments selected by Top K = 5 Segments Selection.

B. Reliable Transmission Protocol over LoRa

Upon the selection and compression of the most informative
segments, the LoRa node initiates the transmission of these
segments to the LoRa Edge Server. To enhance the trans-
mission efficiency while adhering to bandwidth constraints,
we employ a strategy of dividing each segment into smaller
chunks, subsequently encapsulating them within data packets
as shown in Figure 5. Each data packet has a length of 64
bytes. The first two bytes represent the packet ID, PID,
while the remaining 62 bytes are the payload and contain the
encoded pixels of the segments. The advantage of relying on
packets lies in more efficient retransmission in case of packet
loss, since these are of much smaller size than segments.

2 bytes 62 bytes
s pD:1 | data |
= F=[PD:2] data |

Fig. 5. An example of segment split into small packets of length 64 bytes.

LoRa operates within unlicensed frequency bands [25],
making it vulnerable to interference and collisions, potentially
resulting in data loss. This is exacerbated by the constraints
of limited bandwidth and transmission power. Given that the
selected segments encapsulate vital information, any omission
could compromise the accuracy of predictions. To address
this concern, we design a reliable protocol layered on top
of LoRa communication. This protocol efficiently manages
packet loss by implementing a mechanism for retransmitting
missing packets, as depicted in in Figure 6.

LoRa Edge Server

HELLO
Fin

-
| Finish

ol alm] Init (Re)Transmission

LoRa Node

>

Fig. 6. The proposed transmission protocol on top of LoRa communication.

2 b\{tes 4 bytes

[ale]I][1]o] SID | Num_of packets | Padding |
L )

Y
64 bytes

Fig. 7. The structure of HELLO packet.

The transmission protocol works as follows. Initially, the
LoRa Node sends HELLO packets, to alert the LoRa Edge
Server of the intent of transmitting a segment. The structure
of the HELLO packet is depicted in Figure 7. These packets
also have a length of 64 bytes and include an “hello” label,
followed with SID of two bytes representing the segment
ID. The SID is followed by the Num_of_packets of four
bytes, indicating the number of packets within that segment,
and finally a padding?.

Upon receipt of a HELLO packet, the LoRa Edge Server
responds with an ACK containing the S1D. Subsequently, the
LoRa Node starts sending the data packets of the segment
S1D to the LoRa Edge Server. The LoRa Edge Server receives
and stores the packets. When no more packets are received for
a specified time period, the LoRa Edge Server assumes that
the LoRa nodes has completed the transmission and it checks
if all packets have been received correctly. If some packets are
lost or compromised, the LoRa Edge Server requests missing
packets from the LoRa Node, specifying the packet PIDs.
Upon receiving the request, the LoRa Node retransmits the
missing packets. This procedure is repeated until all packets
for that segment are received by the LoRa Edge Server. Finally,
the LoRa Edge Server signals the succesful receiption of
all packets for the current segment by transmitting a F'in.
The LoRa Edge Server then reconstructs the segment by
assembling all the received packets.

C. CNN-based Model for Crop Disease Classification

The CNN model for crop disease classification is built
upon DenseNet201. The architecture is depicted in Figure 8.
Specifically, we extend the model introduced in [31]. To this
purpose, the extended model works with segments obtained
through the image pre-processing method on the LoRa Node,
treating each segment within the image as an individual input.
For the CNN model, we employ a transfer learning approach.
Specifically, DenseNet201 is initialized with the pre-trained
ImageNet weights, and its layers are utilized for feature
extraction. The last fully-connected layer is removed, and a
global average pooling layer is added to reduce the number of
parameters. Subsequently, a fully connected layer comprising
128 neurons with a ReLU activation function and a dropout
rate of 0.2 is incorporated. This is followed by another fully
connected layer with 64 neurons, a ReLU activation, and a
dropout rate of 0.3. A softmax layer is then added to facilitate
the eight-disease classification for each segment.

2Qur packets are encapsulated into LoRa packets, which handle framing
and transmission errors through checksum.
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Fig. 8. Proposed CNN-based crop disease classification model.

To determine the final crop disease class of each crop image,
a majority voting layer is integrated. The ultimate prediction
is made by selecting the label with the highest occurrence of
the K segments selected by the Lora Node. For instance, with
K =5, if the outputs are {Bacterial Blight, Bacterial Blight,
Target Spot, Bacterial Blight, Target Spot}, the final output
will be Bacterial Blight.

III. EVALUATION

In this section, we first discuss the LoRa testbed developed
to evaluate iCrop. Then, we compare our approach with two
benchmarks to demonstrate its superior performance.

A. Testbed Implementation

We implement the LoRa Node using a Raspberry Pi 3
model B 3 [34], depicted in Figure 9. A touch screen is
added for visualization purposes and enhancing user interface
interactions. Furthermore, we equip the Raspberry Pi with an
RGB camera, to capture images and with a Heltec WiFi LoRa
32 V2 transceiver [35], to provide the LoRa communication
capabilities. LoRa transmits over license-free megahertz radio
frequency bands 915MHz (North America). The communica-
tion between the LoRa transceiver and the Raspberry Pi is
established through serial communication.

Antenna

Heltec WiFi
LoRa 32 (V2)
Transceiver

,

Camera

Raspberry Pi 3B with
a touch screen

Fig. 9. The LoRa Node: a Raspberry Pi, with an RGB camera, touch screen,
and a Heltec WiFi LoRa 32 V2 transceiver.

3The LoRa Node can also be implemented with a more energy efficient
device such as MCU.

The implementation of the LoRa Edge Server is shown in
Figure 10. We use a Republic of Gamers laptop, to support the
CNN-based crop disease inference and mount the same LoRa
transceiver as in the LoRa Node to receive data. The specs of
the LoRa Edge server are summarized in Table I.

T -

Fig. 10. LoRa Edge Server: a Republic of Gamers laptop and a Heltec WiFi
LoRa 32 V2 transceiver.

TABLE 1
THE CONFIGURATION OF THE LORA EDGE SERVER

Model ROG Zephyrus G15 GAS03RS_GAS503RS
Processor | AMD Ryzen 9 6900HS with Radeon Graphics, 3301
Mhz, 8 Core(s), 16 Logical Processor(s)
GPU NVIDIA GeForce RTX 3080 Laptop GPU
RAM 16GB

B. Benchmarks

The first comparison corresponds to the transmission of full
original image. The classification is carried out with the CNN
approach proposed in [31]. We denote this approach as Full.
This approach can provide the best accuracy in crop disease
classification, at the expense of an extensive transmission time.

The second benchmark is based on the transmission of JPEG
compressed images. In this case, the LoRa Node compresses
the full image and transmits it to the LoRa Edge Server. Using
our preliminary experiments in Figure 1, we opt for a compres-
sion ratio of 13, since it represents the best tradeoff between
high accuracy and transmission time. Also in this case, the
classification is carried out with the CNN approach proposed
in [31], but the input images are the images compressed by
the LoRa Node. We denote this approach as JPEGI3.

Note that, for fairness of comparisons, we adopt our trans-
mission protocol also for the benchmark comparisons. As a
result, all approaches benefit from reliable communication and
are able to transmit the images successfully, although with
different transmission times. We discuss the dataset, training
and testing of the classification models, in the next section.

C. Experiment Setup

1) Dataset: We utilize the publicly available Auburn Soy-
bean Disease Image Dataset (ASDIAD) [30]. This dataset
consists of 9,648 images acquired during the 2020 and 2021
soybean seasons using a digital SLR camera and a smartphone
from three different research fields. The average size of
the images is 5 MB. There are eight categories of disease,
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including bacterial blight, cercospora leaf blight, downey
mildew, frogeye leaf spot, soybean rust, target spot, potassium
deficiency and healthy. The images were taken from multiple
locations in the field including within the canopy, on the
ground, and within a controlled lab environment. Furthermore,
we confirmed the data imbalance pointed out in [31]. As
a result, we employ data augmentation through horizontal
flipping on images representing bacterial blight, to increase
the low number of images within that category.

2) Training and Testing: We train three models for each of
the considered approaches. Specifically, we train the model for
Full with the original images in the dataset. Conversely, we
trained the model for JPEGI3 using the same images com-
pressed with a JPEG factor of 13. Finally, in the experiments
we are adopting a segmentation of 8 x 8 for iCrop. As a result,
we split the original images in 64 segments and train the model
of iCrop accordingly. We also transmit K = 5 segments from
the LoRa Node to the LoRa Edge Server.

For all models, we divide the dataset into a 60-20-20 split,
with 60% designated for training, 20% for validation, and the
remaining 20% for testing. The splits are performed evenly
across categories as not to overfit any disease category. Each
model undergoes 50 training epochs, and the batch size is 32.
The training process is conducted using stochastic gradient
descent as the optimizer, with a learning rate set at 0.0001
and momentum at 0.9.

D. Experiment Results

Experiment I: Impact of LoRa’s Spreading Factor. In
this set of experiments, we evaluate the performance under
different settings of the spreading factor (SF). The SF is a
pivotal parameter in LoRa, where a higher SF extends the
communication range at the expense of a lower data rate. The
bandwidth is set at 250KHZ.
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Fig. 11. Experiment I: Impact of Spreading Factor: (a) Transmission time
and (b) Data Loss Rate.

Figure 11 (a) illustrates the average transmission time for a
single crop leaf image varying SF values from 7 to 12. These
times include the retransmission times for packet loss. Note
the log-scale in the y-axis. iCrop stands out by achieving
a one-minute transmission time with SF of 7, significantly
surpassing the performance of JPEG13 and Full. This is due
to the effectiveness of the image pre-processing technique
through segmentation and compression at the Lora Node. The
impact is accentuated with increasing SF, with iCrop providing

a transmission time around 8 times and 138 times smaller
compared to JPEG13 and Full, respectively. As SF increases,
all approaches exhibit a rise in transmission time. This is due
to the reduction in data rate, as shown in Table III.

Figure 11 (b) depicts the data loss rate varying the SF. We
calculate the loss rate considering the total number of packets
lost, including retransmission attempts, versus the number
of packets composing the original image being transmitted.
Notably, all approaches exhibit a relatively low packet loss
rate, consistently below 5%. This can be attributed to the
laboratory environment of this set of experiments, where the
proximity of the LoRa Node and the LoRa Edge Server results
in a strong signal strength, measured with Received Signal
Strength Indicator (RSSI), as indicated in Table III. However,
iCrop outperforms the other two approaches by achieving an
overall lower data loss rate. This is due to the reduced amount
of transmitted data, that implies less packets being lost, and
thus less retransmission attempts, and less data loss during the
retransmissions as well.

Next, we evaluate the performance of the CNN classification
model with respect to accuracy, precision, recall, and F-1
scores. Note that, thanks to our transmission protocol, all
approaches are able to transmit the images reliably to the
LoRa Server. As a result, the performance are not impacted
by the spreading factor, nor by other LoRa settings. Table II
summarizes the results.

TABLE II
CLASSIFICATION PERFORMANCE
Methods Accuracy Precision Recall F1
Full 94.34 94.54 9435 9434
JPEG13 92.38 92.77 9228  92.39
iCrop 90.0 90.02 89.92  89.76

As expected, transmitting the Full image yields the highest
accuracy at 94.34%, along with superior precision, recall, and
Fl1-score. Conversely, the accuracy of JPEG13 experiences a
decline of approximately 2% across all metrics due to data
compression. The overall performance of iCrop is 2% lower
than that of JPEG13, attributed to the CNN classification
relying on partial information given by the only 5 segments
transmitted. Nevertheless, iCrop is able to achieve an accuracy
of 90% while requiring a transmission time that is up to 13
times lower.

Note that, since the CNN classification metrics are not im-
pacted by the LoRa settings thanks to our reliable transmission
protocol, we omit these results in the next experiments.

Experiment II: Impact of Bandwidth. In this set of experi-
ments, we assess the impact of bandwidth, another important
parameter of LoRa. The experiments are also conducted in the
laboratory environment, with the SF set at 7 while varying the
bandwidth from 62.5KHz to 500KHz. Figure 11 illustrates
the averaged transmission time for a single crop leaf image
for all three approaches. While the transmission time declines
with increasing bandwidth for all approaches, the Full image
approach still experiences prolonged transmission times due to
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TABLE III
LORA PERFORMANCE WITH DIFFERENT SETTINGS

Spreading Factor

Bandwidth (KHz) Distances (m)

7 8 9 10 11 12 62.5 125 250 500 230 500 800
RSSI (dBm) -535  -6l5 -66.7 -67.8 -68.1 -534 | -504 -65.8 -535 -656 | -946 -136.1 -108.5
Data Rate (byte/s) | 715.1 4485 246.7 100.2 87.7 45.8 2004 3425 715.0 9403 | 143.7 76.5 86.2
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Fig. 12. Experiment II: (a) Transmission time vs. bandwidth and (b) data
loss rate vs. bandwidth. 230m
B
the necessity of transmitting the entire 5 MB data. Although ®
compression helps alleviate this issue, it still takes up to 10
. . . LoRa Edge Server
times longer than iCrop. These results once again underscore
the advantages of segment selection performed by iCrop at
the LoRa Node, effectively reducing transmission times while Fig. 13. Map of various LoRa Node locations.
maintaining high classification accuracy.
Figure 12 (b) presents the averaged data loss rate across _
different bandwidths. All approaches maintain a consistent 21000 e . S | === i ]
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Experiment III: Impact of distance between LoRa Node
and LoRa Edge Server. In this set of experiments, we vary
the distance between the LoRa Node and the LoRa Edge
Server, with SF 8 and bandwidth 250KHZ. Specifically, the
LoRa Edge Server sits close to a window in our laboratory,
while the LoRa Node is positioned in three distinct locations
at distances of 230m, 500m, and 800m, respectively. Figure
13 shows these locations with respect to the Lora Edge Server.
For these experiments, we set the SF at 10 and bandwidth at
250KHz.

We first show the transmission time in Figure 14 (a).
Notably, the transmission time does not simply increase with
distance. This is due to the environment where the experiments
have been carried out, with buildings, trees, and other source
of interference affecting the communication. Specifically, at
location 1 with a distance of 230m, the LoRa Node has a line-
of-sight connectivity to the LoRa Edge Server. This results in
a stronger signal strength and a higher data rate, as indicated
in Table III, thereby leading to an overall shorter transmission
time for all approaches. Conversely, location 2 achieves longer
transmission times than location 3, despite the distance being

Fig. 14. Experiment III: (a) Transmission time vs. distance and (b) data loss
rate vs. distance.

lower. This is explained by the fact that in location 3, the
LoRa node is situated on the 5th floor of a library building,
providing a partial line-of-sight connectivity, while in location
2, it is positioned on the 3rd (top) floor of a classroom building,
facing obstacles such as buildings and trees in between. This is
clear also from Table III, where location 3 has a better RSSI.
Similar trends can also be observed in Figure 14 (b) for the
data loss rate: location 2 has a slightly higher data loss than
location 3, while location 1 has the lowest data loss.

In all the considered scenarios, iCrop significantly out-
performs Full and JPEGI13. Numerically, iCrop achieves a
transmission time of less than 8.5 min, orders of magnitude
less than the other approaches. Similarly, the data loss rate is
below 3.6%, significantly lower than the comparisons. These
findings highlight the benegits of iCrop, particularly in longer-
distance scenarios, typical of agricultural settings.
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IV. RELATED WORK

In this section, we present the existing research works
concerning LoRa technology in the realm of agriculture and
the current developments in the field of crop disease detection.

A. LoRa-Enabled Smart Agriculture

LoRa technology offers expansive signal coverage, ranging
from 10Km to 15Km in rural line-of-sight scenarios and
3Km to 5Km in urban line-of-sight conditions, coupled with
low power consumption [25], [36]. Capitalizing on these
advantages, numerous research studies have delved into the
suitability and capabilities of LoRa for enhancing agricul-
tural management practices. For instance, the authors of [26]
developed a LoRa-based system for monitoring the tomato
growth environment within a greenhouse using temperature,
humidity, carbon dioxide levels, electrical conductivity, and
illuminance data. The authors of [28] propose a similar LoRa-
based smart agriculture management and monitoring system
to address the communication failure problems in rural farms
using sensor networks. Building upon real-time environmen-
tal sensor data acquired through LoRaWAN, the authors of
[27] introduce a smart decision support system aiming at
enhancing crop yield through the optimization of irrigation
and fertilizer practices. Similarly, paper [37] proposes a novel
approach to integrate LoRa connectivity with the existing
Programmable Logic Controllers (PLC) to automate various
processes and control farming machines. Furthermore, a recent
comprehensive survey [38] delved into the various applications
of LoRaWAN technology, exploring its usage in diverse fields
beyond agriculture, including smart cities, industrial monitor-
ing, and more.

However, little research has been done in terms of image
transmission using LoRa, and its effect on machine learning
models. While previous studies [39]-[42] have recommended
the utilization of image compression techniques, they still
result in significant transmission times as shown in this paper.
There remains a lack of work dedicated to exploring the
potential and overcoming challenges associated with LoRa-
based image transmission, especially in specific agricultural
applications, such as crop disease detection and insect identi-
fication.

B. Crop Disease Detection

Traditional methods for detecting crop diseases typically
involve manual processes, relying on visual inspections and
laboratory tests. Unfortunately, this approach is often time-
consuming and prone to inaccurate diagnoses. In response
to these challenges, machine learning techniques have been
employed for automatic disease recognition [9]. These models
are normally trained on datasets comprising images of both
healthy and diseased plants, with a primary focus on extracting
features such as color, shape, and texture.

Deep learning, and particularly CNNs, have gained popu-
larity and exhibited outstanding performance in crop disease
detection [10], [43]. For instance, in [11], six deep learning
architectures based on CNNs are evaluated for classifying

rice diseases using crop leaves. The authors of [31] intro-
duce a novel localization method aimed at improving CNN-
based crop disease identification through region of interest
segmentation. Paper [13] proposes a transfer learning approach
employing CNNs for datasets consisting of original field leaf
images. Other works propose the use of unmanned aerial
vehicles (UAVs) equipped with multispectral and/or hyper-
spectral sensors to collect spatial images for crop disease
detection [15], [44], [45]. Despite these advancements, the lack
of Internet connectivity in rural areas remains a problem for
the application of these techniques.

Recent efforts have focused on using On-device Al, where
inference models are executed on the end-device. For instance,
the authors of [21] introduced Deep Leaf for detecting diseases
in coffee plants. Deep Leaf employs model compression and
quantization techniques to facilitate the deployment of deep
neural networks on end devices. Similarly, in [22], TinyML
was proposed for olive fruit variety classification at the edge
controller. Despite advancements in on-device Al, notable
challenges persist, including memory restrictions for image
data processing and accuracy compromises with hard samples.
Consequently, the images collected in the field, manually or
automatically, need to be transmitted to a server in order to
execute complex deep learning models. The lack of cellular
coverage, paired with the large number and size of the col-
lected images, constitute a significant bottleneck in adopting
these technologies for crop disease classification. In our work,
we tackle these challenges by exploring the potential of a low-
cost and long-range LoRa-based network through image pre-
processing and segment selection.

V. CONCLUSION

In this paper, we introduce iCrop, an autonomous end-to-
end crop disease detection framework that leverages LoRa
technology and employs CNN-based deep learning models.
iCrop addresses challenges of limited internet coverage in
remote rural farms, significantly reducing the on-site mon-
itoring efforts and deployment costs, all while maintaining
a high accuracy in crop disease classification. Moreover,
the experimental results conducted with a real LoRa testbed
demonstrate the superior performance of iCrop compared to
existing approaches.
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