2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

DyLeCT: Achieving Huge-page-like Translation
Performance for Hardware-compressed Memory

Gagandeep Panwar, Muhammad Laghari, Esha Choukse, Xun Jian
TMicrosoft Research
gpanwar@vt.edu, mlaghari@vt.edu, esha.choukse @microsoft.com, xunj@vt.edu

Virginia Tech

Abstract—To expand effective memory capacity, hardware
memory compression transparently compresses and packs mem-
ory values more densely together in DRAM. This requires intro-
ducing a new layer of hardware-managed address translation in
the memory controller (MC). However, for large and irregular
workloads that already suffer from frequent virtual address
translation misses in the TLB, adding an additional layer of
address translation can double the translation misses (e.g., by
adding a new miss in the MC per TLB miss). While TLB
misses can be drastically reduced by using huge pages, no prior
work has explored huge-page-like translation reach for hardware
memory compression. While compressing and moving an entire
huge page worth of data at a time can lead to huge-page-like
address translation, moving a huge page worth of data together
can consume an exorbitant amount of memory bandwidth.

This paper explores how to achieve huge-page-like translation
performance in this new address translation layer, while keeping
compression at the page (instead of huge page) granularity. We
propose dynamically shortening the translation entries of hot
pages to only a few bits per entry by migrating hot pages to
the limited number of DRAM locations whose addresses can be
encoded using a few bits; colder pages still use the bigger full-
length translations so that colder pages can be placed anywhere
in memory to fully utilize all the space in memory. Each short
translation is tiny (e.g., 2 bits); as such, a 128KB translation
cache filled mostly with short translations can achieve similar
(e.g., 2GB) total translation reach as a TLB filled entirely with
huge page entries. Evaluations show our idea — Dynamic Length
Compressed-Memory Translations (DyLeCT) — improves average
performance by 10.25% over the prior art.

I. INTRODUCTION

Main memory accounts for a significant portion of operating
cost for cloud service providers and hyperscalers. For example,
Meta, a prominent hyperscaler, reports that memory accounts
for 30% of total hardware infrastructure cost [46].

Hardware memory compression is a promising technique to
increase effective memory capacity [6], [7], [17], [27], [33],
[37], [43], [52]. It enhances the CPU’s memory controller
(MC) to transparently compress and pack data more densely in
memory; transparently migrating data in turn requires adding a
new layer of dynamic address translation beyond the existing
virtual-to-physical memory translation. Specifically, the MC
manages a linear array of translation entries that we call
the compressed-memory translation entries (CTEs). The CTEs
collectively form a large translation table that is stored in
memory. To avoid fetching a CTE from memory for every
memory request, the MC caches CTEs in a dedicated CTE
cache, which serves as a similar purpose as the TLB.

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00085

1129

This new layer of dynamic address translation, however,
can significantly harm the performance of large and irreg-
ular workloads. These workloads already suffer from high
virtual memory translation overhead (i.e., high number of
TLB misses). Adding a new layer of address translation to
enable hardware memory compression can effectively double
the existing translation misses by adding a new CTE cache
miss beyond the old TLB miss.

To optimize virtual memory translation for large and irregu-
lar workloads, modern OS and CPU support huge (e.g., 2MB)
pages. In our real-system evaluation of large and irregular
workloads commonly studied in recent address translation
works, using 2MB huge pages provides 1.75x the average
program-level speedup over using standard 4KB pages.

No huge-page-like translation, however, exists in the new
layer of address translation required by hardware memory
compression. Consider a recent prior work [27], which uses
a 64-bit translation per 4KB page and a 64KB CTE cache;
even after doubling its CTE cache to 128KB, the CTE cache
can still only provide a small translation reach of 64MB.
Compared to a typical TLB that can provide >2GB reach
when the running program uses 2MB huge pages [15], [47],
a 64MB translation reach represents a 2GB/64MB=32x lower
translation reach.

A naive approach to enable huge-page-like translation reach
is to compress and migrate data at 2MB granularity; this allows
a single CTE to perform address translation for 2MB worth
of data. However, always moving 2MB of data together can
consume significant memory bandwidth and severely degrade
memory performance.

We note that to fully utilize all the compression-freed
spaces, prior works on hardware memory compression deploy
fully-associative and non-aligned data placement; but such
a highly fluid data placement requires long (e.g., 64-bit)
translations. Long translations consume significant space in
the CTE cache; this causes the CTE cache to hold relatively
few translations and, thus, provide low translation reach.

We observe just like how a mixture of rigid (i.e., harder-
to-move) pebbles and fluid water can fill a jar equally well
as purely water, using a mixture of fluid data placement and
rigid (i.e. lowly-associative and aligned) data placement can
also completely fill all space in memory. While a rigid data
placement only supports a few (e.g., three) possible DRAM
locations per unit of data, this limited choice of DRAM
locations only needs short (e.g., 2-bit) translations to encode;

Operating System’s View
OS Pages (4 Total)

Memory Controller’s View

DRAM Pages (3 Total)
Page 0 Page0 | Paged
Page 1 Page 1
Page 2 Page 3
Page 3

(a) Long translations Legend

OS Pages (4 Total) DRAM Pages (3 Total) :- -------- !
Page 0 i Short)
Page 1 ! Translation !
Page 2 —== : K} '
Page 3 I Tonflicts H 8 I

ag Ccon! ' !
'

Translation

(b) Short translations !

0S Pages (4 Total) DRAM Pages (3 Total)

Page 0

Page 1

Page 2 Page 2 Page 0
Page 3 - Hot

(c) DyLeCT: Uses both - (1) Short translations and (2) Long translations

Figure 1: (a) Long translations provide full freedom of data placement to fully
utilize all irregularly-sized compression-freed spaces. (b) Short translations
restrict data placement and waste space. In this example, a short translation
can only store an OS page p at the start of DRAM page d = p%3 or DRAM
page d = (p 4+ 1)%3 where 3 is the total number of DRAM pages. Dashed
line indicates placement conflicts for OS page 3. (c) DyLeCT uses both short
translations and long translations. Short translations are more cache friendly
and long translations eliminate any wasted space.

a CTE cache can hold many times more short translations
(e.g., 64b/2b=32x) than long translations and close the gap in
translation reach with a TLB that serves huge pages.

While only some pages can benefit from short translations,
we note translation caches generally favor hot pages as they
cache the translations of recently-accessed pages. As such, we
propose dynamically switching hot pages to short translations
and switching cold pages to long translations; this enables
the CTE cache to mostly cache short translations and provide
high translation reach. We call our idea Dynamic Length
Compressed-Memory Translations (DyLeCT'). DyLeCT dy-
namically migrates hot pages to the limited DRAM locations
whose addresses short translations can encode, by displacing
cold pages to DRAM locations whose addresses only long
translations can encode (see Figure 1c). While designing
DyLeCT, we address a key challenge of how to minimize
data movement overheads and also redesign the CTE table and
cache organizations to tailor to dynamic-length translations.

Our evaluation shows that DyLeCT improve the perfor-
mance of translation-intensive workloads by 10.25% over the
prior art. Table 1 compares DyLeCT to prior works.

We make the following contributions in this paper:

1) We explore how to enable huge-page-like translation
performance in the new address translation layer intro-
duced by hardware-compressed memory.

We propose Dynamic Length Compressed-Memory
Translations (DyLeCT) to dynamically switch between
short and long translations on a per-page basis to achieve
the best of both worlds — high translation hit rate and
high memory density/capacity.

2)

't is pronounced as Dialect, as the two types of translations are different
ways or dialects of communicating the same DRAM address.

1130

3) We address the unique design challenges of how to
effectively use both types of translations together.

Our evaluations show DyLeCT improves average per-
formance by 10.25% over a recent prior work “-TMCC-
without sacrificing memory compression ratio. DyLeCT
is also a simple design that only modifies a single
hardware component — the memory controller.

4)

. Comp. Modifications vs.
Prior Work Ratio Perf. Improvement Current Systems
RMC [7] 1.30x N/A MC
LCP [33] 1.69x +6% vs RMC MC, TLBs
Compresso [6] 1.85x +6% vs LCP MC

+14% vs Compresso
TMCC [27] 3.40x @ 1.85x Comp. Ratio. MC, 1.2%
This Work 340 | F10:25%vs TMCC MC
(under huge pages)

Table 1: Contrasting DyLeCT with prior works.

II. RELATED WORKS ON HARDWARE MEMORY
COMPRESSION

Many prior works propose enhancing the memory controller
(MC) to dynamically compress data in DRAM; they propose
adding decompressor and compressor hardware to the MC to
read and write compressed data in an OS-transparent manner.
These prior works broadly fall under two categories.

One category uses compression to save memory bandwidth
[13], [16], [17], [48], [49]. They compress data and store them
in or near their original locations and, therefore, leave many
unused compression-freed spaces scattered across DRAM; as
such, they do not improve effective memory density/capacity.

The second category uses compression to increase the
effective memory capacity exposed to the OS [6], [7], [27],
[33], [371, [43], [52]. These works migrate compressed data
closely together to improve effective memory density/capacity.
As such, they can enable the OS to use several times (e.g., 4x)
more OS physical memory than the amount of DRAM in the
system. This can help avoid swapping out data when memory
pressure is high?. Minimizing swapping out in turn also helps
to preserve huge pages; before swapping out, today’s OS first
breaks down huge pages into standard pages because directly
swapping huge pages can be prohibitively expensive.

This paper focuses on using hardware memory compression
to improve effective memory capacity.

A. Background on Memory Address Translation for Hardware
Memory Compression

Hardware memory compression transparently migrates com-
pressed data to pack it densely in DRAM. Prior works track
this data movement by adding a new layer of hardware-
managed translation that consists of a linear array of
compressed-memory translation entries (CTEs). Instead of
storing a tuple of col:row:bank:channel IDs, each CTE records

2Even when memory pressure is low, freeing up memory via hardware
memory compression could still be useful as free memory can be used to
opportunistically boost memory performance [28], [32], [51].

the location of data in DRAM as a scalar address called
the machine-physical address [6], [31]. The machine-physical
address is then translated into col:row:bank:channel IDs using
the same static address mapping function that today’s systems
use to calculate the final DRAM location given a conventional
physical memory address [34].

The CTEs are stored in a statically reserved memory region
called the CTE table. The CTE table contains CTEs for the
entire OS-visible memory. Each chunk of OS-visible memory
has its own dedicated CTE. We call the size of this chunk
of OS-visible memory the translation reach of the CTE. The
CTE table is a simple flat table; the n*" entry in the CTE
table corresponds to the n'”* regular sized chunk of OS-visible
memory. We refer to each 4KB range of OS-visible memory
an OS page regardless of whether it is being used standalone
as a standard page or is currently a part of a huge page.

B. Prior Works on Optimizing the New Address Translation

On a last-level cache (LLC) miss, accessing the CTE to
determine the location of the requested data increases the
critical path of the LLC miss. To speed up the translation,
all prior works add a small cache to the MC to cache CTEs
(see Figure 2).

(1) LLC Miss or Writeback

(3) Access Data:
Access x’s DRAN

locat;
Location

Access to physical address x

Figure 2: In hardware memory compression, CTEs form an additional
address translation layer beyond the conventional virtual memory translation
layer. Every memory access goes through one extra layer of indirection that
translates physical address to a DRAM location with the help of a CTE.

Large applications that can benefit the most from com-
pression, however, suffer from high CTE cache miss rates,
especially when they also have irregular access patterns. These
large and irregular applications are also known to suffer fre-
quent TLB misses. Further exacerbating the address translation
problem, many prior works [6], [7], [33], [52] compress and
move individual memory blocks, which requires fine-grained
tracking and address translation. In general, finer translation
granularity increases translation miss rate. For example, Com-
presso [6], which compresses individual memory blocks, uses
a 64B CTE per 4KB page, instead of 8B like a page table
entry (PTE); bigger CTEs are more likely to overwhelm the
small CTE cache in the MC.

To keep frequently-accessed CTEs small, TMCC keeps hot
pages uncompressed so that they can use coarse-grained page-
level translation. TMCC divides memory into a two-level
exclusive hierarchy. Memory Level 1 (ML1) stores hot pages
in uncompressed form to keep the CTEs small; Memory Level
2 (ML2) stores cold pages in compressed form to increase
effective memory capacity. Memory Level 2 compresses data
at 4KB page, instead of 64B block, granularity so that the
CTE entry managing a page can serve the page regardless

1131

of whether the page is uncompressed or compressed; page-
granularity compression also enables higher (e.g., 2x) com-
pression ratio. For every LLC miss or writeback request that
accesses a page in ML2, TMCC decompresses the page and
stores it in uncompressed format as part of MLI1; this page
promotion is called a page expansion.

While increasing translation granularity to the page-level
reduces CTE cache miss rate, the miss rate is still high for
large and irregular workloads. As such, TMCC also proposes
to compress page table blocks (PTBs)?® in the cache hierarchy
to embed CTEs within PTBs. Embedding CTEs within PTBs
enables a normal page walker access to also obtain from the
accessed PTB the CTE that the data access after the walk will
need; this CTE obtained from the accessed PTB can then be
forwarded to the MC along with the cache miss request for
the data. The MC can then use the CTE to satisfy the miss
request, without incurring any translation latency overhead.

Because TMCC is the most recent work on optimizing
address translation for hardware memory compression, we
build upon aspects of TMCC in this paper. Below, we describe
aspects of TMCC that we will also preserve in this work.

CTE Table: TMCC stores CTEs in an unified CTE table
where each CTE translates for a 4KB OS page. This is a flat
table, where the n' CTE corresponds to the n'" OS page. As
each CTE in TMCC is 8B long, a 64B memory block of the
CTE table stores 8 CTEs. At the time of a CTE cache miss,
the MC fetches one 64B memory block from the CTE table;
to be concise, we call this block a CTE block.

Managing Free Space: To track free memory, TMCC
maintains a linked list of free 4KB DRAM pages called the
Free List. TMCC also has many other free lists that track
irregular-sized free spaces of <4KB; each list tracks free
spaces of a specific size (e.g., 1.5KB).

Managing In-use Space: Memory that is not part of any of
the free lists is in-use. When a memory request accesses the
data in an ML2 page (i.e., a compressed page), TMCC expands
the page into a free 4KB DRAM page from the Free List (see
Figure 7a). When compressing an uncompressed page in ML1,
TMCC stores the newly compressed page into a tightly-fitting
irregular free space tracked by one of the free lists.

Compressing Least-Recently-Used ML1 Page: To select
a victim for compression, TMCC maintains a Recency List
tracking all uncompressed pages. Once every 100 memory
requests, TMCC updates the list’s head to point to this most-
recently accessed page; this naturally causes less-recently
accessed pages to drop down in the list so that the list’s tail
points to the least-recently accessed page.

Demand-adaptive Compression: TMCC adaptively com-
presses data in response to memory pressure to maintain 16MB
of free DRAM pages in the Free List. When free memory is
<16MB, the MC compresses pages asynchronously (i.e., in the
background) by repeatedly compressing pages from the tail of
Recency List and then using the freed-up space to replenishes
the Free List.

3A page table block is a 64B memory block containing 8 PTEs.

III. MOTIVATION

Contemporary workloads such as databases, graph analytics,
and machine learning have large memory sizes of many tens
of gigabytes [8], [11], [12], [23], [45]. Many large workloads
also have irregular memory access patterns that lead to high
TLB miss rates. Owing to the popularity of these workloads,
many prior works actively explore how to minimize virtual
memory translation overheads for these workloads [1], [23],
[29], [30], [35], [41].

To handle irregular workloads, current systems support 2MB
huge pages [9], [19], [26], [53], [54] and deploy them in large
(e.g., Google, Amazon, Meta) datacenters [14], [25], [38],
[44]. Recent Linux distributions also turn on transparent huge
pages by default to help minimize TLB miss rates for irregular
applications [22], [39]. On a real x86 machine, we find 2MB
huge pages can provide 1.75x average speedup for large and
irregular applications (see Figure 3).

3
Q
3
o 2
[}
&
1
¥ F RSN EE LRSS
33,0 ST F T oé'& N QYQ @Qv
qu’o ,\,bc}‘\ &C‘ oée?’ & & & @ v\\<Q é/o
D) & F <° ‘.cd‘

Figure 3: Speedup when running large irregular workloads under 2MB huge
pages vs 4KB standard pages on a real system with Intel W-3175X CPU.
The high speedup of 2MB huge pages comes from both improved address
translation performance and faster page allocation. The evaluated benchmarks
are used by recent prior works on hardware memory compression and by prior
works on address translation for current systems without memory compression
[23], [27], [30]; they come from GraphBIG [24], SPEC CPU2017 [42], and
PARSEC 3.0 [3] benchmark suites.

A. No Prior Work on Hardware Memory Compression Effec-
tively Optimizes Address Translations under Huge Pages

TMCC’s primary translation optimization — embedding
truncated CTEs within PTBs (see Section II-B) — only works
during page walks. But page walks are rare under huge pages;
2MB huge pages reduce TLB miss rates by 20x, on average,
in our real-system experiments in Figure 3. Furthermore, each
64B PTB for 2MB huge pages has 8 PTEs and, therefore,
covers eight 2MB pages or 16MB of memory; the many
CTEs of the many constituent 4KB pages within the 16 MB of
memory are too numerous to fit in a single 64B PTB.

Without the above optimization, TMCC'’s only translation
optimization is to reduce the size of each CTE to 8B, down
from 64B or more under earlier prior works; however, 8B
per 4KB page still incurs high translation miss rate, just like
how standard pages incur high TLB miss rates in today’s
systems for large and irregular workloads. To quantify per-
formance under huge pages, we implement TMCC in Gem5
(see methodology in Section V) and run the workloads under
2MB huge pages. Compared to a bigger conventional memory
system without any compression, TMCC suffers 14% and

1132

18% average performance loss at low and high compression,
respectively (see Figure 4).

- . TMCC @ Comp. Ratio: HLlow MHigh
28 100%
& @ 80%
£ L 0%
c o
Z E 0%
T O 5.
@ 20%
a ©
Z 0%
RS E LSS RPE D
Q%?(\ & (Io‘o &0 S <p(\\ (’o‘\ <& Qé& é\q’ Qi?*o Q‘ov"
& &L & & & ¥ oF T
RN FF S &S A
& ¥ 3 NSRS
Figure 4: TMCC’s performance normalized to a bigger memory with

no compression. Since TMCC compresses memory adaptively according to
the current memory demand, it can be evaluated under different degrees of
compression. The ‘Low Compression’ and ‘High Compression’ settings are
taken from the TMCC paper [27]. Table 2 shows each benchmark’s original
memory footprint and the DRAM size used to evaluate them under each
setting. The CTE cache size is 128KB.

Benchmark ‘ Memory ‘ DRAM @ ‘ DRAM @
Footprint | Low Comp. | High Comp.

GraphBig Suite | 106GB 81.5GB 35GB

mcf 15GB 13.7GB 6GB

omnetpp 1GB 0.63GB 0.4GB

canneal 1.1GB 0.96GB 0.73GB

Table 2: Evaluated benchmarks and DRAM size for simulations.

Much of the performance loss is due to the poor transla-
tion cache hit rate. A 128KB cache only provides a small
translation reach of (128KB/8B)*4KB=64MB. Such a small
translation reach leads to a high average miss rate of 28%
for GraphBig (see Figure 5). As sensitivity analysis, we also
sweep other CTE cache sizes — 64KB, 256KB, and 512KB.
Octupling the CTE cache size from 64KB to 512KB only
reduces CTE cache miss rate from 34% to 24%. Making the
CTE cache even bigger would make it slower to access and,
in turn, slow down all read requests from the LLC, including
those that hit in the CTE cache.

Translation Reach: 032MB O 64MB @128MB M 256MB
+ 60%
©

o
n 40%
2
S 20%
o
|G 0%
¥ ¢ QR & XL
Q O X N Q)
LS d’@ & ° S KO\ @8‘
& & & & & SN
& S PSR
o(& [SAEEEN & &
(S
Figure 5: CTE cache miss rate for large workloads under 2MB OS huge

pages. Octupling the translation reach by octupling the CTES size only reduces
the average miss rate by 10%.

B. Hardware-managed Large Pages can be Harmful

A plausible solution to increase translation reach is to
increase compression granularity from 4KB to 2MB, so that

each CTE can translate for 2MB of data. This increases each
CTE to the same translation reach as a 2MB huge page
PTE. However, compressing and decompressing 2MB each
time can incur an exorbitant bandwidth overhead. Irregular
workloads have a skew in accesses within a huge page [20]
(i.e., only some of the 4KB pages within each huge page
are frequently accessed); as such, always moving everything
belonging to a 2MB page together as a single unit via a
single CTE can waste significant bandwidth. Furthermore,
2MB compression also increases decompression latency to
100us (i.e., 512*decompression latency of 4KB DEFLATE
ASIC decompressor [27] = 512*%280ns = 143.36us).

An alternate solution is to use a compression granularity
less than 2MB, but still coarser than 4KB (e.g., 64KB). This
also increases the translation reach of CTEs. However, the
bandwidth overhead in this case is an order of magnitude lower
than 2MB compression granularity.

To quantify the performance of coarse-granularity compres-
sion, we also evaluate TMCC at three coarse granularities:
16KB, 64KB, and 128KB. Under low compression, 16KB,
64KB, and 128KB compression reduce the average slowdown
from the earlier 14% down to 9.5%, 7%, and 6%, respectively
(see Figure 6). This is because having a coarser compression
granularity increases the translation reach of the CTE cache;
for example, 64KB compression granularity improves the
translation reach of CTE cache by 64KB/4KB=16x.

Compression Granularity

TMCC Low Compression @ [4KB 016KB @m64KB M 128KB
TMCC High Compression @ [04KB 0J016KB [D64KB MW 128KB
100%
c
8 .g 80%
- 0
E 2 co%
o &
S E 0%
£8
$ o 20%
2
0%
& R LS R & &
PN T € &‘Q « @0@‘3
S L & & &L Qe & O
L F S & & & © Yo
s & @

Figure 6: TMCC at 4KB, 16KB, 64KB and 128KB compression granularities.
Performance normalized to a system with no compression.

Under high compression, however, performance decreases
as compression granularity increases; the slowdown are 18%,
23%, 34%, and 46% when compressing at 4KB, 16KB,
64KB and 128KB, respectively (see Figure 6). Under high
compression, decompression and compression become more
frequent; the high bandwidth overhead of decompressing and
compressing at coarse granularity outweighs the benefit of
increased translation reach. If the compression granularity
were 2MB, the slowdown would be even worse. As such,
the severe performance degradation at high compression ratio
rules out coarser compression as a practical design point.

1133

IV. DYNAMIC LENGTH COMPRESSED-MEMORY
TRANSLATIONS (DYLECT)

In this paper, we explore how to achieve a huge-page-like
translation performance in the new layer of address translation
required by hardware memory compression, without increas-
ing the granularity of compression (i.e., keep it at 4KB).

We note that all prior works on hardware memory com-
pression use fully-associative and non-aligned data place-
ment; such fluid data placement can store data in arbitrary
compression-freed spaces and, therefore, help maximize the
logical density in memory. In comparison, CPU caches use a
set-associative data placement, which stores a given memory
block or page at few possible locations; while more rigid, set-
associative placement requires fewer bits per translation (e.g.,
2 bits if 3 ways) and, thus, can greatly shrink the size of each
CTE (e.g., by 8B/2b=32x) and greatly increase translation
reach (e.g., by 32x, as a cache can fit 32x as many CTEs if each
CTE is 32x smaller). However, a rigid placement cannot utilize
most of the compressed-freed spaces and wastes memory,
which defeats the purpose of hardware memory compression.
As such, no prior works use set-associative data placement.

To achieve the best of both worlds, we observe just like
how a mixture of fluid water and a mixture of rigid (i.e.,
harder-to-move pebbles) can fill a jar equally well as purely
water, using a mixture of fluid data placement and rigid data
placement can also completely utilize all space in memory.
As such, we propose using a combination of long translations,
which support fluid data placement to preserve the same effec-
tive memory capacity as prior works, and short translations,
which support set-associative data placement to improve the
translation reach of the CTE cache. Furthermore, since only a
portion of the data in memory can use long translations, we
propose dynamically and transparently switching translation
length for individual OS-visible pages depending on how
frequently they are accessed. We call our proposal Dynamic
Length Compressed-Memory Translations (DyLeCT).

A. Challenges of Dynamically Switching the Length of CTEs

Noting that the recent prior work on optimizing address
translation for hardware memory compression (i.e., TMCC)
keeps hot pages uncompressed, a basic DyLeCT design is
to use short translations on uncompressed pages (i.e., the
Memory Level 1 under TMCC, see Section II-B), as they
are hot; meanwhile, use long translations on compressed
pages (i.e., Memory Level 2, see Section II-B) to utilize all
compression-freed spaces in memory.

While dynamically switching CTE lengths may seem rather
simple, it faces several design challenges.

1) Bandwidth Challenge: Dynamically switching between
CTE length can incur a costly bandwidth overhead. When
using long CTEs for all pages (i.e., both ML1 and ML2), after
a compressed (i.e., ML2) page becomes hot again due to an
access, the page can expand directly to any free DRAM page
(see Figure 7a) that is being tracked by the Free List. When
each uncompressed page uses the short CTE, however, every
one of the few possible locations that the page’s short CTE

can address/encode is very likely already in use, especially
in a highly-occupied memory system that needs compression;
as such, expanding an ML2 page to ML1 would require first
moving one of the pages currently occupying one of these
DRAM pages to a free DRAM location somewhere else and
then expand the accessed page into the freed-up DRAM page
(see Figure 7b).

Having to move two pages per page expansion can double
the bandwidth overhead of page expansions over always using
long CTEs. How to mitigate this costly 2x bandwidth overhead
for page expansions is a challenge.

_________________ 1
I

[

@ Compressed Page

expands
to any free DRAM location

(a) Page expansion when all pages use long CTEs

@ Compressed Page p

to any free DRAM location
expands _

(@ Pre-existing Page
migrates away (by
switching to long CTE)

(b) Page expansion when uncompressed pages use short CTEs

Figure 7: (a) Page expansion when all pages use long CTEs. The page
can directly expand to a free DRAM page tracked by the Free List. (b) Page
expansion when all compressed pages use long CTEs, but all uncompressed
pages use short CTEs.

2) Cacheability Challenge: Prior translation table designs
both in hardware memory compression and conventional sys-
tems adopt a unified design that uses a single CTE table for
both uncompressed and compressed pages and uses a single
multi-level table for both standard and huge pages. Reusing
such a unified table design for DyLeCT would still yield poor
CTE cache hit rate. This is because under a unified CTE table
design, many of the bits in a table entry are unused when
the entry stores a short CTE; caching a CTE block containing
many unused bits wastes precious space in the CTE cache and,
thus, reduces the CTE cache hit rate.

Figure 8 shows a 64B block for the unified CTE table
where each of the 8B entries in the block serves a 4KB OS-
visible page. Each 8B entry holds either a long translation or a
short translation. Using 8B to record a short translation wastes
significant space. If the unified block is cached naively (i.e.,
cache the block with all of its unused bits), the cache will store
no more translations than using long entries for all pages.

To reduce waste in the CTE cache, a potential solution is to
have separate caches for short and long CTEs. After accessing

Long CTE (8B) Short CTE (2 bits)
> <>

>
Wasted Space (62 bits) - Most Significant Bits are 0

Figure 8: An example of a 64B block under the unified CTE table
organization. Each block contains 8 8B entries; when an entry records a short
CTE the most significant 62 bits in the entry are wasted.

a 64B unified CTE block, the memory controller (i) inserts
an 8B long CTE into the dedicated long CTE cache if the
CTE is used and (ii) gathers all short CTEs closer together
before inserting them into the dedicated short CTE cache.
However, having two distinct caches for short and long CTEs
is inefficient as the long CTEs are used less often.

Furthermore, the short CTE cache can still waste significant
space. One option for designing the short CTE cache is to
gather all short CTEs that are part of the fetched unified block
into a small cacheline in the short CTE cache; for 2-bit short
CTEs, this means gathering eight 2-bit short CTEs into a 2B
cacheline. The problem is that each tag in such a short CTE
cache can be much bigger than the data in each cacheline
(e.g., a 4B tag versus 2B cacheline data), which can waste
significant (e.g., 66% of) the cache area (see Figure 9 ‘Option
A’). Another option is to organize the short CTE cache as
a sector cache [2], [40] that uses 64B cachelines instead of
2B cachelines to amortize the tag overhead. The downside
of this approach is requiring a long time to warm up each
64B cacheline and, therefore, wasting most of the bits in the
common case (see Figure 9 ‘Option B’).

Long CTE (8B) Short CTE (2 bits)
ge «—> <>
Unified CTE Block [I [I I | I |
(643) CTEO CTE1 CTE2 CTE3 CTE4 CTE5 CTE6 CTE7
Needed by a
Mem Req Gather Short CTEs

(White = Empty/Unused)

Insert Long CTE
as 8B cacheline

Tag Data Tag Data
. : Array Array
Longctes | [] [ciE0 Short CTES
e
’ ~~o
,’ Option A: Insert as a Option B: Insert within AN
2B cacheline

648 cacheline \l
1
1
1

[

1

: Tag Data Tag Data

1 : 3 3 : * Wasted spaceI

1Tag is larger o .

s ATEEr AT I 1 (I © Lons time to
than Data —_—— warmup

1

1

1

1

Conventional Cache Sector Cache !

N (2B cachelines) (64B cachelines) 4

Figure 9: Basic approaches to address the cacheability challenge; they still
waste significant space in CTE caches.

3) Quantifying the Two Challenges: Using Gem5 (see
methodology in Section V), we simulate the basic design that

1134

dynamically switches between long and short CTEs within a
unified CTE table. It switches between 2-bit short CTEs for
uncompressed pages and 8B long CTEs for compressed pages.
It models movement of two pages per expansion (see Section
IV-Al). It has two 64KB CTE caches that store short and
long CTEs, respectively. When the memory controller reads
a CTE block, it gathers up to 8 short CTEs from the block
into a single 2B cacheline in short CTE cache and inserts the
block’s long CTE(s) into 8B cacheline(s) in long CTE cache.

We evaluate the benchmarks in Section V at high compres-
sion setting (see Table 2) and find the average CTE cache hit
rate is 76% — only marginally better than the 67% hit rate
under TMCC; this improvement is small due to inefficient use
of space in the CTE caches. Furthermore, the bandwidth over-
head due to double page movement per expansion degrades
performance and masks any potential performance benefit
from slightly improving CTE cache hit rate. Consequently,
instead of improving performance, this naive design actually
reduces performance by 5% on average.

B. Addressing the Bandwidth Challenge via a Three-level
Memory Hierarchy

To address the bandwidth overhead challenge of dou-
ble page movement per page expansion (see Section II-B),
DyLeCT uses both short and long CTEs for uncompressed
pages. When first expanding a compressed page to uncom-
pressed form, DyLeCT uses a long CTE to store the page in
any free DRAM page that is currently being tracked by the
Free List. DyLeCT only selectively switches the hottest un-
compressed pages to using short CTEs. Dynamically switching
between short and long CTEs for uncompressed pages essen-
tially extends the two-level memory hierarchy into a three-
level exclusive hierarchy, where the hottest uncompressed
pages form Memory Level 0, while less hot uncompressed
pages form Memory Level 1 (see Figure 10).

Restricted
—nestricted
Mapping

@ After many accesses
(Hottest pages use cache-
friendly Short CTEs)

4KB OS Eaée

Map . Uncompressed - Hot :
Anywhere

(Mem Level 1; Long CTE){ @ On Access - Expand to

Any Free Location

Map (No Double Page Movement)

Anywhere

Figure 10: Three-level exclusive memory hierarchy in DyLeCT. Memory
Level O stores hottest OS pages in uncompressed form. DyLeCT accesses
data in this level through cache-friendly short CTEs. Memory Level 1 also
stores OS pages in uncompressed form but uses long CTEs. Memory Level
2 stores compressed data and also uses long CTEs. For clarity, the figure
shows the different memory levels occupying contiguous memory; however,
they can be non-contiguous and arbitrarily interleaved.

Memory Level 0 (ML0): MLO stores uncompressed pages
and addresses them using short CTEs. A short CTE of an OS
page p can only place p among a small set of possible DRAM
pages (e.g., a 2-bit short CTE of p can only place p in one out
of 3 possible DRAM pages); we refer to this set of DRAM

1135

Mapping Function for Short CTEs

Legend
_ DRAM_Page(p) = hash(p) + p’s Short CTE
e s oampler

In this example:
_ M = Total # of DRAM pages = 6
G = short CTE’s DRAM page group size = 2
p=0Spage; p€{0,1..11}
OS Pages hash(p) =2 * (p % (6/2)) =2 * (p % 3)
(12 Total) Short CTE € {0, 1}

DRAM Pages
(6 Total)

h
%Shto)4 5
Ort
C

unhWNRERO

Page 8, Long CTE
1

Figure 11:
example memory system, OS page 7 in MLO is stored at DRAM _page(7)
= hash(7) 4+ ShortCTE = 240 = 2. Long CTE: The long CTEs are not
accompanied by any calculations; each long CTE directly records the current
machine-physical address of an ML1 or ML2 page.

Short CTE: Our mapping function for short CTEs. In the small

pages as p’s DRAM page group. The DRAM pages within a
DRAM page group are adjacent to each other. Two distinct OS
pages can either share the DRAM page group or use distinct
DRAM page groups that do not overlap.

DyLeCT uses a static hashing function to identify the first
DRAM page in the DRAM page group of an OS page p. The
hash function hash(p) takes as input p’s page ID, the total
number of DRAM pages in the system (M), and the number
of DRAM pages per DRAM page group (G). The full hash
function is given in Figure 11 hash(p); the multiplication by
G ensures two adjacent OS pages map to two distinct DRAM
page groups.

The short CTE of page p then specifies which one out of the
G DRAM pages in the DRAM group is currently storing p.
Therefore, the complete mapping function used by short CTEs
is DRAM _Page(p) = hash(p) + p's Short CTE. Figure
11 illustrates how to use short CTEs to locate MLO pages in
an example system with 12 OS pages and 6 DRAM pages.

Memory Level 0 is dynamic in size; it may scale up to the
entire memory system when everything is uncompressed (e.g.,
when the memory pressure is low). This is because the output
range of the hashing function for short CTEs is the entire
DRAM; hash(p) = G (p%(M/G)) approximately simplifies
to p%M, where M is the entire DRAM size. As such, any
DRAM page can be part of MLO; in other words, any DRAM
page can store an uncompressed page that is currently using
a short CTE.

Memory Level 1 (ML1): ML1 is the next level of memory
that also stores uncompressed pages. However, unlike MLO,
ML1 pages uses long CTEs so that they can be stored
anywhere in memory. Long CTEs are 8B each so that they
can encode arbitrary DRAM addresses.

Memory Level 2 (ML2): ML2 stores compressed pages
and uses long CTEs to address them.

ML2—ML1 Promotion ((1) in Figure 10): A potential
promotion policy for DyLeCT’s three-level hierarchy is the
conventional promotion policy used in CPU caches: expand
a page from ML2 directly to MLO similar to how the CPU
promotes a cacheline from L3$ directly to L1$. However,
such a policy continues to incur double page movement
per page expansions (see Section IV-Al). Heuristically, a
recently expanded page is unlikely to be very hot (e.g., it
was compressed initially because it was cold) and may receive
very few accesses before it is compressed again. We confirm
this for all irregular workloads in Section III and find that on
average across all benchmarks, a decompressed page receives
16 accesses before it is compressed.

DyLeCT adopts a gradual promotion policy that first ex-
pands a compressed page in ML2 to ML1, and then selectively
promotes ML1 pages to MLO (see ML1—+MLO Promotion).
The expansion of compressed pages to MLI uses free pages
addressable by long CTEs to avoid double page movement.

ML1—MLO Promotion (Long CTE—Short CTE Switch;
(2) in Figure 10): DyLeCT selectively promotes the most
frequently accessed pages from ML1 to ML0O. We note how to
select the hottest pages to place into a limited set of page-sized
locations is quite similar to prior works on DRAM caching
at the page granularity. As such, we adapt the promotion
algorithm from a prior work on page-level DRAM caching
(specifically, ‘Algorithm 1’ from [50], with 5% sampling rate)
by maintaining a probabilistic access counter for every OS
page. The hot ML1 pages to promote are identified as the
ones with access counts that are higher by a threshold than
other ML1 pages that map to the same DRAM page group.

When DyLeCT promotes a hot MLL1 page p, some of the
DRAM pages in p’s DRAM page group may contain ML1 or
ML2 pages; DyLeCT uses the long CTEs of these ML1 or
ML2 pages to migrate them elsewhere to free up a DRAM
page to store p. Page p is now in MLO.

ML0—ML1/ML2 Demotion (Short CTE—Long CTE
Switch): When DyLeCT promotes a page p, if all of the
DRAM pages in p’s DRAM page group currently contain MLO
pages, DyLeCT demotes one of these MLO pages to ML1 (i.e.,
switches its short CTE to long CTE to migrate it to a free
DRAM page tracked by the Free List); DyLeCT compares
the access counters of these MLO pages to select the coldest
MLO page to demote.

If the compression using Recency List (see Section II-B)
selects an MLO page as victim, the page is compressed and
demoted to ML2 (i.e., switches from short CTE to long CTE).

Figure 12 summarizes promotion and demotion between
memory levels as a flowchart.

C. Addressing the Cacheablity Challenge of Short CTEs via
a Pre-gathered Table of Short CTEs

To minimize waste in the CTE cache and improve hit rate,
DyLeCT gathers copies of short CTEs densely together into a
second CTE table that is optimized for short CTEs. Each 64B
block in this second table densely packs 64B/2bit=256 short
CTEs back-to-back, without wasting any space. As such, each

1136

LLC Miss/Writeback
to OS Page p

ML2

Increment p’s
Access Count

Rate: ~1% of
total accesses

Decompress p and
promote to ML1
Free List <
Threshold?

Yes

p’s access count >
access count of MLO page x
in DRAM_Page_Group(p)

Rate: ~0.01% of

Yes total accesses

Swap p and x
(Promote p to MLO and
demote x to ML1)

Compress LRU uncompressed page y
and demote it to ML2
(y could be from either MLO or ML1)

Figure 12: Page management in Three-Level Memory Hierarchy.

block provides a translation reach of 256*4KB = 1MB, similar
to a huge page. Unlike the naive short CTE cache designs in
Section IV-A2, which gathers the short CTEs from an unified
CTE block into a short CTE cacheline after fetching the CTE
block on a CTE miss, DyLeCT proactively gathers/copies the
short CTE of a page from the unified CTE table to this second
table when promoting the page to MLO. As such, we call this
second CTE table the Pre-gathered Table.

Figure 13 shows the internal organization of the Pre-
gathered Table. Pre-gathered Table is statically sized to contain
a 2-bit entry for every 4KB OS page in the system. For OS
pages that use long CTEs (i.e., OS pages in ML1 or ML2),
the short CTE in Pre-gathered table records an INVALID
flag value; the flag value is the maximum encodable number
(e.g., ‘3’ for 2-bit short CTEs). As such, 2-bit short CTEs
only support three DRAM pages per DRAM page group.
DyLeCT updates the short CTE in the Pre-gathered Table
whenever it updates the unified CTE table (i.e., when it
promotes/demotes a page between memory levels).

To maximize CTE cache hit rate and store as many short
CTEs as possible, DyLeCT features a single CTE cache that
stores both pre-gathered and unified blocks. A single CTE
cache inherently allows dynamic partitioning as per workload
execution. Unlike the TLB, which is physically split across
different dedicated TLBs for 2MB and 4KB PTEs to provide

DRAM 2-bit CTE
n Short - Pre-gathered Block
cTes | [gathered Table (256 Short CTEs,
I

covers 1IMB memory)

Unified CTE Table

pzzzz7777777777777772

e —

Unified Block
(8 CTEs,
covers 32KB memory)

Figure 13: The figure shows Pre-gathered Table and Unified CTE Table in
DRAM. Pre-gathered Table stores tightly-packed short CTEs; it is 2b/8B=32x
smaller than Unified CTE Table. A 64B block of the Pre-gathered Table
enables DyLeCT to fetch up to 256 short CTEs (i.e., a pre-gathered block
covers up to IMB of OS-visible memory). n is the total number of 4KB OS
pages in the system. Each 64B Unified Block also contains a dedicated bit
per constituent CTE to mark the CTE as long or short.

Memory Controller '

\ CTES computes distinct tag and /
‘\ distinct index each forxandy
\os CTE tables are in distinct !

Statically reserved

@® wmiss /
Writeback

@ Calc p’s CTE Block addrs: @ Lookup x
* x (Pre-gathered)
p = (LLC request

% DRAM regions. So, both CTE K in DRAM Pre-gathered
\\blocks can co-exist in a smgler "~ TableStartAddr
e K Pre-gathered
kY / Table
7] @ UnifiedCTETable
. \JableStartAddr
CTES @ CTES| pccess cTe | Unified CTE
V777777227772 Miss
A, Blocks x and y Table

|19A9-1se

e y (Unified)

addr) >> 12

o y = (UnifiedCTETableStartAddr + p*8B) & Mask '

e x = (Pre-gatheredTableStartAddr + p*0.25B) & Mask |
* Mask clears lowest 6 bits to compute memory blk addr

e Short CTE Length = 2-bits or 0.25B :

® Long CTE Length = 8B 1

@ Insert CTE Block
(Always pre-gathered block, sometimes unified block)

Figure 14: Accessing Pre-gathered and Unified CTE tables during a CTE$ miss.

high bandwidth as TLBs are accessed for every instruction, a
unified CTE cache is feasible at the memory controller level,
where the access rate is much lower.

As a single CTE cache stores blocks from two distinct CTE
tables in DyLeCT, its behavior during hit and miss deviates
from prior works, which have only one type of CTE blocks.

1) CTE Cache Hit: We define a CTE cache hit as when
a memory access can be fulfilled by a cached CTE block,
regardless of whether it is a pre-gathered block or an unified
block. For a memory access to page p, DyLeCT first calculates
the address of p’s pre-gathered block (see @ in Figure 14)
and then looks up the CTE cache for the pre-gathered block.
If the pre-gathered block hits in the cache, DyLeCT checks
whether the short CTE is valid. If it is, DyLeCT uses the
hashing function and short CTE to compute the DRAM page
address of the requested data. Else, DyLeCT looks for the
unified block in the cache; if cache hit, DyLeCT uses the
long CTE to access data. Figure 15 summarizes how DyLeCT
looks up the CTE cache to obtain short CTEs and long CTEs
to serve memory requests.

LLC Miss/Writeback
to OS Page p

Lookup CTES for
p’s Pre-gathered
Block

Hit

Common
Case

Schedule reads to Pre-gathered
and Unified Blocks in parallel.
Insert into CTES as per policy.

Miss

Lookup CTES for
p’s Unified Block

Hit

Access Data

Figure 15: How the memory controller accesses data in memory. The common
case (in green) is when short CTE is valid (i.e., OS Page p is in MLO).

2) CTE Cache Miss: We define a CTE cache miss as
when the DRAM address for a memory request cannot be
determined by the CTE cache. As such, for a request to an
MLO page, a cache miss occurs when both the pre-gathered
block and unified block are missing; for a request to an ML1
or ML2 page, however, a cache miss occurs when the unified
block misses in the cache.

1137

At the time of each CTE miss, DyLeCT does not know
which memory level the requested page belongs to. The naive
option is to first assume the page is in MLO and fetch the
pre-gathered block; if the assumption turns out wrong, then
sequentially fetch the unified block. However, this can double
the CTE access time. As such, DyLeCT fetches both blocks
in parallel; this can preserve the same CTE cache miss latency
as prior works (see Figure 16). Although this increases band-
width overhead per CTE cache miss, the aggregate bandwidth
overhead due to CTE cache misses is small (see Figure 23
in Section VI) because DyLeCT significantly reduces overall
CTE cache miss rate.

Time —
CTES Miss
a) Prior i
() |CTE$ Lookup | ezt Ui = s || Access Data from DRAM |
Works from DRAM
CTES Miss
CTES Lookup |l Read Pre-gathered Block
(b) DyLeCT for Short CTE from DRAM |l
CTE: Lookup Read Unified Block I Access Data from DRAM |
for Long CTE from DRAM

Figure 16: Comparing the timeline of a CTE cache miss in DyLeCT to prior
works. DyLeCT fetches both CTE blocks in parallel to avoid increasing the
latency of CTE misses. If the memory request is to an MLO page, as soon as
either one of the two CTE block arrives, the ensuing data access can begin;
otherwise, the ensuing data access begins only after the unified block arrives.

As DyLeCT always fetches both CTE blocks per CTE
miss, it is presented with an option to selectively cache one
of the two blocks or to cache both. DyLeCT always caches
the pre-gathered block, which provides high translation reach;
DyLeCT also caches the unified block only if the memory
request suffering from the CTE miss is to an ML1 or ML2

page.
D. Overheads

Memory: Each short CTE needs a 2 bits per 4KB OS
page; therefore, the overhead of Pre-gathered Table is an
additional 0.006% of DRAM. The ML1—+MLO promotion
policy requires keeping a 5-bit access counter for every 4KB
OS page [50]. The overhead of these counters is 0.015% of
DRAM.

Logic: Compared to the recent prior work TMCC, DyLeCT
is simpler due to only modifying the memory controller, with-
out touching the page walker and caches. However, compared
to TMCC, DyLeCT requires adding logic for: (i) DRAM
page calculation through a static hash function that uses OS
page address and its 2-bit Short CTE, and (ii) ML1—MLO
promotion policy which requires fetching a memory block
of access counters for comparison to identify cold victims.
These components can be implemented via basic shifters
and comparators, similar to a standard cache replacement
policy. DyLeCT also adds simple management logic for Pre-
gathered Table to update short CTE in Pre-Gathered Table
when DyLeCT moves a page between memory levels; this
update requires only one extra memory access.

Systems with multiple memory controllers: Like all prior
works, DyLeCT is a module within the memory controller
(MC). On a system with multiple MCs, each MC has its
own DyLeCT module that only compresses the data within its
locally-attached DRAM. As such, each MC manages its own
hardware data structures (e.g., the CTE tables) and has no need
for coherence across MCs. As each DyLeCT module is local to
one MC, each page can only be interleaved across the many
channels within one MC, instead of all channels across all
MC:s. Prior work [27] reports such a slightly restricted memory
interleaving has minimal impact on performance.

V. METHODOLOGY

We use Gem5 [4] interfaced with Ramulator [18] as the
simulation platform to evaluate DyLeCT’s performance. We
use DRAMPower [5] for modeling memory subsystem power.
We evaluate large and irregular workloads used by recent
works on hardware memory compression and address trans-
lation [23], [27], [30]. Specifically, we evaluate the same
workloads as TMCC - nine benchmarks from GraphBig [24],
two benchmarks (mcf, omnetpp) from SPEC CPU2017 [42],
and one benchmark (canneal) from PARSEC 3.0 [3]. For
GraphBig and canneal, we evaluate multi-threaded execution.
For mcf and omnetpp, we run four single-threaded instances
for the evaluation.

We run applications under huge pages with Linux’s lib-
hugetlbfs library [21] to avoid randomness and reproducibil-
ity problems under transparent huge pages. We use Gem5’s

CPU
Caches

4 cores, 2.8GHz, 4-wide O0oO, TLBs: 1024, RoB size: 224
32KB LIDS$, 32KB LI1I$, 256KB L2$, 1KB per core
walker cache [23], 2MB L3$ per core (8MB total)

L1$ Hit: 3 clk, L2$ Hit: 14 clk, L3$ Hit: 67 clk (Latencies
measured from CPU core; Latencies are accumulative of
higher level lookups)

Cache Latency

Prefetchers Next-line with automatic enable/disable: L1$, L2$
Stride: L1$ (degree 2), L2$ (degree 4)

Memory DDR4-3200, 1 Channel, 8 Ranks, FR-FCFS policy with
bank fairness and row buffer hit cap,
tCL: 13.75ns, tRCD: 13.75ns, tRP: 13.75ns

CTE Cache DyLeCT: 128KB, 1MB reach per 64B Pre-gathered Block,

32KB reach per 64B Unified Block
TMCC: 128KB, 32KB reach per 64B CTE block
Hit Latency: 2 memory clk [6]

Table 3: Simulated microarchitecture parameters.

1138

B Read @ Write
60%
< c
=
T .2 40%
; -
38
c T 20%
=
0%
& ¢ R e R &R
NGNS N o & € & &K
&£ L & E & IS N & @
& F S S @ g0 ° ¥
MR & &L

Figure 17: Bandwidth utilization of the evaluated benchmarks during the
simulated time window, assuming a conventional system without compression.

KVM mode to fast-forward every benchmark into its region
of interest. Next, we fetch all of the benchmark’s memory
values to place, compress, and pack them into the available
DRAM. We then simulate 5 seconds (>20 billion instructions)
under Gem5’s atomic mode to warm up DyLeCT’s memory
levels. Finally, we use Gem5’s cycle-accurate simulation to
warm up prefetchers and branch predictors for 10ms and then
use Gem5’s cycle-accurate simulation for 40ms to evaluate
performance. We use the total number of committed store
instructions per cycle as the metric of performance. Fig-
ure 17 characterizes the memory behavior of the evaluated
benchmarks during the simulated time window; the memory
bandwidth characterization assumes a conventional system
without memory compression.

Modeling the Baseline (TMCC): Since TMCC adaptively
compresses memory according to memory demand, we eval-
uate multiple compression settings; we evaluate the same low
and high compression setting as in the TMCC paper. Table 2
describes the two settings in more detail. The low compression
setting corresponds to an average compression ratio of 1.3x,
while the high compression setting corresponds to an average
compression ratio of 2.8x. Note that the TMCC optimization
of embedding CTEs within PTBs is not applicable in our
evaluation using huge pages.

Modeling DyLeCT: We evaluate 2-bit CTEs, which support
three DRAM pages per DRAM page group. We evaluate
DyLeCT under the same compression settings as the baseline
and use the same compression algorithm and, thus, compres-
sion/decompression latencies as the baseline.

Modeling a bigger system without memory compression:
We also model a bigger memory system with no compression.
This system does not suffer from any compression-related
performance overhead because it can fit everything in memory
without compression. As such, it incurs no compression-
related overheads (i.e., no translation overhead, no decompres-
sion latency, no bandwidth overhead).

VI. RESULTS

Figure 18 shows the performance of DyLeCT normalized
to TMCC at two different compression settings described in
Section V. On average across all benchmarks, the performance
benefit of DyLeCT is 10.25%. At low and high compression,
the benefits are 11% and 9.5%, respectively. Figure 18 also
shows the hypothetical upper-bound performance if CTEs
were hypothetically to always hit in the CTE cache. We

see that DyLeCT’s performance is close to the upper bound
performance at both compression settings.

At low compression, canneal gets the highest benefit of
17%. canneal has a highly irregular access pattern; in our
real-system experiments earlier in Figure 3, we find that
canneal has the highest TLB misses per LLC miss when
the benchmarks use standard 4KB pages. However, canneal
also suffers the largest drop in performance going from low
compression to high compression; its performance benefit
drops to 10% at high compression. This is because under high
compression, canneal’s CTE cache hit rate reduces from 93%
to 74% (see Figure 19); under high compression, fewer pages
can be uncompressed and, therefore, fewer pages are in MLO.
For all other benchmarks, however, performance benefit at
high compression is very close to benefit at low compression.

DyLeCT No CTE Overhead

Compression: [Elow MHigh Blow &High

(1.3x avg) (2.8x avg) (1.3x avg) (2.8x avg)

15%

10%

5%

Performance Improvement

Figure 18: Performance improvement over TMCC.

CTE Cache Hit Rate: The performance improvement
comes from improving CTE cache hit rate. Figure 19 shows
CTE cache hit rates. At low compression, DyLeCT increases
the overall average hit rate from 70% to 96%. At high
compression, DyLeCT improves the average CTE cache hit
rate from 67% to 91%. At high compression, DyLeCT’s hit
rate reduces compared to low compression; this is due to
relatively fewer pages in MLO as more pages are compressed
into ML2 under high compression (see Figure 20).

Figure 19 also shows the split between pre-gathered block
hit and unified block hit for DyLeCT. We note that pre-
gathered blocks contribute the vast majority of CTE cache
hits in DyLeCT owing to their high 1MB reach. At high
compression, the hit rate of pre-gathered blocks is 77% on
average. The remaining 14% hits are due to unified blocks.

Latency: DyLeCT’s high CTE cache hit rate helps reduce
the average L3 miss latency compared to TMCC. Figure 21
shows how much TMCC and DyLeCT increases L3 miss
latency compared to a system with no compression. At low
and high compression, the average increase under DyLeCT is
2.9ns and 5.8ns. This is substantially lower than TMCC, which
increases L3 latency by 9.5ns and 12.8ns at low and high
compression, respectively.

Traffic: Figure 22 shows total memory traffic per instruction
for DyLeCT normalized to TMCC; it is 93%, on average.

1139

DyLeCT

(a) CTES Hit Rate @ Low Compression (1.3xavg): OTMCC @Unified Bk M Pre-gathered Blk
100%
80%
60%
40%
20%
0%
& 5 SIS SR Q & & L & & N
AN A T G
& & £ & 2 & & SIS
s L & & & S & & © S
RSO e I &S S
& & £ MO
DyLeCT
(b) CTES Hit Rate @ High Compression (2.8xavg): OTMCC @Unified Bk M Pre-gathered Blk
100%
80%
60%
40%
20%
0%
&] S} S L Q & & R 2 SR
& & & P & & & & @6 &
& Ny RS & & e & N fo'\\ & s
& Q & & *& ko) & & & N %O
R SO T MO &S [
S F & & &
Figure 19: CTE cache hit rate for DyLeCT at (a) low and (b) high

compression. Pre-gathered blocks in DyLeCT serve the majority of CTE cache
hits. At high compression, CTE cache hit rate is 91% (i.e., the CTE cache
serves translations for 91% of memory requests). Pre-gathered blocks serve
77% of memory requests; unified blocks serve the remaining 14%.

High Comp.: [lMLO [liML1[@ML2 Low Comp.: [JMLO [JML1[]ML2

80 N N
. 60 H D H H =
™) | H | | 1
] Qe
=
= 40 i <
é 4
a [=]
20
0 o T T T T T T j ﬁv 0
NEEE E X KO O SR >
o (° & L@& & F LS &P
e N &S & & &S
R R O R 2 Q¢ ¥ & &
SISO MR @ &% °
& FE & &

Figure 20: DRAM breakdown of MLO, ML1 and ML2 at high and low
compression. Under low compression, the size of MLO scales up gracefully.

Low (1.3x avg) High (2.8x avg)

Compression: O TMCC MDyLeCT OTMCC @DylLeCT

N
@

£5,
za
Q
c 2
g 5815
2
® E
-]
w S 10
s O
sz
oS
-2
¥
0
F & R & L E E & ¢ ¢ RS
Q@o c"\o (,°® d"(\ 8& © ® <9& c,°°° & & é& ‘2?0 @“Y
& & & & & & & & ¢
T 0{\0 be’% «° & (\,g\ [
< N S
Figure 21: How much DyLeCT and TMCC increases L3 miss latency over a

system with No Compression. The latency overhead is shown in nanoseconds.

The total traffic includes all memory accesses — workload’s
memory accesses, page migration traffic, and memory accesses
to CTE blocks due to CTE cache misses.

Even though DyLeCT accesses two CTE blocks per CTE
cache miss (i.e., access both the pre-gathered block and unified
block), DyLeCT reduces CTE access traffic compared to

[y

T 2075
a2
2g 05
e
2 £ 025
£8
£z °
= F R ERXEEELLER D&
Q*/b(\ Q,o\ (10@ (,Q’Q 8’5\‘ © S (_,0((\ Q}O\) N Q’}'Q (\(\z qy‘e va
SN NN) X SIS
o R & & & 9% & S R0
L F B S &S ¥ G
& ¥ S &S

Figure 22: Memory traffic per instruction normalized to TMCC.

TMCC (see Figure 23). This is because DyLeCT significantly
reduces CTE miss rate compared to TMCC.

Figure 23 also shows the total memory traffic normalized
to TMCC. DyLeCT’s total memory traffic is 4.5% higher
than TMCC. This increase in total memory traffic is due to
increased performance (i.e., more number of committed in-
structions), which leads to more memory accesses per second.

O Total Traffic M Page Migration M CTE Misses
:,;—_’ 1.2
o 1
=
g 0.8
0.6
= 0.4
E 0.2
5 0
z 0
N & 5 < >
Q:b(&bo\o O(QQ (,Q'& Qf&& ‘(‘3\ 8\% &Q 0\}(\ ((‘(’ é,QQ (\Q:b V“Q;(/ ((/@
€ &L LS & o & F E S
T E S & @ 0 ° v
s S NCIN
Figure 23: Memory traffic normalized to TMCC. Total memory traffic

accounts for all memory accesses (i.e., it includes each workload’s memory
requests, page migration traffic, and CTE cache misses).

DRAM Energy per instruction: By packing data more
densely in memory, hardware memory compression can help
reduce the carbon footprint of server memory by reducing
how many physical DRAM chips the system requires, which
reduces idle (e.g., refresh, standby) memory power; because
server memory are typically large, idle memory power tend to
dominate overall server memory power.

Figure 24 shows DRAM energy per instruction of
DyLeCT normalized to a bigger conventional mmemory
system without hardware memory compression. We evaluate
the bigger conventional system by using 2x as many DRAM
chips as DyLeCT (i.e., evaluate 16 ranks versus 8 ranks). On
average across all benchmarks, DRAM energy per instruction
is only 60% of a system without memory compression.

Beyond saving on memory energy per instruction, reducing
the number of physical DRAM chips can also reduces the
embedded carbon footprint of memory (e.g., by 2x when
reducing the number of DRAM chips by half).

Sensitivity Analysis - DRAM page group size: We vary
the DRAM page group size (i.e., # of pages addressable

< 100%

2o

T2 _ 8%

o

8% 5 eo%

>£E@

805 o 40%

o € g5

S g 20%

wQ s

S 39 0%

=) < & o O >

e = é& ° o@Q & Q,z;i_’\‘ N o@Q & E é&Q (\‘z”b v(,j@ %??

= S &L &S & &£ SIS
QL & K@ Q¥ @ & F X O
T F S & & &0 ° v

& ¥ ‘_oo,@'z’

Figure 24: DRAM energy per instruction normalized to No Compression.

by a short CTE) to observe the change in the fraction of
uncompressed pages in MLO (see Figure 25). As DRAM page
group size increases, the fraction of uncompressed pages in
MLO also increases. Figure 25 also shows that the fraction of
uncompressed pages in MLO does not differ much between
DRAM page group size of 3 (i.e., 2-bit short CTEs) and 7
(i.e., 3-bit short CTEs). Without an increase in fraction of
uncompressed pages in MLO, using 3-bit short CTEs would
reduce CTE cache’s translation reach and slightly degrade
performance. Therefore, using 2-bit short CTEs is the sweet
spot for DyLeCT. With DRAM page group size of 3, 66% of
uncompressed pages are in MLO.

DRAM Page Group Size: 01 02 @3 m7
(i.e., # of DRAM pages addressable by a Short CTE)

el

2 100%

g 3 0,

5s 75%

E = s0%

QW

S % 25%

g% 0%

S

w < & O O & >

Q@’&@\o s (}’f& & S & & &L v(;v

& & & Q"f(’ & & & S&
F R & S & & d ¥

Figure 25: Fraction of Uncompressed Pages in MLO when varying DRAM
page group size (i.e., # of pages addressable by a Short CTE). Fraction of
Uncompressed Pages in MLO = # MLO Pages/Total # Uncompressed Pages).
The results in the figure correspond to high memory compression.

VII. DISCUSSION AND OTHER RELATED WORK

DyLeCT is fully compatible with virtualization similar to
all prior works on hardware memory compression. Virtu-
alization adds a guest pseudo-physical address before the
host physical address whereas hardware memory compression
adds a translation (i.e., CTE) after the host physical address.
Moreover, as CTEs form a layer beyond the host physical
address, all hardware memory compression works including
DyLeCT function correctly for all OS page sizes (e.g., IGB).
Therefore, DyLeCT is agnostic of the page size(s) the OS uses.

Near-memory Address Translation [36] and Mosaic Pages
[10] propose using shorter translations to speed up address
translation in the context of conventional OS-managed virtual-
to-physical address translation. Unlike DyLeCT, which dy-
namically switches the MC-managed translations (i.e., CTEs)

1140

of individual pages between long and short translations,
these works propose entirely replacing the conventional long
translations with short translations. Unlike the new address
translation layer (i.e., CTE layer) required by hardware mem-
ory compression, the conventional virtual-to-physical address
translation layer is managed by the OS; this makes dynami-
cally updating address translation several orders of magnitude
more costly than switching the length of translations under
DyLeCT. To use short translations on every page while keep-
ing the memory loss small, these prior works also use many
times longer short translations than DyLeCT (e.g., 7 bits per
translation, instead of 2 bits). Lastly, using short translations
on every page also simply won’t work for hardware memory
compression.

VIII. CONCLUSION

This paper proposes Dynamic Length Compressed-Memory
Translations (DyLeCT) to achieve huge-page-like translation
performance in the new layer of address translation required
by hardware memory compression. DyLeCT dynamically
switches between short translation and long translation for
each page individually. DyLeCT uses cache-friendly short
translations on the hottest pages to improve overall translation
performance and uses long translations on the colder pages
to preserve high effective memory capacity. For large and
irregular applications that use huge pages, DyLeCT signif-
icantly increases CTE cache hit rate and, thus, provides
10.25% performance improvement over the prior art, while
maintaining the same compression ratio. DyLeCT is also a
simple design that modifies only the memory controller.

ACKNOWLEDGMENT

We thank the National Science Foundation (NSF) for gener-
ously supporting this work through grants 1942590, 1919113,
and 2312785. We also thank Advanced Research Computing
(ARC) at Virginia Tech for providing computational resources.

REFERENCES

[1] S. Ainsworth and T. M. Jones, “Compendia: Reducing virtual-memory
costs via selective densification,” in Proceedings of the 2021 ACM
SIGPLAN International Symposium on Memory Management, ser.
ISMM 2021. New York, NY, USA: Association for Computing
Machinery, 2021, p. 52-65. [Online]. Available: https://doi.org/10.1145/
3459898.3463902

J.-L. Baer, “Sectored (or subblock) caches.” [Online]. Avail-
able: https://courses.cs.washington.edu/courses/csep548/00sp/lectures/
class5/s1d058.htm

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 72-81. [Online].
Available: https://doi.org/10.1145/1454115.1454128

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, and K. Goossens, ‘“Drampower: Open-
source dram power & energy estimation tool.”” [Online]. Available:
http://www.drampower.info

[2]

[3]

4

[5]

1141

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

E. Choukse, M. Erez, and A. R. Alameldeen, “Compresso: Pragmatic
main memory compression,” in Proceedings of the Slst Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
51. IEEE Press, 2018, p. 546-558. [Online]. Available: https:
//doi.org/10.1109/MICRO.2018.00051

M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in Proceedings of the 32nd Annual International Symposium
on Computer Architecture, ser. ISCA *05. USA: IEEE Computer
Society, 2005, p. 74-85. [Online]. Available: https://doi.org/10.1109/
ISCA.2005.6

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” in Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XVII. New York, NY, USA:
Association for Computing Machinery, 2012, p. 37-48. [Online].
Available: https://doi.org/10.1145/2150976.2150982

M. Gorman and P. Healy, “Performance characteristics of explicit
superpage support,” in Proceedings of the 2010 International Conference
on Computer Architecture, ser. ISCA’10. Berlin, Heidelberg: Springer-
Verlag, 2010, p. 293-310. [Online]. Available: https://doi.org/10.1007/
978-3-642-24322-6_24

K. Gosakan, J. Han, W. Kuszmaul, I. N. Mubarek, N. Mukherjee,
K. Sriram, G. Tagliavini, E. West, M. A. Bender, A. Bhattacharjee,
A. Conway, M. Farach-Colton, J. Gandhi, R. Johnson, S. Kannan,
and D. E. Porter, “Mosaic pages: Big tlb reach with small pages,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 433-448. [Online].
Available: https://doi.org/10.1145/3582016.3582021

H. Hadian, M. Farrokh, M. Sharifi, and A. Jafari, “An elastic and traffic-
aware scheduler for distributed data stream processing in heterogeneous
clusters,” The Journal of Supercomputing, vol. 79, no. 1, pp. 461—
498, Jan 2023. [Online]. Available: https://doi.org/10.1007/s11227-022-
04669-z

H. Hadian and M. Sharifi, “Gt-scheduler: a hybrid graph-partitioning
and tabu-search based task scheduler for distributed data stream
processing systems,” Cluster Computing, Feb 2024. [Online]. Available:
https://doi.org/10.1007/s10586-023-04260-y

S. Hong, P. J. Nair, B. Abali, A. Buyuktosunoglu, K.-H. Kim, and
M. Healy, “Attaché: Towards ideal memory compression by mitigating
metadata bandwidth overheads,” in 2018 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2018, pp. 326-338.
A. Hunter, C. Kennelly, P. Turner, D. Gove, T. Moseley, and
P. Ranganathan, “Beyond malloc efficiency to fleet efficiency: a
hugepage-aware memory allocator,” in [5th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21).
USENIX Association, Jul. 2021, pp. 257-273. [Online]. Available:
https://www.usenix.org/conference/osdi2 1/presentation/hunter

Intel, “Intel xeon w-3175x processor,” Last
accessed on Jul 31, 2023. [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/189452/intel-
xeon-w3175x-processor-38-5m-cache-3- 10-ghz/specifications.html

J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-plane compression:
Transforming data for better compression in many-core architectures,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), June 2016, pp. 329-340.

S. Kim, S. Lee, T. Kim, and J. Huh, “Transparent dual memory
compression architecture,” in 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2017, pp.
206-218.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45-49, Jan.
2016. [Online]. Available: https://doi.org/10.1109/LCA.2015.2414456
Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Ingens:
Huge page support for the os and hypervisor,” SIGOPS Oper. Syst.
Rev., vol. 51, no. 1, p. 83-93, sep 2017. [Online]. Available:
https://doi.org/10.1145/3139645.3139659
T. Lee, S. K. Monga, C. Min, and Y. I. Eom, “Memtis: Efficient
memory tiering with dynamic page classification and page size
determination,” in Proceedings of the 29th Symposium on Operating
Systems Principles, ser. SOSP °23. New York, NY, USA: Association

[24]

[29]

[30]

[31]

[32]

[35]

[36]

for Computing Machinery, 2023, p. 17-34. Available:
https://doi.org/10.1145/3600006.3613167

libhugetlbfs, “libhugetlbfs.” [Online]. Available: https://github.com/
libhugetlbfs/libhugetlbfs

Linux Kernel Docs, “Transparent hugepage support,” Last accessed
on Jul 31, 2023. [Online]. Available: https://docs.kernel.org/admin-
guide/mm/transhuge.html

A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52.
New York, NY, USA: Association for Computing Machinery, 2019,
p. 1023-1036. [Online]. Available: https://doi.org/10.1145/3352460.
3358294

L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
Understanding graph computing in the context of industrial solutions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2807591.2807626

A. Panwar, S. Bansal, and K. Gopinath, “Hawkeye: Efficient fine-
grained os support for huge pages,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS "19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 347-360.
[Online]. Available: https://doi.org/10.1145/3297858.3304064

A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually
useful,” SIGPLAN Not., vol. 53, no. 2, p. 679-692, mar 2018. [Online].
Available: https://doi.org/10.1145/3296957.3173203

G. Panwar, M. Laghari, D. Bears, Y. Liu, C. Jearls, E. Choukse, K. W.
Cameron, A. R. Butt, and X. Jian, “Translation-optimized memory com-
pression for capacity,” in 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2022, pp. 992-1011.

G. Panwar, D. Zhang, Y. Pang, M. Dahshan, N. DeBardeleben,
B. Ravindran, and X. Jian, “Quantifying memory underutilization in
hpc systems and using it to improve performance via architecture
support,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO °52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 821-835.
[Online]. Available: https://doi.org/10.1145/3352460.3358267

C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and J. Huh,
“Perforated page: Supporting fragmented memory allocation for large
pages,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 913-925.

C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, Every
Walk’s a Hit: Making Page Walks Single-Access Cache Hits. New
York, NY, USA: Association for Computing Machinery, 2022, p.
128-141. [Online]. Available: https://doi.org/10.1145/3503222.3507718
S. Park, I. Kang, Y. Moon, J. H. Ahn, and G. E. Suh, “Bed
deduplication: effective memory compression using partial cache-
line deduplication,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS °21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 52-64. [Online].
Available: https://doi.org/10.1145/3445814.3446722

A. Patil, V. Nagarajan, R. Balasubramonian, and N. Oswald, “Dvé:
improving dram reliability and performance on-demand via coherent
replication,” in Proceedings of the 48th Annual International Symposium
on Computer Architecture, ser. ISCA ’21. IEEE Press, 2021, p
526-539. [Online]. Available: https://doi.org/10.1109/ISCA52012.2021.
00048

G. Pekhimnko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly compressed pages: A low-
complexity, low-latency main memory compression framework,” in 2013
46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2013, pp. 172-184.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in Proceedings
of USENIX Security’16, 2016.

B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt: Coa-
lesced large-reach tlbs,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 258-269.

J. Picorel, D. Jevdjic, and B. Falsafi, “Near-memory address translation,”
in 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). Los Alamitos, CA, USA: IEEE

[Online].

1142

[37]

[38]

[39]

[40]

[41]

[42

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Computer Society, sep 2017, pp. 303-317. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/PACT.2017.56

C. Qian, L. Huang, Q. Yu, Z. Wang, and B. Childers, “Cmh:
Compression management for improving capacity in the hybrid
memory cube,” in Proceedings of the 15th ACM International
Conference on Computing Frontiers, ser. CF *18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 121-128.
[Online]. Available: https://doi.org/10.1145/3203217.3203235

V. S. S. Ram, A. Panwar, and A. Basu, “Trident: Harnessing
architectural resources for all page sizes in x86 processors,” in
MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO °21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1106-1120. [Online]. Available:
https://doi.org/10.1145/3466752.3480062

RedHat, “How to use, monitor, and disable transparent hugepages in
red hat enterprise linux 6 and 77" Last accessed on Jul 31, 2023.
[Online]. Available: https://access.redhat.com/solutions/46111

J. Rothman and A. Smith, “Sector cache design and performance,”
in Proceedings 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (Cat.
No.PR00728), 2000, pp. 124-133.

D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, Elastic Cuckoo
Page Tables: Rethinking Virtual Memory Translation for Parallelism.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1093-1108. [Online]. Available: https://doi.org/10.1145/3373376.
3378493

Standard Performance Evaluation Corporation,
https://www.spec.org/cpu2017/.

R. Tremaine, T. Smith, M. Wazlowski, D. Har, K.-K. Mak, and S. Arram-
reddy, “Pinnacle: Ibm mxt in a memory controller chip,” IEEE Micro,
vol. 21, no. 2, pp. 56-68, 2001.

VMWare, “Performance best practices for vmware cloud on aws,”
2021. [Online]. Available: https://docs.vmware.com/en/VMware-Cloud-
on- AWS/services/vmc-aws-performance.pdf

J. Wang and M. Balazinska, “Elastic memory management for cloud data
analytics,” in Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference, ser. USENIX ATC "17. USA: USENIX
Association, 2017, p. 745-758.

J. Weiner, N. Agarwal, D. Schatzberg, L. Yang, H. Wang, B. Sanouillet,
B. Sharma, T. Heo, M. Jain, C. Tang, and D. Skarlatos, “Tmo:
Transparent memory offloading in datacenters,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
609-621. [Online]. Available: https://doi.org/10.1145/3503222.3507731
Wikichip, “Skylake (server) - microarchitectures - intel,” Last accessed
on Jul 31, 2023. [Online]. Available: https://en.wikichip.org/wiki/intel/
microarchitectures/skylake_(server)

V. Young, S. Kariyappa, and M. K. Qureshi, “CRAM: efficient
hardware-based memory compression for bandwidth enhancement,”
CoRR, vol. abs/1807.07685, 2018. [Online]. Available: http://arxiv.org/
abs/1807.07685

V. Young, S. Kariyappa, and M. K. Qureshi, “Enabling transparent
memory-compression for commodity memory systems,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 570-581.

X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient dram caching via software/hardware cooperation,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 *17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1-14. [Online].
Available: https://doi.org/10.1145/3123939.3124555

D. Zhang, G. Panwar, J. B. Kotra, N. DeBardeleben, S. Blanchard,
and X. Jian, “Quantifying server memory frequency margin and
using it to improve performance in hpc systems,” in Proceedings of
the 48th Annual International Symposium on Computer Architecture,
ser. ISCA °21. IEEE Press, 2021, p. 748-761. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00064

J. Zhao, S. Li, J. Chang, J. L. Byrne, L. L. Ramirez, K. Lim, Y. Xie, and
P. Faraboschi, “Buri: Scaling big-memory computing with hardware-
based memory expansion,” ACM Trans. Archit. Code Optim., vol. 12,
no. 3, oct 2015. [Online]. Available: https://doi.org/10.1145/2808233
K. Zhao, K. Xue, Z. Wang, D. Schatzberg, L. Yang, A. Manousis,
J. Weiner, R. Van Riel, B. Sharma, C. Tang, and D. Skarlatos,

“Spec cpu2017,”

[54]

“Contiguitas: The pursuit of physical memory contiguity in datacenters,”
in Proceedings of the 50th Annual International Symposium on
Computer Architecture, ser. ISCA °23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589079

W. Zhu, A. L. Cox, and S. Rixner, “A comprehensive analysis
of superpage management mechanisms and policies,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, Jul. 2020, pp. 829-842. [Online]. Available: https:
/Iwww.usenix.org/conference/atc20/presentation/zhu- weixi

1143

