

PAIL: Performance based Adversarial Imitation Learning Engine for Carbon Neutral Optimization

Yuyang Ye

Department of Management Science and Information Systems, Rutgers Business School, Rutgers University Newark, NJ, USA
yuyang.ye@rutgers.edu

Runlong Yu

Department of Computer Science, University of Pittsburgh Pittsburgh, PA, USA
ruy59@pitt.edu

Lu-An Tang*

Department of Data Science and System Security, NEC Laboratories Princeton, NJ, USA
ltang@nec-labs.com

Haoyu Wang

Department of Data Science and System Security, NEC Laboratories Princeton, NJ, USA
haoyu@nec-labs.com

Wenchao Yu

Department of Data Science and System Security, NEC Laboratories Princeton, NJ, USA
wyu@nec-labs.com

Erhu He

Department of Data Science and System Security, NEC Laboratories Princeton, NJ, USA
ehe@nec-labs.com

Haifeng Chen*

Department of Data Science and System Security, NEC Laboratories Princeton, NJ, USA
haifeng@nec-labs.com

Hui Xiong

Thrust of Artificial Intelligence, The Hong Kong University of Science and Technology (Guangzhou) Guangzhou, China
Department of Computer Science and Engineering, The Hong Kong University of Science and Technology Hong Kong SAR, China
xionghui@ust.hk

ABSTRACT

Achieving carbon neutrality within industrial operations has become increasingly imperative for sustainable development. It is both a significant challenge and a key opportunity for operational optimization in industry 4.0. In recent years, Deep Reinforcement Learning (DRL) based methods offer promising enhancements for sequential optimization processes and can be used for reducing carbon emissions. However, existing DRL methods need a pre-defined reward function to assess the impact of each action on the final sustainable development goals (SDG). In many real applications, such a reward function cannot be given in advance. To address the problem, this study proposes a Performance based Adversarial Imitation Learning (PAIL) engine. It is a novel method to acquire optimal operational policies for carbon neutrality without any pre-defined action rewards. Specifically, PAIL employs a Transformer-based policy generator to encode historical information and predict following actions within a multi-dimensional space. The entire action

sequence will be iteratively updated by an environmental simulator. Then PAIL uses a discriminator to minimize the discrepancy between generated sequences and real-world samples of high SDG. In parallel, a Q-learning framework based performance estimator is designed to estimate the impact of each action on SDG. Based on these estimations, PAIL refines generated policies with the rewards from both discriminator and performance estimator. PAIL is evaluated on multiple real-world application cases and datasets. The experiment results demonstrate the effectiveness of PAIL comparing to other state-of-the-art baselines. In addition, PAIL offers meaningful interpretability for the optimization in carbon neutrality.

CCS CONCEPTS

• Computing methodologies → Inverse reinforcement learning; • Information systems → Data mining.

KEYWORDS

Imitation Learning, Generative Adversarial Networks, Inverse Reinforcement Learning, Carbon Neutral, Social Good

ACM Reference Format:

Yuyang Ye, Lu-An Tang, Haoyu Wang, Runlong Yu, Wenchao Yu, Erhu He, Haifeng Chen, and Hui Xiong. 2024. PAIL: Performance based Adversarial Imitation Learning Engine for Carbon Neutral Optimization. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24)*, August 25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 10 pages. <https://doi.org/10.1145/3637528.3671611>

*This work was accomplished when the first author working as intern in NEC Labs America supervised by the second author.

* Corresponding authors.

This work is licensed under a Creative Commons Attribution International 4.0 License.

1 INTRODUCTION

In industry 4.0 era, the imperative of achieving carbon neutrality is closely intertwined with the pursuit of economic efficiency [7]. The evolving carbon credit systems, designed to regulate and monetize carbon emissions, have constituted a significant component of overall economic measurement [13]. The operational optimization tasks of industry 4.0 are required to achieve the dual objectives of economic efficiency and environmental sustainability [22]. This shift towards sustainable practices emphasizes not only the importance of advanced automation but also the technical innovation for carbon friendly operations. For example, many industry plants have deployed numerous sensors to collect environmental data like temperature and pressure. Based on the streaming data, the existing operating systems can automatically conduct actions to maximize the production efficiency. Such systems are required to balance the goals of product maximization and carbon emission minimization for sustainable development goals [23]. Therefore, designing and developing a new operational system capable of making effective decisions to balance both economic and environmental objectives and achieve the sustainable development goals (SDG), have emerged as a major concern across many industrial applications.

Unfortunately, to the best of our knowledge, there is no solution for SDG optimization in industry systems yet, partially due to the following challenges.

- **Historical Dependency:** The challenge of optimizing Sustainable Development Goals (SDG) in industrial systems is markedly accentuated by the historical dependency of action rewards. In these settings, the impact of actions are deeply intertwined with past operations, complicating the reward estimation process. Traditional Deep Reinforcement Learning (DRL) [16, 25] methods, which rely on predefined Key Performance Indicators (KPIs) for rewards, struggle in the context of carbon emissions related SDGs. The SDG objectives, unlike straightforward economic metrics, cannot be easily quantified on a step-by-step basis but are rather assessed cumulatively after the whole operational sequences. This historical interdependency complicates the identification of individual action rewards, challenging accurate reward estimation and optimization efforts.
- **Complex Action Space:** The optimization of SDGs involves navigating a complex, multi-dimensional continuous action space, characterized by the combination of various action types and operational values. This complexity is heightened by the dynamic nature of the impacts each action may have, further influenced by preceding actions within this continuous space. Accurately estimating the rewards for actions in such a nuanced and variable environment poses a significant challenge, necessitating sophisticated optimization algorithms that can adeptly manage the intricacies of action spaces in the industrial systems.
- **Sequence Diversity:** In SDG optimization within multi-dimensional continuous action spaces, rapid development of imitation learning (IL) [17] allows for learning from high-performance policies without predefined reward functions. However, this approach struggles with sequence diversity and the vague definition of high performance in industrial settings. The scarcity of high-performance examples and the

inherent variability in operational sequences challenge the generalization of models learned through IL. Though these IL based methods could avoid the complexity of designing reward functions, they may fail to adapt or generalize across varied industrial environments due to the diversity of actions and ambiguity in identifying optimal strategies.

To address the aforementioned challenges for carbon neutrality in industrial systems, this study proposes a Performance based Adversarial Imitation Learning (PAIL) framework. PAIL uses a sliding window Transformer framework to address the challenge of historical dependency. This framework is precisely designed to learn policies for predicting current action based on previous operations and the current state of the system. More specifically, to tackle the intricate action space, our approach derive action arrays, where each element denotes an action type, by probabilistic sampling from the multiple dimensional Gaussian Mixed Distributions produced by the encoder. Consequently, the future state would simultaneously be simulated with a pre-defined autoencoder. The entire action sequence can be iteratively updated in this way. Following designing an correspondingly adapted discriminator, we introduce an innovation to combat the sequence variability and generalization issues, which is archived by a Q-learning based performance estimator model. This performance estimator is tasked with instantaneously estimating the value of each action in terms of its contribution to the overall SDG, thereby enhancing the carbon neutral ability of distinct actions. Accordingly, the reward signal from both the discriminator and performance estimator collectively refine the generated policy. We quantitatively validate the effectiveness of PAIL using two real-world dataset, demonstrating that PAIL improves the overall performance of the industrial system and highlights the significance of key actions.

The technique contributions of this study are listed as follows:

- We address carbon neutral optimization by developing a system for adjusting industrial processes, innovatively moving beyond traditional methods that depend on predefined reward functions. This approach offers a novel, data-driven solution to the challenge.
- We introduce the Performance-based Adversarial Imitation Learning Engine (PAIL), featuring a Transformer-based policy generator for crafting actions from historical data while refining the policy with incorporating an adapted discriminator and a novel Q-learning based performance estimator.
- We conducted extensive experiments on two real-world datasets for performance evaluation. The experimental results clearly validate the effectiveness of our approach compared to the state-of-the-art baselines. Furthermore, a detailed case study on industrial process analysis further clarifies the practical application and potential of our method.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries of our problem. Section 3 describes our proposed PAIL solution. Section 4 empirically evaluates our model on real-world data. We summarize the related work in Section 5, followed by the conclusions in Section 6.

2 PRELIMINARY

2.1 Problem Definition

In industrial systems, measurements that are instantly readable can serve as states, alongside actionable adjustments. These states and actions enable us to optimize towards Sustainable Development Goals (SDGs), focusing on achieving carbon neutrality. Our objective is to enhance SDG through strategic actions on the system. Here, we first list the notations related to our problem as Table 1.

The primary objective of proposed solution is to optimize the actions performed in an industrial system and achieve the highest SDG. During the model learning phase, we should estimate the improvement of SDG by taking the learned action as a reward signal. On the other hand, we use the improvement of SDG as a performance indicator during the evaluation phase. To facilitate this process, we also need to learn a function capable of predicting the SGD value over time. Consequently, we divide the task of carbon neutral optimization into two sub-problems as follows.

DEFINITION 1 (PROBLEM DEFINITION). *Given a set of industrial operation trajectories denoted by $T = \{\tau_1, \tau_2, \dots, \tau_n\}$, where each trajectory τ_i is a sequence of actions and states in the industry system, associated with a corresponding Sustainable Development Goal (SDG) y_i . The objective is twofold: (1) To predict the final SDG for a given complete trajectory, represented as $\hat{y} = f(\tau)$. (2) Let t_k be the timestamp of starting inference, for each $t > t_k$, to learn an optimal policy $\pi_\theta(a_t | s_t, h_t)$ that infers action a_t based on the current state s_t and historical context h_t , aiming to reach the highest SDG.*

Without loss of generality, we assumes all trajectories have a uniform length T . In the pre-processing step, the system can align the trajectories of different lengths by adding dummy time windows in the end. In real applications, we usually leave the first 20-30% time as "only monitoring". After the timestamp of "starting inference", the system uses all the historical data and current state to generate the action to be carried out in current timestamp. By iteratively obtaining the successor state from probability distribution, the system can produce an action sequence for all the remaining time.

Table 1: Notations

Notation	Descriptions
$\mathcal{S} = \{s_t\}$	The set of environment or system state.
$\mathcal{A} = \{a_t\}$	The actions performed on system, $\mathcal{A} \in \{R^+\}^K$ where k^{th} element denotes the k^{th} type of operation and its value indicates the value of corresponding operation.
$\mathcal{H} = \{h_t\}$	The historic state and action pair at step t , where $h_t = (s_{t-l}, a_{t-l}, \dots, s_{t-1}, a_{t-1})$, l is lookback.
$T = \{\tau\}_n$	The set of trajectories consisting of the sequences of states and actions where $\tau = (s_1, a_1, \dots)$.
$Y = y_n$	The final SGD values for each trajectory.
$\pi_E(a_t s_t, h_t)$	The expert policy with high SGD.
$\pi_\theta(a_t s_t, h_t)$	The learnt policy parameterized by θ .
$\rho_\pi : \mathcal{S} \times \mathcal{A}$	The distribution of state-action pairs that the policy π interacts with the system.

2.2 Imitation Learning

Generative Adversarial Imitation Learning (GAIL) is a method that integrates both behavior cloning and inverse reinforcement learning using a Generative Adversarial Networks (GAN) [12] based structure, which aims to minimize the Jensen-Shannon divergence between the expert policy π_E and the generated policy π_θ .

$$D_{JS}(\pi_E || \pi_\theta) = \frac{1}{2} D_{KL}(\pi_E || \frac{\pi_E + \pi_\theta}{2}) + \frac{1}{2} D_{KL}(\pi_\theta || \frac{\pi_E + \pi_\theta}{2}) \quad (1)$$

This model consists of two key components: a discriminator D and a policy generator π_θ . The generator aims to generate actions that mimic the expert behavior, while the discriminator aims to distinguish between the agent actions and the expert actions. Formally, the discriminator seeks to solve the optimization problem as follows,

$$\max_{D \in (0,1)^{\mathcal{S} \times \mathcal{A}}} \mathbb{E}_{\pi_E} [\log D(s, a)] + \mathbb{E}_{\pi_\theta} [\log(1 - D(s, a))], \quad (2)$$

where π_E is the expert's policy, π is the policy of the agent, and (s, a) are state-action pairs. In contrast, the generator aims to fool the discriminator by producing actions that are indistinguishable from those of the expert, achieved by solving the following problem,

$$\min_{\pi_\theta} \mathbb{E}_\pi [\log(1 - D(s, a))] + \lambda H(\pi), \quad (3)$$

where $H(\pi)$ is the entropy of the policy, and $\lambda \geq 0$ is a coefficient that encourages exploration by the agent. By alternating between training the discriminator and the generator, GAIL learns a policy π that is able to mimic the expert's behavior. Following the idea of imitation learning (IL), this work delves into the industrial context of carbon neutrality, proposing a novel algorithm designed to tackle the specific challenges previously outlined.

3 METHODOLOGY

In this section, we provide the technical details of proposed PAIL solution. As shown in Figure 1, PAIL has three major modules, namely Policy Generator, Environment Simulator, and Policy Optimization.

3.1 Policy Generator

In many industrial contexts, the decision-making process is significantly influenced by historical states and actions. Take oil extraction as an example, the prior action, such as shutting off a gas valve, can significantly shape the probabilities of subsequent actions on the same equipment (e.g., shutting it off again or initiating a lift). In light of such critically important temporal dependencies, we design an adapted Transformer architecture to generate the action sequences with discerning temporal correlations in the trajectory, as shown in Figure 2. The multi-head self-attention architecture enables simultaneous processing of multiple trajectories. It is particularly beneficial for the capture of subtle and long-range inter-dependencies in the trajectory. This attribute is essential for precise modeling along temporal dimension that context and historical trends are paramount. Furthermore, given the task of forecasting new action sequences with historic trajectories, the self-attention mechanism exhibits superiority to dynamical adjusting focused segments of the input.

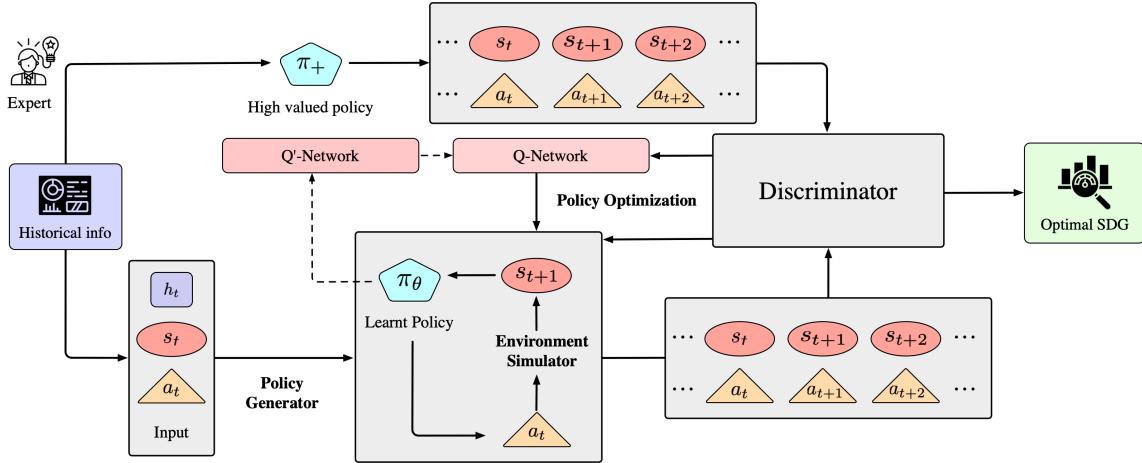


Figure 1: The PAIL framework for carbon neutral optimization.

For each trajectory τ_i , let us partition it by a fixed window length T . And we get a window sequence $X_i = \{x_1, x_2, \dots, x_T\}$. Here each $x_t \in X_i$ includes two factors: the concatenated state s_t and action vector a_t in the window. Note that, the length of the input sequence X_t , representing historical information, varies for each time step t . To address this challenge, a sliding window methodology is employed to select the preceding l elements for action prediction, here l is a hyper-parameter. Thus, the historical information at time step t can be written as $h_t = \{x_{t-l}, \dots, x_{t-1}\}$.

The next step is to project the input $H_i = \{h_1, \dots, h_T\}$ into spaces of query Q , key K , and value V via projection matrices W_q , W_k , and $W_v \in \mathbb{R}^{d \times d}$. The correlation across time steps within the sequence is computed as follows.

$$Z_i = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V = \text{softmax} \left(\frac{(H_i W_q)(H_i W_k)^T}{\sqrt{d_k}} \right) (H_i W_v). \quad (4)$$

In the foundational Transformer model, positional information is incorporated using sinusoidal position encoding. In the Transformer framework, these representations traverse L layers, and are subjected to both multi-head self-attention and position-wise feed-forward operations. Formally, for each layer $l = 1, \dots, L$:

$$Z^l = \text{LayerNorm} \left(Z^{l-1} + \text{MultiHead}(Q^{l-1}, K^{l-1}, V^{l-1}) \right), \quad (5)$$

$$Z^l = \text{LayerNorm} \left(Z^l + \text{FFN}(Z^l) \right). \quad (6)$$

The multi-head attention mechanism partitions Z into h segments and integrates the output of these individual heads.

$$\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W_O, \quad (7)$$

where $\text{head}_j = \text{Attention}(Q_j, K_j, V_j)$ and W_O is the learned projection matrix.

After the Transformer encoder is deployed on temporal input data, the output representation H^L captures intricate temporal inter-dependencies across various timestamps. Next we design a decoder to elevate the model's proficiency in processing complex sequence data for action prediction. The decoder architecture incorporates a

multi-head cross-attention module. It is operated by dynamically focusing on correlated segments of the historical trajectory in relation to the current state s_t . The structural and functional dynamics of the cross-attention module are similar to the previous self-attention module. The decoder output representation matrix Z'_i of trajectory τ_i is computed as follows.

$$Z'_i = \text{softmax} \left(\frac{Q_i K_i^T}{\sqrt{d_k}} \right) V_i = \text{softmax} \left(\frac{(S_i W'_q)(Z_i^L W'_k)^T}{\sqrt{d_k}} \right) (Z_i^L W'_v). \quad (8)$$

In the above equation, Z_i^L denotes encoding historical information of trajectory τ_i , $Z_i^L = \{z_1, \dots, z_T\}$, and S_i denotes the broadcasting matrix of the current state s_t . The output of multi-head cross attention module is also obtained by concatenating the outputs from all heads and projecting them through a linear layer.

In the unique scenario of carbon neutral optimization task, we face a continuous action space that encompasses multiple inter-related action types. Unlike traditional solutions to employ the sigmoid function for categorical prediction, our objective is to allocate a distinct value to each type of action. Hence we create an action vector while simultaneously expanding the exploration space for these actions. Inspired by previous reinforcement learning studies [2, 6], we make the assumption that the actions adhere to a multivariate distribution. Based on this distribution learned by the output layer, we sample the recommended action a at the current timestamp, as shown in the following equation.

$$\pi_\theta(a|h, s) = p(a; \mu, \Sigma) \quad (9)$$

where $\mu \in \mathbb{R}^K$ and $\Sigma \in \mathbb{R}^{K \times K}$ represent the mean vector and covariance matrix of the actions respectively. They are the output of the dense layer with the input Z' .

3.2 Environment Simulator

The decision-making process often requires a precise prediction of the state evolutions following conducted actions in the trajectory. In pursuit of modeling this predictive framework, we employ the Variational Auto-Encoder (VAE) [19], a deep generative model that

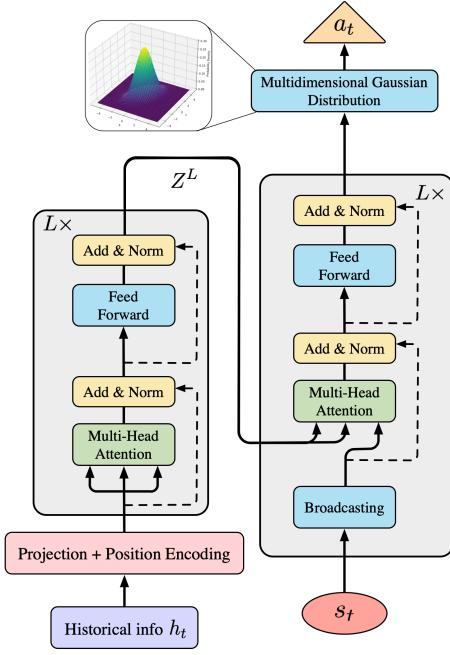


Figure 2: The framework of policy generator.

captures potential future states following the actions. For a given state s_t and a designated action a_t , the encoder of the VAE maps the state-action pairing into a latent space as:

$$q_\phi(z|s_t, a_t) = \mathcal{N}(z; \mu(s_t, a_t), \sigma^2(s_t, a_t)) \quad (10)$$

where μ and σ are mean and variance of z .

The core objective during training is to approximate the true posterior distribution. It aims to minimize the discrepancy between predicted future states and observed outcomes, formulated as $p_\theta(s_{t+1}|s_t, a_t, z)$. The VAE integrates a regularization term to prevent overfitting and ensure a smoother latent space:

$$\mathcal{L} = \mathbb{E}_{q_\phi} [\log p_\theta(s_{t+1}|s_t, a_t, z)] - \beta \text{KL}(q_\phi(z|s_t, a_t) || \mathcal{N}(0, I)) \quad (11)$$

where β is a hyper-parameter to balance the two terms in the loss function. The Environment Simulator is trained prior to the imitation learning framework. Once it achieves a predefined performance criterion, its parameters are fixed to ensure consistent interactions during subsequent learning stages. With this simulation framework, it becomes feasible to predict the consequences of certain actions, thereby informing the decision-making process and paving the way for crafting optimal operational sequences [11, 14].

3.3 Policy Optimization

The major training objective of PAIL is to make the recommended actions close to the ones from trajectories of high SGD. Meanwhile, the system should make the value of each action as large as possible to improve the generalization ability. To this end, we design a dual policy optimization strategy consisting of two components, namely the discriminator and performance estimator.

3.3.1 Discriminator of PAIL. PAIL draws inspiration from the foundational principles of Generative Adversarial Networks (GAN) [12]

to train policies in reinforcement learning. Just like GAN, PAIL uses a discriminator to distinguish between the trajectories with high SGD and those ones generated by the model. By trying to obfuscate the discriminator, the policy generator can effectively learn to imitate good trajectories.

PAIL integrates the historical information together with current state to generate the recommended actions. The historical vector is got by applying average pooling on the original vectors, denoted as h . PAIL leverages the ω -parameterized multiple-layer perception (MLP) $D_\omega(h, s, a)$. This function estimates the likelihood of a given history-state-action tuple (h, s, a) originating from a trajectory of high SGD. The discriminator is addressing a binary classification task, and both the policy generator and the discriminator engage in a Min-Max game predicated on the cross-entropy loss.

The objective of discriminator is:

$$\max_{\omega} \mathbb{E}_{\pi_E} [\log D_\omega(h, s, a)] + \mathbb{E}_{\pi_\theta} [\log(1 - D_\omega(h, s, a))] \quad (12)$$

The objective of policy generator is:

$$L_{IL} = \min_{\theta} \mathbb{E}_{\pi_\theta} [\log(1 - D_\omega(h, s, a))] \quad (13)$$

In real world applications, the trajectories with high SGD are typically much rare than the ones with middle or low SGDs. The limited training data pose a big challenge to proposed imitation learning framework. To address this issue, we propose a performance-oriented training guidance mechanism for the policy generator. This mechanism aims to maximize the cumulative SGD value of each state-action pair, enhancing the overall performance of generated trajectories. The key is to derive a reward signal for each discrete timestamp and interpret the discriminator output as an inverse measure of the policy performance. Formally, the reward signal for a history-state-action tuple (h, s, a) is quantified as $R(h, s, a) = -\log D_\omega(h, s, a)$. This formulation establishes an intriguing relationship: When the discriminator assigns a value close to 0, indicating significant deviation from existing trajectories of high SGD, the corresponding reward is a large negative value. This penalizes the policy generator for low-SGD actions, guiding it towards high-SGD recommendations. Subsequently, we develop a performance estimator to assess the value of each history-state-action tuple.

3.3.2 Performance Estimator. In real industrial systems, quantifying the immediate SGD credit of each single action in a long trajectory is non-trivial. In most scenarios, the historical trajectories only have a final SGD value as the overall performance. This challenge of attributing SGD credit to distinct actions has led us to exploit Temporal Difference (TD) learning for a deep Q -network [26]. The network aims to estimate the utility of any given state-action pair. Specifically, we propose a refined self-attention network F to capture historical inter-dependence across time and assess the SGD credits for all the actions in the trajectory. The network architecture is similar to the encoder of policy generator. It is pre-trained by minimizing the square loss to existing trajectories with high SGD. For trajectory τ with length of N , the overall SGD is calculated as:

$$V(\tau) = F(s_1, a_1, \dots, s_N, a_N) \quad (14)$$

Hence the immediate reward at timestamp t is obtained by discriminator as follows.

$$r_t = -\mathbb{E}_{(h,s,a) \sim \pi_\theta} \log(D_\omega(h_t, s_t, a_t)) \quad (15)$$

In order to evaluate the SGD credit of a specific state-action pair, we initialize a Q -network, denoted by $Q(s, a|\theta^Q)$, with arbitrary parameters. Meanwhile, we define the target value network as $Q'(s, a|\theta^{Q'})$, which helps to stabilize the learning process by providing a fixed baseline against which the predictions of the Q -network can be compared, reducing the risk of feedback loops and divergence during training [27]. The Temporal Difference (TD) error, crucial for updating the Q network, is calculated as follows:

$$\delta_t = r_t + \gamma Q'(s_{t+1}, a_{t+1}|\theta^{Q'}) - Q(s_t, a_t|\theta^Q) \quad (16)$$

$$\delta_T = r_T - Q(s_T, a_T|\theta^Q) = V(\tau) - Q(s_T, a_T|\theta^Q) \quad (17)$$

where γ represents the discount factor to weight the importance of future rewards relative to immediate ones, effectively capturing the present value of future SGD credits, and $Q'(s_{t+1}, \pi_\theta(s_{t+1})|\theta^{Q'})$ denotes the SGD credit of next state-action pair estimated by the target network. To encourage exploration and prevent premature convergence to sub-optimal policies, PAIL introduces Gaussian noise to the deterministic action output of the policy network and uses them as the input to the target network Q' . In this way, PAIL facilitates strategic exploration of the action space to optimize Q value of subsequent state-action pairs.

The goal of TD learning is to minimize the temporal difference (TD) error. Accordingly, the loss function for TD learning module is formulated as:

$$\mathcal{L}(\theta^Q) = \mathbb{E}_{(s,a) \sim \pi_\theta} [\delta_t^2], \quad (18)$$

where δ_t represents the TD error at time t . The parameter updating steps of both Q and Q' networks are synchronized with the imitation learning module. This learning process involves multiple iterations of updates in a single epoch, delineated as follows:

$$\theta^Q \leftarrow \theta^Q - \eta \nabla_{\theta^Q} \mathcal{L}(\theta^Q), \quad (19)$$

$$\theta^{Q'} \leftarrow \epsilon \theta^Q + (1 - \epsilon) \theta^{Q'}, \quad (20)$$

where η denotes the learning rate for gradient descent in the module, and Q' network is softly updated by copying the parameters from the Q network. ϵ is set as a small constant (e.g., 0.01) to ensure gradual updates.

In essence, the goal is to optimize a neural architecture and infer the SGD credits of different state-action pairs. The guide is on the maximization of the Q -value for recommended actions, as shown in the following equation.

$$L_{value} = -E_{a \sim \pi_\theta(\cdot|s)} [Q(s, a)] \quad (21)$$

Thus, the loss function for the policy generator is:

$$L = \lambda L_{IL} + (1 - \lambda) L_{value} + \beta(t) H(\pi) \quad (22)$$

where λ is a hyper-parameter to moderate the relative importance of the two objectives, and $H(\pi)$ is the entropy of learned policy. In PAIL framework, the entropy regularization term is dynamically adjusted using a decay function for the time-dependent coefficient $\beta(t)$. PAIL uses an exponential decay function $\beta(t) = \beta_0 \cdot e^{-kt}$, where β_0 is the initial value, k is the decay rate, and t represents the epoch. This exponential decay allows for aggressive exploration in the initial phases of training and progressively shifts the focus towards exploitation by reducing the influence of the entropy over time. As a result, the policy generator derives its learning signal by back-propagating from both the discriminator and the performance

estimator. This dual influence ensures that the generator not only emulates the trajectories of high SGD but also ensures each action is optimized for highest credit.

4 EXPERIMENTS

In this section, we introduce the details of our experiments conducted on two industry datasets of carbon neutral optimization.

4.1 Experimental Settings

4.1.1 Dataset. In this study, we conducted an empirical analysis using two distinct datasets. The first dataset was collected from the gas production industry. The dataset consists of 1,100 production processes, each process is with 30 steps (i.e., time window to carry out actions). The sensors record key parameters like system temperature and air pressure. From a broader set of metrics, we selectively filtered the dataset to include the most informative 51 parameters, which collectively define the state space. Additionally, the dataset delineates the action space available at each decision point, encompassing five distinct types of actions. The final Sustainable Development Goal (SDG) is measured by considering both economic efficiency and carbon credits. Each data sample has only one SDG at the end to evaluate the overall process.

The second dataset was sourced from a supply chain system, comprising 500 transaction sequences. Each sequence is divided into 30 time windows. The data captures purchase actions by 5 factories aimed at meeting buyer demands, including details on the acquired volume, average cost, and CO_2 emissions for each transaction. Accordingly, the buying behavior of each factory is identified as the primary action within this multi-dimensional space. To complement this, 15 additional critical indicators have been selected and incorporated to construct the state space. Consequently, an SDG indicator is also included to assess the entire transaction sequence, taking into account both the transaction amount and carbon credits.

For both datasets, we selected the sequences of top 10% as high-performance trajectories and used all of them to train the model. For the remainder data, we partitioned them at a 4:1 training/test ratio for the experiment.

4.1.2 Metrics. To evaluate the proposed model, we used a variety of metrics. Firstly, we employed a pre-trained trajectory value estimator for predicting the **improvement** ratio of SDG compared to the benchmark, utilizing off-policy evaluation to gauge the value of learned policy without real interactions. Specifically, we employed the Doubly Robust Off-policy Value Evaluation for an unbiased policy value estimation, merging direct method estimation with importance sampling for greater accuracy. Consistent with previous imitation learning studies, we measured the discrepancy between generated and optimal policies using **KL divergence**, and assessed **policy diversity** through the complement cosine similarity of generated action sequences. Moreover, we used the **F1-score** to assess improvements in terms of individual trajectories by setting a threshold that classified the top 50% as positive samples and the remainder as negative before updating the policy, in order to track transitions from negative to positive statuses while monitoring the retention of positive samples.

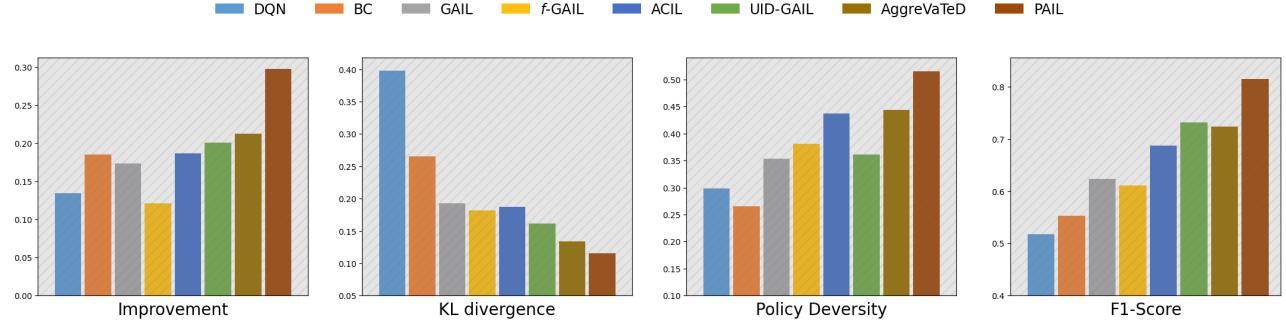


Figure 3: The Overall performance of baselines and PAIL for the oil production dataset.

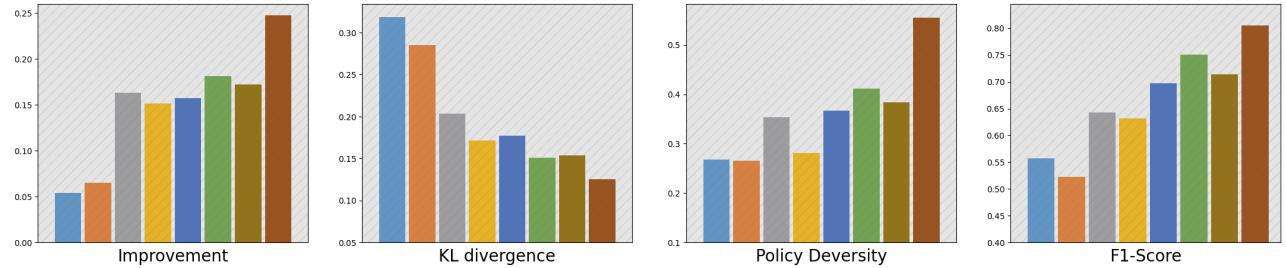


Figure 4: The Overall performance of baselines and PAIL for the supply chain dataset.

4.1.3 Baseline Methods. We compared the performance of PAIL with several state-of-the-art methods. In the following list, we briefly introduce these baselines.

- **DQN:** DQN [27] trains policy via deep Q-learning by designing a sparse reward function.
- **Behavior Cloning:** BC [30] cuts the trajectories into state action tuples and learns a policy from the demonstrations by supervised learning.
- **GAIL:** GAIL [17] generates a policy by mimicking the expert trajectories via the reward signals of the discriminator.
- ***f*-GAIL:** *f*-GAIL [54] dynamically learns the optimal *f*-divergence for more effective policy learning.
- **ACIL:** ACIL [41] utilizes both positive and negative demonstration through adversarial and cooperative discrimination of trajectories.
- **AggreVaTeD:** AggreVaTeD [36] leverages historical trajectories for imitation learning, integrating differentiable function approximators to facilitate sequential decision making.
- **UID-GAIL:** UID-GAIL [43] learns from imperfect demonstrations by treating them as unlabeled data and applying a positive-unlabeled learning approach.

To ensure fair comparisons, we standardized the starting step of action update at $t_s = 9$ for both datasets, and uniformed the embedding dimensions for historical data, states, and actions to 64. For enhancing the reliability of our findings, for each baseline and our proposed method, we conducted experiments using three distinct initial seeds and employed five-fold cross-validation. The reported results represent the average across these configurations, ensuring a 95% confidence level.

4.2 Performance Analysis

Figure 3 and 4 show the performance of PAIL and baselines evaluated by the four metrics on both datasets. From the results, we have the following observations: (1) DQN demonstrated limited effectiveness in environments with sparse reward signals, highlighting a critical area for learning policy with developing imitation learning based methods. (2) Behavioral Cloning (BC) suffered across all metrics due to poor generalization caused by compounding errors and heavy reliance on high-quality expert data, which cannot be available in our problem definition. (3) While classical GAIL and its variants showed reasonable performance on metrics like KL divergence, their overall effectiveness was compromised in environments requiring nuanced action choices, likely due to poor generalization, which suggests a critical need for strategies that extend beyond mere replication of observed behaviors in the context of carbon neutrality. (4) Among previous imitation learning methods, AggreVaTeD distinguished itself by utilizing historical information to enhance learning outcomes, and UID-GAIL also showed promising results by adaptively utilizing imperfect demonstrations to learn policy, suggesting the value of historical context and auxiliary guidance in industrial operation optimization. (5) Finally, PAIL outperformed existing benchmarks across all metrics, demonstrating superior aggregate and individual performance, as well as enhanced generalization capabilities to unseen sequences.

4.3 Ablation Study

To evaluate the contributions of various components in the PAIL framework, we developed several variants of PAIL. Their descriptions and modifications are listed as follows:

- **PAIL-G**: In this variant, we removed the probabilistic sampling via the Gaussian mixture model and took the deterministic output to generate the policy.
- **PAIL-H**: This variant simplified the input to the discriminator by utilizing only the state-action pair, instead of using history-state-action tuples.
- **PAIL-P**: This variant omitted the Q-learning based performance estimator module.

As depicted in Figure 5, a comparative evaluation between PAIL and PAIL-G underscored the importance of probabilistic sampling from a distribution to prevent the model from prematurely falling into suboptimality. Additionally, PAIL-H exhibited notably inferior performance relative to integrating history in evaluating the discrepancy, specifically in oil production data, which further emphasized the advantages of taking historical information into account. When compared with PAIL, the worse performance of PAIL-P validated the efficacy of the proposed dual policy refinement mechanism, which integrates a Q-learning module for targeted modeling on value promotion of each distinct action.

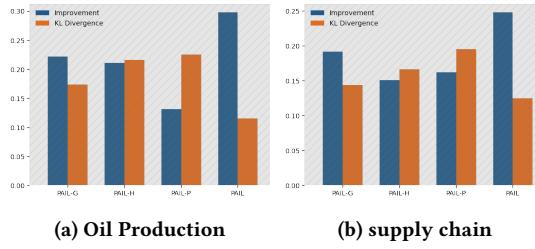


Figure 5: Performance comparison of PAIL and variants.

4.4 Parameters Tuning

4.4.1 *Impact of t_s* . In order to assess the robustness of PAIL, here we evaluated our model under different starting point t_s . As Figure 6 shows, PAIL exhibited relatively poor performance on both datasets under conditions where the threshold t_s was either large or small. This trend could be attributed to inadequate learning from limited historical data and sequence features at lower t_s values, and restricted update capability at higher t_s values.

4.4.2 *Impact of λ* . Subsequently, we examined the influence of parameters λ to evaluate the importance of two objectives for policy refinement. As Figure 7 shows, the performance significantly declined when the lambda parameter was either too large or too small, demonstrating the effectiveness of our designed discriminator module and performance estimator module in aiding policy generation. When λ was too small, despite the TD learning module utilizing information from the discriminator, relying solely on the learned Q-function proved to be insufficiently robust. Furthermore, the performance degradation observed with a large lambda further indicated that an approach based solely on imitation learning principles lead to generalization issues.

4.4.3 *Impact of l* : Figure 8 depicts the investigate on the impact of the lookback size l on model performance when considering the historical information. Initially, as the lookback length l increased,

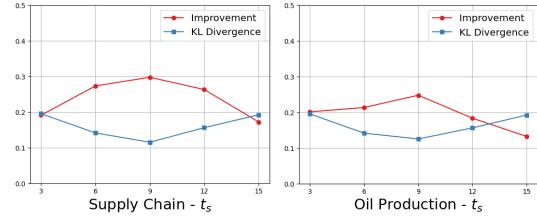


Figure 6: Performance of PAIL under different t_s .

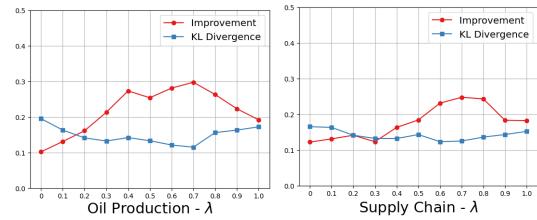


Figure 7: Performance of PAIL under different λ .

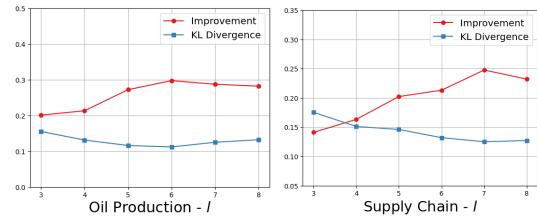


Figure 8: Performance of PAIL under different l .

the performance of PAIL improved, highlighting the importance of historical information for determining the current optimal action to achieve carbon neutral. However, as l continued to increase, the model performance tended to stabilize and may even slightly decline. We speculated this may be due to the encoding of information irrelevant to the current state, where an overload of information lead to fluctuations in the model's predictive performance.

4.5 Case Study

In this section, we present a case study where we identified several trajectories with significant SGD improvements. As Figure 9 shows, we created a heatmap based on the importance of distinct time steps to the final SGD. A segment of this heatmap is highlighted, where darker colors indicate greater importance of a given time step. Subsequently, we quantified the similarity between the updated action vector at each step and the original action vector. Our observation revealed that areas with darker colors corresponded to lower similarity scores, indicating more substantial changes in actions. This pattern further substantiated that our method could effectively alter sequences in a manner that enhances the corresponding SGD performance, highlighting its potential to optimize learning processes through strategic modifications in action sequences.

5 RELATED WORK

5.1 KDD for Social Good

Recent advances in machine learning and data mining have significantly contributed to various social good domains, including healthcare [21, 42, 56], smart cities [51, 52], and financial services [8, 24, 49, 50]. Key studies [15, 31, 34] have underscored AI’s critical role in enhancing decision-making across socioeconomic spheres, particularly at the nexus of economic efficiency and environmental sustainability. Research, notably [23], has leveraged advanced machine learning to link economic growth with energy consumption, aligning with the United Nations Sustainable Development Goals (SDGs) and highlighting the contribution of AI to sustainable development. A broad spectrum of AI-driven research focuses on optimizing energy consumption through intelligent devices [10], user behavior modeling [23, 46–48], and smart home technologies [38]. Extending beyond energy, this body of work explores water conservation and system optimization, alongside enhancements in electric vehicle fuel efficiency [40, 44] and strategic charging station placement [39, 53]. Our study applies imitation learning to improve industrial processes towards carbon neutrality, providing novel AI insights for social good in line with the SDGs, showcasing the dual benefits of energy conservation and economic advantage for a sustainable future.

5.2 Imitation Learning

Recent advances in deep reinforcement learning (DRL) have significantly propelled efforts to optimize sequential decision-making across various fields, including autonomous vehicles [20, 33], treatment recommendations [21, 29, 57], and economics [18, 45], extending to industry operation system optimization [16, 25]. The primary aim of DRL research has been to develop a learning policy driven by specific rewards. Yet, crafting such reward signals has often been challenging due to the necessity for complex calculations, especially in long-term optimization scenarios where immediate indicators are insufficient.

Thus, Imitation Learning (IL) has emerged as a vital subset of reinforcement learning (RL), emphasizing learning from expert policies to derive reward signals. This approach has been applied in diverse areas from video games [9] to autonomous driving [3, 5] and robotics [4, 37]. IL includes Behavioral Cloning (BC), which maps observations to actions through supervised learning [30], and Inverse Reinforcement Learning (IRL), which infers experts’ implicit reward functions to grasp their decision-making process [1, 28]. Although BC has suffered from compounding errors [32] and IRL from computational complexities, Generative Adversarial Imitation Learning (GAIL) has combined their strengths to match the learner’s state-action distributions with those of the expert, mitigating their individual drawbacks [17, 55]. Subsequent GAIL variants, such as AGAIL [35], which learns from incomplete demonstrations using partial actions, and Triple-GAIL [9], which introduces skill selection and multi-modal imitation, have shown enhanced adaptability in complex settings. Nonetheless, IL’s dependence on high-quality demonstrations and its sensitivity to distributional shifts, where policies may face unseen states, presents notable challenges. These limitations have highlighted concerns over IL’s generalization capabilities, underscoring the difficulty in ensuring optimal policy

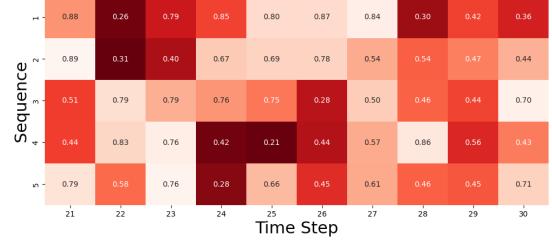


Figure 9: Time step importance and action vector similarity.

generation across all industrial scenarios due to ambiguous distinctions between positive and negative samples in our task context.

6 CONCLUSION

In this study, we address the critical challenge of achieving carbon neutrality in industrial operations, presenting a novel Performance-based Adversarial Imitation Learning (PAIL) engine. By leveraging Imitation Learning techniques, we design a Transformer based policy generator to produce operational policies without relying on pre-defined action rewards. Then, through dual reward mechanism refinement with utilizing an adapted discriminator and a Q-learning based performance estimator, PAIL updates policies aligned with the optimal sustainable development goals (SDG). Extensive experiments across various real-world scenarios demonstrate the effectiveness of PAIL compared to other state-of-the-art methods, offering both enhanced performance and interpretability in achieving carbon neutrality.

ACKNOWLEDGMENTS

This research was done during an internship at NEC labs, and partially supported by the National Science Foundation (NSF) via the grant number IIS-2006387 and IIS-2040799.

REFERENCES

- [1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse reinforcement learning. *Proceedings of the Twenty-first International Conference on Machine Learning* (2004), 1.
- [2] Alejandro Agostini and Enric Celaya. 2010. Reinforcement learning with a Gaussian mixture model. In *The 2010 International Joint Conference on Neural Networks (IJCNN)*. IEEE, 1–8.
- [3] Raunak Bhattacharyya et al. 2022. Modeling human driving behavior through generative adversarial imitation learning. *IEEE Transactions on Intelligent Transportation Systems* 24, 3 (2022), 2874–2887.
- [4] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. 2020. Learning by cheating. In *Conference on Robot Learning*. PMLR, 66–75.
- [5] Seongjin Choi, Jiwon Kim, and Hwasoo Yeo. 2021. TrajGAIL: Generating urban vehicle trajectories using generative adversarial imitation learning. *Transportation Research Part C: Emerging Technologies* 128 (2021), 103091.
- [6] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. 2018. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. *Advances in neural information processing systems* 31 (2018).
- [7] Ericsson. 2022. Sustainability and Corporate Responsibility Report 2022. <https://www.ericsson.com/49587c/assets/local/investors/documents/2022/sustainability-and-corporate-responsibility-report-2022-en.pdf>.
- [8] Yuchen Fang et al. 2023. Learning multi-agent intention-aware communication for optimal multi-order execution in finance. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*. 4003–4012.
- [9] Cong Fei, Bin Wang, Yuzheng Zhuang, Zongzhang Zhang, Jianye Hao, Hongbo Zhang, Xuewu Ji, and Wulong Liu. 2020. Triple-GAIL: a multi-modal imitation learning framework with generative adversarial nets. *arXiv preprint arXiv:2005.10622* (2020).
- [10] Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, and Andreas Krause. 2019. Safe contextual Bayesian optimization for sustainable room temperature PID control tuning. *arXiv preprint arXiv:1906.12086* (2019).

[11] Rafael Gómez-Bombarelli et al. 2018. Automatic chemical design using a data-driven continuous representation of molecules. *ACS central science* 4, 2 (2018), 268–276.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial networks. *Commun. ACM* 63, 11 (2020), 139–144.

[13] Yuvika Gupta. 2011. Carbon credit: a step towards green environment. *Global Journal of Management and Business Research* 11, 5 (2011), 16–19.

[14] David Ha and Jürgen Schmidhuber. 2018. Recurrent world models facilitate policy evolution. In *Advances in Neural Information Processing Systems*. 2450–2462.

[15] Gregory D Hager, Ann Drobis, Fei Fang, Rayid Ghani, Amy Greenwald, Terah Lyons, David C Parkes, Jason Schultz, Suchi Saria, Stephen F Smith, et al. 2019. Artificial intelligence for social good. *arXiv preprint arXiv:1901.05406* (2019).

[16] Mengqi Han, Jianli Duan, Sami Khairy, and Lin X Cai. 2020. Enabling sustainable underwater IoT networks with energy harvesting: a decentralized reinforcement learning approach. *IEEE Internet of Things Journal* 7, 10 (2020), 9953–9964.

[17] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning. In *Advances in Neural Information Processing Systems*. 4565–4573.

[18] Zhengyan Jiang, Dixin Xu, and Jinjun Liang. 2017. A deep reinforcement learning framework for the financial portfolio management problem. *arXiv preprint arXiv:1706.10059* (2017).

[19] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational Bayes. *arXiv preprint arXiv:1312.6114* (2013).

[20] B Ravi Kiran, Ibrahim Sobb, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani, and Patrick Pérez. 2021. Deep reinforcement learning for autonomous driving: A survey. *IEEE Transactions on Intelligent Transportation Systems* 23, 6 (2021), 4909–4926.

[21] Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo Faisal. 2018. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. *Nature medicine* 24, 11 (2018), 1716–1720.

[22] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann. 2014. Industry 4.0. *Business & information systems engineering* 6 (2014), 239–242.

[23] Liangda Li and Hongyuan Zha. 2015. Energy usage behavior modeling in energy disaggregation via marked hawkes process. In *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 29.

[24] Can Liu, Li Sun, Xiang Ao, Jinghua Feng, Qing He, and Hao Yang. 2021. Intention-aware heterogeneous graph attention networks for fraud transactions detection. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*. 3280–3288.

[25] Teng Liu, Bin Tian, Yunfeng Ai, and Fei-Yue Wang. 2020. Parallel reinforcement learning-based energy efficiency improvement for a cyber-physical system. *IEEE/CAA Journal of Automatica Sinica* 7, 2 (2020), 617–626.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602* (2013).

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. *nature* 518, 7540 (2015), 529–533.

[28] Andrew Y Ng and Stuart J Russell. 2000. Algorithms for inverse reinforcement learning. In *Proceedings of the Seventeenth International Conference on Machine Learning*. 663–670.

[29] C. Chivers M. Draugelis P. Niranjani, L.-F. Cheng and B. E. Engelhardt. 2017. A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. *arXiv preprint arXiv:1704.06300* (2017).

[30] Dean A Pomerleau. 1989. Alvinn: An autonomous land vehicle in a neural network. In *Advances in Neural Information Processing Systems*. 305–313.

[31] I. Leite M. Balaam V. Dignum S. Domisch A. Felländer S. D. Langhans M. Tegmark R. Vinuesa, H. Azizpour and F. Fuso Nerini. 2020. The role of artificial intelligence in achieving the Sustainable Development Goals. *Nature communications* 11, 1 (2020), 1–10.

[32] D. Bagnell S. Ross, G. Gordon. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. *Proceedings of the fourteenth international conference on artificial intelligence and statistics* (2011), 627–635.

[33] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe, multi-agent, reinforcement learning for autonomous driving. *arXiv preprint arXiv:1610.03295* (2016).

[34] Zheyuan Ryan Shi, Claire Wang, and Fei Fang. 2020. Artificial intelligence for social good: A survey. *arXiv preprint arXiv:2001.01818* (2020).

[35] Mingfei Sun and Xiaojuan Ma. 2019. Adversarial imitation learning from incomplete demonstrations. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*. 3513–3519.

[36] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. 2017. Deeply aggravated: Differentiable imitation learning for sequential prediction. In *International conference on machine learning*. PMLR, 3309–3318.

[37] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. *MIT press* (2018).

[38] Ngoc Cuong Truong, James McInerney, Long Tran-Thanh, Enrico Costanza, and Sarvapali D Ramchurn. 2013. Forecasting multi-appliance usage for smart home energy management. (2013).

[39] Konstantina Valogianni, Wolfgang Ketter, and John Collins. 2015. A multiagent approach to variable-rate electric vehicle charging coordination. In *Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems*. 1131–1139.

[40] Adam Vogel, Deepak Ramachandran, Rakesh Gupta, and Antoine Raux. 2012. Improving hybrid vehicle fuel efficiency using inverse reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 26. 384–390.

[41] Lu Wang, Wencho Yu, et al. 2020. Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes. In *Proceedings of The Web Conference 2020*. 1785–1795.

[42] Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. 2018. Supervised reinforcement learning with recurrent neural network for dynamic treatment recommendation. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*. 2447–2456.

[43] Yunke Wang, Bo Du, and Chang Xu. 2023. Unlabeled Imperfect Demonstrations in Adversarial Imitation Learning. *arXiv preprint arXiv:2302.06271* (2023).

[44] Xiaojuan Wu et al. 2018. Efficiently approximating the pareto frontier: hydropower dam placement in the amazon basin. In *Proceedings of the AAAI conference on artificial intelligence*, Vol. 32.

[45] Hongyang Yang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. 2020. Deep reinforcement learning for automated stock trading: An ensemble strategy. In *Proceedings of the first ACM international conference on AI in finance*. 1–8.

[46] Yuyang Ye, Zheng Dong, Hengshu Zhu, Tong Xu, Xin Song, Runlong Yu, and Hui Xiong. 2022. MANE: Organizational network embedding with multiplex attentive neural networks. *IEEE Transactions on Knowledge and Data Engineering* 35, 4 (2022), 4047–4061.

[47] Yuyang Ye, Hengshu Zhu, Tianyi Cui, Runlong Yu, Le Zhang, and Hui Xiong. 2024. University Evaluation through Graduate Employment Prediction: An Influence based Graph Autoencoder Approach. *IEEE Transactions on Knowledge and Data Engineering* (2024).

[48] Yuyang Ye, Hengshu Zhu, Tong Xu, Fuzhen Zhuang, Runlong Yu, and Hui Xiong. 2019. Identifying high potential talent: A neural network based dynamic social profiling approach. In *2019 IEEE International Conference on Data Mining (ICDM)*. IEEE, 718–727.

[49] Runlong Yu, Qi Liu, Yuyang Ye, Mingyue Cheng, Enhong Chen, and Jianhui Ma. 2022. Collaborative List-and-Pairwise Filtering From Implicit Feedback. *IEEE Transactions on Knowledge & Data Engineering* 34, 06 (2022), 2667–2680.

[50] Runlong Yu, Xiang Xu, Yuyang Ye, Qi Liu, and Enhong Chen. 2023. Cognitive Evolutionary Search to Select Feature Interactions for Click-Through Rate Prediction. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*. 3151–3161.

[51] Zixuan Yuan, Hao Liu, Yanchi Liu, Denghui Zhang, Fei Yi, Nengjun Zhu, and Hui Xiong. 2020. Spatio-temporal dual graph attention network for query-poi matching. In *Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval*. 629–638.

[52] Weijia Zhang, Hao Liu, Yanchi Liu, Jingbo Zhou, and Hui Xiong. 2020. Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction. In *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 34. 1186–1193.

[53] Weijia Zhang, Hao Liu, Hui Xiong, Tong Xu, Fan Wang, Haoran Xin, and Hua Wu. 2022. RLCharge: Imitative multi-agent spatiotemporal reinforcement learning for electric vehicle charging station recommendation. *IEEE Transactions on Knowledge and Data Engineering* (2022).

[54] Xin Zhang, Yanhua Li, Ziming Zhang, and Zhi-Li Zhang. 2020. f-gail: Learning f-divergence for generative adversarial imitation learning. *Advances in neural information processing systems* 33 (2020), 12805–12815.

[55] Zhi Zheng, Ying Sun, Xin Song, Hengshu Zhu, and Hui Xiong. 2023. Generative Learning Plan Recommendation for Employees: A Performance-aware Reinforcement Learning Approach. In *Proceedings of the 17th ACM Conference on Recommender Systems*. 443–454.

[56] Zhi Zheng, Chao Wang, Tong Xu, Dazhong Shen, Penggang Qin, Baoxing Huai, Tongzha Liu, and Enhong Chen. 2021. Drug package recommendation via interaction-aware graph induction. In *Proceedings of the Web Conference 2021*. 1284–1295.

[57] Zhi Zheng, Chao Wang, Tong Xu, Dazhong Shen, Penggang Qin, Xiangyu Zhao, Baoxing Huai, Xian Wu, and Enhong Chen. 2023. Interaction-aware drug package recommendation via policy gradient. *ACM Transactions on Information Systems* 41, 1 (2023), 1–32.