
Near-Optimal Dynamic Rounding of Fractional Matchings in
Bipartite Graphs∗

Sayan Bhattacharya
University of Warwick

UK

Peter Kiss
University of Warwick

UK

Aaron Sidford
Stanford University

USA

David Wajc
Technion — Israel Institute of Technology

Israel

ABSTRACT
We study dynamic (1 � n)-approximate rounding of fractional
matchings—a key ingredient in numerous breakthroughs in the
dynamic graph algorithms literature. Our �rst contribution is a
surprisingly simple deterministic rounding algorithm in bipartite
graphs with amortized update time$ (n�1 log2 (n�1 · =)), matching
an (unconditional) recourse lower bound of ⌦(n�1) up to loga-
rithmic factors. Moreover, this algorithm’s update time improves
provided theminimum (non-zero) weight in the fractional matching
is lower bounded throughout. Combining this algorithm with novel
dynamic partial rounding algorithms to increase this minimum
weight, we obtain a number of algorithms that improve this depen-
dence on =. For example, we give a high-probability randomized
algorithm with $̃ (n�1 · (log log=)2)-update time against adaptive
adversaries.

Using our rounding algorithms, we also round known (1 � n)-
decremental fractional bipartite matching algorithms with no as-
ymptotic overhead, thus improving on state-of-the-art algorithms
for the decremental bipartite matching problem. Further, we pro-
vide extensions of our results to general graphs and to maintaining
almost-maximal matchings.

CCS CONCEPTS
• Theory of computation! Dynamic graph algorithms.

KEYWORDS
Dynamic Matching, Dynamic Algorithms, Data Structures

ACM Reference Format:
Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. 2024. Near-
Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing
(STOC ’24), June 24–28, 2024, Vancouver, BC, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3618260.3649648

∗Full version available at https://arxiv.org/abs/2306.11828 [25].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649648

1 INTRODUCTION
Dynamic matching is one of the most central and well-studied dy-
namic algorithm problems. Here, a graph undergoes edge insertions
and deletions, and we wish to quickly update a large matching
(vertex-disjoint set of edges) following each such change to the
graph.

A cornerstone of numerous dynamic matching results is the
dynamic relax-and-round approach: the combination of dynamic
fractional matching algorithms [17–20, 26] with dynamic rounding
algorithms [3, 21, 24, 45, 55]. This dynamic fractional matching
problem asks to maintain a vector x 2 R⇢�0 such that G (E) :=Õ
43E G4 satis�es the fractional degree constraint G (E)  1 for all

vertices E 2 + and kxk :=
Õ
4 G4 is large compared to the size

of the largest (fractional) matching in the dynamic graph ⌧ =
(+ , ⇢). The goal typically is to solve this problem while minimizing
the amortized or worst-case time per edge update in ⌧ .1 For the
rounding problem (the focus of this work), an abstract interface
can be de�ned as follows.

De�nition 1.1. Adynamic rounding algorithm (for fractionalmatch-
ings) is a data structure supporting the following operations:

• init(⌧ = (+ , ⇢), x 2 R⇢�0, n 2 (0, 1)): initializes the data
structure for undirected graph ⌧ with vertices + and edges ⇢,
current fractional matching x in ⌧ , and target error n .

• update(4 2 ⇢, a 2 [0, 1]): sets G4 a under the promise that
the resulting x is a fractional matching in ⌧ .2

The algorithm must maintain a matching " in the support of x,
supp(x) := {4 2 ⇢ | G4 > 0}, such that" is a (1� n)-approximation
with respect to kxk := Õ

4 G4 , i.e.

" ✓ supp(x) ," is a matching , and |" | � (1 � n) · kxk .

The combination of fast fractional algorithms with fast dynamic
rounding algorithms plays a key role in state-of-the-art time / ap-
proximation trade-o�s for the dynamic matching problem against
an adaptive adversary [21, 45, 55], including the recent break-
throughs of [8, 24]. Here, a randomized algorithm works against
an adaptive adversary (or is adaptive, for short) if its guarantees
hold even when future updates depend on the algorithm’s previous

1An algorithm has amortized update time 5 (=) if every sequence of C updates takes
at most C · 5 (=) time and has worst-case update time 5 (=) if each operation takes at
most 5 (=) time. As we focus on amortized update times, we omit this distinction.
2Invoking update(4, 0) essentially deletes 4 and subsequently invoking update(4, a)
for a > 0 essentially adds 4 back. So,⌧ might as well be the complete graph on + .
However, we �nd the notation⌧ = (+ ,⇢) convenient.

https://doi.org/10.1145/3618260.3649648
https://arxiv.org/abs/2306.11828
https://doi.org/10.1145/3618260.3649648

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

output and its internal state. Slightly weaker are output-adaptive al-
gorithms, that allow updates to depend only on the algorithms’ out-
put. Note that deterministic algorithms are automatically adaptive.
A major motivation to study output-adaptive dynamic algorithms
is their black-box use as subroutines within other algorithms. (See
discussions in, e.g., [12, 34, 47].)

Despite signi�cant e�ort and success in designing and applying
dynamic rounding algorithms, the update time of current (1 � Y)-
approximate dynamic rounding approaches are slower by large
poly(Y�1, log=) factors than an unconditional recourse (changes
per update) lower bound of⌦(n�1) (Fact 2.3).3 Consequently, round-
ing is a computational bottleneck for the running time of many
state-of-the-art dynamic matching algorithms [6, 8, 21, 24, 45, 55]
and decremental (only allowing deletions) matching algorithms
[14, 44].

The question thus arises, can one design (output-adaptive) optimal
dynamic rounding algorithms for fractional matching? We answer
this question in the a�rmative in a strong sense.

1.1 Our Contributions
Our main results are deterministic and randomized dynamic frac-
tional matching rounding algorithms for bipartite graphs thatmatch
the aforementioned simple recourse lower bound of ⌦(Y�1) up to
logarithmic factors in Y and (sub-)logarithmic factors in = := |+ |.
These results are summarized by the following theorem.4

Theorem 1.2. The dynamic bipartite matching rounding problem
admits:

(1) A deterministic algorithm with $̃ (Y�1 log=) update time.
(2) An adaptive algorithm with $̃ (Y�1 · (log log=)2) update time

that is correct w.h.p.
(3) An output-adaptive algorithm with $̃ (Y�1) expected update

time.
The init(⌧, x, Y) time of each of these algorithms is$ (Y · |supp(x) |)
times its update time.

In contrast, prior approaches have update time at least ⌦(Y�4)
(see Section 1.2). Moreover, all previous adaptive algorithms with
high probability (w.h.p.) or deterministic guarantees all have at
least (poly)logarithmic dependence on =, as opposed to our (sub-
)logarithmic dependence on =.

General Graphs. In general graphs, one cannot round all frac-
tional matchings (as de�ned) to integrality while only incurring a
(1� Y) factor loss in value.5 Nonetheless, it is known how to round
“structured” (1/2 � Y)-approximate dynamic fractional matchings
[20, 26] (see full version for more details) to obtain an integral
(1/2 � Y)-approximate matching [3, 21, 45, 55], and even almost
maximal matchings [24], as de�ned in [49] and restated below.

3Proving update time lower bounds for approximate dynamic matching is a notoriously
challenging open problem. On the other hand, [52] show that recourse can be made
$ (Y�1) for any approximate dynamic matching algorithm.
4Throughout, we use “soft-O” notation, $̃ , to suppress logarithmic factors in Y , i.e.,
$̃ (5) = $ (5 · poly(log(Y�1))) .
5Consider the triangle graph with fractional values G4 = 1/2 on all three edges; this
fractional matching has value 3/2, while any integral matching in a triangle has size
at most one. While adding additional constraints [37] avoids this issue, no dynamic
fractional algorithms for the matching polytope in general graphs are currently known.

De�nition 1.3. A matching" in⌧ is an Y-almost maximal match-
ing (Y-AMM) if" is maximal with respect to some subgraph⌧ [+ *]
obtained by removing at most |* |  Y · ` (⌧) vertices from ⌧ , where
` (⌧) is the maximum matching size in ⌧ .

Such Y-AMM’s are (1/2 � Y)-approximate with respect to the
maximum matching [49]. Moreover, (almost) maximality of Y-AMM
makes their maintenance a useful algorithmic subroutine [6, 24,
49]. Extending our approach to rounding the aforementioned well-
structured, “near maximal” dynamic fractional matchings in general
graphs [20, 26], we obtain faster Y-AMM algorithms, as follows (see
the full version of the paper for formal statement).

Theorem 1.4. There exist dynamic algorithms maintaining Y-AMM
in general graphs in update time $̃ (Y�3)+$ (C5 +D5 ·CA), where C5 and
D5 are the update time and number of calls to update of any “struc-
tured” dynamic fractional matching algorithm, and CA is the update
time for “partial” rounding. Furthermore, there exist dynamic partial
rounding algorithms with the same update times and adaptivity as
those of Theorem 1.2.

1.1.1 Applications. Applying our rounding algorithms to known
fractional algorithms yields a number of new state-of-the-art dy-
namic matching results.

For example, by a black-box application of Theorem 1.2, we
deterministically round known decremental (fractional) bipartite
matching algorithms [14, 44] with no asymptotic overhead, yielding
faster (1 � Y)-approximate decremental bipartite matching algo-
rithms. We also discuss how a variant of Theorem 1.4 together with
the general-graph decremental algorithm of [5] leads to a conjec-
ture regarding the �rst deterministic sub-polynomial update time
(1 � Y)-approximate decremental matching algorithm in general
graphs.

Our main application is obtained by applying our rounding al-
gorithm for general graphs of Theorem 1.4 to the $ (Y�2)-time
fractional matching algorithm of [26], yielding the following.

Theorem 1.5. For any Y > 0, there exist dynamic Y-AMM algorithms
that are:

(1) Deterministic, using $̃ (Y�3 · log=) update time.
(2) Adaptive, using $̃ (Y�3 · (log log=)2) update time, correct

w.h.p.
(3) Output-adaptive, using $̃ (Y�3) expected update time.

In contrast, all prior non-oblivious (1/2� Y)-approximate match-
ing algorithms had at least quartic dependence on Y, which the
above result improves to cubic. Moreover, this result yields the
�rst deterministic $ (log=)-time and adaptive > (log=)-time high-
probability algorithms for this widely-studied approximation range
and for near-maximal matchings. This nearly concludes a long line
of work on deterministic/adaptive dynamic matching algorithms
for the (1/2 � Y) approximation regime [9, 18, 19, 21, 24, 26, 45, 55].

1.2 Our Approach in a Nutshell
Here we outline our approach, focusing on the key ideas behind
Theorem 1.2. To better contrast our techniques with those of prior
work, we start by brie�y overviewing the latter.

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Previous approaches. Prior dynamic rounding algorithms [3, 21,
45, 55] all broadly work by partially rounding the fractional match-
ing x to obtain a matching sparsi�er ((a sparse subgraph approx-
imately preserving the fractional matching size compared to x).
Then, they periodically compute a (1 � Y)-approximate matching
in this sparsi�er (using a static $̃ (|(| · Y�1)-time algorithm (e.g.,
[36]) whenever kxk changes by Y · kxk, i.e., every ⌦(Y · kxk) updates.
This period length guarantees that the matching computed remains
a good approximation of the current fractional matching during
the period, with as good an approximation ratio as the sparsi�er
(. Now, for sparsi�er (to be $ (1)-approximate, it must have size
|(| = ⌦(kxk), and so this approach results in an update time of
at least ⌦(Y�2). Known dynamic partial rounding approaches all
result in even larger sparsi�ers, resulting in large poly(Y�1, log=)
update times.

Direct to integrality. Our �rst rounding algorithm for bipartite
graphs breaks from this framework and directly rounds to inte-
grality. This avoids overhead of periodic recomputation of static
near-maximum matching algorithms, necessary to avoid super-
linear-in-Y�1 update time (or => (1) factors, if we substitute the
static approximate algorithms with the breakthrough near-linear-
time max-�ow algorithm of [33]). The key idea is that, by encoding
each edge’s weight in binary, we can round the fractional matching
“bit-by-bit”, deciding for each edge whether to round a component
of value 2�8 to a component of value 2�8+1. This can be done stati-
cally in near-linear-time by variants of standard degree splitting
algorithms, decreasing the degree of each node in a multigraph by
a factor of two (see Theorem 2). Letting ! := log((min4 :G4<0 G4)�1),
we show that by bu�ering updates of total value at most$ (Y ·kxk/!)
for each power of 2, we can e�ciently dynamize this approach, ob-
taining a dynamic rounding algorithm with update time $̃ (Y�1 ·!2).
As we can assume that min4 :G4<0 G4 � Y/=2 (Observation 2.2), this
gives our bipartite $̃ (Y�1 · log2 =) time algorithm.

Faster partial rounding. The second ingredient needed for Theo-
rem 1.2 are a number of algorithms for “partially rounding” frac-
tional matchings, increasing min4 :G4<0 G4 while approximately pre-
serving the value of the fractional matching. (The output is not
quite a fractional matching, but in a sense is close to one. See De�-
nition 4.1.) Our partial rounding algorithms draw on a number of
techniques, including fast algorithms for partitioning a fractional
matching’s support into multiple sparsi�ers, as opposed to a single
such sparsi�er in prior work, and a new output-adaptive sampling
data structure of possible independent interest (Section A).6,7 Com-
bining these partial rounding algorithms with our simple algorithm
underlies all our bipartite rounding results of Theorem 1.2, as well
as our general graph rounding results (which are deferred to the
full version of the paper).

1.3 Related Work
The dynamic matching literature is vast, and so we only brie�y
discuss it here. For a more detailed discussion, see, e.g., the recent
papers [4, 8, 22, 24].
6From this we derive the �rst output-adaptive matching algorithm that is not also
adaptive.
7Concurrently to our work, another such sampling algorithm was devised [56]. See
discussion in Section A.

The dynamic matching problem has been intensely studied since
a seminal paper of Onak and Rubinfeld [48], which showed how
to maintain a constant-approximate matching in polylogarithmic
time. Results followed in quick succession, including conditional
polynomial update time lower bounds for exact maximummatching
size [1, 2, 35, 42, 46], and numerous algorithmic results, broadly
characterized into two categories: polynomial time/approximation
tradeo�s [4, 8, 10, 11, 15, 16, 21, 22, 28, 39, 40, 43, 45, 49, 50, 55], and
1/2� or (1/2 � Y)-approximate algorithms with polylogarithmic or
even constant update time [3, 7, 9, 13, 19, 21, 26, 31, 32, 45, 53, 55].8
We improve the state-of-the-art update times for all deterministic
and adaptive algorithms in the intensely-studied second category.

The (1 � Y)-approximate matching problem has also been stud-
ied in partially dynamic settings. This includes a recent algorithm
supporting vertex updates on opposite sides of a bipartite graph,
though not edge updates [57] (see arXiv). For incremental (edge-
insertion-only) settings several algorithms are known [23, 27, 38,
41], the fastest having poly(Y�1) update time [27]. In decremen-
tal settings (edge-deletion-only), rounding-based algorithms with
poly(Y�1, log=) update time in bipartite graphs [14, 23, 44] and
randomized exp(Y�1) in general graphs [5] are known. We improve
on these decremental results, speeding up bipartite matching, and
giving the �rst deterministic logarithmic-time algorithm for general
graphs.

1.4 Paper Outline
Following some preliminaries in Section 2, we provide our �rst
simple bipartite rounding algorithm in Section 3. In the full version
of the paper we introduce the notion of partial roundings that
we study and show how such partial rounding algorithms can
be combined with our simple algorithm to obtain the (bipartite)
rounding algorithms of Theorem 1.2.

2 PRELIMINARIES
Assumptions and Model. Throughout, we assume that kxk � 1,
as otherwise it is trivial to round kxk within a factor of 1 � Y, by
maintaining a pointer to any edge in supp(x) whenever the latter
is not empty. In this paper we work in the word RAM model of
computation with words of sizeF := ⇥(log=), allowing us to index
any of 2$ (F) = poly(=) memory addresses, perform arithmetic on
F-bit words, and drawF-bit random variables, all in constant time.
We will perform all above operations on $ (log(Y�1 · =))-bit words,
which is still$ (F) provided Y�1 = poly(=). If Y is much smaller, all
stated running times trivially increase by a factor of $ (log(Y�1)).

Notation. Formultisets (1 and (2, we denote by (1](2 the “union”
multiset, in which each element has multiplicity that is the sum of
its multiplicities in (1 and (2. A vector x is _-uniform if G4 = _ for
all 4 2 supp(x), and is uniform if it is _-uniform for some _. Given
fractional matching x, we call an integral matching" ✓ supp(x)
that is (1�Y)-approximate, i.e., |" | � kxk · (1�Y) an Y-approximate
rounding of x. Finally, we use the following notion of distance and
its monotonicity.

Observation 2.1. For vectors x, y 2 R⇢ and Y � 0, de�ne3n+ (x, y) :=Õ
E2+ (|G (E) � ~ (E) | � n)+, for (I)+ := max(0, I) the positive part of

8Some works study approximation of maximum matching size [6, 8, 22, 24, 28, 51].

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

I 2 R. Then, we have 3Y+ (x, y)  3Y
0

+ (x, y) for all n � n0. Moreover,
by the triangle inequality and the basic fact that (0 + 1)+  0+ + 1+
for all real 0,1, we have 3Y1+Y2+ (x, z)  3Y1+ (x, y) + 3Y2+ (y, z) for all
Y1, n2 � 0 and vectors x, y, z 2 R⇢ .

Support and Binary encoding. We denote the binary encoding of
each edge 4’s fractional value by G4 :=

Õ
8 (G4)8 · 2�8 . We further

let supp8 (x) := {4 2 ⇢ | (G4)8 = 1} denote the set of coordinates
of x whose 8-th bit is a 1. So, supp(x) =

–
8 supp8 (x). Next, we

let xmin := min42supp(x) G4 . The following observation allows us
to restrict our attention to a small number of bits when rounding
bipartite fractional matchings x. (In the full version we extend
this observation to the structured fractional matchings in general
graphs that interest us there.)

Observation 2.2. For rounding bipartite fractional matching, by
decreasing Y by a constant factor, it is without loss of generality that
xmin � Y/=2 and moreover if �  xmin and ! := 1 + dlog(Y�1��1)e,
we may safely assume that (G4)8 = 0 for all 8 > !.

P����. Let Y0 = Y/3. Consider the vector x0 obtained by zeroing
out all entries 4 of x with G4 < Y0/=2 and setting (G4)8 = 0 for all
edges 4 and indices 8 > !. Clearly, supp(x0) ✓ supp(x) and x0 is a
fractional matching, as x0  x. The following shows that kx0 k is
not much smaller than kxk � 1.

kx0 k � kxk �
✓
=

2

◆
Y0

=2
�
’
4

’
8>!

2�8

� kxk � Y0 �
’
4

Y0 · xmin

� kxk · (1 � Y0) �
’
4

Y0 · G4

= (1 � 2Y0) · kxk.
Therefore, a matching " ✓ supp(x0) ✓ supp(x) that is (1 � Y0)-
approximate w.r.t. G 0 is (1 � Y)-approximate w.r.t. x, as |" | � (1 �
Y0) · kx0 k � (1 � 3Y0) · kxk = (1 � Y) · kxk. ⇤

Recourse Lower Bound. We note that the number of changes to
" per update (a.k.a. the rounding algorithm’s recourse) is at least
⌦(Y�1) in the worst case.

Fact 2.3. Any (1 � Y)-approximate dynamic matching rounding
algorithm A must use ⌦(Y�1) amortized recourse, even in bipartite
graphs.

P����. Consider a path graph ⌧ of odd length 4Y�1 + 2 with
values 1/2 assigned to each edge. A matching" ✓ supp(x) of size
|" | � (1 � Y) · kxk must match all odd-indexed edges of the path.
However, after invoking update(·, 0) for the �rst and last edges in
the path, for |" | � (1 � Y) · kxk (for the new x)," must match all
even-indexed edges. Therefore, repeatedly invoking update(·, 0)
and then update(·, 1/2) for these two edges su�ciently many times
implies that the matching" maintained by A must change by an
average of ⌦(Y�1) edges per update. ⇤

2.1 The Degree-Split subroutine
Throughout the paper, we use the following subroutine to partition
a graph into two subgraphs of roughly equal sizes while roughly
halving all vertices’ degrees. Such subroutines obtained by e.g.,

computing maximal walks and partitioning them into odd/indexed
edges, have appeared in the literature before in various places. For
completeness, we provide this algorithm in the full version.

Proposition 2.4. There exists an algorithm degree-split, which on
multigraph ⌧ = (+ , ⇢) with maximum edge multiplicity at most two
(i.e., no edge has more than two copies) computes in $ (|⇢ |) time two
(simple) edge-sets ⇢1 and ⇢2 of two disjoint sub-graphs of⌧ , such that
⇢1, ⇢2 and the degrees 3⌧ (E) and 38 (E) of E in ⌧ and �8 := (+ , ⇢8)
satisfy the following.

(1) (P1)|⇢1 | = d |⇢ |2 e and |⇢2 | = b |⇢ |2 c.
(2) (P2) 38 (E) 2

h
3⌧ (E)

2 � 1, 3⌧ (E)
2 + 1

i
for each vertex E 2 +

and 8 2 {1, 2}.
(3) (p3) 38 (E) 2

h
b3⌧ (E)

2 c, d3⌧ (E)
2 e

i
for each vertex E 2 + and

8 2 {1, 2} if ⌧ is bipartite.

3 SIMPLE ROUNDING FOR BIPARTITE
MATCHINGS

In this section we use the binary encoding of x to approximately
round fractional bipartite matchings in a “linear” manner, rounding
from the least-signi�cant to most-signi�cant bit of the encoding.
We �rst illustrate this approach in a static setting in Section 3.1. This
will serve as a warm-up for our �rst dynamic rounding algorithm
provided in Section 3.2, which is essentially a dynamic variant of
the static algorithm (with its init procedure being essentially the
static algorithm).

3.1 Warm-up: Static Bipartite Rounding
In this section, we provide a simple static bipartite rounding algo-
rithm for fractional matchings.

Speci�cally, we prove the following Theorem 3.1, analyzing
our rounding algorithm, Algorithm 1. The algorithm simply con-
siders for all 8 , ⇢8 := supp8 (G), i.e., the edges whose 8-th bit is
set to one in x. Starting from �! = ;, for 8 = !, . . . , 1, the algo-
rithm applies degree-split to the multigraph ⌧ [�8] ⇢8] and sets
�8�1 to be the �rst edge-set output by degree-split (by induc-
tion, ⇢8 , �8 are simple sets, and so ⌧ [�8] ⇢8] has maximum mul-
tiplicity two.) Overloading notation slightly, we denote this by
�8�1 degree-split(⌧ [�8] ⇢8]). The algorithm then outputs
⇢0 [�0.

Algorithm 1: Hierarchical Fractional Rounding Algorithm

input :Fractional matching x 2 R⇢�0 in graph ⌧ = (+ , ⇢)
input :Accuracy parameter n 2 (0, 1)
output : Integral matching" ✓ supp(x) with

|" | � (1 � n) · kxk
! 1 + dlog2 (Y�1G�1min)e and �! ;;
for 8 = !, ! � 1, . . . , 1 do

⇢8 supp8 (x);
�8�1 degree-split(⌧ [⇢8] �8]) ; // First set
output by degree-split

end
return" ⇢0 [�0;

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Theorem 3.1. On fractional bipartite matching x and error parame-
ter n 2 (0, 1),Algorithm 1 outputs an integral matching" ✓ supp(x)
with |" | � (1 � n) · kxk in time $ (|supp(x) | · log(Y�1x�1min)).

By Observation 2.2, ! = $ (log(Y�1 · =)), and so Theorem 3.1
implies an$ (|supp(x) | · log(Y�1 · =)) runtime for Algorithm 1. We
prove this theorem in several steps. Key to our analysis is the fol-
lowing sequence of vectors (which we will soon show are fractional
matchings if supp(x) is bipartite).

De�nition 3.2. Letting �8 (4) := 1[4 2 �8] and ⇢8 (4) := 1[4 2
⇢8] = (G4)8 , we de�ne a sequence of vectors x(8) 2 R⇢�0 for 8 =
0, 1, . . . , ! as follows.

G (8)4 := �8 (4) · 2�8 +
8’
9=0

⇢ 9 (4) · 2� 9 . (1)

So, kx(!) k � (1�Y)·kxk, by de�nition andObservation 2.2. More-
over, each (copy of) edge 4 output/discarded by degree-split(⌧ [⇢8]
�8]) corresponds to adding/subtracting 2�8 to/from G (8)4 to obtain
G (8�1)4 . This allows us to prove the following lower bound on the
size of the output.

Lemma 3.3. kx(8) k � (1 � Y) · kxk for all 8 2 {0, 1, . . . , !}.

P����. By Property 1 we have that |�8�1 | � d 12 (|�8 | + |⇢8 |)e and
so

kx(8�1) k = kx(8) k + 21�8 ·
’
4

�8�1 (4)

�
’
4

2�8 · (�8 (4) + ⇢8 (4)) � kx(8) k.

Therefore, repeatedly invoking the above bound and appealing to
Observation 2.2, we have that indeed, for all 8 2 {0, 1, . . . , !},

kx(8) k � kx(8+1) k � · · · � kx(!) k � (1 � Y) · kxk. ⇤

A simple proof by induction shows that if supp(x) is bipartite,
then the above procedure preserves all vertices’ fractional degree
constraints, i.e., the vectors x(8) are all fractional matchings.

Lemma 3.4. If x is a fractional bipartite matching then G (8) (E)  1
for every vertex E 2 + and 8 2 {0, 1, . . . , !}.

P����. By reverse induction on 8  !. The base case holds
since x(!)  x is a fractional matching. To prove the inductive
step for 8 � 1 assuming the inductive hypothesis G (8) (E)  1, let
3⌧8 (E) =

Õ
42E (⇢8 (4) + �8 (4)) be the number of (possibly parallel)

edges incident to E in ⌧8 := ⌧ [⇢8] �8]. By Property 3, we have the
following upper bound on E ’s fractional degree under x(8�1) .

G (8�1) (E)  G (8) (E) � 3⌧8 (E) · 2�8 +
⇠
3⌧8 (E)

2

⇡
· 2�8+1 . (2)

If 3⌧8 (E) is even, then we are done, by the inductive hypothesis
giving G (8�1) (E)  G (8) (E)  1. Suppose therefore that 3⌧8 (E) is
odd. By De�nition 1, any value G (8)4 is evenly divisible by 2�8 and
therefore the same holds for G (8) (E). By the same token, 3⌧8 (E) is
odd if and only if G (8) (E) is not evenly divisible by 2�8+1. However,
since G (8) (E) is evenly divisible by 2�8 and it is at most one, this

implies that G (8) (E)  1 � 2�8 . Combined with Equation 2, we
obtain the desired inequality when 3⌧8 (E) is odd as well, since

G (8�1) (E)  G (8) (E) + 2�8  1 � 2�8 + 2�8 = 1. ⇤

Now, since the vector x(0) is integral, the preceding lemmas
imply that if x is a bipartite fractional matching then" is a large
integral matching.

Lemma 3.5. If x is a fractional bipartite matching then" = ⇢0 [
�0 ✓ supp(x) is an integral matching of cardinality at least |" | =
|⇢0 | + |�0 | � (1 � Y) · kxk.

P����. By Lemma 3.4, the (binary) vector x(0) (the character-
istic vector of ") is a feasible fractional matching, and so " is
indeed a matching. That" ✓ supp(x) follows from degree-split
outputting a sub(multi)set of the edges of its input, and therefore
a simple proof by induction proves that supp(x) ◆ supp(x(!)) ◆
supp(x(!�1)) ◆ · · · ◆ supp(x(0)) = " . The lower bound on
|" | = kG (0) k then follows from Lemma 3.3. ⇤

Finally, we bound the algorithm’s running time.

Lemma 3.6. Algorithm 1 takes time $ (|supp(x) | · !) when run on
vector x 2 R⇢�0.

P����. To analyze the runtime of the algorithm, note that it runs
in time$ (! +Õ!

8=0 (|�8 | + |⇢8 |)). Further, |�! | = 0 and by Property 1
we have that |�8 |  1

2 |�8+1 | + 1
2 |⇢8+1 | + 1 for all 8 2 {0, 1, . . . , ! � 1}.

Letting< := |supp(x) | we know that |⇢8 |  < for all 8 , and so by
induction

|�8 | 
1
2
|�8+1 | +

1
2
< + 1  < + 2 for all 9 2 {0, 1, ..., ! � 1}.

Thus, the algorithm runs in the desired time of$ (<!+!) = $ (<!).
⇤

Theorem 3.1 follows by combining the two preceding lemmas.
We now turn to the dynamic counterpart of Algorithm 1.

3.2 A Simple Dynamic Bipartite Rounding
Algorithm

In this sectionwe dynamize the precedingwarm-up static algorithm,
obtaining the following result.

Theorem 3.7. Algorithm 2 is a deterministic dynamic bipartite
matching rounding algorithm. Under the promise that the dynamic in-
put vector x satis�es xmin � X throughout, its amortized update time
is$ (Y�1 ·log2 (Y�1X�1)) and its init time on vector x is$ (|supp(x) |·
log(Y�1X�1)).

Since X � Y/=2 by Observation 2.2, Theorem 3.7 yields an $̃ (Y�1 ·
log2 =) update time algorithm.

Our dynamic algorithm follows the preceding static approach.
For example, its initialization is precisely the static Algorithm 1
(and so the init time follows from Theorem 3.1). In particular, the
algorithm considers a sequence of graphs ⌧8 := ⌧ [⇢8] �8] and
fractional matchings x(8) de�ned by ⌧8 and the 8 most signi�cant
bits of G4 , as in De�nition 1. However, to allow for low (amor-
tized) update time we allow for a small number of unprocessed
changed or deleted edges for each 8 , denoted by 28 . When such a

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

number 28 becomes large, we rebuild the solution de�ned by �8
and supp8 (x), . . . , supp0 (x) as in the static algorithm. Formally, our
algorithm is given in Algorithm 2.

Algorithm 2: Hierarchical Dynamic Fractional Rounding
Algorithm
global :Current vector x
global :Current output integral matching"
global :Accuracy n and maximum layer ! 2 Z>0
global :Partial roundings �0, �1, . . . , �! ✓ ⇢ and update

counts 20, 21, . . . , 2! 2 Z�0
// In init we assume that the algorithm knows X,

a lower bound on xmin for all nonzero x
encountered after an operation

function init(⌧ = (+ , ⇢), x 2 R⇢�0, n 2 (0, 1))
Save x and n as global variables;
Initialize ! 1 + dlog2 (Y�1X�1)e, 28 0, and �8 ;,
for all 8 2 {0, 1, . . . , !};
Call rebuild(!);

function rebuild(8)
for 9 = 8, 8 � 1, . . . , 0 do

⇢ 9 supp9 (x) and 2 9 0;
if 9 < 0 then � 9�1 degree-split(⌧ [⇢ 9] � 9]);

end
" ⇢0 [�0;

function update(4,a)
x4 a ;
for 8 = !, ! � 1, ..., 0 do

if 4 2 ⇢8 then remove 4 from ⇢8 ;
if 8 < 0 then

if 4 2 �8�1 then remove 4 from �8�1;
else remove one edge adjacent to each endpoint
of 4 from �8�1 (if there is one);

end
28 28 + 1;
if 28 > 28�2 · Y kxk! then call rebuild(8) and return;

end

Conventions and notation.Most of our lemmas concerning Al-
gorithm 2 hold for arbitrary non-negative vectors x 2 R⇢�0, a fact
that will prove useful in later sections. We state explicitly which
lemmas hold if x is a fractional bipartite matching. In the analysis
of Algorithm 2 we let x(8) be as de�ned in De�nition 1, but with ⇢8
and �8 of the dynamic algorithm. Furthermore, we prove all struc-
tural properties of Algorithm 2 for any time after init and any
number of update operations, and so we avoid stating this in all
these lemmas’ statements for brevity. Next, we use the shorthand
(8 := supp8 (x), and note that unlike in the static algorithm, due
to deletions from ⇢8 before the next rebuild(8), the containment
⇢8 ✓ (8 may be strict.

First, we prove that" is a matching if x is a bipartite fractional
matching. More generally, we prove that each x(8) , and in particular
x(0) , is a fractional matching, implying the above.

Lemma 3.8. If x is a fractional bipartite matching, then x(8) is a
fractional matching for all 8 2 {0, 1, . . . , !}.

P����. Fix vertex E , and let �8 (E) and (8 (E) be the number of
edges of E in �8 and (8 respectively, for all 8 2 {0, 1, . . . , !}. To upper
bound G (8) (E), we start by upper bounding �8 (E), as follows.

�8 (E) 
266666
28 ·

!’
9=8+1

(9 (E) · 2� 9
377777
. (3)

We prove the above by induction on the number of operations and
by reverse induction on 8 2 {0, 1, . . . , !}, as follows. The base case
8 = ! is trivial, as �! (E) = 0 throughout and the RHS is non-negative.
Next, for 8 < !, consider the e�ect on �8 (E) of an update resulting
in a call to rebuild(8 + 1) (e.g., after calling init), at which point
⇢8+1 (8+1.

�8 (E) 
⇠
1
2
· ((8+1 (E) + �8+1 (E))

⇡
Property 3


266666
1
2
· (8+1 (E) +

1
2
·
266666
28+1 ·

!’
9=8+2

(9 (E) · 2� 9
377777
377777

Inductive hypothesis for 8 + 1


266666
1
2
· (8+1 (E) +

1
2
· 28+1 ·

!’
9=8+2

(9 (E) · 2� 9
377777

=
266666
28 ·

!’
9=8+1

(9 (E) · 2� 9
377777
,

where the last inequality follows from the basic fact that for non-
negative ~, I with ~ an integer, d 12 · ~ + 1

2 dIee  d 12 (~ + I)e. Next,
it remains to prove the inductive step for index 8 and a call to
update for which rebuild(8 + 1) is not called: but such an update
only decreases the left-hand side of Equation 3, while it causes a
decrease in the right-hand side (by one) only if an edge of E was
updated in this call to update, in which case we delete at least one
edge incident to E in �8 , if any exist, and so the left-hand side also
decreases by one (or is already zero).

Finally, combining De�nition 1 and Equation 3, we obtain the
desired inequality G (8) (E)  1.

G (8) (E)  �8 (E) · 2�8 +
8’
9=0

(9 (E) · 2� 9

 2�8 ·
266666
28 ·

!’
9=8+1

(9 (E) · 2� 9
377777
+

8’
9=0

(9 (E) · 2� 9  1.

Above, the �rst inequality follows from De�nition 1 and ⇢8 (E) 
(8 (E) since ⇢8 ✓ (8 . The second inequality follows from Equation 3.
Finally, the �nal inequality relies on

Õ
9 (9 (E) · 2� 9 = G (E)  1,

together with 28 ·Õ!
9=8+1 (9 (E) · 2� 9 being fractional if and only ifÕ!

9=8+1 (9 (E) · 2� 9 is not evenly divisible by 2�8 , though it is evenly
divisible by 2�8�1, in which case G (E)  1 � 2�8 . ⇤

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Remark 3.9. The same proof approach, using Property 1 of Degree-
Split (for possibly non-bipartite graphs) implies the global upper bound
|�8 | 

l
28 ·Õ!

9=8+1 |(9 | · 2� 9
m
 1 + 28 · kxk.

Next, we prove the second property of a rounding algorithm,
namely that" ✓ supp(x).

Lemma 3.10. supp(x(8)) ✓ supp(x) for all 8 2 {0, 1 . . . , !} and
therefore" ✓ supp(x).

P����. We prove the stronger claim by induction on the num-
ber of operations of Algorithm 2 and by reverse induction on 8 2
{0, 1, . . . , !} that supp(x(8)) = ⇢8 [�8 ✓ supp(x(8+1)) ✓ supp(x).
That ⇢8 ✓ supp8 (x) throughout is immediate, since ⇢8 supp8 (x)
when rebuild(8) is called (and in particular after init was called),
and subsequently all edges 4 2 ⇢8 that are updated (and in particu-
lar each edge whose G4 value is set to zero) are removed from ⇢8 .
Therefore ⇢8 ✓ supp(x) throughout, and in particular supp(x(!)) =
⇢! ✓ supp(x). Similarly, by the properties of degree-split and
the inductive hypothesis, we have that after rebuild(8) is called,
�8 ✓ �8+1 [⇢8+1 ✓ supp(x(8+1)) ✓ supp(x), and each edge 4
updated since is subsequently deleted from �8 (as are some addi-
tional edges). Therefore �8 ✓ supp(x) throughout. We conclude
that supp(x(8)) ✓ supp(x) for all 8 , as desired. ⇤

We now argue that the unprocessed edges have a negligible
e�ect on values of x(8) compared to their counterparts obtained by
running the static algorithm on the entire input x.

Lemma 3.11. kx(8) k � (1 � 2Y) · kxk for every 8 2 {0, 1, . . . , !}.

P����. As in the proof of Lemma 3.3, by Property 1, after init
or any update(·, ·) triggering a call to rebuild(8) we have that
|�8�1 | = d 12 (|�8 | + |⇢8 |)e, and so kx(8�1) k � kx(8) k. On the other
hand, between calls to rebuild(8) there are at most 28�2 · Y kxk! calls
to update(4,a), resulting in at most 28�1 · Y kxk! many edges being
deleted from �8�1, which in turn result in kx(8�1) k decreasing by at
most 2� (8�1) · 28�1 · Y kxk! = Y kxk

! . In contrast, by De�nition 1, any
changes in ⇢ 9 for 9 < 8 have no e�ect on kx(8�1) k � kx(8) k. On the
other hand, until the next rebuild(8) is triggered, we have that ⇢8
and �8 can only decrease (contributing to an increase in kG (8�1) k �
kG (8) k); ⇢8 can only decrease since edges are only added to ⇢8 when
rebuild(8) is called, and �8 only decreases until rebuild(8 + 1) is
called, which triggers a call to rebuild(8). Therefore, kG (8�1) k �
kG (8) k decreases by at most Y kxk

! during updates until the next
call to rebuild(8), and so after init and after every update of
Algorithm 2, we have that

kx(8�1) k � kx(8) k � Ykxk
!

.

Invoking the above inequality ! times, and using that kx(!) k �
(1 � Y) · kxk by Observation 2.2, we obtain the desired inequality.

|⇢0 [�0 | = kx(0) k � kx(1) k �
Ykxk
!
� . . .

� kx(!) k � ! · Ykxk
!
� (1 � 2Y) · kxk . ⇤

Remark 3.12. The latter is nearly tight, as kx(8) k  (1 + n) · kxk +
21�8 for every 8 2 {0, 1, . . . , !}.

P���� (S�����). The proof follows that of Lemma 3.11, with
the following changes: By Property Property 1, after init or any
update(·, ·) triggering a call to rebuild(8) we have the upper
bound |�8�1 | = d 12  1 + 1

2 (|�8 | + |⇢8 |), and so kx(8�1) k  kx(8) k +
2�8+1. On the other hand, the increase in kG (8�1) k � kG (8) k until
such a rebuild(8) is at most n kxk

! (similarly to the decrease in the
same). The proof then concludes similarly to that of Lemma 3.11,
also using that kx(!) k  kxk. ⇤

Finally, we turn to analyzing the algorithm’s update time.

Lemma 3.13. The (amortized) time per update of Algorithm 2 is
$ (Y�1 · !2) .

P����. By Remark 3.9, |�8 |  1+28 · kxk = $ (28 · kxk) (recalling
that without loss of generality kxk � 1). Similarly, trivially |(8 | =
28 · 2�8 · |(8 |  28 · kxk. Therefore, by Proposition 2.4, the calls to
degree-split(⌧ [⇢8] �8]) in Algorithm 2 (at which point ⇢8 = (8)
take time$ (28 · kxk), and so the time for rebuild(8) isÕ8

9=0$ (29 ·
kxk) = $ (28 · kxk). But since rebuild(8) is called after 28�2 · Y kxk!
updates, its cost amortizes to$ (Y�1 · !) time per update. Summing
over all 8 2 {0, 1, . . . , !}, we �nd that indeed, the amortized time
per update operation, which is $ (!) (due to deleting $ (1) edges
from each ⇢8 and �8 for each 8) plus its contribution to periodic calls
to rebuild, is $ (Y�1 · !2). ⇤

We are �nally ready to prove Theorem 3.7.

P���� �� T������ 3.7. Algorithm 2 is a dynamic rounding al-
gorithm for bipartite fractional matchings, since " is a match-
ing contained in supp(x0) ✓ supp(x1) ✓ · · · ✓ supp(x) if the
latter is bipartite, by Lemma 3.8 and Lemma 3.10, and moreover
|" | = kx(0) k � (1 � 2Y) · kxk, by Lemma 3.11. The algorithm’s
update time and init time follow from Lemma 3.13 and Theo-
rem 3.1. ⇤

To (nearly) conclude, this section provides a simple bipartite
rounding algorithm with near-optimal Y-dependence. In the follow-
ing section we show how partially rounding the fractional matching
allows to dynamically guarantee that xmin be sub-polynomial in
Y/=, thus allowing us to decrease ! and obtain speedups (improved
=-dependence) when combined with Algorithm 2.

Algorithm 2 in general graphs. Before continuing to the next
section, we mention that the alluded-to notion of partial round-
ing will also be useful when rounding (well-structured) fractional
matchings in general graphs as well (see full version). With this in
mind, we provide the following lemma, which is useful to analyze
Algorithm 2 when rounding general graph matchings.

Lemma 3.14. For 32+ (x, y) := Õ
E2+ (|G (E)�~ (E) |�2)+, the vectors

x(8) satisfy

32
�8+1

+ (x, x(8))  Y · kxk 88 2 {0, 1, . . . , !}.

P����. First, we verify that the inequality holds (with some
extra slack) right after rebuild(8) (and in particular right after

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

init). First, by Property 2 of degree-split, during the invocation
of which ⇢8 = (8 , we have that

�8 (E) 2

1
2
(⇢8+1 (E) + �8+1 (E) � 1,

1
2
(⇢8+1 (E) + �8+1 (E)) + 1

�

. Therefore, byDe�nition 1, for each vertex E , we have after rebuild(8)
that

|G (8) (E) � G (8+1) (E) |  2�8 .
On the other hand, before an update with current input x there are
at most 28�2 · Y kxk! calls to update since the last call to rebuild(8),
resulting in at most 3 · 28�2 · Y kxk

! many edges being added or
deleted from ⇢8 [�8 . Therefore, during the updates between calls
to rebuild(8), the total variation distance between x(8) and x(8+1)

changes by at most Y kxk
! , and so after init and after any update,

’
E

⇣
|G (8) (E) � G (8+1) (E) | � 2�8

⌘+
 Ykxk

!
.

Now, using the basic fact that (0 + 1)+  0+ + 1+ for all real 0,1,
summing the above di�erence over all 8 , and using that x = x(!)
by Observation 2.2, we obtain the desired inequality, as follows.’

E

⇣
|G (8) (E) � G! (E) | � 2�8+1

⌘+


!�1’
9=8

’
E

⇣
|G (8) (E) � G (8+1) (E) | � 2�8

⌘+

 ! · Ykxk
!

= Ykxk . ⇤

4 PARTIAL ROUNDING: A PATH TO
SPEEDUPS

So far, we have provided a rounding algorithm with near-optimal
dependence on Y (by Fact 2.3) and polylogarithmic dependence
on x�1min = poly(Y�1=) of the fractional matching x. To speed up
our algorithm we thus wish to dynamically maintain a “coarser”
fractional matching x0 (i.e., with larger (x0min)

�1 than x�1min) that
approximately preserves the value of x. The following de�nition
captures this notion of coarser fractional matchings that we will
use.9

De�nition 4.1. A vector x0 2 R⇢�0 is an (n, X)-coarsening of a
vector x 2 R⇢�0 if:

(0) (P1)Containment: supp(x0) ✓ supp(x).
(1) (P2)Global Slack: |kxk � kx0 k |  Y · kxk + Y.
(2) (P3)Vertex Slack: 3n+ (x, x0)  Y · kxk + Y.
(3) (P4)Edge Values: G 04 2 {0} [[X, 2X) if G4 < X and G 04 = G4

otherwise.
The coarsening x0 is bounded if it also satis�es:
(1) (P4)Boundedness: G 0 (E)  G (E) + Y for all E 2 + .

We brie�y motivate the above de�nition: As we shall see, prop-
erties 1 and 2 imply that x0 (after mild post-processing) is a (1 � Y)-
approximation of x, and so rounding x0  x results in a (1 � Y)2 �
(1�2Y)-approximation of x. The less immediately intuitive Property
2 will also prove useful when rounding in general graphs. For now,
9In what follows, we use the de�nition of 3n+ from Observation 2.1.

we will use this property when combining coarsenings of disjoint
parts of the support of x. Property 3 then allows us to round such
coarsening x0 e�ciently, with only a polylogarithmic dependence
on X�1, using Algorithm 2 (by Theorem 3.7). Finally, Property 1
guarantees that x0/(1 + Y) is a fractional matching.

A key ingredient for subsequent sections is thus a dynamic coars-
ening algorithm, as follows.

De�nition 4.2. A dynamic (Y, X)-coarsening algorithm is a data
structure supporting the following operations:

• init(⌧ = (+ , ⇢), x 2 R⇢�0): initializes the data structure for
undirected graph⌧ with vertices+ and edges ⇢, current vector
x.

• update(4 2 ⇢, a 2 [0, 1]): sets G4 a .

The algorithm must maintain an (Y, X)-coarsening x0 of (the current)
x.

As we show in the full version, the internal state of Algorithm 2
yields a dynamic coarsening algorithm. In this section we state
bounds for a number of dynamic coarsening algorithms, with the
objective of using their output as the input of Algorithm 2, from
which we obtain faster dynamic bipartite rounding algorithms than
when using the latter algorithm in isolation. The following lemma
(proven in the complete version) captures the bene�t of this ap-
proach.

Lemma 4.3. (From coarsening to rounding). Let C be a dynamic
(n, X)-coarsening algorithm with update time C C* := C C* (Y, X,=) and
init time$ (|supp(x) | · C C�). Let R be a dynamic rounding algorithm
for fractional matchings x with xmin � X , with update time CR* :=
CR* (Y, X,=) and init time $ (|supp(x) | · CR�), for CR� := CR� (Y, X,=).
Then, there exists an $ (n + X)-approximate dynamic rounding algo-
rithm R⇤ with update time $ (C C* + CR* + Y�1 · CR�) and init time
$ (|supp(x) | · (CR� + C C�)) which is deterministic/adaptive/output-
adaptive if both R and C are.

In our invocations of Lemma 4.3 we will use Algorithm 2 to
play the role of Algorithm R. In the complete version we provide a
number of coarsening algorithm, whose properties we state in this
section, together with the obtained rounding algorithms’ guaran-
tees.

A number of our coarsening algorithms will make use of sub-
routines for splitting (most of) the fractional matching’s support
into numerous disjoint coarsenings, as in the following.

De�nition 4.4. An (n, X)-split of fractional matching z 2 R⇢�0 with
zmax  X consists of (n, X)-coarsenings z(1) , . . . , z(:) with disjoint
supports, together covering at least half of supp(z), i.e.,

’
8

|supp(z(i)) | � 1
2
· |supp(z) |.

The following lemma combined with Lemma 4.3 motivates our
interest in such splits.

Lemma 4.5. (From static spli�ing to dynamic coarsening). Let
S be a static (W, X)-split algorithm with running time |supp(x) | ·CB on

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

uniform fractional matching x, where CB := CB (=,W, X). Then there ex-
ists a dynamic algorithm C which for any (possibly non-uniform) frac-
tional matching x maintains an

�
$
�
Y + W · Y�1 · (log(W�1 · =)

�
, X
�
-

coarsening of xwith update time$ (Y�1 ·CB), init time$ (|supp(x) | ·
CB). Algorithm C is deterministic/adaptive/output-adaptive if A is.

Section outline. We prove Lemmas 4.34.5 in the complete version
of the paper. Before that, we state bounds of a number of such
partial rounding algorithms together with the rounding algorithms
we obtain from these, yielding Theorem 1.2.

4.1 Partial Rounding Algorithms, with
Applications

Here we state the properties of our coarsening and splitting algo-
rithms (presented in the complete version of the paper), together
with the implications to dynamic rounding, as stated in Theorem 1.2.
Simmiliarly, we provide a deterministic static split algorithm as
stated in the following lemma.

Lemma 4.6. For any Y > 0, there exists a deterministic static (4Y, Y)-
split algorithm which on input uniform fractional matchings x runs
in time $

�
|supp(x) | · log(n�1 · =

�
).

Combining the above lemma with Lemmas 4.34.5 yields the �rst
result of Theorem 1.2.

Corollary 4.7. There exists a deterministic dynamic bipartite round-
ing algorithm with update time $ (Y�1 · C (Y,=)) and init time
$ (|supp(x) | · C (Y,=)), for C (Y,=) = log= + log2 (Y�1).

P����. By Algorithmalg:det-split, there exists a deterministic
static

⇣
4Y3
log= ,

Y3
log=

⌘
-split algorithm that on uniform fractional match-

ing x runs in $ (|supp(x) | · log(Y�1 · =)) time. Plugging this algo-
rithm into Lemma 4.5 yields a deterministic dynamic

⇣
$ (Y), Y3

log=

⌘
-

coarsening algorithm C with update time C C* = $ (Y�1 · (log=)) and
initialization time $ (|supp(x) | · log=). Moreover, by Theorem 3.7
there exists a deterministic dynamic bipartite matching round-
ing algorithm R for fractional bipartite matchings x with xmin =
⌦(poly(Y�1 ·log=)) with update time CR* = $ (Y�1 ·log2 (Y�1 ·log=))
and init time$ (|supp(x) | · CR�), for CR� = $ (log(Y�1 · log=)). Plug-
ging these algorithms into Lemma 4.10, we obtain a deterministic
algorithm which has update time

$ (C C* + CR* + CR� · Y�1) =
$ (Y�1 · (log= + log2 (Y�1 · log=))) =
$ (Y�1 · (log= + log2 (Y�1))

and initialization time$ (|supp(x) | · (log= + log2 (Y�1)). The last
equality holds for all ranges of = and Y, whether Y�1 = $ (log=) or
Y�1 = ⌦(log=). ⇤

Next, in the complete version we provide a simple linear-time
subsampling-based randomized split algorithm with the following
properties.

Lemma 4.8. For any Y > 0, there exists a static randomized algo-
rithm that on uniform fractionalmatchings x computes an (Y, Y4

24 log2 =
)-

split in $ (|supp(x) |)-time, and succeeds w.h.p.

Combining the above lemma with Lemma 4.3 and Lemma 4.5
yields the w.h.p. result of Theorem 1.2.

Corollary 4.9. There exists an adaptive dynamic bipartite rounding
algorithm that succeeds w.h.p., with update time

$ (Y�1 · C (Y,=)) and init time$ (|supp(x) | · C (Y,=)), for C (Y,=) =
log2 log= + log2 (Y�1).

P����. By Lemma 4.8, there exists a randomized static algorithm
that computes a

⇣
Y3

log(=) ,
Y12

24·log6 (=)

⌘
-split of any uniform fractional

matching x in $ (|supp(x) |) time, succeeding w.h.p. Plugging this
algorithm into Lemma 4.5 we obtain a randomized (with high prob-
ability) dynamic

⇣
$ (Y), Y12

24·log6 (=)

⌘
-coarsening algorithm C with

update time C C* = $ (Y�1) and init time $ (|supp(x) |). On the
other hand, by Theorem 3.7, there exists a deterministic dynamic
bipartite matching rounding algorithm R for fractional match-
ings x with xmin = ⌦(poly(Y�1 · log=)) with update time CR* =
$ (Y�1 · log2 (log= · Y�1)) and init time$ (|supp(x) | · CR�), for CR� =
$ (log(log= · Y�1)). Plugging these algorithms into Lemma 4.10, we
obtain a randomized adaptive algorithm which works with high
probability and has update time

$ (C C* + CR* + CR� · Y�1) =
$ (Y�1 · log2 (log= · Y�1)) =

$
⇣
Y�1 ·

⇣
log2 log= + log2 (Y�1)

⌘⌘

and init time$ (|supp(x) | · log2 (log=)+log2 (Y�1)). The last equal-
ity holds whether Y�1 = $ (log=) or Y�1 = ⌦(log=). ⇤

In the complete version of the paper building on a output-adaptive
dynamic set sampling algorithm which we give an output-adaptive
coarsening algorithm with constant (and in particular independent
of =) expected amortized update time.

Lemma 4.10. There exists an output-adaptive dynamic ($ (Y), Y3)-
coarsening algorithm for dynamic fractional matchings x with ex-
pected update time $ (Y�1) and expected init time $ (|supp(x) |).

Finally, combining the above lemma with Lemma 4.3 yields the
third result of Theorem 1.2.

Corollary 4.11. There exists an output-adaptive dynamic bipartite
rounding algorithm with expected update time $ (Y�1 · C (Y)) and
expected init time $ (|supp(x) | · C (Y)) for C (Y) = log2 (Y�1).

P����. By Lemma 4.10, there exists a dynamic (Y,$ (Y3)) coars-
ening algorithm C with expected update time C C* = $ (1) and
init time $ (|supp(x) |). On the other hand, by Theorem 3.7 there
exists a deterministic (hence output-adaptive) dynamic bipartite
matching rounding algorithm R for fractional matchings x with
xmin = ⌦(Y3) with update time CR* = $ (Y�1 · log2 (Y�1)) and init
time $ (|supp(x) | · CR�), for CR� = $ (log(Y�1)). Plugging these algo-
rithms into Lemma 4.10, we obtain an output-adaptive algorithm
with expected update time$ (C C* +CR* +CR� ·Y�1) = $ (Y�1 ·log2 (Y�1))
and expected

inittime$ (|supp(x) | · log2 (Y�1))
. ⇤

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

ACKNOWLEDGEMENTS
Author Sayan Bhattacharya was Supported by Engineering and
Physical Sciences Research Council, UK (EPSRC) Grant EP/S03353X/1.
Author Peter Kiss’s work was done in part while visiting Max-
Planck-Institut für Informatik. Author Aaron Sidford was supported
in part by a Microsoft Research Faculty Fellowship, NSF CAREER
Award CCF-1844855, NSF Grant CCF-1955039, a PayPal research
award, and a Sloan Research Fellowship. Author David Wajc’s work
was done in part while at Stanford University and Google Research.
Supported by a Taub Family Foundation “Leader in Science and
Technology” fellowship. Thank you to Arun Jambulapati for help-
ful conversations which were foundational for the static bipartite
rounding algorithm in this paper and subsequent developments.
Part of this work was conducted while authors in positions 20, 21
and 22 (alphabetically) were visiting Dagstuhl program 22461, “Dy-
namic Graph Algorithms”.

While leaving much of the main sections of the paper to the full
version (available at https://arxiv.org/abs/2306.11828) we included
the following tool from the appendixwhichmight be of independent
research interest.

A DYNAMIC SET SAMPLING
In this section we provide an output-adaptive data structure for
the dynamic set sampling problem (restated below). Recall that
this is the basic problem of maintaining a dynamic subset of [=]
where every element is included in the subset independently with
probability ?8 under dynamic changes to ?8 and re-sampling. This
basic problem was studied by [30, 54, 56].

De�nition A.1. A dynamic set sampler is a data structure support-
ing the following operations:

• init(=, p 2 [0, 1]=): initialize the data structure for =-size set
(and probability vector p.

• set(8 2 [=],U 2 [0, 1]): set ?8 U .
• sample(): return) ✓ R= containing each 8 2 (independently
with probability ?8 .

Our main result of this section is that we can implement in each
operation in total time linear in the number of operations, =, and
the size of the) output.

Theorem A.2. Algorithm 3 is a set sampler data structure using
$ (=) space that implements init in $ (=) time, set in $ (1) time,
and) = sample() in expected$ (1 + |) |) time in a word RAM model
with word sizeF = ⌦(log(?�1min)), under the promise that ?8 � ?min
for all 8 2 [=] throughout. These guarantees hold even if the input is
chosen by an output-adaptive adversary.

Comparison with the concurrent work of [56]. Our solution is
somewhat simpler than that of the concurrent set sampler of [56].
For our purposes, the only important di�erence is that our algo-
rithm is provably output-adaptive.

Our Algorithm 3 and associated proof of Theorem A.2 stem from
a simple insight about computing when an element 8 2 [=] will be
in the output of sample(). Note that if there are no operations of

the form set(8,U), then the probability 8 is in any individual output
of sample() is ?8 . Consequently, the probability that ?8 is not in
the output of sample() for the next C calls to sample() is (1 � ?8)C .
Therefore, the number of calls to sample() it takes for 8 to be in the
output sample follows the geometric distribution with parameter
?8 , i.e. Geo(?8)!

Leveraging this simple insight above leads to an e�cient set
sampler data structures. Naively, implementing set sampling takes
$ (=) time per call to sample(), used to determine for each element
8 whether or not it should be in the output. However, we could
instead simply sample from geom(?8) (in expected $ (1), using
[29]) whenever set(8,U) is called or 8 is in the output of sample(),
in order to determine the next call to sample() which will result
in 8 being in the output. Provided we can e�ciently keep track of
this information for each 8 , this would yield the desired bounds in
Theorem A.2.

Unfortunately, when sampling from geom(?8), the output could
be arbitrarily large (albeit with small probability). Further, main-
taining the data structure for knowing when 8 is scheduled to be in
the output of sample() would naively involve maintaining a heap
on arbitrary large numbers, incurring logarithmic factors. There are
many potential data-structures and techniques to solve this prob-
lem. In our Algorithm 3 we provide one simple, straightforward
solution. Every = calls to sample(), we “rebuild” our data structure
and rather than sampling from geom(?8) to determine the next
call to sample() that will output 8 , we instead simply sample to
determine the next call to sample() before the rebuild that will
output 8 (if there is one). Algorithm 3 simply does this, resampling
this time for 8 whenever set(8,U) is called.

Algorithm 3: Set Sampler Data Structure
global :Size = and ? 2 [0, 1]=
global :Current (relative) time g , subsets)1, ...,)= ✓ [=],

and next sample times g1, ..., g= 2 [= + 1]
1 function init(=, ? 2 [0, 1]=)
2 Save = and ? as global variables;
3 Initialize g 1,)8 = ;, and g8 = = + 1 for all 8 2 [=];
4 Call set(8, ?8) for all 8 2 (;
5 function set(8 2 [=],U 2 [0, 1])
6 if g8 < = + 1 then)g8)g8 \ {8};

// The loop below can be implemented in
expected $ (1) time (see Lemma A.3)

7 for 9 = g to = do
8 Independently with probability ?8 , set)9)9 [{8},

g8 = 9 , and return
9 end

10 g8 = = + 1;

11 function sample()
12 Set))g and then set g g + 1;
13 if g < = + 1 then call set(8, ?8) for all 8 2) ;
14 else set g = 1, and then call set(8, ?8) for all 8 2 [=];

return :)

https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/22461
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/22461
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/22461
https://arxiv.org/abs/2306.11828

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 3 is written without an e�cient determination of
the next output time for each element, so that it is clear that this
algorithm is a set sampler. In the following Lemma A.3 we show
how to perform this e�cient determination or, more precisely,
implementing the for-loop in Lines 7-8 We then use this lemma to
prove Theorem A.2.

Lemma A.3. The for-loop in Lines 7-8 of Algorithm 3 can be imple-
mented in expected $ (1) time in the word RAM model.

P����. The loop executes the return statement with a value
of 9 2 [C,=] with probability ? 9�C (1 � ?). Consequently, if we let
✓ � 0 be sampled by the geometric distribution with probability ? ,
i.e., Pr[✓ = E] = ?E (1 � ?) for all E 2 Z>0, and if ✓ 2 {0, ...,= � C}
simply execute the return statement with 9 = C +✓ and otherwise set
g8 = = + 1, then this is equivalent to the lines of the for loop. Since
sampling from a geometric distribution Geo(?) in this manner can
be implemented in expected $ (log(1/?)/F) = $ (1) time in the
word RAM model [29], the result follows. ⇤

P���� �� T������ A.2. Algorithm 3 maintains that after each
operation (init, set or sample), each 8 2 [=] is a member of at
most one)9 . Further, if 8 2)9 , then g  9 and g8 = 9 and moreover
g8 = =+1 if and only if 8 8)9 for any 9 2 [=]. Further, the algorithm
is designed (as discussed) so that)g is a valid output of sample
at time g (for any updates of an output-adaptive adversary, that
is unaware of)9 for 9 � g). Since the algorithm also ensures that
g  =, the algorithm has the desired output. Further, from these
properties it is clear that the algorithm can be implemented in$ (=)
space. It only remains to bound the running time for implementing
the algorithm.

To analyze the running time of the algorithm, �rst note that by
Lemma A.3, each set operation can be implemented in expected
$ (1) time. Consequently, init can be implemented in expected
$ (=) time. Further, since) = sample() simply calls set for ele-
ments in its output or for all = elements after every = times it is
called, it has the desired expected runtime $ (1 + |) |) as well. ⇤

REFERENCES
[1] Amir Abboud and Søren Dahlgaard. 2016. Popular conjectures as a barrier

for dynamic planar graph algorithms. In Proceedings of the 57th Symposium on
Foundations of Computer Science. 477–486.

[2] Amir Abboud and Virginia VassilevskaWilliams. 2014. Popular conjectures imply
strong lower bounds for dynamic problems. In Proceedings of the 55th Symposium
on Foundations of Computer Science. 434–443.

[3] Moab Arar, Shiri Chechik, Sarel Cohen, Cli� Stein, and David Wajc. 2018. Dy-
namic Matching: Reducing Integral Algorithms to Approximately-Maximal Frac-
tional Algorithms. In Proceedings of the 45th International Colloquium on Au-
tomata, Languages and Programming. 79:1–79:16.

[4] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. 2023. On
regularity lemma and barriers in streaming and dynamic matching. In Proceedings
of the 55th Symposium on Theory of Computing.

[5] Sepehr Assadi, Aaron Bernstein, andAditi Dudeja. 2022. DecrementalMatching in
General Graphs. In Proceedings of the 49th International Colloquium on Automata,
Languages and Programming. 11:1–11:19.

[6] Amir Azarmehr, Soheil Behnezhad, and Mohammad Roghani. 2024. Fully Dy-
namic Matching: (2�

p
2)-Approximation in Polylog Update Time. In Proceedings

of the 35th Symposium on Discrete Algorithms.
[7] Surender Baswana, Manoj Gupta, and Sandeep Sen. 2015. Fully DynamicMaximal

Matching in$ (log=) Update Time. SIAM J. Comput. 44, 1 (2015), 88–113.
[8] Soheil Behnezhad. 2023. Dynamic algorithms for maximum matching size. In

Proceedings of the 34th Symposium on Discrete Algorithms. 129–162.

[9] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cli� Stein,
and Madhu Sudan. 2019. Fully dynamic maximal independent set with polylog-
arithmic update time. In Proceedings of the 60th Symposium on Foundations of
Computer Science. 382–405.

[10] Soheil Behnezhad and Sanjeev Khanna. 2022. New Trade-O�s for Fully Dynamic
Matching via Hierarchical EDCS. In Proceedings of the 33rd Symposium on Discrete
Algorithms. 3529–3566.

[11] Soheil Behnezhad, Jakub Łącki, and Vahab Mirrokni. 2020. Fully Dynamic Match-
ing: Beating 2-Approximation in �n Update Time. In Proceedings of the 31st
Symposium on Discrete Algorithms. 2492–2508.

[12] Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranu-
rak, and Uri Stemmer. 2022. Dynamic algorithms against an adaptive adversary:
Generic constructions and lower bounds. In Proceedings of the 54th Symposium
on Theory of Computing. 1671–1684.

[13] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A deamortiza-
tion approach for dynamic spanner and dynamic maximal matching. In Proceed-
ings of the 30th Symposium on Discrete Algorithms. 1899–1918.

[14] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak.
2020. Deterministic decremental reachability, SCC, and shortest paths via directed
expanders and congestion balancing. In Proceedings of the 61st Symposium on
Foundations of Computer Science. 1123–1134.

[15] Aaron Bernstein and Cli� Stein. 2015. Fully Dynamic Matching in Bipartite
Graphs. In Proceedings of the 42nd International Colloquium on Automata, Lan-
guages and Programming. 167–179.

[16] Aaron Bernstein and Cli� Stein. 2016. Faster fully dynamic matchings with
small approximation ratios. In Proceedings of the 27th Symposium on Discrete
Algorithms. 692–711.

[17] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2020. De-
terministic dynamic matching in$ (1) update time. Algorithmica 82, 4 (2020),
1057–1080.

[18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2015. Determin-
istic fully dynamic data structures for vertex cover and matching. In Proceedings
of the 26th Symposium on Discrete Algorithms. 785–804.

[19] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New de-
terministic approximation algorithms for fully dynamic matching. In Proceedings
of the 48th Symposium on Theory of Computing. 398–411.

[20] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully
Dynamic Approximate Maximum Matching and Minimum Vertex Cover in
$ (log3 =) Worst Case Update Time. In Proceedings of the 28th Symposium on
Discrete Algorithms. 470–489.

[21] Sayan Bhattacharya and Peter Kiss. 2021. Deterministic Rounding of Dynamic
Fractional Matchings. In Proceedings of the 48th International Colloquium on
Automata, Languages and Programming. 27:1–27:14.

[22] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. 2023. Dynamic
(1+n)-Approximate Matching Size in Truly Sublinear Update Time. Proceedings
of the 64th Symposium on Foundations of Computer Science, 1563–1588.

[23] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. 2023. Dynamic
Algorithms for Packing-Covering LPs via Multiplicative Weight Updates. In
Proceedings of the 34th Symposium on Discrete Algorithms. 1–47.

[24] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. 2023.
Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update
Time. In Proceedings of the 34th Symposium on Discrete Algorithms. 100–128.

[25] Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. 2024. Near-
Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs.
arXiv:2306.11828 [cs.DS]

[26] Sayan Bhattacharya and Janardhan Kulkarni. 2019. DeterministicallyMaintaining
a (2 + n)-Approximate Minimum Vertex Cover in$ (1/Y2) Amortized Update
Time. In Proceedings of the 30th Symposium on Discrete Algorithms. 1872–1885.

[27] Joakim Blikstad and Peter Kiss. 2023. Incremental (1 � n)-approximate dynamic
matching in $ (poly(1/n)) update time. In Proceedings of the 31st European
Symposium on Algorithms. 22:1–22:19.

[28] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. 2019.
Dynamic matrix inverse: Improved algorithms and matching conditional lower
bounds. In Proceedings of the 60th Symposium on Foundations of Computer Science.
456–480.

[29] Karl Bringmann and Tobias Friedrich. 2013. Exact and e�cient generation
of geometric random variates and random graphs. In Proceedings of the 40th
International Colloquium on Automata, Languages and Programming. 267–278.

[30] Karl Bringmann and Konstantinos Panagiotou. 2017. E�cient sampling methods
for discrete distributions. Algorithmica 79 (2017), 484–508.

[31] Moses Charikar and Shay Solomon. 2018. Fully Dynamic Almost-Maximal Match-
ing: Breaking the Polynomial Barrier for Worst-Case Time Bounds. In Proceedings
of the 45th International Colloquium on Automata, Languages and Programming.
33:1–33:14.

[32] Shiri Chechik and Tianyi Zhang. 2019. Fully dynamic maximal independent
set in expected poly-log update time. In Proceedings of the 60th Symposium on
Foundations of Computer Science. 370–381.

https://arxiv.org/abs/2306.11828

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

[33] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum �ow and minimum-cost �ow in almost-
linear time. In Proceedings of the 63rd Symposium on Foundations of Computer
Science.

[34] Julia Chuzhoy and Sanjeev Khanna. 2019. A new algorithm for decremental
single-source shortest paths with applications to vertex-capacitated �ow and cut
problems. In Proceedings of the 51st Symposium on Theory of Computing. 389–400.

[35] Søren Dahlgaard. 2016. On the Hardness of Partially Dynamic Graph Problems
and Connections to Diameter. In Proceedings of the 43rd International Colloquium
on Automata, Languages and Programming. 48:1–48:14.

[36] Ran Duan and Seth Pettie. 2014. Linear-time approximation for maximum weight
matching. J. ACM 61, 1 (2014), 1.

[37] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0, 1-vertices.
Journal of research of the National Bureau of Standards B 69, 125-130 (1965), 55–56.

[38] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn,
and Shay Solomon. 2019. (1+n)-Approximate Incremental Matching in Constant
Deterministic Amortized Time. In Proceedings of the 30th Symposium on Discrete
Algorithms. 1886–1898.

[39] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad.
2022. Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and
with Worst-Case Time Bounds. Proceedings of the 5th Symposium on Simplicity
in Algorithms (2022), 12–23.

[40] Manoj Gupta and Richard Peng. 2013. Fully dynamic (1 + Y)-approximate
matchings. In Proceedings of the 54th Symposium on Foundations of Computer
Science. 548–557.

[41] Manoj Gupta, Venkatesh Raman, and SP Suresh. 2014. Maintaining Approximate
Maximum Matching in an Incremental Bipartite Graph in Polylogarithmic Up-
date Time. In Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), Vol. 29. 227–239.

[42] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and strengthening hardness for dynamic problems
via the online matrix-vector multiplication conjecture. In Proceedings of the 47th
Symposium on Theory of Computing. 21–30.

[43] Zoran Ivkovic and Errol L Lloyd. 1993. Fully Dynamic Maintenance of Ver-
tex Cover. In Proceedings of the 19th International Workshop on Graph-Theoretic
Concepts in Computer Science. 99–111.

[44] Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. 2022. Regularized
Box-Simplex Games andDynamic Decremental BipartiteMatching. In Proceedings
of the 49th International Colloquium on Automata, Languages and Programming.

[45] Peter Kiss. 2022. Improving update times of dynamic matching algorithms
from amortized to worst case. Proceedings of the 13th Innovations in Theoretical
Computer Science (2022), 94:1–94:21.

[46] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher lower bounds from the
3SUM conjecture. In Proceedings of the 27th Symposium on Discrete Algorithms.
1272–1287.

[47] Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning
forest with worst-case update time: adaptive, Las Vegas, and$ (=1/2 � Y)-time.
In Proceedings of the 49th Symposium on Theory of Computing. 1122–1129.

[48] Krzysztof Onak and Ronitt Rubinfeld. 2010. Maintaining a large matching and a
small vertex cover. In Proceedings of the 42nd Symposium on Theory of Computing.
457–464.

[49] David Peleg and Shay Solomon. 2016. Dynamic (1 + n)-approximate matchings:
a density-sensitive approach. In Proceedings of the 27th Symposium on Discrete
Algorithms. 712–729.

[50] Mohammad Roghani, Amin Saberi, and David Wajc. 2022. Beating the Folk-
lore Algorithm for Dynamic Matching. In Proceedings of the 13th Innovations in
Theoretical Computer Science. 111:1–111:23.

[51] Piotr Sankowski. 2009. Maximum weight bipartite matching in matrix multipli-
cation time. Theoretical Computer Science (TCS) 410, 44 (2009), 4480–4488.

[52] Noam Solomon and Shay Solomon. 2021. A Generalized Matching Recon�gu-
ration Problem. In Proceedings of the 12th Innovations in Theoretical Computer
Science. 57:1–57:20.

[53] Shay Solomon. 2016. Fully dynamic maximal matching in constant update time. In
Proceedings of the 57th Symposium on Foundations of Computer Science. 325–334.

[54] Meng-Tsung Tsai, Da-Wei Wang, Churn-Jung Liau, and Tsan-sheng Hsu. 2010.
Heterogeneous subset sampling. In Proceedings of the 16th International Comput-
ing and Combinatorics Conference. 500–509.

[55] David Wajc. 2020. Rounding dynamic matchings against an adaptive adversary.
In Proceedings of the 52nd Symposium on Theory of Computing. 194–207.

[56] Lu Yi, Hanzhi Wang, and Zhewei Wei. 2023. Optimal Dynamic Subset Sampling:
Theory and Applications. In Proceedings of the 29th Knowledge Discovery and
Data Mining.

[57] Da Wei Zheng and Monika Henzinger. 2023. Multiplicative Auction Algorithm
for Approximate MaximumWeight Bipartite Matching. In Proceedings of the 24th
Integer Programming and Combinatorial Optimization.

Received 13-NOV-2023; accepted 2024-02-11

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Our Approach in a Nutshell
	1.3 Related Work
	1.4 Paper Outline

	2 Preliminaries
	2.1 The Degree-Split subroutine

	3 Simple Rounding for Bipartite Matchings
	3.1 Warm-up: Static Bipartite Rounding
	3.2 A Simple Dynamic Bipartite Rounding Algorithm

	4 Partial Rounding: a Path to Speedups
	4.1 Partial Rounding Algorithms, with Applications

	A Dynamic Set Sampling
	References

