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Abstract. Extensive research in Medical Imaging aims to uncover crit-
ical diagnostic features in patients, with AI-driven medical diagnosis
relying on sophisticated machine learning and deep learning models to
analyze, detect, and identify diseases from medical images. Despite the
remarkable accuracy of these models under normal conditions, they grap-
ple with trustworthiness issues, where their output could be manipulated
by adversaries who introduce strategic perturbations to the input images.
Furthermore, the scarcity of publicly available medical images, constitut-
ing a bottleneck for reliable training, has led contemporary algorithms to
depend on pretrained models grounded on a large set of natural images—
a practice referred to as transfer learning. However, a significant domain
discrepancy exists between natural and medical images, which causes
AI models resulting from transfer learning to exhibit heightened vulner-
ability to adversarial attacks. This paper proposes a domain assimila-
tion approach that introduces texture and color adaptation into transfer
learning, followed by a texture preservation component to suppress unde-
sired distortion. We systematically analyze the performance of transfer
learning in the face of various adversarial attacks under different data
modalities, with the overarching goal of fortifying the model’s robust-
ness and security in medical imaging tasks. The results demonstrate high
effectiveness in reducing attack efficacy, contributing toward more trust-
worthy transfer learning in biomedical applications.

Keywords: Medical images · natural images · transfer learning ·
colorization · texture adaptation · adversarial attacks · robustness ·
trustworthy AI

1 Introduction

Since its inception, Artificial Intelligence (AI) has evolved into a powerful tool
across various domains. Particularly in the realm of medical diagnosis and treat-
ment, AI has demonstrated impressive performance in predicting a range of dis-
eases such as cancer, often treated as a classification problem. Beyond diagnosis,
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applying AI to medical problems for object detection and segmentation has also
become focal points for researchers. The year 2018 marked a milestone toward
real-world integration of AI in clinical diagnosis, where IDX-DR became the
first FDA-approved AI algorithm designed for automatic screening of Diabetic
Retinopathy. On the research arena, numerous algorithms have been proposed
that showcase remarkable performance in disease detection and diagnosis across
diverse patient data modalities, such as MRI, CT, and Ultrasound. However,
the lack of publicly available medical data, often attributed to privacy and the
high cost of human expert annotation, remains a critical challenge for advancing
medical AI research. In the meantime, model performance heavily depends on
the size, quality, and diversity of training data to extract meaningful patterns.
To address this challenge, researchers have turned to transfer learning, which
takes models pretrained on large, extensive datasets of natural images and then
fine-tunes the models’ weights on the (smaller) medical datasets.

However, natural and medical images have inherent differences from each
other, forming a gap that is largely overlooked when applying transfer learning.
This gap, which we refer to as “domain discrepancy”, encompasses two par-
ticular aspects that eventually lead to heightened vulnerability of medical AI
models to adversarial attacks. First, the monotonic biological textures in med-
ical images tend to mislead deep neural networks to paying extra attention to
(larger) areas irrelevant to diagnosis. Second, medical images typically have sim-
pler features than natural images, yet applying overparameterized deep networks
to learn such simple patterns can result in a sharp loss landscape, as empirically
observed in [19]. Both large attention regions and sharp losses render medical
models trained via transfer learning susceptible to adversarial examples, the
most common attack by adding small, imperceptible perturbations to original
input images to induce significant changes in model output, resulting in mis-
predictions.

In this study, we introduce a novel approach called Domain Assimilation to
bridge the gap between medical images and natural images. The aim is to align
the characteristics of medical images more closely with those of natural images,
thereby enhancing the robustness of models against adversarial attacks without
compromising the accuracy of unaltered transfer learning. Our contributions are
as follows:

– We propose a novel domain assimilation approach embodied by a texture-
color-adaption module integrated into transfer learning. This module trans-
forms medical images to resemble natural images more closely, thereby reduc-
ing domain discrepancy and enhancing model robustness against attacks.

– To prevent over-adaptation, which can lead to the loss of essential information
in medical images and result in misdiagnoses, we introduce a novel Gray-
Level Co-occurrence Matrix (GLCM) loss into the training process. This new
loss incorporates texture preservation into the optimization process, which is
instrumental to ensuring integrity of medical data and reliable diagnoses.

– We conduct extensive experiments across multiple modalities, including MRI,
CT, X-ray, and Ultrasound, and evaluate the performance under various
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adversarial attacks, such as FGSM, BIM, PGD, and MIFGSM. Our results
demonstrate that the proposed texture-color adaption with GLCM loss effec-
tively enhances the robustness of transfer learning while maintaining compet-
itive model accuracy.

2 Related Work

The inherent differences between medical and natural images pose challenges and
some efforts were invested to narrow their disparities [16,22]. A typical technique
is grayscale image colorization, which is a prominent area in computer vision
aiming to transform single-hue images into vibrant, colorful representations to
enhance details and information for various applications. This field has garnered
significant interest in the research community, finding applications in historical
image restoration, architectural visualization, and the conversion of black-and-
white movies into colorful ones, among others. Numerous existing works address
colorization, either leveraging human-provided input such as scribbles or text, or
utilizing color information from reference images [7,13]. Existing methods aim
to predict the values of channels within chosen color spaces (e.g., RGB, YUV)
by approaching colorization as a regression problem. In these colorization tasks,
evaluation typically involves two steps: (1) convert color images into grayscale
and generate colored output using designed algorithms; (2) use the original color
images as ground truth for comparison with the generated output. However,
tasks that need fine-grained colorization entail extensive data training, and one-
on-one comparison to ground truth result in high computational overhead.

Furthermore, colorization of medical images poses additional challenges com-
pared to natural images due to the absence of color space information in the orig-
inal medical dataset. Prior research has underscored the importance of learning
from natural images to address the domain gap with medical images. In a pio-
neering work [16], a bridging technique was employed, enabling the trained pro-
jection function from source natural images to transfer to bridge images derived
from the same medical imaging modality. Subsequently, this transferred pro-
jection function was utilized to map target medical images to their respective
feature space. In a subsequent study [22], a three-stage colorization-enhanced
transfer learning pipeline was proposed. This involved allowing the colorization
module to learn from a frozen pretrained backbone, followed by comprehensive
training of the entire network on the provided dataset. The final step included
training the network on its ultimate classification layer using a distinct dataset,
aiming to enhance transferability. Recent work by Wang et al. [28] introduced a
hybrid method incorporating both exemplar and automatic colorization for lung
CT images. This approach utilized referenced natural images of meat, drawing
inspiration from their similar color appearance to human lungs. Most recently,
a self-supervised GAN-based colorization framework was proposed by [6]. This
framework aims to colorize medical images in a semantic-aware manner and
addresses the challenge of lacking paired data, a common requirement in super-
vised learning.
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While these existing approaches offer various advantages, many necessitate
human intervention and rely on large sets of source or referenced images for
learning color information to transfer to target medical images, resulting in a
lengthy process. Additionally, texture information has been overlooked but is a
crucial aspect in medical imaging tasks.

3 Preliminaries

Medical Images vs. Natural Images. Medical images typically mani-
fest as grayscale, single-channel images, showcasing distinctive features from
those found in natural images. The pixel-level values and spatial relationships
within medical images convey inherent anatomical diversities among individual
patients, often unveiling critical diagnostic features, for example, lesions. In con-
trast, natural images predominantly adopt the RGB color model, influenced by
diverse illumination effects. Unlike the relatively standardized nature of medical
images, natural images exhibit a broader spectrum of randomness and variabil-
ity, encompassing a wide array of colors, objects, scenes, and textures. Figure 1
shows histogram comparisons between different imaging modalities [2,3,5,27]
and natural images [23]. A histogram is widely used in image analysis to under-
stand pixel intensity value distribution. Here, we are plotting both frequency
and probability density curve for a better demonstration. As we can see from
Fig. 1a–d, within the same imaging modality, e.g., Brain MRI, the value distribu-
tion pattern is quite similar, however, the difference between medical images(a-d)
and natural images(e-h) is rather apparent. We also compared natural images
from different synsets in the well-known ImageNet2012 [23] dataset. As shown
in the histograms, natural images intuitively contain more variations across dif-
ferent synsets and even within the same synset.

While first-order histogram-based statistics, such as mean, variance, skew-
ness, and kurtosis, offer critical information on gray-level distribution, they lack
the ability to depict spatial relationships at different intensity levels [1]. To fur-
ther enhance the learning process, the importance of texture information within
a medical image becomes apparent. Texture analysis involves scrutinizing the
visual attributes, configuration, and distribution of elements constituting an
object within an image. It delves into the spatial organization and recurrent
patterning of pixel intensities, dispersed across the entirety of the image or spe-
cific regions. This interplay of intensities forms the fundamental essence defining
the overall visual construct of the image [4,26].

The Co-occurrence Matrix, also known as the Gray Level Co-occurrence
Matrix (GLCM) [10], has been widely employed for texture analysis, especially
on medical images [17,21,25]. The dimension of GLCM is defined by the number
of intensity levels in an image; for example, a 4-value grayscale image would result
in a 4× 4 = 16 matrix. It serves as a texture descriptor, extracting second-order
statistics and understanding the distribution of pairwise pixel graylevel values
at a given distance and orientation, resulting in a specific offset. In the equation
(1), given an image I, (i, j) represents the grayscale values, (x, y) represents the
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Fig. 1. Histograms showing pixel intensity value distribution of medical images and
natural images. Conversion from RGB to grayscale was done for natural images for
comparison purposes.

spatial locations of pixels, and (∇x,∇y) is the defined offset. In GLCM, common
orientations include 0◦(horizontal), 45◦(front diagonal), 90◦(vertical), 135◦(back
diagonal), and so on.

C∇x,∇y(i, j) =
n∑

x=1

m∑

y=1

{
1, if I(x, y) = i and I(x + ∇x, y + ∇y) = j

0, otherwise
(1)

FROM GLCM we can further extract second-order statistics as follows.
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Angular Second Moment (ASM) calculates the sum of the square of each
value in the GLCM matrix and depicts the level of smoothness in an image.

ASM =
∑

i,j

P (i, j)2 (2)

Contrast quantifies how distinct the pixel intensity pairs are in terms of their
differences. It reflects the amount of local intensity variation in the image.

Contrast =
∑

i,j

(i − j)2P (i, j) (3)

Homogeneity reflects the degree to which the pixel intensities in the image
tend to be close to each other. A higher homogeneity value indicates that the
pixel pairs in the image have similar intensity values, resulting in a more homo-
geneous and uniform appearance.

Homogeneity =
∑

i,j

P (i, j)
1 + |i − j|2 (4)

Correlation quantifies how correlated or linearly related the pixel intensities
are in terms of their spatial arrangement. It indicates the degree to which the
intensities at one pixel location can be predicted based on the intensities at
another location.

Correlation =
∑

i,j

(i − μi)(j − μj)P (i, j)√
σ2

i σ2
j

(5)

Dissimilarity reflects how dissimilar or different the pixel intensities are in
terms of their spatial arrangement.

Dissimilarity =
∑

i,j

P (i, j)|i − j| (6)

Adversarial Attacks. In the domain of neural networks, particularly for a
classification problem, we are presented with a set of input samples X ∈ R

d, each
associated with ground truth labels y drawn from the distribution D. Guided by
the choice of the loss function L(θ, x, y), where θ denotes the model parameters
subject to training, our objective is to identify the parameters that minimize
the risk E(x,y)∼D[L(θ, x, y)]. The challenge of adversarial robustness is cast as
a saddle-point problem, as articulated in the work of Madry et al. [20] (see
Equation (7)), wherein the crux lies in solving both the inner maximization
and outer minimization problem. In this study, we employ four gradient-based
attacks as described in the following to assess the performance of our models.

min
θ

ρ(θ),where ρ(θ) = E(x,y)∼D[max
δ∈S

L(θ, x + δ, y)] (7)
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Fast Gradient Sign Method (FGSM) [9] introduced a single-step adversar-
ial perturbation towards the input data with some magnitude along the input
gradient direction. See (8).

Xadv = X + ε ∗ sign(�xL(θ,X, y)) (8)

Basic Iterative Method (BIM) [18] proposed an iterative version of FGSM,
also known as IFGSM, which perturbs the input data iteratively with smaller
step size. See (9)–(10).

X0
adv = X, (9)

Xt+1
adv = Clipx,ε

{
Xt

adv + α ∗ sign(�xL(θ,Xt
adv, y))

}
(10)

Momentum Iterative Fast Gradient Sign Method (MIFGSM) [8] proposed an
extension of IFGSM that adds a momentum term to the optimization process
to help attacks escape from local maxima. See (11)–(13).

g0 = 0,X0
adv = X, α = ε/T, T is the number of iterations (11)

gt+1 = μ × gt +
�xL(θ,Xt

adv, y)
‖�xL(θ,Xt

adv, y)‖1 , μ is the decay factor (12)

Xt+1
adv = Xt

adv + α × sign(gt+1) (13)

Projected Gradient Descent (PGD) [20] proposed an extension to fast gra-
dient sign methods which projects adversarial examples back to the ε-ball of x
and is considered one of the strongest first-order attack. See (14)–(15).

X0
adv = X +

(
Ud(−ε, ε) if random start

)
, (14)

Xt
adv = Πε

(
Xt−1

adv + α × sign(�xL(θ,Xt−1
adv , y))

)
(15)

4 Method

Medical images are monochromatic, single-channel grayscale representations. In
the process of transforming them into RGB images, one can either generate val-
ues for distinct color channels or directly produce three-channel images by lever-
aging deep neural networks. Analogously to the colorization task, Convolutional
Neural Networks (CNNs) can be employed to extract low-level information, such
as textures, from images through operations like convolution and pooling.

In the realm of transfer learning, we leverage a pretrained backbone obtained
from an extensive dataset, utilizing it as a feature extractor to address specific
tasks. The objective of this research is to facilitate the adaptive and volun-
tary learning of texture and color information by two distinct modules during
the training process. This is achieved by employing a pretrained network and
optimizing the three-channel output to enhance the classification performance.
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Inspired by previous work [22], we introduce lightweight texture and coloriza-
tion modules preceding the pretrained backbone. The modules generate a three-
channel image, subsequently fed into the pretrained models to produce a final
classification outcome. See Fig. 2 for a demonstration of the input-output-flow
of the two modules.

Problem Formulation. In the context of a generic classification problem,
where the input X ∈ Rd, corresponding target labels y, and parameters θ are
considered, our objective is to address the following challenge where our pri-
mary objective is to optimize the model parameters in order to minimize the
loss between predicted and target labels.

θ = argmin
θ

L(H(X, θ), y) (16)

To effectively capture both texture and color information, our approach
involves the integration of two distinct modules, dividing the overall network
into four components: a texture module T, a color module C, a pretrained back-
bone B, and a final classifier F. Before the colorization process, it is imperative
to preserve crucial texture features inherent in the input image. This is achieved
by initially generating a single-channel image through the texture module, which
is subsequently input into the color module. The color module’s role is to learn
three-channel information and output a colored image. Finally, the output is
fed into the pretrained model for classification. This formulation of the problem
leads to the following.

< θT , θC , θB , θF > = argmin
θT ,θC ,θB ,θF

L

(
F

(
B

(
C

(
T (X, θT ), θC

)
, θB

)
, θF

)
, y

)
(17)

Observing the proven efficacy of texture as significant features in medi-
cal image tasks such as classification and segmentation [4,15,24], it is noted
that colorization, while enhancing the ’natural’ appearance of medical images,
may potentially distort the original texture information due to its fine-grained
labeling at the pixel level. Despite its ability to improve alignment with pre-
trained models, we seek to mitigate the impact of colorization during the training
process. To achieve this, we introduce a normalized Gray-Level Co-occurrence
Matrix (GLCM) loss, in addition to the cross-entropy loss, thereby producing
optimized results. This extends the problem into the following.

< θT , θC , θB , θF > = argmin
θT ,θC,θB,θF

(
α × CrossEntropyLoss

(
F (B(C(T (X, θT ), θC), θB), θF ), y

)
+

(1 − α) × GLCMLoss
(

C(X, θC), X
))

(18)

where α is a predefined weight. For GLCM loss, we first compute a GLCM
matrix for the input before and after the colorization procedure, respectively.
Then, the GLCM loss is expressed as the feature distance between the two matri-
ces. Our objective is to minimize this distance since it represents the distortion
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introduced by colorization as compared to the original texture. This distance is
formulated as a L-infinite norm which is equivalent to the equation below:

GLCMLoss = max
1�i�m

n∑

j=1

∣∣∣∣∣SOT

(
grayscale

(
C(X)

))

i,j

− SOT (X)i,j

∣∣∣∣∣ (19)

where SOT denotes second-order texture features of GLCM, m is batch size and n
is the total number of SOT features. We consider the five SOT features described
by (2)–(6) with a distance of 3 for 8 orientations (0/45/90/135/180/225/270
degrees). Hence, n = 5 × 8 = 40. All the 40 features are normalized in the same
range when constructing the m × n SOT matrix.

Our texture module follows a simplified autoencoder architecture, wherein
the encoder comprises convolutional, batch normalization, ReLU, and max-
pooling layers, ultimately generating a single-channel output. The decoder, on
the other hand, utilizes transpose convolution operations to reconstruct the orig-
inal input. The color module mirrors the structure of the texture module but
adopts a shallower configuration. It outputs a three-channel image, subsequently
fed into the pretrained backbone. For a visual representation of the architecture,
refer to Fig. 3.

Fig. 2. Example of the input and output of texture and color modules. (a) from left
to right: original brain MRI image, encoder output, decoder output. (b) from left to
right: input from texture module, three-channel image output.
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5 Experiments

5.1 Dataset

Our experiments encompassed four datasets representing distinct imaging
modalities - Brain MRI [5], Chest CT [3], Chest XRay [14] and Breast Ultra-
sound [2]. Given the substantial class size imbalance inherent in medical images,
we employed downsampling with a random sampling strategy to balance the
datasets. Additionally, to address data scarcity concerns for specific classes and
formulate a binary classification problem, we grouped various classes together.
For example, within the Brain MRI dataset, we consolidate glioma, meningioma,
and pituitary into a class designated as tumor. See Table 1 for an overview of
the dataset.

5.2 Setup

Our dataset uniformity is maintained through the resizing and center-cropping
of images, resulting in dimensions of (224, 224, 1), effectively reducing training
costs. All experiments adopt a standardized hyperparameter set, including 300
epochs, a batch size of 32, a learning rate of 0.0001, and early stopping with
a patience parameter set to 30. The experiments are conducted on GCP V100-
SXM2-16GB with 4 GPUs to achieve a significant acceleration in processing. The
experiment was conducted by performing the follow steps 1 and 2 independently,
and then subjecting their output models to attacks as in step 3 for robustness
comparison: 1) Fine-tune Base Models: Three commonly-used pretrained
models—ResNet18, ResNet50 [11], and DenseNet121 [12]—are adopted. Follow-
ing [19], we replace the last layer of these three models by a new sequential layer
consisting of a dense layer, a dropout layer, and a final dense layer. We then
fine-tune these 3 models on our medical datasets. 2) Train Base Models with
our Texture and Color Modules: The network architecture now consists of
four components—Texture Module, Color Module, Pretrained Backbone, and
Final Classifier—which are trained in an end-to-end fashion. GLCM and cross-
entropy losses (with a predefined α = 0.98) are computed for each batch, and
the overall loss is propagated backward through the entire network for updating
parameters. 3) Adversarial Attacks on Trained Models: We launch various
adversarial attacks on all the above models to compare performance degrada-
tion of basic transfer learning versus texture-color-adapted transfer learning, to
assess the possible robustness improvement. Note that both steps 1 and 2 use
the same medical datasets, and all the models are fine-tuned/trained until nearly
convergence, in order to ensure a fair comparison.

5.3 Evaluation

We assess the performance of various models based on their testing accuracy.
The evaluation is conducted incrementally on a fine-tuned base model, the model
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with texture and color adaptation, and the model with texture and color adap-
tation combined with GLCM loss. To examine how different models respond
to gradient-based adversarial attacks-specifically, FGSM, BIM, MIFGSM, and
PGD-in terms of performance degradation, we subject our trained models to dif-
ferent attack perturbation sizes denoted as ε (1/255, 2/255, 3/255, 4/255, 5/255,
6/255, 7/255, 8/255). The goal is to evaluate model performance under attacks
with and without our proposed approach.

Table 1. Dataset Overview

Dataset Name Classes Class Size

Brain MRI no-tumor, tumor (glioma, meningioma, pituitary) 1595, 1595

Chest XRay normal, pneumonia 1583, 1583

Chest CT no-cancer (normal and benign), cancer 536, 536

Breast Ultrasound no-cancer (normal and benign), cancer 210, 210

5.4 Results

As depicted in Table 2, our comprehensive experiments span four distinct medical
imaging modalities-MRI, Ultrasound, CT, and X-Ray-employing three selected
pretrained models: ResNet18, ResNet50, and DenseNet121. We compare the per-
formance across different approaches. Notably, for all imaging modalities except
Breast Ultrasound images, all three adapted approaches demonstrated compara-
ble results compared to the fine-tuned base models. The incorporation of GLCM
loss notably contribute to performance improvements or maintenance across
most models. However, both the table and Fig. 4 highlight that the adapta-
tion of color and texture introduces distortion, and in some cases, undesirable
noise to the original image. The limited size of the ultrasound dataset might as
well contribute to the challenges in learning and the model’s struggle to con-
verge effectively. This effect was more pronounced in modalities such as Ultra-
sound, which contains more distinguishable and complex textures compared to
other imaging modalities, resulting in a performance degradation. Our proposed
GLCM loss has effectively mitigated this undesirable distortion, as evidenced by
the results presented in Table 2. Its efficacy is particularly evident on ultrasound
compared to other imaging modalities, underscoring the criticality of preserving
texture information.

Further in evaluating model robustness against gradient-based adversarial
attacks-FGSM, BIM, MIFGSM, and PGD-we observe that our texture-color-
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adapted models with GLCM loss enhanced robustness by increasing the diffi-
culty of generating successful attacks. Figure 6a illustrates that the base model
achieve <20% accuracy under any attack (except for BIM) even with a very
small perturbation magnitude (e.g., ε = 1/255); BIM reduces model accuracy
to around 30% at ε = 1/255 but soon collapses the model with an accuracy of
zero at ε = 2/255. In contrast, armed with our domain assimilation strategy,
the model’s robustness increases notably: under all the attacks with ε = 1/255,
the model maintains a reasonably good accuracy of about 90%, 80%, 80%, and
60% under the attacks BIM, PGD, FGSM, and MIFGSM, respectively. At a
stronger attack strength of ε = 3/255, where the base model collapses to zero
accuracy for almost all the attacks, our strategy helps maintain an accuracy of
about 40% under BIM and FGSM attacks. On the other hand, Fig. 6b shows
that our approach was not effective for ultrasound. This can be attributed to
the characteristic captured by Table 2, which reveals that ultrasound images con-
tain more complex texture and hence were too sensitive to our adaptation. This
calls for more advanced methods to be developed in future research. The vanilla
FGSM, represented by the dashed gray line in Fig. 6a and 6b, exhibits outlier
behavior due to its characteristic of advancing gradients for a single step only.
As such, augmenting the epsilon value would not enhance its efficacy but can
potentially precipitate its significant deviation towards suboptimal solutions, as
opposed to iterative gradient ascending as in other attack methods. Hence for
FGSM, emphasis should be placed on very low epsilon values such as 1/255.

As part of our analysis, we also explored the transferability of learned param-
eters across different imaging modalities. Figure 5 illustrates the transferred col-
orization from a model trained on Breast Ultrasound images to colorize Chest
CT and Brain MRI images. The results suggest that our adapted models can
be effectively transferred to different modalities. With further fine-tuning, we
believe these models can be even better adapted to diverse datasets.

Table 2. Model Accuracy before and after TC adaptation (w/ or w/o correction by
GLCM loss). No Attack.

Brain MRI Breast Ultrasound Chest CT Chest X-Ray

ResNet18 Base w/ Fine Tuning 97.9% 74.6% 97.5% 92.2%

Adapted Texture-Color (TC) 96.4% 71.4% 95.6% 90.9%

TC+GLCMLoss 96.9% 71.4% 95.6% 91.8%

ResNet50 Base w/ Fine Tuning 97.5% 79.4% 97.5% 92.0%

Adapted Texture-Color (TC) 97.3% 76.2% 96.3% 91.6%

TC+GLCMLoss 97.3% 77.8% 96.9% 91.8%

DenseNet121 Base w/ Fine Tuning 98.1% 73.0% 98.8% 92.6%

Adapted Texture-Color (TC) 97.5% 66.7% 98.1% 92.2%

TC+GLCMLoss 97.3% 68.3% 98.1% 92.2%
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Fig. 4. Demonstration of our incremental workflow. From left to right: original Breast
Ultrasound image, adaptation with only colorization, with texture adaption added,
with GLCM loss added.

Fig. 5. Demonstration of transferability of our learned parameters across different
modalities, using our colorization module as an example. Here colorization was learned
from Breast Ultrasound color images and applied to Chest CT (upper row) and Brain
MRI (lower row). From left to right: original image, after colorization, and colorization
with GLCM loss.

Fig. 6. Robustness comparison under various adversarial attacks.
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6 Conclusion

In this study, we introduce texture and color adaption into transfer learning
to bridge the domain discrepancy existing in AI-based medical imaging, conse-
quently addressing the heightened vulnerability of medical AI models to adver-
sarial attacks. Our proposed approach consists of a texture-color adaptation
module that dynamically learns parameters in conjunction with pre-trained mod-
els, and a GLCM loss that retains essential texture information to restrict dis-
tortion, fostering a resilient model over various imaging modalities. Our evalua-
tion demonstrate enhanced model robustness against adversarial attacks, specif-
ically gradient-based adversarial examples created by BIM, PGD, FGSM, and
MIFGSM. Our analysis also discover the challenges posed by imaging modalities
with intricate textures, exemplified by Ultrasound images. Our findings validate
the domain assimilation idea and the effectiveness of the tamed adaption app-
roach, yet also pointing out potential future work on improvement for different
imaging modalities.
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