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ARTICLE INFO ABSTRACT

Keywords: Extensive data and computational requirements limit the application of existing urban hydrology models at
Urban hydrology municipal scales. Community-enabled Lifecycle Analysis of Stormwater Infrastructure Costs (CLASIC) is a web-
Modeling based deployment of the SWMM model with decoupled hydrologic and hydraulic components to enable hy-
gﬁ;‘;sed drologic assessment at the municipal and larger scales. This study comprehensively evaluates the performance

validity of CLASIC for characterization of hydrologic responses against SWMM and observed data. Furthermore,
global sensitivity analysis is used to explore the significance of hydrologic and hydraulic model parameters across
spatial and temporal scales. CLASIC reliably represents the urban hydrological processes and accurately quan-
tifies stream discharge at the municipal scale and temporal scales greater than the catchment’s time of con-
centration. Notably, the computational requirements of CLASIC are substantially lower than those of SWMM as
the catchment drainage area increases. The application of CLASIC for flood assessment may be conducted with

Global sensitivity analysis

careful examination of the estimated peak discharge at sub-daily timescales.

1. Introduction

Urbanization can substantially alter hydrologic budgets in urban
catchments, leading to changes in the natural water cycle and increasing
the risk of flooding and water pollution (C. Li et al., 2018; Locatelli et al.,
2017; Miller et al., 2014; Wang et al., 2022). Urban hydrological models
are important tools in stormwater management, flood resilience, and
urban planning. These tools are increasingly used to inform stormwater
decisions, such as planning, design, and implementation of gray, green,
and hybrid stormwater infrastructure (Ahiablame et al., 2012; Moral-
es-Torres et al., 2016). However, their applications for comprehensive
hydrologic assessments at the larger municipal scale are hampered by
cumbersome computational requirements, numerical convergence, and
model parameterization challenges (Hamouz and Muthanna, 2019; R. L.
Pachaly et al., 2020; Shahed et al., 2020).

The US Environmental Protection Agency (EPA) Storm Water Man-
agement Model (SWMM) (Rossman, 2015) is one of the most used tools
for representation of hydrological processes in urban areas. The model
enables evaluation of the efficiency of stormwater control measures
(SCMs), including green stormwater infrastructure (GSI), in reducing the
consequences of increased imperviousness from urban development
(Cipolla et al., 2016; Hamouz and Muthanna, 2019; Haris et al., 2016;
Jang et al., 2007; Shahed et al., 2020). However, modeling large-scale
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urban watersheds with SWMM may be hampered by extensive data re-
quirements for site-specific parameters and drainage structure, which
may not be broadly available (Ha and Stenstrom, 2008; Shahed et al.,
2020). Furthermore, providing the input data related to the study area
can be challenging and time-consuming due to the lack of direct GIS
linkage in the model (Xiao et al., 2019). Moreover, the simulation run-
time and numerical convergence exacerbate as the drainage area and the
number of computational elements of the model increase (Niazi et al.,
2017; R. Pachaly et al., 2019). SWMM is also typically applied for
stormwater and flood management at the sewershed scale (Babaei et al.,
2018; Hidayat and Soekarno, 2020; Rai et al., 2017).

Several tools incorporate SWMM as the simulation engine for rep-
resentation of hydrological process to enable assessment of the effects of
climate change, land use, and stormwater practices, such as green
stormwater infrastructure (GSI) (Baek et al., 2020; Rai et al., 2017; Zeng
et al., 2021). For instance, the EPA’s Storm Water Calculator (Rossman
and Bernagros, 2019) estimates runoff at site scale planning units (less
than 5 ha) for alternative land use and stormwater control scenarios. The
web-based tool is desirable because it does not require considerable user
input and parameterization. However, its simulation has been shown to
be highly uncertain at large scale areas (Dell et al., 2021). Moreover, the
tool does not have options for representation of the co-benefits and
water quality effects of the stormwater control measures. Another
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decision support tool, called System for Urban Stormwater Treatment
and Analysis INtegration (SUSTAIN), offers a public domain tool for
determining the optimal location, type, and construction cost of
stormwater practices (Shoemaker et al., 2009). SUSTAIN utilizes algo-
rithms from SWMM to simulate the flow and pollutant routing (Lee
et al., 2012). Therefore, modeling a large-scale watershed using SUS-
TAIN is as complex as SWMM and demands extensive data and a thor-
ough understanding of watershed and GSI modeling processes. While
focusing primarily on water quality outcomes, SUSTAIN does not
include the additional benefits from implementing stormwater control
measures (e.g., social, economic, and environmental) or lifecycle costs
(LCC). Other tools not based on SWMM are also available for the
assessment of stormwater control infrastructure, including the Center
for Neighborhood Technology (CNT) Green Values Calculator (CNT,
2022), RECARGA (Severson and Atchison, 2004), and E2STORMED
Decision Support Tool (Morales-Torres et al., 2016). The major short-
coming of these tools is their simplistic methodology for simulation of
hydrologic and water quality processes. Moreover, these tools do not
include lifecycle cost and benefit assessment capacities.

With the increasing complexity of the existing urban hydrology
models, increasing interactions between hydrological and hydraulic
processes at large spatial scales tend to govern model convergence and
computational costs (Chen et al., 2022; Munoz-Carpena et al., 2023; R.
L. Pachaly et al., 2020). While representation of these interactions may
be important for characterization of sub-hourly flood responses, they
may not substantially influence model performance for characterization
of hydrological processes at larger temporal and spatial applications that
focus on the effects of stormwater control measures on the daily,
monthly, or annual water budgets and water quality. Selecting an
appropriate level of model complexity must incorporate the specific
purposes of the study, available data, and desired level of accuracy
(Birhanu et al., 2018; Devia et al., 2015; Gui et al., 2021; Pechlivanidis
et al., 2011).

The Community-enabled Lifecycle Analysis of Stormwater Infra-
structure Costs tool (CLASIC, 2020) uses SWMM for urban hydrological
simulations. However, it remedies challenges with municipal or regional
applications of SWMM by disaggregating hydraulic components from
hydrological simulations without compromising performance validity
for hydrologic assessments (Dell et al., 2021). The web-based CLASIC
tool supports stormwater planning and decision-making by character-
izing lifecycle costs (LCC), runoff volume reduction, and pollutant
removal, as well as triple-bottom-line (TBL) co-benefits (i.e., social,
economic, and environmental co-benefits) of the SCMs. The tool enables
users to assess different scenarios of stormwater infrastructure using
different designs and combinations of practices and to compare them in
terms of their costs, co-benefits, and performance in evaluating the
extent and combination of green, hybrid green-gray, and gray infra-
structure practices (WRF, 2019). The integration of hydrologic and
water quality performance, TBL co-benefits, and LCC of gray and green
stormwater practices in CLASIC provides a unique web-based data
analysis and modeling software for comprehensive planning and
decision-making.

The hydrologic components of CLASIC provides acceptable perfor-
mance in estimating the total volume of water cycle components (i.e.,
runoff, evaporation, and infiltration) and evaluating the performance of
stormwater control measures (SCM) compared to the full SWMM sim-
ulations (Dell et al., 2021). However, the effects of disaggregating hy-
drologic and hydraulic components on hydrologic and water fluxes at
different temporal and spatial scales have not been previously investi-
gated. The municipal scale holds a significant interest for city planners
and decision-makers, and different temporal scales are appropriate for
different applications, depending on the study’s objectives (Moriasi
et al., 2015). Furthermore, the computational requirements of hydro-
logic models increase as the drainage area of the study catchment in-
creases. However, the potential improvements in simulation time by
using CLASIC compared to SWMM has not been sufficiently
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characterized.

This study aims to examine the performance validity and computa-
tional requirements of the CLASIC tool for municipal scale character-
ization of urban water cycle and hydrologic fluxes. Specifically, the
objectives of this study are to: 1) assess the performance validity of the
CLASIC model in simulating runoff volume, evaporation, infiltration,
and full discharge statistics at hourly to annual time steps compared
with SWMM model and observed discharge; 2) investigate the impor-
tance of interconnected hydrologic and hydraulic parameters and their
associated processes for simulated stream discharge at different tem-
poral and spatial scales; and 3) examine the computational time of the
CLASIC and SWMM models at varying spatial scales. The findings of the
study support appropriate applications of the CLASIC tool for evalua-
tions of SCMs (e.g., GSI) and climate and land use change assessment at
neighborhood to municipal scales.

2. Methods

To examine the study objectives, the SWMM and CLASIC models are
developed for the urban Spring Creek catchment in northern Colorado.
Model development incorporates detailed information about hydrologic
and hydraulic characteristics of the system. The hydrologic performance
of the models is evaluated at two stream discharge gauging stations
within the study catchment over the 2008-2018 period. The Sobol
global sensitivity analysis technique is conducted to examine the
importance of hydrologic and hydraulic model parameters, individually
and in combination, at hourly to annual time steps. Furthermore, the
computational requirements of the SWMM and CLASIC models are
assessed in terms of time of simulation as a function of contributing
drainage area and the number of hydrologic and hydraulic elements.

2.1. SWMM and CLASIC urban hydrology models

The Storm Water Management Model (SWMM) is a widely used tool
for urban watershed drainage system design and management (Haris
et al., 2016; Shahed et al., 2020). The model is utilized in hydrological
studies to simulate the hydrologic effects of urbanization and flood
analysis (Babaei et al., 2018; Jang et al., 2007). With the integration of
Low Impact Development (LID) controls in 2010 and further enhance-
ments in 2015, SWMM evolved to support green infrastructure perfor-
mance evaluation, notably in runoff reduction via various LID controls
like green roofs and porous pavements (Rossman, 2015). Several studies
corroborate SWMM'’s efficacy in evaluating LID controls, highlighting its
reliable simulation of runoff from SCMs including GSI and LID controls
(Cipolla et al., 2016; Hamouz and Muthanna, 2019; Kong et al., 2017).
The important parameters of the SWMM model that are used in this
study are provided in Table 1. There are also other infiltration methods
that can be applied to a model in SWMM (e.g., Green-Ampt) which are

Table 1
SWMM model parameters that are used in this study.
Parameter Unit Description
Width m Width of overland flow path
Slope % Average surface slope
%Imperv % Percent of impervious area
Dstorelmperv mm Depth of depression storage on impervious area
DstorePerv mm Depth of depression storage on pervious area
%Zerolmperv % Percent of impervious area with no depression
storage
Max infiltration cm/ Horton maximum infiltration rate
rate hr
Min infiltration rate  cm/ Horton minimum infiltration rate
hr
Decay Constantrate ~ 1/hr Horton decay rate
Manning’s N - Channel’s Manning’s roughness
N-Imperv - Manning’s N for impervious area
N-Perv - Manning’s N for pervious area
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not included in this study.

Despite the widespread application of SWMM, modeling a large-scale
watershed with this model is impeded by issues such as numerical
convergence, simulation time, and extensive data required due to the
detailed flow routing methods, including kinematic wave routing model
that is based on solving the continuity equation, and the dynamic wave
routing model that solves the full Saint Venant equations for conserva-
tion of mass and momentum (Niazi et al., 2017; Rossman, 2010).

The CLASIC tool is a robust cloud-based web tool for the assessment
of hydrologic, life costs, and triple bottom line (social, economic, and
environmental) co-benefits of gray, green, and hybrid stormwater
infrastructure (CLASIC, 2020). The CLASIC tool is deployed as a web
analytic using the eRAMS cloud computing platform software (eRAMS,
2024). The eRAMS platform offers powerful cloud-based capabilities for
building computationally scalable and platform-independent tools that
can be accessed through web browsers on desktop or mobile devices.
The software supports content management, geospatial mapping and
processing, data analysis and modeling services, and apps (Catena,
2024). Data analysis and modeling services in the eRAMS are deployed
using the Cloud Services Implementation Platform (CSIP) (David et al.,
2014; W.s Lloyd et al., 2013; W. J. Lloyd et al., 2015) with RESTful web
services (Pautasso and Wilde, 2010). Specifically, features presented
within the CLASIC tool include (Fig. 1): define study area (selecting
project boundaries, land use, soil type, and land slope), climate and
geographic information (precipitation, evaporation, and EPA region),
model defaults, scenario builder (i.e., develop scenarios of technologies,
climate, and land use), co-benefits assessment, targets (i.e., set targets
for pollutant reduction, runoff volume reduction, and costs), run tool,
and view outputs in the results panel. Fig. 1 illustrates a schematic of the
CLASIC web tool, which is publicly available at clasic.erams.com.

Development of a hydrologic model in CLASIC is supported by cloud
data and modeling services that obtain data from publicly available
climate, land use and land cover, soil, slope, and water quality databases
(Table 2). Moreover, the tool leverages data from the International BMP
Database (BMPdatabase, 2019) and The National Green Infrastructure
Certification Program (NGICP, 2019) to parameterize stormwater
technologies. All model parameters can be modified for site-specific
parameterization and calibration.

The study area may include a single or multiple subcatchments.
CLASIC tool disaggregates the subcatchments based on the specific
properties assigned to each subcatchment. The spatial disaggregation
scheme in CLASIC is as follows: First the subcatchments are comprised of

CLASIC 1130
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Table 2
Publicly available datasets used in the CLASIC tool.

Database Reference

Climate station data from EPA Better Assessment
Science Integrating Point and Non-Point Sources
(BASINS) (USEPA, 2023)
The National Land Cover Database (NLCD) (U.S.
Geological Survey, 2018)

Climate: precipitation,
temperature, evaporation

Land use and Land cover

Soil Soil Survey Geographic database (SSURGO/
STATSGO) (Soil Survey Staff, 2019)

Slope Digital Elevation Model (U.S. Geological Survey,
2023)

Water quality: pollutant
concentration

National Stormwater Quality Database (NSQD) (
Pitt et al., 2004)

International Stormwater BMP database (
BMPdatabase, 2019)

directly connected impervious area (DCIA) and separate pervious area
(SPA) based on the percentage of the impervious area. Additionally,
SCMs such as GSIs can be explicitly added to subcatchments using the
Scenario module. Fig. 2 illustrates an example of a subcatchment with
GSI placed in the available surrounding pervious area. The area allo-
cated to the GSI (represented by the receiving pervious area (RPA) in
Fig. 2) is taken out from the SPA and will be a standalone subcatchment.
The area of the DCIA treated by GSIs is a model parameter. This
parameter is set to a default value equal to 10 percent of the total
imperviousness and can be modified by the user based on their specific
target. The treated area is subsequently taken out from DCIA and be-
comes the unconnected impervious area (UIA) that flows to RPA. CLA-
SIC starts with a baseline scenario where there is no GSI implemented.
Additional scenarios can be created by adding SCMs to the baseline
scenario. SCMs that can be explicitly modeled in the Scenario Builder
module of CLASIC include Rain Garden/Bioretention, Sand Filter,
Infiltration Trench, Vegetative Swale, Extended Detention Basin, Wet
Pond, Stormwater Harvesting, Storage Vault/Tunnel, Green Roof,
Permeable Pavement, and Rooftop Disconnection (CLASIC, 2020).

The Scenario Builder module of CLASIC includes a component to
compute the number of required SCMs based on the treated impervious
surface and the design characteristics of SCMs. For volume based SCMs,
the volume required to be captured by GSIs is calculated based on the
UIA and the design depth. Subsequently, the number of GSI units will be
calculated based on the total volume required to be captured and the
volume capacity of each GSI unit. The number of area-based GSIs (e.g.,

LoGouT

& %

Subunits Water Quality >

& subunitip Area (Ac) Impervious (%) Slope (%)

1 205.2 7.55859375 23.29

Fig. 1. CLASIC web tool interface.


http://clasic.erams.com

M. Mohammad Zadeh et al.

e -7
;"W%j“-

&

Catchment Subcatchment

Environmental Modelling and Software 179 (2024) 106096

SPA

oy r===--
| [ I

L_l_l

I V"
RPA ~ :

DBt |
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Fig. 2. Illustration of the CLASIC hydrologic model of a subcatchment. The white boxes represent the area of DCIA and SPA that were specified by the user to be used
as UIA and RPA, respectively (they are taken out from DCIA and SPA to become standalone subcatchments of UIA and RPA).

permeable pavements) solely depends on the treated impervious area
and the area of the GSI unit (CLASIC, 2020). The detailed information
and calculations can be found in the CLASIC’s user guide at clasic.erams.
com.
Finally, CLASIC incorporates a modified SWMM model (Fig. 2) to
simulate hydrologic and routing processes. The modified model disag-
gregates the hydrologic and hydraulic components of SWMM, models
the hydraulics within the subcatchments, routes runoff through them,
and then employs dummy conduits in SWMM for the linear routing of
hydrological responses to the outlet of the watershed. This modeling
approach, while reducing the computational burden, may affect the
simulated hydrographs at different spatial and temporal scales. In this
study, we examine the effects of these changes on the model
performance.

2.2. Model evaluation

Model evaluation is often conducted using non-commensurate sta-
tistical measures of model performance (Gupta et al., 1997). Specif-
ically, this study employs the coefficient of determination (R%), root
mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency
(NSCE), and percent of bias (PBIAS) to examine the performance of the
SWMM and CLASIC models. The model’s performance is "very good"
when NSCE is greater than 0.8, R? is greater than 0.85, and PBIAS is less
than +5 percent for daily and monthly simulation time steps (Moriasi
et al., 2015). The model performance may be characterized as "good"
when NSCE is between 0.7 and 0.8, R? is between 0.75 and 0.85, and
PBIAS is between 5 and 10 percent. Furthermore, it is recommended that
the RMSE value is low enough to be less than the standard deviation of
the observed data for good model accuracy (Singh et al., 2005). How-
ever, a more robust model performance evaluation may be conducted
using hydrologic signatures from the probabilistic characteristics of
observed and simulated discharge.

A flow duration curve (FDC) represents the full statistics of discharge
conditions and is obtained by plotting the discharge versus exceedance
probability of discharge (i.e., the percentage of time that the indicated
discharge is equaled or exceeded). Fig. 3 illustrates a schematic of
observed and simulated FDCs. The shape of FDCs is influenced by the
hydrologic, climatic, and hydrogeologic characteristics of the watershed
(Searcy, 1969). FDCs have a wide range of applications in the field of
hydrology and water resources planning, such as water quality man-
agement, flood frequency analysis, and water resource allocation (Vogel
and Fennessey, 1996).

The flow duration curve is obtained by plotting discharge values (Q)
sorted in the order of largest to smallest values versus their corre-
sponding exceedance probability (p). Exceedance probability of
observed discharge may be obtained from the plotting position formulas
in Eq. (1) (Cunnane, 1979):

. .
1 —— Observed
: m= == Simulated
1 1 |
\ ! Overestimation !
—_ 1 1
g N, 1
o | . |
20 1 1 Underestimation
e I
2 : !
= | 1 1
o 1 1
1 1
High Intermediate :
B 1 1
1 1
1 1
1 1
1 1 L 1 1
0 0.2 0.4 0.6 0.8 1

% Time indicated flow is equaled or exceeded (1-F(Q))

Fig. 3. Illustration of a flow duration curve (FDC) for model evaluation. The
shaded region represents the difference between the areas under the observed
and simulated FDCs. The black dashed lines divide FDC into three segments of
high flow (p<10%), intermediate flow (10%<p<60%), and low flow (p>60%).
The area under FDC may be referred to as the probability-weighted discharge.

]—a

= _ 1
N+1-2a 1)

p=1-FQ

where ?(Q) denotes the empirical cumulative probability distribution
function of discharge, j is the rank of observed discharge in descending
order of magnitude, N denotes sample size, @ is the constant that is
defined based on the underlying probability distribution of discharge. In
this study, a is set at 0.

Several studies have used FDC as a measure of model performance to
simulate observed stream discharge (Hughes and Smakhtin, 1996; Ley
et al., 2016; Miiller and Thompson, 2016; Matthias Pfannerstill et al.,
2014; Rauf and Ghumman, 2018). Hydrologic signature indices derived
from FDC’s different meaningful regions (i.e., high-flow, inter-
mediate-flow, and low-flow) have been used to compare simulated and
observed discharge from specific segments of FDCs (Yilmaz et al., 2008).
Other studies used the difference in discharge at various exceedance
probability evaluation points (Coxon et al., 2014; Westerberg et al.,
2011). An example of these indices is the maximum difference in
discharge between observed and simulated FDCs (Q,,.4).- The maximum
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difference in exceedance probability between observed and simulated
(FDCs) represents the test statistic for the commonly used
Kolmogorov-Smirnov test of the hypothesis that observed and simulated
data come from the same underlying probability distribution.

The area under the FDC represents the probability-weighted
discharge (PWQ), which is an aggregate measure of discharge that in-
corporates the full range of discharge conditions. For example, (Vogel
et al. (2007) suggest using the area under annual FDCs to assess
eco-surplus and eco-deficit hydrologic conditions. Here, we use the area
under the FDC to assess the performance validity of the SWMM and
CLASIC models against observations using a probability-weighted
discharge index (FDCA):

(PWQo — PWQs) SO
FDCA:W: (/0 F~(p)dp

7A%4@@)/(A%4@@> @

where PWQo and PWQs represent the area under the observed and
simulated FDCs, respectively, and F~'(.) and F1(.) denote the inverse
cumulative distribution function (i.e., quantile estimation function) of
observed and simulated discharge.

Additionally, we use the normalized maximum difference between
ranked simulated and observed discharge (FDCQpax):

(F'(p) - F'(p)

=~ 3
F(p)

FDCQpnex = max {(QO — Qs)} = max{
Qo P

and the maximum difference between observed and simulated exceed-
ance probability (FDCPy,q,) for the full range of discharge values:

FDGP e = max{lpo — ps|) = max(|F(Q) — FQ)| @

The closer values of the FDC signature indices in Equations (2)-(4) to
zero indicate better model performance.

2.3. Identification of influential model parameters

SWMM simulation of hydrologic responses is influenced by model
uncertainties from inputs, model structure, and parameter uncertainty
(Fassman-Beck and Saleh, 2021; Gorgoglione et al., 2019; Renard et al.,
2010; Song et al., 2015; Sun et al., 2014; Vrugt, 2016; Zhang et al.,
2022). Thus, disaggregating hydraulic components of the model may
influence hydrological simulations. We employ a global sensitivity
analysis (GSA) technique to examine the effects of disaggregating hy-
draulic parameters from the SWMM model on sub-daily to annual time
steps.

Global Sensitivity Analysis (SA) is used to determine how the output
of a model is sensitive to the uncertainty of the inputs, and it plays an
essential role in any hydrological research. Global SA techniques explore
the whole feasible range of uncertain parameters and evaluate the in-
teractions between the parameters; they are suitable for nonlinear and
non-monotonic models (Saltelli et al., 2008; Song et al., 2015).
Considering the wide range of advantages and capabilities of global
sensitivity analysis compared to other sensitivity approaches (e.g., local
methods), modelers have used this method for many different purposes
in hydrological and hydraulic modeling (J. Li et al., 2013; Nossent et al.,
2011; M Pfannerstill et al., 2015; Sanadhya et al., 2014). Among various
global sensitivity analysis techniques, the method of Sobol (1990) is a
well-known and widely used approach. Studies have found this method
very successful in factor fixing and factor prioritization for discharge
simulations as well as finding controlling factors on salinity in soil,
groundwater, and river water (Cibin et al., 2014; Hosseini and Bailey,
2022; Nossent et al., 2011). Leimgruber et al. also found this method
proper to evaluate the sensitivity of water balance components to SCM
parameters using a SWMM model (Leimgruber et al., 2018).
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The method of Sobol was developed in 1990 based on the Fourier
Haar series (1969) for nonlinear models. Sobol used Monte Carlo
methods to evaluate multidimensional integrals to estimate sensitivity
measures (Archer et al., 1997). First-order sensitivity measures will be
calculated as below:

_ Vi V(E(YIX))

VY W) ®

SiT , as the total-order sensitivity measure, indicates the contribution
to the output variance from X; including both its main effect and all its
interactions with other factors:

V(E(YX.))

T, = 1-
§ v(Y)

©

where X_; represents all input factors except X;.

The larger the S; and ST;, the more sensitive the output model is to
the parameter X;. The smallest sample size in this method is n(2k+2).
The term "n" is the minimum model evaluation for estimating one in-
dividual effect, taking a value of 16, or 32, 64, 128, ..., and the term k is
the number of input factors (Koo et al., 2020; Nguyen and Reiter, 2015;
Saltelli et al., 2008).

2.4. Comparing computational runtime of the CLASIC and SWMM
models

To compare the computational time between CLASIC and SWMM
models, the study area was divided into eight segments. First, only one
subcatchment was considered, and the simulation time was recorded.
Then, in each subsequent run, an additional segment was included,
continuing this pattern until the final run covered the entire watershed.
This approach allowed for a detailed comparison of the computational
times for both CLASIC and SWMM across varying scales of the study
area.

2.5. Study area: the Spring Creek watershed

To compare the performance of the CLASIC and SWMM models, the
Spring Creek watershed (Fig. 4), with a 23 square kilometer surface area
in northern Colorado, was selected as the study area consisting of 134
subcatchments. Spring Creek originates in western Fort Collins, north of
Horsetooth Mountain. After passing through the Horsetooth Reservoir, it
flows eastward to its confluence with the Cache La Poudre River. It also
has two gauged locations to observe the creek’s discharge. Hourly
discharge, provided by the City of Fort Collins, was observed and
collected from these two locations from 2006 to 2018. The gauged lo-
cations are the intersections of the creek with Center Avenue and
Timberline Road, as shown in Fig. 4.

2.5.1. SWMM urban hydrology model of Spring Creek watershed

Division of the study area into subcatchments can have significant
effects on the modeled responses (Arabi et al., 2006). The detailed
SWMM model for the watershed was built in SWMM 5 with 134 sub-
catchments and more than 200 hydraulic elements, including pipes,
channels, and storage units. The required data for each subcatchment
and the drainage network were collected from the City of Fort Collins
and the Google Earth measuring tool. The selected settings for this
model are the Horton infiltration method, dynamic wave method, and
continuous simulation. Furthermore, hourly precipitation data
(2006-2018) and average monthly evaporation data were collected for
the Fort Collins climate station from Colorado Agricultural Meteorology
Network Database (CoAgMet, 2019) and EPA climate stations (USEPA,
2023), respectively. The soil characteristics beneath the storage units
were collected from SSURGO data (Soil Survey Staff, 2019), and the
imperviousness characteristics were extracted from the NLCD 2016 (U.S.
Geological Survey, 2018).
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2.5.2. CLASIC urban hydrology model of Spring Creek watershed

After calibrating the SWMM model, three models were built in the
CLASIC tool. Since there are two gauged locations within the watershed,
two models were created to simulate the outflow of each of these two
locations: one model for the upstream drainage area of the Center
Avenue gauge and another for the upstream drainage area of the
Timberline Road gauge. A third model was also provided from the entire
watershed to simulate the hydrologic components of the entire study
area (i.e., runoff, evaporation, and infiltration).

The stormwater control measures (SCM) in the study area are
detention basins and retention basins; however, they were modeled as
storage units in the SWMM model. Thus, the storage units needed to be
converted to comparable SCMs in the CLASIC models. The main factors
must remain consistent in converting the storage units in SWMM to the
SCMs in CLASIC. These factors are total drainage area, total technology
area, total captured volume, seepage rate, and total percentage of
imperviousness. Since detention ponds and retention ponds are volume-
based technologies, the most important factor to be consistent in the
SCMs between the models is the total captured volume (Dell et al.,
2021).

2.5.3. Global sensitivity analysis for urban hydrologic modeling in the
Spring Creek watershed

The method of Sobol global sensitivity analysis in SIMLAB 2.2.1 tool
(Saltelli et al., 2004) was used to evaluate the importance of the model’s
parameters. Specifically, the analysis examines the significance of open
channel or pipe hydraulic parameters individually and in combination
with other hydrologic parameters at various temporal and spatial scales.
SWMM is a distributed hydrological model, i.e., the value of model
parameters can vary by land use, soils, terrain, and other physiographic
characteristics of the catchment. It is impractical and inappropriate to
alter the values of model parameters for each computational subunit
individually. To account for the spatial variability of the model pa-
rameters and their relative values across subcatchments or hydraulic
components, default values of each parameter were adjusted by a scaling
factor that is applied to all values. The initial values of the model were
obtained from an initial manual calibration of the model. Using Sobol
technique, 3328 random samples were generated for 12 scaling factors
corresponding to each model parameter in Table 3. The scaling factors
were assumed to be uniformly distributed. A range of scale factors was
selected for each parameter based on the parameters’ feasible range
(Table 3) and their initial values. The SWMM was run using the 3328
random samples to simulate discharge at the gauged locations along the
Spring Creek catchment (Fig. 4) over the 2008-2018 period. Finally, the
sensitivity of different hydrological responses (i.e., total flow, peak flow,
total runoff, evaporation, and infiltration) to the selected parameters

Table 3
Range of values of the SWMM parameters for the sensitivity analysis in the
Spring Creek watershed.

Parameter Units Range
Width m 107-6346
Slope % 0.25-43.8
%Imperv % 4-99
Dstorelmperv mm 0-2.54
DstorePerv mm 2.54-7.62
%Zerolmperv % 1-5

Max infiltration rate cm/hr 2.54-25.4
Min infiltration rate cm/hr 0.025-1.27
Decay Constant rate 1/hr 2-12
Manning’s N - 0.01-0.4
N-Imperv - 0.011-0.024
N-Perv - 0.014-0.8

and their interactions with each other were evaluated at different tem-
poral and spatial scales.

2.5.4. Model parameterization, calibration, and testing in the Spring Creek
watershed

The SWMM model was calibrated for total flow at the hourly time
scale and at both gauged locations using only the catchment’s parame-
ters that could be modified in both SWMM and CLASIC tools. The
roughness of the impervious and pervious area (N-Imperv, and N-Perv)
were excluded from the calibration as they were found not sensitive.
Since the groundwater was not modeled in this study, baseflow was
extracted from the observed discharge using the Web-based Hydrograph
Analysis Tool (WHAT) baseflow separation tool (Lim et al., 2006) based
on the digital filter method by Lyne and Hollick (Lyne and Hollick,
1979) and was added to the models. The method of Sobol was utilized to
generate 2560 parameter samples using SIMLAB 2.2 (Saltelli et al.,
2004). The period of available observed discharge (2006-2018) was
divided into two parts for the calibration and testing the calibrated
model’s performance. The first nine years of the data (2006-2014) were
used for the calibration of the SWMM model, considering the first two
years (2006-2007) for the model’s warm-up period. During the cali-
bration process, the model performance metrics were calculated, and the
best sample set based on the closest value of NSCE to one was selected,
and other performance metrics were also checked to meet the accep-
tance criteria (Moriasi et al., 2015). The calibrated model was then
tested against the observed data from 2015 to 2018.

3. Results and discussion

The results of the study indicate that the CLASIC tool is appropriate
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for urban stormwater modeling and assessment of SCMs including GSIs
at municipal scale. Specifically, the model reliably characterized the
annual water budget, daily FDCs, and daily to monthly stream discharge
time series at different spatial scales. The hydraulic parameters gain
more importance in hydrologic responses of the catchment at smaller
time steps, and thus, must be carefully incorporated for flood assess-
ments at the hourly or sub-hourly time steps. The CLASIC tool demon-
strates notably faster simulation runtime compared to SWMM. The gains
in computational efficiency grow superlinearly as the drainage area and
the number of computational elements increase, capability that makes it
suitable for municipal scale characterization of hydrologic responses.

3.1. Model performance for hydrologic responses at different temporal
scales

The parameter set with the highest NSCE over the calibration period
2008-2014, referred to as the calibrated parameters, was selected for
the SWMM and CLASIC model assessment. The selected set of scale
factors assigned to the initial values of the parameters was 0.73 for
width, 1.94 for slope, 0.50 for %Imperv, 0.79 for depression storage of
impervious area (Dstorelmperv), 0.76 for depression storage of pervious
area (DstorePerv), 2.78 for percent impervious area with no depression
storage (%Zerolmperv), 13.06 for max infiltration rate, 0.76 for min
infiltration rate, and 0.63 for decay rate.

The performances of the models for simulation of hourly, daily, and
monthly discharge using the calibrated parameters for the two stream
discharge gauging stations are provided in Table 4 for both the cali-
bration and testing periods. Overall, the evaluation statistics indicated a
very good fit between the SWMM model and observed responses with
NSCE greater than 0.7 and PBIAS less than 10 percent at all time steps
and both gauging locations. In the Spring Creek watershed, the observed
standard deviations of hourly, daily, and monthly discharges are 0.72,
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0.56, and 0.47 (m>/s) at the Center location and 0.62, 0.36, and 0.29
(m®/s) at the Timberline location. Thus, the results indicate that RMSE
values are low enough for all the temporal scales and in both locations,
indicating good model accuracy.

The CLASIC model with the calibrated parameters provides a very
good fit with observed monthly discharge at both gauging locations. At
the Center gauging location, the model performs very well for daily
discharge simulations over both the calibration and testing period.
However, the simulated daily discharge seems to inadequately represent
observed values at the Timberline location over the calibration period.
Although NSCE values from the Timberline model are not satisfactory
for small temporal scales (hourly and daily), CLASIC’s performance is
good for the monthly temporal scales. In the Center model, the hourly
results are not "Good" but still acceptable; however, daily and monthly
results are "Very Good". Thus, the CLASIC tool is more accurate in
estimating the total discharge at the Center location than at the
Timberline location, which has a bigger drainage area.

The time of concentration for the Center’s and Timberline’s catch-
ments is about 7 and 10 h, respectively, based on the SCS method
(USDA-NRCS, 2010). As shown in the results, for the Timberline loca-
tion, although the CLASIC model does not show good R? and NSCE on
the daily scale, it has a "Good" PBIAS (Table 4). Thus, it can be concluded
that in both locations, the CLASIC tool shows acceptable performance
for time scales larger than the time of concentration.

The FDC indices were derived from both simulated and observed
daily FDCs (Table 4). A negative sign for the normalized maximum
difference in discharge (FDCQmqy,) indicates that the model has under-
estimated the observed values, while a positive sign indicates over-
estimation in the model. In the Center stream gauge location, which has
a smaller drainage area, both models consistently underestimate the
discharge across all segments of the FDCs (low-flow, intermediate-flow,
and high-flow) at the selected evaluation points (Table 4). Thus, the

Table 4
Model performance metrics and FDC indices.
Model Evaluation Metric Time Step Center Timberline
SWMM CLASIC SWMM CLASIC
Over the calibration period (2008-2014) PBIAS (%) Hourly 8.70 4.70 —0.06 —12.28
Daily 7.22 4.90 4.95 —5.00
Monthly 8.15 4.50 1.22 —10.68
RMSE (m3/s) Hourly 0.28 0.49 0.34 1.10
Daily 0.15 0.23 0.16 0.49
Monthly 0.11 0.09 0.07 0.14
R? Hourly 0.87 0.64 0.86 0.36
Daily 0.94 0.85 0.89 0.50
Monthly 0.98 0.97 0.95 0.88
NSCE Hourly 0.85 0.54 0.70 —2.21
Daily 0.93 0.83 0.81 —0.94
Monthly 0.95 0.96 0.94 0.76
Over the testing period (2015-2018) PBIAS (%) Hourly 9.03 3.89 6.51 -0.75
Daily 8.30 4.68 8.10 3.41
Monthly 8.80 3.97 9.74 2.21
RMSE (m3/s) Hourly 0.14 0.19 0.22 0.50
Daily 0.07 0.08 0.11 0.14
Monthly 0.05 0.04 0.08 0.07
R? Hourly 0.90 0.79 0.87 0.59
Daily 0.96 0.92 0.92 0.88
Monthly 0.99 0.98 0.95 0.94
NSCE Hourly 0.89 0.79 0.83 0.15
Daily 0.94 0.92 0.91 0.85
Monthly 0.96 0.95 0.94 0.94
Daily FDC (2008-2018) FDCA (%) 3.80 2.60 5.20 4.60
FDCAynder (%) 7.66 5.20 5.81 3.83
FDCAqver (%) 0.00 0.00 1.90 5.28
FDCQuax high —0.19 —0.07 —0.01 0.09
FDCQmax,mid -0.12 —0.08 0.55 0.52
FDCQumax low 1.73 0.10 0.11 0.05
FDCPpax (%) 4.21 3.70 6.90 5.97

Note: The negative values of FDCQpqy in the table show underestimation of the observed discharge in the simulation.
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normalized difference between PWQs (FDCA) arise only from
underestimation.

Conversely, at the Timberline location with a larger catchment, the
FDCA e for the CLASIC model is roughly three times the one for SWMM,
and the FDCQpuqxpnigh for CLASIC is nine times the one for SWMM
(Table 4). Thus, when both models overestimate the observed discharge,
particularly at higher flows, CLASIC is more prone to overestimating
observed discharge than SWMM. However, it’s important to note that
despite these differences in estimation, both models display a strong
alignment with the observed data. The daily FDCs from both locations
confirm this alignment (Fig. 5). Extremely high flows, which have the
possibility of being equaled or exceeded by less than 0.001 (1000-year
return period), produce the biggest overestimation in the CLASIC tool at
both locations. However, these discharge values are not considered in
the FDC indices in this study as they have been rarely exceeded (Alaya
et al., 2018; Johnson and Smithers, 2020). Therefore, unlike the per-
formance metrics, the indices based on FDCs are not extracted based on
all the discharge values, emphasizing the more frequent ones
(0.001-0.99). At the Timberline location, the CLASIC model tends to
overestimate discharge with an exceedance probability below 5% (re-
turn periods greater than 20 years), while the SWMM model over-
estimates discharge with an exceedance probability below 1.5%. This
variation in overestimation between the two models is highlighted by
FDCAyer, derived from the difference in the overestimated area under
FDCs.

Based on the model performance metrics SWMM and CLASIC
models, both models performed better in the testing period (2015-2018)
than the calibration period (2008-2014). Furthermore, it was under-
stood from the FDCs that the primary discrepancy in the performance of
SWMM and CLASIC is related to their ability to predict peak discharge.
To gain deeper insights into these findings, the peak daily discharge
extracted from the time series of CLASIC and SWMM models for the
period of 2008-2018 is compared to the observed daily discharge
(Fig. 6). The comparative analysis between these two models at both
gauged locations shows that CLASIC tends to overestimate the extreme
peak discharge values more than SWMM, while in lower peak discharge
values, the models show more agreement. A notable observation is a
single instance where CLASIC significantly overestimated observed
flows. Further investigation revealed its connection to a severe storm
event in July 2009 (within the calibration period), during which the
study area experienced approximately 50 mm of rainfall within an hour,
as recorded by the rain gauges. This event appears to be a key factor in
the observed discrepancy in the models predictions.
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3.2. Estimation of annual hydrologic budgets

The average annual hydrologic components (runoff, infiltration, and
evaporation) were also extracted and compared with those from the
calibrated SWMM model (Fig. 7). Results revealed that both CLASIC and
SWMM models provide closely aligned estimates of each hydrologic
component with a maximum difference of 2% in evaporation. These
results suggest that the CLASIC is an appropriate tool to estimate the
urban hydrologic balance for assessing urban green stormwater infra-
structure at the municipal scale.

3.3. Importance of model parameters at different temporal and spatial
scales

Table 5 and Fig. 8 represent the results of Sobol sensitivity analysis
for different outputs of the SWMM model, including average annual
runoff, evaporation, and infiltration of the Spring Creek watershed, as
well as the total and peak flow volume at the gauged locations at
different temporal scales. The first-order indices (S;) and total order
indices (ST;) are displayed, representing the individual effects of each
parameter on model outputs and their influence when interacting with
other parameters, respectively.

Table 5 highlights the importance of the percentage of impervious
area (%Imperv) in simulating the water cycle components (i.e., hydro-
logic budgets), particularly infiltration. The depression storage in the
impervious area (Dstorelmperv) is the next most influential parameter,
followed by the minimum infiltration rate regarding both the individual
effect and the interactions with other parameters. These parameters
have also been found important in previous studies (Barco et al., 2008;
Dell et al., 2021). Therefore, for research topics primarily focusing on
water cycle components, such as hydrological modeling and water
resource management, incorporating only these critical parameters for
water cycle components may be sufficient to provide accurate results.

Fig. 8 demonstrates the average and standard deviation of sensitiv-
ities of total flow and peak flow at different temporal scales (i.e., hourly,
daily, weekly, monthly, and annual) to each input parameter. As
observed for the water cycle components, the percentage of impervi-
ousness (%Imperv) is the most influential parameter for the discharge
outputs at both gauged locations. This parameter has also been reported
as the most influential parameter for hydrological responses by many
studies (Barco et al., 2008; Dotto et al., 2011; Gamerith et al., 2013;
Guanipa Rivero et al., 2019; Hidayat and Soekarno, 2020; Zaghloul,
1983). In contrast to the average total flow, all the input parameters
have some level of importance when simulating peak flow, and their
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Table 5

Most important parameters of the watershed for simulating the water cycle components (hydrological budgets).

Parameter First order index (S) Total order index (ST)

Runoff Evaporation Infiltration Runoff Evaporation Infiltration
%Imperv 0.60 0.47 0.88 0.60 0.48 0.88
Dstorelmperv 0.31 0.42 0 0.31 0.43 0
Min Infiltration rate 0.04 0.08 0.07 0.06 0.12 0.11

sensitivity varies substantially across different temporal scales, espe-
cially at the Timberline location with a larger drainage area. This sug-
gests that for studies related to peak flows, such as flood management, a
comprehensive understanding and careful calibration of these input
parameters are essential, and simplified models that ignore some of
them may not be a suitable choice.

3.4. The sensitivity of peak flow to the Channel’s parameter across
different temporal and spatial scales

Given the observed variation in the influence of input parameters on
discharge across various temporal scales and the enhanced accuracy of
CLASIC to simulate discharge at larger temporal scales considering its
decoupled hydrologic and hydraulic components, the focus of sensitivity
analysis was narrowed to examine the peak flow’s sensitivity to the
channel’s Manning’s N coefficient. The channel’s roughness shows
higher importance to peak flow at smaller time scales and in the

Timberline location with a bigger drainage area (Fig. 9).

Overall, global sensitivity analysis showed that as the temporal scale
gets smaller and the size of the watershed increases, the peak flow be-
comes more sensitive to the roughness of the channel. This observation
can be corroborated by the performance metrics of the CLASIC tool,
which indicated that sub-daily discharge simulations, particularly at the
larger drainage area (upstream of the Timberline location), were not as
accurate. These findings emphasize the critical role of channel charac-
teristics when smaller temporal scales are crucial for the study, such as
in research topics focused on flood events, flood modeling and fore-
casting, flood risk analysis, etc., where the CLASIC tool may not be
applicable.

3.5. The computational time of the CLASIC tool and the SWMM model
for simulating hydrologic response at different spatial scales

A comparative analysis was conducted between the computational
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time of the SWMM and CLASIC models for assessing the hydrologic re-
sponses across varying spatial scales (Fig. 10). The expanding area
corresponds to a more complex model and subsequently, an increase in
the number of elements. With a greater number of elements, especially
hydraulic elements, SWMM requires considerably more time to simulate
the processes. The computational time for both models increases as the
drainage area expands (Fig. 10(a)). Specifically, the SWMM model’s
computational time shows a superlinear growth from approximately 95

10

s at five sq. km to nearly 1900 s at 23 sq. km. As shown by the trendline,
the superlinear growth is quantitatively expressed by the R? value of
0.998, indicating a strong relationship between the SWMM model’s
computational time and the drainage area size. Conversely, the
computational time of the CLASIC tool increases at a relatively constant
rate with expanding drainage area. The trendline shows the linear
behavior of the CLASIC model with an R? value of 0.977. Furthermore,
the difference between the computational time of SWMM and CLASIC
models indicates a superlinear relationship with the expansion of the
drainage area with R? value of 0.96 (Fig. 10(b)). This comparative
analysis demonstrates the enhanced efficiency of the cloud-based CLA-
SIC web tool compared to the complex SWMM model in assessing the
hydrologic responses at larger scale study areas, especially at the
municipal scale.

4. Conclusion

CLASIC tool’s performance and efficiency in simulating the hydro-
logical responses were evaluated and compared to the complex SWMM
model and observed data at the Spring Creek watershed. Sobol global
sensitivity analysis was also conducted to investigate the significance of
interconnected hydrologic and hydraulic parameters and their associ-
ated processes on hydrologic responses. These analyses allowed for
assessing the effect of decoupling hydrology and hydraulic components
on the water cycle and the stream discharge at various temporal and
spatial scales. The flow analysis results suggested that the performance
of the CLASIC tool is acceptable to evaluate the total volume of the
discharge at the temporal scales greater than the time of concentration
of the watershed. Furthermore, the CLASIC tool performed well at
municipal scale simulation of the urban water cycle, suggesting that it is
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well suited for urban stormwater management applications, such as
evaluating the performance of green and gray infrastructures, where the
primarily focus is on the total runoff volume.

The global sensitivity analysis results emphasized the importance of
effective imperviousness (or directly connected impervious area) in
urban watershed models, which is sometimes overlooked by modelers
who rely on total imperviousness. Furthermore, it underscores the
importance of channel parameters in hydrologic responses for studies,
such as flood analysis, where smaller temporal scales (i.e., hourly and
sub-hourly) are crucial. In such cases, the models that provide more
detailed insights into hydrographs are preferable.

CLASIC significantly enhances efficiency in urban hydrology studies
by automating parameterization using national datasets, thereby
reducing the need for extensive user input. Additionally, its faster
simulation capabilities become particularly advantageous for larger
study areas, such as municipal scale, while the SWMM model’s simu-
lation time tends to grow superlinearly with the expansion of the
drainage area.

This study helps researchers and engineers select appropriate models
for future studies based on specific objectives, data availability, and time
limitations. Specifically, it underscores the effective use of the CLASIC
tool for evaluations of SCMs (e.g., GSI) and climate and land use change
assessment at neighborhood to municipal scales. However, the cost and
co-benefit components of the CLASIC tool are not discussed in this study.
Hence, future work will focus on these components of the tool and the
development of optimization components that allow planners to select
the technologies most consistent with their desired goals regarding hy-
drologic effects, co-benefits, and life cycle costs.

5. Software availability

Web tool URL: https://clasic.erams.com/
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