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A B S T R A C T   

Extensive data and computational requirements limit the application of existing urban hydrology models at 
municipal scales. Community-enabled Lifecycle Analysis of Stormwater Infrastructure Costs (CLASIC) is a web- 
based deployment of the SWMM model with decoupled hydrologic and hydraulic components to enable hy
drologic assessment at the municipal and larger scales. This study comprehensively evaluates the performance 
validity of CLASIC for characterization of hydrologic responses against SWMM and observed data. Furthermore, 
global sensitivity analysis is used to explore the significance of hydrologic and hydraulic model parameters across 
spatial and temporal scales. CLASIC reliably represents the urban hydrological processes and accurately quan
tifies stream discharge at the municipal scale and temporal scales greater than the catchment’s time of con
centration. Notably, the computational requirements of CLASIC are substantially lower than those of SWMM as 
the catchment drainage area increases. The application of CLASIC for flood assessment may be conducted with 
careful examination of the estimated peak discharge at sub-daily timescales.   

1. Introduction 

Urbanization can substantially alter hydrologic budgets in urban 
catchments, leading to changes in the natural water cycle and increasing 
the risk of flooding and water pollution (C. Li et al., 2018; Locatelli et al., 
2017; Miller et al., 2014; Wang et al., 2022). Urban hydrological models 
are important tools in stormwater management, flood resilience, and 
urban planning. These tools are increasingly used to inform stormwater 
decisions, such as planning, design, and implementation of gray, green, 
and hybrid stormwater infrastructure (Ahiablame et al., 2012; Moral
es-Torres et al., 2016). However, their applications for comprehensive 
hydrologic assessments at the larger municipal scale are hampered by 
cumbersome computational requirements, numerical convergence, and 
model parameterization challenges (Hamouz and Muthanna, 2019; R. L. 
Pachaly et al., 2020; Shahed et al., 2020). 

The US Environmental Protection Agency (EPA) Storm Water Man
agement Model (SWMM) (Rossman, 2015) is one of the most used tools 
for representation of hydrological processes in urban areas. The model 
enables evaluation of the efficiency of stormwater control measures 
(SCMs), including green stormwater infrastructure (GSI), in reducing the 
consequences of increased imperviousness from urban development 
(Cipolla et al., 2016; Hamouz and Muthanna, 2019; Haris et al., 2016; 
Jang et al., 2007; Shahed et al., 2020). However, modeling large-scale 

urban watersheds with SWMM may be hampered by extensive data re
quirements for site-specific parameters and drainage structure, which 
may not be broadly available (Ha and Stenstrom, 2008; Shahed et al., 
2020). Furthermore, providing the input data related to the study area 
can be challenging and time-consuming due to the lack of direct GIS 
linkage in the model (Xiao et al., 2019). Moreover, the simulation run
time and numerical convergence exacerbate as the drainage area and the 
number of computational elements of the model increase (Niazi et al., 
2017; R. Pachaly et al., 2019). SWMM is also typically applied for 
stormwater and flood management at the sewershed scale (Babaei et al., 
2018; Hidayat and Soekarno, 2020; Rai et al., 2017). 

Several tools incorporate SWMM as the simulation engine for rep
resentation of hydrological process to enable assessment of the effects of 
climate change, land use, and stormwater practices, such as green 
stormwater infrastructure (GSI) (Baek et al., 2020; Rai et al., 2017; Zeng 
et al., 2021). For instance, the EPA’s Storm Water Calculator (Rossman 
and Bernagros, 2019) estimates runoff at site scale planning units (less 
than 5 ha) for alternative land use and stormwater control scenarios. The 
web-based tool is desirable because it does not require considerable user 
input and parameterization. However, its simulation has been shown to 
be highly uncertain at large scale areas (Dell et al., 2021). Moreover, the 
tool does not have options for representation of the co-benefits and 
water quality effects of the stormwater control measures. Another 
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decision support tool, called System for Urban Stormwater Treatment 
and Analysis INtegration (SUSTAIN), offers a public domain tool for 
determining the optimal location, type, and construction cost of 
stormwater practices (Shoemaker et al., 2009). SUSTAIN utilizes algo
rithms from SWMM to simulate the flow and pollutant routing (Lee 
et al., 2012). Therefore, modeling a large-scale watershed using SUS
TAIN is as complex as SWMM and demands extensive data and a thor
ough understanding of watershed and GSI modeling processes. While 
focusing primarily on water quality outcomes, SUSTAIN does not 
include the additional benefits from implementing stormwater control 
measures (e.g., social, economic, and environmental) or lifecycle costs 
(LCC). Other tools not based on SWMM are also available for the 
assessment of stormwater control infrastructure, including the Center 
for Neighborhood Technology (CNT) Green Values Calculator (CNT, 
2022), RECARGA (Severson and Atchison, 2004), and E2STORMED 
Decision Support Tool (Morales-Torres et al., 2016). The major short
coming of these tools is their simplistic methodology for simulation of 
hydrologic and water quality processes. Moreover, these tools do not 
include lifecycle cost and benefit assessment capacities. 

With the increasing complexity of the existing urban hydrology 
models, increasing interactions between hydrological and hydraulic 
processes at large spatial scales tend to govern model convergence and 
computational costs (Chen et al., 2022; Muñoz-Carpena et al., 2023; R. 
L. Pachaly et al., 2020). While representation of these interactions may 
be important for characterization of sub-hourly flood responses, they 
may not substantially influence model performance for characterization 
of hydrological processes at larger temporal and spatial applications that 
focus on the effects of stormwater control measures on the daily, 
monthly, or annual water budgets and water quality. Selecting an 
appropriate level of model complexity must incorporate the specific 
purposes of the study, available data, and desired level of accuracy 
(Birhanu et al., 2018; Devia et al., 2015; Gui et al., 2021; Pechlivanidis 
et al., 2011). 

The Community-enabled Lifecycle Analysis of Stormwater Infra
structure Costs tool (CLASIC, 2020) uses SWMM for urban hydrological 
simulations. However, it remedies challenges with municipal or regional 
applications of SWMM by disaggregating hydraulic components from 
hydrological simulations without compromising performance validity 
for hydrologic assessments (Dell et al., 2021). The web-based CLASIC 
tool supports stormwater planning and decision-making by character
izing lifecycle costs (LCC), runoff volume reduction, and pollutant 
removal, as well as triple-bottom-line (TBL) co-benefits (i.e., social, 
economic, and environmental co-benefits) of the SCMs. The tool enables 
users to assess different scenarios of stormwater infrastructure using 
different designs and combinations of practices and to compare them in 
terms of their costs, co-benefits, and performance in evaluating the 
extent and combination of green, hybrid green-gray, and gray infra
structure practices (WRF, 2019). The integration of hydrologic and 
water quality performance, TBL co-benefits, and LCC of gray and green 
stormwater practices in CLASIC provides a unique web-based data 
analysis and modeling software for comprehensive planning and 
decision-making. 

The hydrologic components of CLASIC provides acceptable perfor
mance in estimating the total volume of water cycle components (i.e., 
runoff, evaporation, and infiltration) and evaluating the performance of 
stormwater control measures (SCM) compared to the full SWMM sim
ulations (Dell et al., 2021). However, the effects of disaggregating hy
drologic and hydraulic components on hydrologic and water fluxes at 
different temporal and spatial scales have not been previously investi
gated. The municipal scale holds a significant interest for city planners 
and decision-makers, and different temporal scales are appropriate for 
different applications, depending on the study’s objectives (Moriasi 
et al., 2015). Furthermore, the computational requirements of hydro
logic models increase as the drainage area of the study catchment in
creases. However, the potential improvements in simulation time by 
using CLASIC compared to SWMM has not been sufficiently 

characterized. 
This study aims to examine the performance validity and computa

tional requirements of the CLASIC tool for municipal scale character
ization of urban water cycle and hydrologic fluxes. Specifically, the 
objectives of this study are to: 1) assess the performance validity of the 
CLASIC model in simulating runoff volume, evaporation, infiltration, 
and full discharge statistics at hourly to annual time steps compared 
with SWMM model and observed discharge; 2) investigate the impor
tance of interconnected hydrologic and hydraulic parameters and their 
associated processes for simulated stream discharge at different tem
poral and spatial scales; and 3) examine the computational time of the 
CLASIC and SWMM models at varying spatial scales. The findings of the 
study support appropriate applications of the CLASIC tool for evalua
tions of SCMs (e.g., GSI) and climate and land use change assessment at 
neighborhood to municipal scales. 

2. Methods 

To examine the study objectives, the SWMM and CLASIC models are 
developed for the urban Spring Creek catchment in northern Colorado. 
Model development incorporates detailed information about hydrologic 
and hydraulic characteristics of the system. The hydrologic performance 
of the models is evaluated at two stream discharge gauging stations 
within the study catchment over the 2008–2018 period. The Sobol 
global sensitivity analysis technique is conducted to examine the 
importance of hydrologic and hydraulic model parameters, individually 
and in combination, at hourly to annual time steps. Furthermore, the 
computational requirements of the SWMM and CLASIC models are 
assessed in terms of time of simulation as a function of contributing 
drainage area and the number of hydrologic and hydraulic elements. 

2.1. SWMM and CLASIC urban hydrology models 

The Storm Water Management Model (SWMM) is a widely used tool 
for urban watershed drainage system design and management (Haris 
et al., 2016; Shahed et al., 2020). The model is utilized in hydrological 
studies to simulate the hydrologic effects of urbanization and flood 
analysis (Babaei et al., 2018; Jang et al., 2007). With the integration of 
Low Impact Development (LID) controls in 2010 and further enhance
ments in 2015, SWMM evolved to support green infrastructure perfor
mance evaluation, notably in runoff reduction via various LID controls 
like green roofs and porous pavements (Rossman, 2015). Several studies 
corroborate SWMM’s efficacy in evaluating LID controls, highlighting its 
reliable simulation of runoff from SCMs including GSI and LID controls 
(Cipolla et al., 2016; Hamouz and Muthanna, 2019; Kong et al., 2017). 
The important parameters of the SWMM model that are used in this 
study are provided in Table 1. There are also other infiltration methods 
that can be applied to a model in SWMM (e.g., Green-Ampt) which are 

Table 1 
SWMM model parameters that are used in this study.  

Parameter Unit Description 

Width m Width of overland flow path 
Slope % Average surface slope 
%Imperv % Percent of impervious area 
DstoreImperv mm Depth of depression storage on impervious area 
DstorePerv mm Depth of depression storage on pervious area 
%ZeroImperv % Percent of impervious area with no depression 

storage 
Max infiltration 

rate 
cm/ 
hr 

Horton maximum infiltration rate 

Min infiltration rate cm/ 
hr 

Horton minimum infiltration rate 

Decay Constant rate 1/hr Horton decay rate 
Manning’s N – Channel’s Manning’s roughness 
N-Imperv – Manning’s N for impervious area 
N-Perv – Manning’s N for pervious area  
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not included in this study. 
Despite the widespread application of SWMM, modeling a large-scale 

watershed with this model is impeded by issues such as numerical 
convergence, simulation time, and extensive data required due to the 
detailed flow routing methods, including kinematic wave routing model 
that is based on solving the continuity equation, and the dynamic wave 
routing model that solves the full Saint Venant equations for conserva
tion of mass and momentum (Niazi et al., 2017; Rossman, 2010). 

The CLASIC tool is a robust cloud-based web tool for the assessment 
of hydrologic, life costs, and triple bottom line (social, economic, and 
environmental) co-benefits of gray, green, and hybrid stormwater 
infrastructure (CLASIC, 2020). The CLASIC tool is deployed as a web 
analytic using the eRAMS cloud computing platform software (eRAMS, 
2024). The eRAMS platform offers powerful cloud-based capabilities for 
building computationally scalable and platform-independent tools that 
can be accessed through web browsers on desktop or mobile devices. 
The software supports content management, geospatial mapping and 
processing, data analysis and modeling services, and apps (Catena, 
2024). Data analysis and modeling services in the eRAMS are deployed 
using the Cloud Services Implementation Platform (CSIP) (David et al., 
2014; W.s Lloyd et al., 2013; W. J. Lloyd et al., 2015) with RESTful web 
services (Pautasso and Wilde, 2010). Specifically, features presented 
within the CLASIC tool include (Fig. 1): define study area (selecting 
project boundaries, land use, soil type, and land slope), climate and 
geographic information (precipitation, evaporation, and EPA region), 
model defaults, scenario builder (i.e., develop scenarios of technologies, 
climate, and land use), co-benefits assessment, targets (i.e., set targets 
for pollutant reduction, runoff volume reduction, and costs), run tool, 
and view outputs in the results panel. Fig. 1 illustrates a schematic of the 
CLASIC web tool, which is publicly available at clasic.erams.com. 

Development of a hydrologic model in CLASIC is supported by cloud 
data and modeling services that obtain data from publicly available 
climate, land use and land cover, soil, slope, and water quality databases 
(Table 2). Moreover, the tool leverages data from the International BMP 
Database (BMPdatabase, 2019) and The National Green Infrastructure 
Certification Program (NGICP, 2019) to parameterize stormwater 
technologies. All model parameters can be modified for site-specific 
parameterization and calibration. 

The study area may include a single or multiple subcatchments. 
CLASIC tool disaggregates the subcatchments based on the specific 
properties assigned to each subcatchment. The spatial disaggregation 
scheme in CLASIC is as follows: First the subcatchments are comprised of 

directly connected impervious area (DCIA) and separate pervious area 
(SPA) based on the percentage of the impervious area. Additionally, 
SCMs such as GSIs can be explicitly added to subcatchments using the 
Scenario module. Fig. 2 illustrates an example of a subcatchment with 
GSI placed in the available surrounding pervious area. The area allo
cated to the GSI (represented by the receiving pervious area (RPA) in 
Fig. 2) is taken out from the SPA and will be a standalone subcatchment. 
The area of the DCIA treated by GSIs is a model parameter. This 
parameter is set to a default value equal to 10 percent of the total 
imperviousness and can be modified by the user based on their specific 
target. The treated area is subsequently taken out from DCIA and be
comes the unconnected impervious area (UIA) that flows to RPA. CLA
SIC starts with a baseline scenario where there is no GSI implemented. 
Additional scenarios can be created by adding SCMs to the baseline 
scenario. SCMs that can be explicitly modeled in the Scenario Builder 
module of CLASIC include Rain Garden/Bioretention, Sand Filter, 
Infiltration Trench, Vegetative Swale, Extended Detention Basin, Wet 
Pond, Stormwater Harvesting, Storage Vault/Tunnel, Green Roof, 
Permeable Pavement, and Rooftop Disconnection (CLASIC, 2020). 

The Scenario Builder module of CLASIC includes a component to 
compute the number of required SCMs based on the treated impervious 
surface and the design characteristics of SCMs. For volume based SCMs, 
the volume required to be captured by GSIs is calculated based on the 
UIA and the design depth. Subsequently, the number of GSI units will be 
calculated based on the total volume required to be captured and the 
volume capacity of each GSI unit. The number of area-based GSIs (e.g., 

Fig. 1. CLASIC web tool interface.  

Table 2 
Publicly available datasets used in the CLASIC tool.  

Database Reference 

Climate: precipitation, 
temperature, evaporation 

Climate station data from EPA Better Assessment 
Science Integrating Point and Non-Point Sources 
(BASINS) (USEPA, 2023) 

Land use and Land cover The National Land Cover Database (NLCD) (U.S.  
Geological Survey, 2018) 

Soil Soil Survey Geographic database (SSURGO/ 
STATSGO) (Soil Survey Staff, 2019) 

Slope Digital Elevation Model (U.S. Geological Survey, 
2023) 

Water quality: pollutant 
concentration 

National Stormwater Quality Database (NSQD) ( 
Pitt et al., 2004) 
International Stormwater BMP database ( 
BMPdatabase, 2019)  
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permeable pavements) solely depends on the treated impervious area 
and the area of the GSI unit (CLASIC, 2020). The detailed information 
and calculations can be found in the CLASIC’s user guide at clasic.erams. 
com. 

Finally, CLASIC incorporates a modified SWMM model (Fig. 2) to 
simulate hydrologic and routing processes. The modified model disag
gregates the hydrologic and hydraulic components of SWMM, models 
the hydraulics within the subcatchments, routes runoff through them, 
and then employs dummy conduits in SWMM for the linear routing of 
hydrological responses to the outlet of the watershed. This modeling 
approach, while reducing the computational burden, may affect the 
simulated hydrographs at different spatial and temporal scales. In this 
study, we examine the effects of these changes on the model 
performance. 

2.2. Model evaluation 

Model evaluation is often conducted using non-commensurate sta
tistical measures of model performance (Gupta et al., 1997). Specif
ically, this study employs the coefficient of determination (R2), root 
mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency 
(NSCE), and percent of bias (PBIAS) to examine the performance of the 
SWMM and CLASIC models. The model’s performance is "very good" 
when NSCE is greater than 0.8, R2 is greater than 0.85, and PBIAS is less 
than ±5 percent for daily and monthly simulation time steps (Moriasi 
et al., 2015). The model performance may be characterized as "good" 
when NSCE is between 0.7 and 0.8, R2 is between 0.75 and 0.85, and 
PBIAS is between 5 and 10 percent. Furthermore, it is recommended that 
the RMSE value is low enough to be less than the standard deviation of 
the observed data for good model accuracy (Singh et al., 2005). How
ever, a more robust model performance evaluation may be conducted 
using hydrologic signatures from the probabilistic characteristics of 
observed and simulated discharge. 

A flow duration curve (FDC) represents the full statistics of discharge 
conditions and is obtained by plotting the discharge versus exceedance 
probability of discharge (i.e., the percentage of time that the indicated 
discharge is equaled or exceeded). Fig. 3 illustrates a schematic of 
observed and simulated FDCs. The shape of FDCs is influenced by the 
hydrologic, climatic, and hydrogeologic characteristics of the watershed 
(Searcy, 1969). FDCs have a wide range of applications in the field of 
hydrology and water resources planning, such as water quality man
agement, flood frequency analysis, and water resource allocation (Vogel 
and Fennessey, 1996). 

The flow duration curve is obtained by plotting discharge values (Q) 
sorted in the order of largest to smallest values versus their corre
sponding exceedance probability (p). Exceedance probability of 
observed discharge may be obtained from the plotting position formulas 
in Eq. (1) (Cunnane, 1979): 

p = 1 − F̂(Q) =
j − α

N + 1 − 2α (1)  

where F̂(Q) denotes the empirical cumulative probability distribution 
function of discharge, j is the rank of observed discharge in descending 
order of magnitude, N denotes sample size, α is the constant that is 
defined based on the underlying probability distribution of discharge. In 
this study, α is set at 0. 

Several studies have used FDC as a measure of model performance to 
simulate observed stream discharge (Hughes and Smakhtin, 1996; Ley 
et al., 2016; Müller and Thompson, 2016; Matthias Pfannerstill et al., 
2014; Rauf and Ghumman, 2018). Hydrologic signature indices derived 
from FDC’s different meaningful regions (i.e., high-flow, inter
mediate-flow, and low-flow) have been used to compare simulated and 
observed discharge from specific segments of FDCs (Yilmaz et al., 2008). 
Other studies used the difference in discharge at various exceedance 
probability evaluation points (Coxon et al., 2014; Westerberg et al., 
2011). An example of these indices is the maximum difference in 
discharge between observed and simulated FDCs (Qmax). The maximum 

Fig. 2. Illustration of the CLASIC hydrologic model of a subcatchment. The white boxes represent the area of DCIA and SPA that were specified by the user to be used 
as UIA and RPA, respectively (they are taken out from DCIA and SPA to become standalone subcatchments of UIA and RPA). 

Fig. 3. Illustration of a flow duration curve (FDC) for model evaluation. The 
shaded region represents the difference between the areas under the observed 
and simulated FDCs. The black dashed lines divide FDC into three segments of 
high flow (p<10%), intermediate flow (10%<p<60%), and low flow (p>60%). 
The area under FDC may be referred to as the probability-weighted discharge. 
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difference in exceedance probability between observed and simulated 
(FDCs) represents the test statistic for the commonly used 
Kolmogorov-Smirnov test of the hypothesis that observed and simulated 
data come from the same underlying probability distribution. 

The area under the FDC represents the probability-weighted 
discharge (PWQ), which is an aggregate measure of discharge that in
corporates the full range of discharge conditions. For example, (Vogel 
et al. (2007) suggest using the area under annual FDCs to assess 
eco-surplus and eco-deficit hydrologic conditions. Here, we use the area 
under the FDC to assess the performance validity of the SWMM and 
CLASIC models against observations using a probability-weighted 
discharge index (FDCA): 

FDCA =
(PWQO − PWQS)

PWQO
=

( ∫ 1

0
F̂−1(p)dp

−

∫ 1

0
F−1(p)dp

) / ( ∫ 1

0
F̂−1(p)dp

)

(2)  

where PWQO and PWQS represent the area under the observed and 
simulated FDCs, respectively, and F̂−1(.) and F−1(.) denote the inverse 
cumulative distribution function (i.e., quantile estimation function) of 
observed and simulated discharge. 

Additionally, we use the normalized maximum difference between 
ranked simulated and observed discharge (FDCQmax): 

FDCQmax = max
[

(QO − Qs)

QO

]

= max
p

[(
F̂−1(p) − F−1(p)

)

F̂−1(p)

]

(3)  

and the maximum difference between observed and simulated exceed
ance probability (FDCPmax) for the full range of discharge values: 

FDCPmax = max[|pO − pS|] = max
Q

[|F̂(Q) − F(Q)|] (4) 

The closer values of the FDC signature indices in Equations (2)–(4) to 
zero indicate better model performance. 

2.3. Identification of influential model parameters 

SWMM simulation of hydrologic responses is influenced by model 
uncertainties from inputs, model structure, and parameter uncertainty 
(Fassman-Beck and Saleh, 2021; Gorgoglione et al., 2019; Renard et al., 
2010; Song et al., 2015; Sun et al., 2014; Vrugt, 2016; Zhang et al., 
2022). Thus, disaggregating hydraulic components of the model may 
influence hydrological simulations. We employ a global sensitivity 
analysis (GSA) technique to examine the effects of disaggregating hy
draulic parameters from the SWMM model on sub-daily to annual time 
steps. 

Global Sensitivity Analysis (SA) is used to determine how the output 
of a model is sensitive to the uncertainty of the inputs, and it plays an 
essential role in any hydrological research. Global SA techniques explore 
the whole feasible range of uncertain parameters and evaluate the in
teractions between the parameters; they are suitable for nonlinear and 
non-monotonic models (Saltelli et al., 2008; Song et al., 2015). 
Considering the wide range of advantages and capabilities of global 
sensitivity analysis compared to other sensitivity approaches (e.g., local 
methods), modelers have used this method for many different purposes 
in hydrological and hydraulic modeling (J. Li et al., 2013; Nossent et al., 
2011; M Pfannerstill et al., 2015; Sanadhya et al., 2014). Among various 
global sensitivity analysis techniques, the method of Sobol (1990) is a 
well-known and widely used approach. Studies have found this method 
very successful in factor fixing and factor prioritization for discharge 
simulations as well as finding controlling factors on salinity in soil, 
groundwater, and river water (Cibin et al., 2014; Hosseini and Bailey, 
2022; Nossent et al., 2011). Leimgruber et al. also found this method 
proper to evaluate the sensitivity of water balance components to SCM 
parameters using a SWMM model (Leimgruber et al., 2018). 

The method of Sobol was developed in 1990 based on the Fourier 
Haar series (1969) for nonlinear models. Sobol used Monte Carlo 
methods to evaluate multidimensional integrals to estimate sensitivity 
measures (Archer et al., 1997). First-order sensitivity measures will be 
calculated as below: 

Si =
Vi

V(Y)
=

V(E(Y|Xi))

V(Y)
(5) 

ST
i , as the total-order sensitivity measure, indicates the contribution 

to the output variance from Xi including both its main effect and all its 
interactions with other factors: 

STi = 1 −
V(E(Y|X∼i))

V(Y)
(6)  

where X∼i represents all input factors except Xi. 
The larger the Si and STi, the more sensitive the output model is to 

the parameter Xi. The smallest sample size in this method is n(2k+2). 
The term "n" is the minimum model evaluation for estimating one in
dividual effect, taking a value of 16, or 32, 64, 128, …, and the term k is 
the number of input factors (Koo et al., 2020; Nguyen and Reiter, 2015; 
Saltelli et al., 2008). 

2.4. Comparing computational runtime of the CLASIC and SWMM 
models 

To compare the computational time between CLASIC and SWMM 
models, the study area was divided into eight segments. First, only one 
subcatchment was considered, and the simulation time was recorded. 
Then, in each subsequent run, an additional segment was included, 
continuing this pattern until the final run covered the entire watershed. 
This approach allowed for a detailed comparison of the computational 
times for both CLASIC and SWMM across varying scales of the study 
area. 

2.5. Study area: the Spring Creek watershed 

To compare the performance of the CLASIC and SWMM models, the 
Spring Creek watershed (Fig. 4), with a 23 square kilometer surface area 
in northern Colorado, was selected as the study area consisting of 134 
subcatchments. Spring Creek originates in western Fort Collins, north of 
Horsetooth Mountain. After passing through the Horsetooth Reservoir, it 
flows eastward to its confluence with the Cache La Poudre River. It also 
has two gauged locations to observe the creek’s discharge. Hourly 
discharge, provided by the City of Fort Collins, was observed and 
collected from these two locations from 2006 to 2018. The gauged lo
cations are the intersections of the creek with Center Avenue and 
Timberline Road, as shown in Fig. 4. 

2.5.1. SWMM urban hydrology model of Spring Creek watershed 
Division of the study area into subcatchments can have significant 

effects on the modeled responses (Arabi et al., 2006). The detailed 
SWMM model for the watershed was built in SWMM 5 with 134 sub
catchments and more than 200 hydraulic elements, including pipes, 
channels, and storage units. The required data for each subcatchment 
and the drainage network were collected from the City of Fort Collins 
and the Google Earth measuring tool. The selected settings for this 
model are the Horton infiltration method, dynamic wave method, and 
continuous simulation. Furthermore, hourly precipitation data 
(2006–2018) and average monthly evaporation data were collected for 
the Fort Collins climate station from Colorado Agricultural Meteorology 
Network Database (CoAgMet, 2019) and EPA climate stations (USEPA, 
2023), respectively. The soil characteristics beneath the storage units 
were collected from SSURGO data (Soil Survey Staff, 2019), and the 
imperviousness characteristics were extracted from the NLCD 2016 (U.S. 
Geological Survey, 2018). 
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2.5.2. CLASIC urban hydrology model of Spring Creek watershed 
After calibrating the SWMM model, three models were built in the 

CLASIC tool. Since there are two gauged locations within the watershed, 
two models were created to simulate the outflow of each of these two 
locations: one model for the upstream drainage area of the Center 
Avenue gauge and another for the upstream drainage area of the 
Timberline Road gauge. A third model was also provided from the entire 
watershed to simulate the hydrologic components of the entire study 
area (i.e., runoff, evaporation, and infiltration). 

The stormwater control measures (SCM) in the study area are 
detention basins and retention basins; however, they were modeled as 
storage units in the SWMM model. Thus, the storage units needed to be 
converted to comparable SCMs in the CLASIC models. The main factors 
must remain consistent in converting the storage units in SWMM to the 
SCMs in CLASIC. These factors are total drainage area, total technology 
area, total captured volume, seepage rate, and total percentage of 
imperviousness. Since detention ponds and retention ponds are volume- 
based technologies, the most important factor to be consistent in the 
SCMs between the models is the total captured volume (Dell et al., 
2021). 

2.5.3. Global sensitivity analysis for urban hydrologic modeling in the 
Spring Creek watershed 

The method of Sobol global sensitivity analysis in SIMLAB 2.2.1 tool 
(Saltelli et al., 2004) was used to evaluate the importance of the model’s 
parameters. Specifically, the analysis examines the significance of open 
channel or pipe hydraulic parameters individually and in combination 
with other hydrologic parameters at various temporal and spatial scales. 
SWMM is a distributed hydrological model, i.e., the value of model 
parameters can vary by land use, soils, terrain, and other physiographic 
characteristics of the catchment. It is impractical and inappropriate to 
alter the values of model parameters for each computational subunit 
individually. To account for the spatial variability of the model pa
rameters and their relative values across subcatchments or hydraulic 
components, default values of each parameter were adjusted by a scaling 
factor that is applied to all values. The initial values of the model were 
obtained from an initial manual calibration of the model. Using Sobol 
technique, 3328 random samples were generated for 12 scaling factors 
corresponding to each model parameter in Table 3. The scaling factors 
were assumed to be uniformly distributed. A range of scale factors was 
selected for each parameter based on the parameters’ feasible range 
(Table 3) and their initial values. The SWMM was run using the 3328 
random samples to simulate discharge at the gauged locations along the 
Spring Creek catchment (Fig. 4) over the 2008–2018 period. Finally, the 
sensitivity of different hydrological responses (i.e., total flow, peak flow, 
total runoff, evaporation, and infiltration) to the selected parameters 

and their interactions with each other were evaluated at different tem
poral and spatial scales. 

2.5.4. Model parameterization, calibration, and testing in the Spring Creek 
watershed 

The SWMM model was calibrated for total flow at the hourly time 
scale and at both gauged locations using only the catchment’s parame
ters that could be modified in both SWMM and CLASIC tools. The 
roughness of the impervious and pervious area (N-Imperv, and N-Perv) 
were excluded from the calibration as they were found not sensitive. 
Since the groundwater was not modeled in this study, baseflow was 
extracted from the observed discharge using the Web-based Hydrograph 
Analysis Tool (WHAT) baseflow separation tool (Lim et al., 2006) based 
on the digital filter method by Lyne and Hollick (Lyne and Hollick, 
1979) and was added to the models. The method of Sobol was utilized to 
generate 2560 parameter samples using SIMLAB 2.2 (Saltelli et al., 
2004). The period of available observed discharge (2006–2018) was 
divided into two parts for the calibration and testing the calibrated 
model’s performance. The first nine years of the data (2006–2014) were 
used for the calibration of the SWMM model, considering the first two 
years (2006–2007) for the model’s warm-up period. During the cali
bration process, the model performance metrics were calculated, and the 
best sample set based on the closest value of NSCE to one was selected, 
and other performance metrics were also checked to meet the accep
tance criteria (Moriasi et al., 2015). The calibrated model was then 
tested against the observed data from 2015 to 2018. 

3. Results and discussion 

The results of the study indicate that the CLASIC tool is appropriate 

Fig. 4. Spring Creek watershed (drainage area: 23 square kilometers) and stream gauge locations.  

Table 3 
Range of values of the SWMM parameters for the sensitivity analysis in the 
Spring Creek watershed.  

Parameter Units Range 

Width m 107–6346 
Slope % 0.25–43.8 
%Imperv % 4–99 
DstoreImperv mm 0–2.54 
DstorePerv mm 2.54–7.62 
%ZeroImperv % 1–5 
Max infiltration rate cm/hr 2.54–25.4 
Min infiltration rate cm/hr 0.025–1.27 
Decay Constant rate 1/hr 2–12 
Manning’s N – 0.01–0.4 
N-Imperv – 0.011–0.024 
N-Perv – 0.014–0.8  
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for urban stormwater modeling and assessment of SCMs including GSIs 
at municipal scale. Specifically, the model reliably characterized the 
annual water budget, daily FDCs, and daily to monthly stream discharge 
time series at different spatial scales. The hydraulic parameters gain 
more importance in hydrologic responses of the catchment at smaller 
time steps, and thus, must be carefully incorporated for flood assess
ments at the hourly or sub-hourly time steps. The CLASIC tool demon
strates notably faster simulation runtime compared to SWMM. The gains 
in computational efficiency grow superlinearly as the drainage area and 
the number of computational elements increase, capability that makes it 
suitable for municipal scale characterization of hydrologic responses. 

3.1. Model performance for hydrologic responses at different temporal 
scales 

The parameter set with the highest NSCE over the calibration period 
2008–2014, referred to as the calibrated parameters, was selected for 
the SWMM and CLASIC model assessment. The selected set of scale 
factors assigned to the initial values of the parameters was 0.73 for 
width, 1.94 for slope, 0.50 for %Imperv, 0.79 for depression storage of 
impervious area (DstoreImperv), 0.76 for depression storage of pervious 
area (DstorePerv), 2.78 for percent impervious area with no depression 
storage (%ZeroImperv), 13.06 for max infiltration rate, 0.76 for min 
infiltration rate, and 0.63 for decay rate. 

The performances of the models for simulation of hourly, daily, and 
monthly discharge using the calibrated parameters for the two stream 
discharge gauging stations are provided in Table 4 for both the cali
bration and testing periods. Overall, the evaluation statistics indicated a 
very good fit between the SWMM model and observed responses with 
NSCE greater than 0.7 and PBIAS less than 10 percent at all time steps 
and both gauging locations. In the Spring Creek watershed, the observed 
standard deviations of hourly, daily, and monthly discharges are 0.72, 

0.56, and 0.47 (m3/s) at the Center location and 0.62, 0.36, and 0.29 
(m3/s) at the Timberline location. Thus, the results indicate that RMSE 
values are low enough for all the temporal scales and in both locations, 
indicating good model accuracy. 

The CLASIC model with the calibrated parameters provides a very 
good fit with observed monthly discharge at both gauging locations. At 
the Center gauging location, the model performs very well for daily 
discharge simulations over both the calibration and testing period. 
However, the simulated daily discharge seems to inadequately represent 
observed values at the Timberline location over the calibration period. 
Although NSCE values from the Timberline model are not satisfactory 
for small temporal scales (hourly and daily), CLASIC’s performance is 
good for the monthly temporal scales. In the Center model, the hourly 
results are not "Good" but still acceptable; however, daily and monthly 
results are "Very Good". Thus, the CLASIC tool is more accurate in 
estimating the total discharge at the Center location than at the 
Timberline location, which has a bigger drainage area. 

The time of concentration for the Center’s and Timberline’s catch
ments is about 7 and 10 h, respectively, based on the SCS method 
(USDA-NRCS, 2010). As shown in the results, for the Timberline loca
tion, although the CLASIC model does not show good R2 and NSCE on 
the daily scale, it has a "Good" PBIAS (Table 4). Thus, it can be concluded 
that in both locations, the CLASIC tool shows acceptable performance 
for time scales larger than the time of concentration. 

The FDC indices were derived from both simulated and observed 
daily FDCs (Table 4). A negative sign for the normalized maximum 
difference in discharge (FDCQmax,) indicates that the model has under
estimated the observed values, while a positive sign indicates over
estimation in the model. In the Center stream gauge location, which has 
a smaller drainage area, both models consistently underestimate the 
discharge across all segments of the FDCs (low-flow, intermediate-flow, 
and high-flow) at the selected evaluation points (Table 4). Thus, the 

Table 4 
Model performance metrics and FDC indices.  

Model Evaluation Metric Time Step Center Timberline 

SWMM CLASIC SWMM CLASIC 

Over the calibration period (2008–2014) PBIAS (%) Hourly 8.70 4.70 −0.06 −12.28 
Daily 7.22 4.90 4.95 −5.00 
Monthly 8.15 4.50 1.22 −10.68 

RMSE (m3/s) Hourly 0.28 0.49 0.34 1.10 
Daily 0.15 0.23 0.16 0.49 
Monthly 0.11 0.09 0.07 0.14 

R2 Hourly 0.87 0.64 0.86 0.36 
Daily 0.94 0.85 0.89 0.50 
Monthly 0.98 0.97 0.95 0.88 

NSCE Hourly 0.85 0.54 0.70 −2.21 
Daily 0.93 0.83 0.81 −0.94 
Monthly 0.95 0.96 0.94 0.76 

Over the testing period (2015–2018) PBIAS (%) Hourly 9.03 3.89 6.51 −0.75 
Daily 8.30 4.68 8.10 3.41 
Monthly 8.80 3.97 9.74 2.21 

RMSE (m3/s) Hourly 0.14 0.19 0.22 0.50 
Daily 0.07 0.08 0.11 0.14 
Monthly 0.05 0.04 0.08 0.07 

R2 Hourly 0.90 0.79 0.87 0.59 
Daily 0.96 0.92 0.92 0.88 
Monthly 0.99 0.98 0.95 0.94 

NSCE Hourly 0.89 0.79 0.83 0.15 
Daily 0.94 0.92 0.91 0.85 
Monthly 0.96 0.95 0.94 0.94 

Daily FDC (2008–2018) FDCA (%) 3.80 2.60 5.20 4.60 
FDCAunder (%) 7.66 5.20 5.81 3.83 
FDCAover (%) 0.00 0.00 1.90 5.28 
FDCQmax,high −0.19 −0.07 −0.01 0.09 
FDCQmax,mid −0.12 −0.08 0.55 0.52 
FDCQmax,low 1.73 0.10 0.11 0.05 
FDCPmax (%) 4.21 3.70 6.90 5.97 

Note: The negative values of FDCQmax in the table show underestimation of the observed discharge in the simulation.  
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normalized difference between PWQs (FDCA) arise only from 
underestimation. 

Conversely, at the Timberline location with a larger catchment, the 
FDCAover for the CLASIC model is roughly three times the one for SWMM, 
and the FDCQmax,high for CLASIC is nine times the one for SWMM 
(Table 4). Thus, when both models overestimate the observed discharge, 
particularly at higher flows, CLASIC is more prone to overestimating 
observed discharge than SWMM. However, it’s important to note that 
despite these differences in estimation, both models display a strong 
alignment with the observed data. The daily FDCs from both locations 
confirm this alignment (Fig. 5). Extremely high flows, which have the 
possibility of being equaled or exceeded by less than 0.001 (1000-year 
return period), produce the biggest overestimation in the CLASIC tool at 
both locations. However, these discharge values are not considered in 
the FDC indices in this study as they have been rarely exceeded (Alaya 
et al., 2018; Johnson and Smithers, 2020). Therefore, unlike the per
formance metrics, the indices based on FDCs are not extracted based on 
all the discharge values, emphasizing the more frequent ones 
(0.001–0.99). At the Timberline location, the CLASIC model tends to 
overestimate discharge with an exceedance probability below 5% (re
turn periods greater than 20 years), while the SWMM model over
estimates discharge with an exceedance probability below 1.5%. This 
variation in overestimation between the two models is highlighted by 
FDCAover, derived from the difference in the overestimated area under 
FDCs. 

Based on the model performance metrics SWMM and CLASIC 
models, both models performed better in the testing period (2015–2018) 
than the calibration period (2008–2014). Furthermore, it was under
stood from the FDCs that the primary discrepancy in the performance of 
SWMM and CLASIC is related to their ability to predict peak discharge. 
To gain deeper insights into these findings, the peak daily discharge 
extracted from the time series of CLASIC and SWMM models for the 
period of 2008–2018 is compared to the observed daily discharge 
(Fig. 6). The comparative analysis between these two models at both 
gauged locations shows that CLASIC tends to overestimate the extreme 
peak discharge values more than SWMM, while in lower peak discharge 
values, the models show more agreement. A notable observation is a 
single instance where CLASIC significantly overestimated observed 
flows. Further investigation revealed its connection to a severe storm 
event in July 2009 (within the calibration period), during which the 
study area experienced approximately 50 mm of rainfall within an hour, 
as recorded by the rain gauges. This event appears to be a key factor in 
the observed discrepancy in the models predictions. 

3.2. Estimation of annual hydrologic budgets 

The average annual hydrologic components (runoff, infiltration, and 
evaporation) were also extracted and compared with those from the 
calibrated SWMM model (Fig. 7). Results revealed that both CLASIC and 
SWMM models provide closely aligned estimates of each hydrologic 
component with a maximum difference of 2% in evaporation. These 
results suggest that the CLASIC is an appropriate tool to estimate the 
urban hydrologic balance for assessing urban green stormwater infra
structure at the municipal scale. 

3.3. Importance of model parameters at different temporal and spatial 
scales 

Table 5 and Fig. 8 represent the results of Sobol sensitivity analysis 
for different outputs of the SWMM model, including average annual 
runoff, evaporation, and infiltration of the Spring Creek watershed, as 
well as the total and peak flow volume at the gauged locations at 
different temporal scales. The first-order indices (Si) and total order 
indices (STi) are displayed, representing the individual effects of each 
parameter on model outputs and their influence when interacting with 
other parameters, respectively. 

Table 5 highlights the importance of the percentage of impervious 
area (%Imperv) in simulating the water cycle components (i.e., hydro
logic budgets), particularly infiltration. The depression storage in the 
impervious area (DstoreImperv) is the next most influential parameter, 
followed by the minimum infiltration rate regarding both the individual 
effect and the interactions with other parameters. These parameters 
have also been found important in previous studies (Barco et al., 2008; 
Dell et al., 2021). Therefore, for research topics primarily focusing on 
water cycle components, such as hydrological modeling and water 
resource management, incorporating only these critical parameters for 
water cycle components may be sufficient to provide accurate results. 

Fig. 8 demonstrates the average and standard deviation of sensitiv
ities of total flow and peak flow at different temporal scales (i.e., hourly, 
daily, weekly, monthly, and annual) to each input parameter. As 
observed for the water cycle components, the percentage of impervi
ousness (%Imperv) is the most influential parameter for the discharge 
outputs at both gauged locations. This parameter has also been reported 
as the most influential parameter for hydrological responses by many 
studies (Barco et al., 2008; Dotto et al., 2011; Gamerith et al., 2013; 
Guanipa Rivero et al., 2019; Hidayat and Soekarno, 2020; Zaghloul, 
1983). In contrast to the average total flow, all the input parameters 
have some level of importance when simulating peak flow, and their 

Fig. 5. Flow duration curves (FDC) of observed average daily discharge against the CLASIC and SWMM models: (a) Center stream gauge (drainage area: 11 square 
kilometers), (b) Timberline stream gauge (drainage area: 21.5 square kilometers). 
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sensitivity varies substantially across different temporal scales, espe
cially at the Timberline location with a larger drainage area. This sug
gests that for studies related to peak flows, such as flood management, a 
comprehensive understanding and careful calibration of these input 
parameters are essential, and simplified models that ignore some of 
them may not be a suitable choice. 

3.4. The sensitivity of peak flow to the Channel’s parameter across 
different temporal and spatial scales 

Given the observed variation in the influence of input parameters on 
discharge across various temporal scales and the enhanced accuracy of 
CLASIC to simulate discharge at larger temporal scales considering its 
decoupled hydrologic and hydraulic components, the focus of sensitivity 
analysis was narrowed to examine the peak flow’s sensitivity to the 
channel’s Manning’s N coefficient. The channel’s roughness shows 
higher importance to peak flow at smaller time scales and in the 

Timberline location with a bigger drainage area (Fig. 9). 
Overall, global sensitivity analysis showed that as the temporal scale 

gets smaller and the size of the watershed increases, the peak flow be
comes more sensitive to the roughness of the channel. This observation 
can be corroborated by the performance metrics of the CLASIC tool, 
which indicated that sub-daily discharge simulations, particularly at the 
larger drainage area (upstream of the Timberline location), were not as 
accurate. These findings emphasize the critical role of channel charac
teristics when smaller temporal scales are crucial for the study, such as 
in research topics focused on flood events, flood modeling and fore
casting, flood risk analysis, etc., where the CLASIC tool may not be 
applicable. 

3.5. The computational time of the CLASIC tool and the SWMM model 
for simulating hydrologic response at different spatial scales 

A comparative analysis was conducted between the computational 

Fig. 6. Comparative analysis of the SWMM and CLASIC model in simulating the peak daily discharge. (a) at Center stream gauge location, (b) at Timberline stream 
gauge location. 

Fig. 7. CLASIC vs SWMM in computing the proportion of each hydrologic component in the total average annual rainfall from 2008 to 2018 (432.56 mm).  

Table 5 
Most important parameters of the watershed for simulating the water cycle components (hydrological budgets).  

Parameter First order index (S) Total order index (ST)

Runoff Evaporation Infiltration Runoff Evaporation Infiltration 

%Imperv 0.60 0.47 0.88 0.60 0.48 0.88 
DstoreImperv 0.31 0.42 0 0.31 0.43 0 
Min Infiltration rate 0.04 0.08 0.07 0.06 0.12 0.11  
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time of the SWMM and CLASIC models for assessing the hydrologic re
sponses across varying spatial scales (Fig. 10). The expanding area 
corresponds to a more complex model and subsequently, an increase in 
the number of elements. With a greater number of elements, especially 
hydraulic elements, SWMM requires considerably more time to simulate 
the processes. The computational time for both models increases as the 
drainage area expands (Fig. 10(a)). Specifically, the SWMM model’s 
computational time shows a superlinear growth from approximately 95 

s at five sq. km to nearly 1900 s at 23 sq. km. As shown by the trendline, 
the superlinear growth is quantitatively expressed by the R2 value of 
0.998, indicating a strong relationship between the SWMM model’s 
computational time and the drainage area size. Conversely, the 
computational time of the CLASIC tool increases at a relatively constant 
rate with expanding drainage area. The trendline shows the linear 
behavior of the CLASIC model with an R2 value of 0.977. Furthermore, 
the difference between the computational time of SWMM and CLASIC 
models indicates a superlinear relationship with the expansion of the 
drainage area with R2 value of 0.96 (Fig. 10(b)). This comparative 
analysis demonstrates the enhanced efficiency of the cloud-based CLA
SIC web tool compared to the complex SWMM model in assessing the 
hydrologic responses at larger scale study areas, especially at the 
municipal scale. 

4. Conclusion 

CLASIC tool’s performance and efficiency in simulating the hydro
logical responses were evaluated and compared to the complex SWMM 
model and observed data at the Spring Creek watershed. Sobol global 
sensitivity analysis was also conducted to investigate the significance of 
interconnected hydrologic and hydraulic parameters and their associ
ated processes on hydrologic responses. These analyses allowed for 
assessing the effect of decoupling hydrology and hydraulic components 
on the water cycle and the stream discharge at various temporal and 
spatial scales. The flow analysis results suggested that the performance 
of the CLASIC tool is acceptable to evaluate the total volume of the 
discharge at the temporal scales greater than the time of concentration 
of the watershed. Furthermore, the CLASIC tool performed well at 
municipal scale simulation of the urban water cycle, suggesting that it is 

Fig. 8. Average effect of each input parameter on the streamflow. The vertical and horizontal bars represent the variability (standard deviation) of each parameter’s 
total and first sensitivity indices, respectively, at various temporal scales: (a) Average total flow at Center stream gauge, (b) Average total flow at Timberline stream 
gauge, (c) Peak flow at Center stream gauge, (d) Peak flow at Timberline stream gauge. 

Fig. 9. Variation in the sensitivity of peak flow to channel’s roughness (Man
ning’s N) at different temporal scales. The time of concentration at Center and 
Timberline stream gauges are 7 and 10 h, respectively. 
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well suited for urban stormwater management applications, such as 
evaluating the performance of green and gray infrastructures, where the 
primarily focus is on the total runoff volume. 

The global sensitivity analysis results emphasized the importance of 
effective imperviousness (or directly connected impervious area) in 
urban watershed models, which is sometimes overlooked by modelers 
who rely on total imperviousness. Furthermore, it underscores the 
importance of channel parameters in hydrologic responses for studies, 
such as flood analysis, where smaller temporal scales (i.e., hourly and 
sub-hourly) are crucial. In such cases, the models that provide more 
detailed insights into hydrographs are preferable. 

CLASIC significantly enhances efficiency in urban hydrology studies 
by automating parameterization using national datasets, thereby 
reducing the need for extensive user input. Additionally, its faster 
simulation capabilities become particularly advantageous for larger 
study areas, such as municipal scale, while the SWMM model’s simu
lation time tends to grow superlinearly with the expansion of the 
drainage area. 

This study helps researchers and engineers select appropriate models 
for future studies based on specific objectives, data availability, and time 
limitations. Specifically, it underscores the effective use of the CLASIC 
tool for evaluations of SCMs (e.g., GSI) and climate and land use change 
assessment at neighborhood to municipal scales. However, the cost and 
co-benefit components of the CLASIC tool are not discussed in this study. 
Hence, future work will focus on these components of the tool and the 
development of optimization components that allow planners to select 
the technologies most consistent with their desired goals regarding hy
drologic effects, co-benefits, and life cycle costs. 

5. Software availability 

Web tool URL: https://clasic.erams.com/ 
Documentation URL: https://erams.com/catena/tools/urban-plann 

ing/clasic/ 
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