Check for
Updates

Quantitative Robustness Analysis of Neural Networks”

Mara Downing
maradowning@cs.ucsb.edu
University of California Santa Barbara

ABSTRACT

Neural networks are an increasingly common tool for solving prob-
lems that require complex analysis and pattern matching, such
as identifying stop signs or processing medical imagery. Accord-
ingly, verification of neural networks for safety and correctness
is of great importance, as mispredictions can have catastrophic
results in safety critical domains. One metric for verification is
robustness, which answers whether or not a misclassified input
exists in a given input neighborhood. I am focusing my research at
quantitative robustness—finding not only if there exist misclassified
inputs within a given neighborhood but also how many exist as a
proportion of the neighborhood size. My overall goal is to expand
the research on quantitative neural network robustness verification
and create a variety of quantitative verification tools geared towards
expanding our understanding of neural network robustness.

CCS CONCEPTS

« Software and its engineering — Formal software verifica-
tion; Software testing and debugging; « Computing method-
ologies — Neural networks.

KEYWORDS
Neural Network Verification, Robustness, Quantitative Verification

ACM Reference Format:

Mara Downing. 2023. Quantitative Robustness Analysis of Neural Networks.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA °23), July 17-21, 2023, Seattle, WA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3597926.3605231

1 INTRODUCTION

With the growing prevalence of neural networks, especially in
safety critical domains like self-driving cars or medical diagnoses,
evaluating the correctness of these networks is essential. While
accuracy measures on a previously unseen dataset give one metric
for this correctness, neural networks have been shown to be vulner-
able to adversarial attacks in which a correctly classified input is
perturbed in some small manner [35] to make the network produce
a misclassification that a human analyzing the same information
would not. Thus, analyzing the robustness of neural networks
against these types attacks is an important part of assuring safety.

*This material is based on research supported by NSF under Award #2124039

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3605231

USA

1527

In this paper, I describe my work up to this point in quantitative
robustness, my plan for an upcoming project in quantitative robust-
ness, and then my further research plans in the field.

Problem Description. There exist a number of verifiers for the
robustness of full-precision networks [3, 5, 6, 8-11, 14, 17, 20, 21, 23,
25, 26,29-32, 34, 36, 38—-40]. However, the majority of these verifiers
look at a traditional (non-quantitative) verification problem—asking
whether or not a misclassified input exists in a perturbation region.
A more in-depth analysis with quantitative verification asks in-
stead how many misclassified inputs exist within the radius, to
give a more detailed analysis of how vulnerable a network is to
adversarial attacks—how likely it is to encounter one of these mis-
classifications. Within this quantitative realm, there exist a handful
of full-precision quantitative verifiers [3, 25, 36, 39]. Of these veri-
fiers, [25, 36] describe methods for quantitative verification based
on symbolic analysis, which can produce reasonably precise results
but are difficult to scale. Alternatively, sampling-based quantitative
verifiers [3, 39] are more scalable and able to handle very large
networks, but struggle to make a conclusive distinction between
fully robust and almost fully robust regions.

Moving from full-precision networks, there exist a class of neural
networks called quantized networks, where the weights, biases,
and computations use generally smaller, fixed-point values to save
storage space and allow for faster computation [2, 15]. These can be
limited as far as 1 bit, which is a special class called binary networks.
There exist traditional and quantitative verifiers for these binary
networks [1, 4, 19, 24, 41], but to the best of my knowledge there
only exist traditional verifiers [13, 16, 18, 22, 28] for quantized
networks with greater than binary precision. Here I see another
area in which the current state of the art is insufficient to solve
a problem—traditional verification cannot always provide a full
picture of the robustness of a network, but for quantized networks
no quantitative robustness verification currently exists.

With this current state of the art, in Section 2 I give a brief
overview of feedforward neural networks and robustness, in Sec-
tion 3 I introduce my research in creating a quantitative verifier
for quantized neural networks, in Section 4 I lay out my plan for
more scalable quantitative analysis of full-precision networks using
interval analysis, and finally in Section 5 I briefly go over future
plans beyond my upcoming experiments.

2 BACKGROUND

To explain my research contributions and future plans I will briefly
summarize how a feedforward neural network with the ReLU (Rec-
tified Linear Unit) activation function is used for classification tasks.
T also give a brief definition of quantitative robustness within a per-
turbation region, and a quick explanation of why this allows for
greater analysis of networks than traditional verification methods.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3605231
https://doi.org/10.1145/3597926.3605231
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3605231&domain=pdf&date_stamp=2023-07-13

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

2.1 Feedforward Neural Networks with ReLU
Activations

In Figure 1, I show a small neural network with two input features

xo and x1, one hidden layer with two nodes, and two possible output

classifications yo and y;. Weights and biases are marked along their

edges, or above the nodes where they are added.

Figure 1: Small example network with 2 input features, 1
hidden layer with 2 nodes, and 2 output nodes.

To compute the value of a node, the values of nodes in the
previous layer are multiplied by their respective weights (shown
along the arrows), and then added together as a sum with the bias
value. For the output nodes, this is the total computation. However,
for internal nodes the ReLU activation function is applied—if the
result of the weights and bias computation is less than 0, the node
is set to 0, otherwise the node is set to the result of the weights and
bias computation.

Once values have been computed for all output nodes, the output
node with the greatest value determines the classification that the
network returns.

2.2 Robustness within a Perturbation Region

Robustness for a neural network, at a high level, is the ability of
the network to withstand small adversarial attacks—essentially, to
be able to make correct predictions even in the presence of noise.
If a human observer could ignore the noise and correctly interpret
the data, then a neural network should also be able to do so as well.
To evaluate robustness, a common approach is to choose a region
around a correctly classified input and find if any misclassifications
exist within the region. I will call this the perturbation region.

Selecting this region is a matter of choosing small modifications
that could be made to the correctly classified input that should not
produce meaningful differences, and thus should not produce a
different classification.

Traditional robustness asks a yes/no question—does a misclassi-
fied input exist in a given perturbation region. However, a yes/no
answer to a verification query about robustness does not give any in-
formation about how many of the perturbations change the output.
For example in Fig. 2, both of these examples would be determined
not robust by a traditional verifier. As both neural networks fail the
robustness test, we cannot determine which one misclassifies fewer
perturbed inputs. Alternatively, with quantitative verification the
number of misclassified inputs is counted, and thus a distinction can

1528

Mara Downing

be made. A network with a higher number of misclassified inputs in
a given perturbation region is less robust (and, thus, more prone to
adversarial attacks) than a network with fewer misclassified inputs
in the same region.

Xc, classified A

Class A

Class B

Figure 2: Image of two perturbation regions about an input,
with different numbers of adversaries within the radius.

For a given neural network N, an input X, = (xo,- - ,xN-1)
(the center of the perturbation), and a perturbation limit Alim =
< alim . 5lim

0 >“n-1)
the quantitative robustness measure R(N, X, Am) is as follows:

(denoting the perturbation limit value per feature),

i
R(N, X, A™™) = |SRobust5et|/|SPerturbRegion| where
SRobustset = {Xc | argmax N'(X;) = arg max N (X,)
A xj— 5,?”" <X < xj+ 55""}
. i B i
SPerturbRegion ={Xc | xi - 5,'”” <X <X+ éilm}

In the definition above, SperturbRegion denotes the set of all per-

turbed inputs within the perturbation region A" and Sgopystset
denotes the set of all perturbed inputs within the radius where the
output of N does not change.

This is a general form of robustness definition that can repre-
sent attacks such as one or two-pixel attacks, or general Ly, ball
constraints over the input [33, 34].

3 QUANTITATIVE VERIFICATION FOR
QUANTIZED NEURAL NETWORKS

The goal of this direction of research is to produce a working quan-
titative verifier for quantized neural networks and show some im-
provement over a simple sampling-based robustness evaluation. I
created a tool which uses probabilistic symbolic execution [12] to
count the number of incorrectly classified inputs within a pertur-
bation region around a correctly classified input.

Briefly, symbolic execution is a verification technique in which a
program is evaluated not by testing individual inputs, but rather by
constructing a symbolic execution tree of all of the possible paths
through the program. Constraints are recorded at each node to
mark what must be true of the input to reach that node.

At a branch point, one or more of the possible paths may be
infeasible, and if a path is infeasible there is no need to traverse
further down. The feasibility of a path can be checked using a
constraint solver, which checks to see if the path constraints at
each node are satisfiable (if there is at least one assignment of the
variables in the constraint that makes the constraint true).

Quantitative Robustness Analysis of Neural Networks

Beyond satisfiability, probabilistic symbolic execution draws
on model counting, which returns the number of solutions to a
satisfiable constraint, or 0 if the constraint is unsatisfiable.

The first key aspect involved in the creation of this tool was
finding translations between fixed-point constraints and equivalent
integer constraints, so that I could use an integer model counter to
count misclassified inputs at the end of the symbolic execution tree.
This allowed me in turn to evaluate the performance of multiple
linear integer arithmetic model counters to find which one was
best equipped for counting the constraints generated by neural
networks.

The next key aspect involved creating optimization strategies to
improve symbolic execution time, specifically to reduce the time
taken by a constraint solver during symbolic execution. Through ex-
periments, I was able to find two successful optimization strategies
which resulted in a notable decrease in verification time.

I currently have a paper in submission at Automated Software
Enginnering (ASE) 2023 with the results of this research, includ-
ing the quantitative verification tool. Briefly, I will summarize the
results of one experiment from the paper.

Figure 3 shows the results of a direct comparison between my
symbolic quantitative verifier and a concrete enumeration scheme
where distinct inputs are sampled from the perturbation region
until a time limit, run concretely with the network, and incorrect
classifications are counted. The networks tested here all contained
between 20 and 70 internal nodes. First, I ran the symbolic verifier
on a set of networks and perturbations with a 10 minute timeout,
then for each of those experiments I ran the concrete enumeration
for the same exact time that symbolic analysis had taken (for exam-
ple, if for an individual test the symbolic method took 52 seconds,
concrete enumeration was given 52 seconds for the same test). This
chart shows that the symbolic verifier I created performs better on
over half of the tested cases, either by producing an exact result
(which in these experiments would have taken 5.42 hours, the time
for all inputs to be evaluated concretely), or by finding more incor-
rectly classified inputs in the same time as concrete enumeration.

symbolic
exact, enum
equal

symbolic
exact, enum
fewer

22.5%

47.5% 8%
symbolic
upper bound,
enum fewer

26.3% .
symbolic

upper bound,
enum more

Figure 3: Comparison between my symbolic quantitative
verifier and concrete enumeration for evaluating robustness.
The three slices on the right of the graph are cases where
symbolic verification performed better.

1529

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

4 INTERVAL ABSTRACTION FOR
QUANTITATIVE ROBUSTNESS OF
FULL-PRECISION NETWORKS

Interval analysis, and other forms of abstraction, have been used to
great effect in traditional neural network verification [10, 11, 32].
This technique can also be used for finding a bound on the minimum
adversarial distortion, as shown in [40], by running the abstract
analysis multiple times with different perturbation regions.

My goal with this research is to leverage the success of interval
analysis to produce an estimate of the quantitative robustness when
full robustness cannot be proven, for a more scalable quantitative
verification approach than the current state of the art symbolic
verifiers, but with the ability to guarantee full robustness unlike
sampling-based verifiers.

For a brief overview of interval analysis, given a network and
a known range by which each input feature (xo - - - xn—1) is per-
turbed, it is possible to propagate these ranges through the network
and find an upper and lower limit for the value of each internal
node, followed by an upper and lower limit for each of the output
nodes (Yo -+ yy-1)-

With concrete values, the output classification of the network
is decided by finding the greatest output node value. With inter-
vals, we have two notable options: the correct (expected) output
classification has an interval where the lowest value is greater than
all other output node interval maximums, or there is some over-
lap. With traditional verification, this corresponds respectively to
two outcomes—either the network is robust on all inputs within
the perturbation region, or the robustness cannot be determined
conclusively (it is also technically possible for the correct output
interval to be fully below all other output node intervals, but with
a robustness query there should be one "central" input which is
known to be classified correctly, so I do not explore this outcome).
In traditional verification, these two outcomes are the end of this
analysis. However, it is intuitive that a greater overlap between
intervals indicates lower robustness than a slight overlap, so I seek
to add more analysis to the unknown result of traditional interval
analysis and estimate quantitative robustness for cases where full
robustness cannot be proven.

For this goal, I will start by adding a volume computation on
the output intervals using the tool Vinci [7]. With this volume
computation I can find the proportion of the interval space for
which the output node indicating the correct classification is greater
than all other output nodes. I do this by dividing the volume of
the space where that node is greatest by the volume of the output
interval space without node comparison. This, on its own, gives
a measure of quantitative robustness. However, in the interval
analysis leading up to this volume computation a great deal of
information has been lost, so I plan to provide further refinement
through a splitting technique loosely based on the PReach-I variant
of the PReach tool [27].

Going back to the beginning of the interval analysis, after com-
puting the possible interval of values for the first hidden node hy,
it is possible to split this interval by whether or not the value is
positive or negative—whether or not the ReLU sets the value to 0 or
not. At this point, we can estimate the proportion of that interval
that takes each branch of that condition, and begin to construct

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

a tree of intervals rather than a single path through the program.
At the leaves of the tree, there will still be a set of intervals for
each output node, but there will also be a probability attached—the
likelihood (based on an assumption of uniform input distribution)
that the necessary set of decisions was taken to reach this spe-
cific leaf node. The sum of these probabilities across all leaf nodes
must equal 1. Using this probability and the same volume compu-
tation as before, I can construct a more accurate estimation of the
quantitative robustness.

This approach leads to two key research questions:

RQ1: How should the probability of each path be decided at a
split?

RQ2: What is the best balance between accuracy and scalability
to produce usable results?

For RQ1, there are two simple probability strategies I plan
to analyze: uniform and Gaussian splitting. Figure 4 shows this
distinction—assuming a uniform distribution and interval bounds
[—1,2] gives a probability of 33.33% that the node will be set to
0, whereas assuming a Gaussian distribution with ¢ = 0.17 =
interval_len, u = (interval_max + interval_min)/2, and the same
bounds gives a probability of 16.34% that the node will be set to 0. I
chose 0.17 of the interval length for ¢ as this will make the distance
between —o and o about one third of the interval length.

“a— ReLU Function —_

e — |

interval interval

Figure 4: RelLU activation functions with a uniform and
Gaussian possible distribution of input values overlaid.

My hypothesis is that the Gaussian distribution will produce
more accurate results, as the weights and bias computation used
to produce each input to the ReLU will include a sum of multiple
values which are not directly dependent on each other.

Next, for RQ2, I plan to set up a tunable input variable which
determines how far into the network the splitting strategy is used,
before the traditional single interval strategy is applied on each
branch of the tree for any remaining nodes. This will allow me to
analyze the trade-off between scalability and accuracy with more
refinement than just splitting or not splitting. I expect that splitting
for a higher proportion of nodes will increase accuracy, but it will
also cause exponential blowup in the size of the tree, so the main
focus of this research will be finding a good balance so that results
can be obtained quickly with meaningful accuracy.

For my evaluation, I plan to first produce a "ground truth" for the
robustness of a set of perturbation queries by sampling and testing
randomly selected inputs from the perturbation region for a long
period of time (at least 2 hours). I will do a brief statistical analysis
on these results to evaluate the probabilistic likelihood that they
are within 5% of the actual robustness.

Once I have this ground truth, I will evaluate the same robust-
ness queries using interval analysis as described above, varying

1530

Mara Downing

the parameters of path probability function and proportion of eval-
uation with splitting. I will analyze both the time taken for each
experiment and the accuracy of the results with relation to the
ground truth determined by sampling.

Additionally, I plan to evaluate direct comparisons with sampling
given the same time (the same approach as is shown in Section 3),
as well as a comparison with the existing full precision quantitative
verification tool described in [36]. With these experiments I hope to
show that this interval analysis can scale better than more precise
methods for quantitative analysis and also produce more accurate
results than sampling in a short time frame.

At the end of this study I aim to produce a interval-based quan-
titative verification tool, with results showing its advantages over
the current state of the art quantitative verification approaches.

5 FUTURE PLANS

For more distant future work, I plan to investigate how quantitative
analysis can be applied to NLP models, as their current successes
and drawbacks are coming to the forefront with ChatGPT. This and
similar tools have made great strides in language processing, but
have also shown some notable and dangerous drawbacks. One of
these is the creation and citation of fake sources, which has shown
to have concerning consequences such as accusing people of crimes
they could not have committed [37]. This I believe is a clear case
where traditional verification will not suffice. We already know a
tool like ChatGPT can be incorrect or produce false citations, but
for adequate analysis of the risk we need to know how often this
can occur—which necessitates quantitative analysis.

6 CONCLUSION

In sum, my goal for my dissertation is to show a variety of ways
in which quantitative verification can be performed on neural net-
works to improve our current knowledge about these networks.
I have worked already to create a quantitative verifier for the ro-
bustness quantized networks, a type of network that quantitative
verification has not been applied to yet. Moving forward, I plan
to explore options for more scalable quantitative robustness verifi-
cation via interval analysis. Further into the future, I aim to look
at specific domains (such as NLP) to analyze using quantitative
techniques. Overall, I seek to employ quantitative verification in a
variety of ways and on a variety of types of networks, to expand
upon current quantitative verification options.

REFERENCES

[1] Guy Amir, Haoze Wu, Clark Barrett, and Guy Katz. 2021. An SMT-based ap-
proach for verifying binarized neural networks. In Tools and Algorithms for
the Construction and Analysis of Systems: 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27-April 1, 2021,
Proceedings, Part II 27. Springer, 203-222. https://doi.org/10.26226/morressier.
604907f41a80aac83ca25cda

Pascal Bacchus, Robert Stewart, and Ekaterina Komendantskaya. 2020. Accuracy,
training time and hardware efficiency trade-offs for quantized neural networks on
fpgas. In International symposium on applied reconfigurable computing. Springer,
121-135. https://doi.org/10.1007/978-3-030-44534-8_10

Teodora Baluta, Zheng Leong Chua, Kuldeep S Meel, and Prateek Saxena. 2021.
Scalable quantitative verification for deep neural networks. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 312-323.
https://doi.org/10.1109/icse43902.2021.00039

—_
&,

—
&

https://doi.org/10.26226/morressier.604907f41a80aac83ca25cda
https://doi.org/10.26226/morressier.604907f41a80aac83ca25cda
https://doi.org/10.1007/978-3-030-44534-8_10
https://doi.org/10.1109/icse43902.2021.00039

Quantitative Robustness Analysis of Neural Networks

(4]

[10]

(11

[12]

[13]

[14]

[15

[16

[17]

[18

[19

[20]

[21]

[22]

Teodora Baluta, Shigi Shen, Shweta Shinde, Kuldeep S Meel, and Prateek Saxena.
2019. Quantitative verification of neural networks and its security applications. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1249-1264. https://doi.org/10.1145/3319535.3354245

Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2019.
Cnn-cert: An efficient framework for certifying robustness of convolutional
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 3240-3247. https://doi.org/10.1609/aaai.v33i01.33013240

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth
Misener. 2020. Efficient verification of relu-based neural networks via dependency
analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
3291-3299. https://doi.org/10.1609/aaai.v34i04.5729

Benno Biieler, Andreas Enge, and Komei Fukuda. 2000. Exact volume computation
for polytopes: a practical study. In Polytopes—combinatorics and computation.
Springer, 131-154. https://doi.org/10.1007/978-3-0348-8438-9_6

Rudy Bunel, P Mudigonda, Ilker Turkaslan, P Torr, Jingyue Lu, and Pushmeet
Kohli. 2020. Branch and bound for piecewise linear neural network verification.
Journal of Machine Learning Research 21, 2020 (2020). https://doi.org/10.23919/
acc.2018.8431048

Shaoru Chen, Eric Wong, J Zico Kolter, and Mahyar Fazlyab. 2022. Deepsplit:
Scalable verification of deep neural networks via operator splitting. IEEE Open
Journal of Control Systems 1 (2022), 126-140. https://doi.org/10.1109/0jcsys.2022.
3187429

Mahyar Fazlyab, Manfred Morari, and George J Pappas. 2020. Safety verifi-
cation and robustness analysis of neural networks via quadratic constraints
and semidefinite programming. IEEE Trans. Automat. Control (2020). https:
//doi.org/10.1109/tac.2020.3046193

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 3-18. https://doi.org/10.1109/sp.2018.00058

Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic
symbolic execution. In International Symposium on Software Testing and Analysis,
ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, Mats Per Erik Heimdahl and
Zhendong Su (Eds.). ACM, 166-176. https://doi.org/10.1145/2338965.2336773
Mirco Giacobbe, Thomas A Henzinger, and Mathias Lechner. 2020. How many
bits does it take to quantize your neural network?. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Vol. 12079.
https://doi.org/10.1007/978-3-030-45237-7_5

Divya Gopinath, Kaiyuan Wang, Mengshi Zhang, Corina S Pasareanu, and Sarfraz
Khurshid. 2018. Symbolic execution for deep neural networks. arXiv preprint
arXiv:1807.10439 (2018).

Yunhui Guo. 2018. A survey on methods and theories of quantized neural
networks. arXiv preprint arXiv:1808.04752 (2018).

Thomas A Henzinger, Mathias Lechner, and Dorde Zikeli¢. 2021. Scalable verifi-
cation of quantized neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 3787-3795. https://doi.org/10.1609/aaai.v35i5.16496
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety
verification of deep neural networks. In International conference on computer
aided verification. Springer, 3-29. https://doi.org/10.1007/978-3-319-63387-9_1
Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2704-2713. https://doi.org/10.1109/cvpr.2018.00286

Kai Jia and Martin Rinard. 2020. Efficient exact verification of binarized neural
networks. Advances in neural information processing systems 33 (2020), 1782—
1795.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks.
In International Conference on Computer Aided Verification. Springer, 97-117.
https://doi.org/10.1007/978-3-319-63387-9_5

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji¢, et al.
2019. The marabou framework for verification and analysis of deep neural
networks. In International Conference on Computer Aided Verification. Springer,
443-452. https://doi.org/10.1007/978-3-030-25540-4_26

Haowen Lin, Jian Lou, Li Xiong, and Cyrus Shahabi. 2021. Integer-arithmetic-
only Certified Robustness for Quantized Neural Networks. In Proceedings of

1531

(23]

[24

[25

Iy
o

[27

[28

[29]

@
=

[31

[32

[33

[34

@
2

[36]

[37

[38

W
20,

[40

[41

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

the IEEE/CVF International Conference on Computer Vision. 7828-7837. https:
//doi.org/10.1109/iccv48922.2021.00773

Wang Lin, Zhengfeng Yang, Xin Chen, Qingye Zhao, Xiangkun Li, Zhiming
Liu, and Jifeng He. 2019. Robustness verification of classification deep neural
networks via linear programming. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 11418-11427. https://doi.org/10.1109/

cvpr.2019.01168
Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and

Toby Walsh. 2018. Verifying properties of binarized deep neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. https:
//doi.org/10.1609/aaai.v32i1.12206

Corina Pasareanu, Hayes Converse, Antonio Filieri, and Divya Gopinath. 2020. On
the probabilistic analysis of neural networks. In Proceedings of the IEEE/ACM 15th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. 5-8.

Luca Pulina and Armando Tacchella. 2010. An abstraction-refinement approach to
verification of artificial neural networks. In International Conference on Computer
Aided Verification. Springer, 243-257. https://doi.org/10.1007/978-3-642-14295-
6_24

Seemanta Saha, Mara Downing, Tegan Brennan, and Tevfik Bultan. 2022. PReach:
a heuristic for probabilistic reachability to identify hard to reach statements. In
Proceedings of the 44th International Conference on Software Engineering. 1706~
1717. https://doi.org/10.1145/3510003.3510227

Luiz Sena, Xidan Song, Erickson Alves, Iury Bessa, Edoardo Manino, and Lucas
Cordeiro. 2021. Verifying Quantized Neural Networks using SMT-Based Model
Checking. arXiv preprint arXiv:2106.05997 (2021).

Luiz H Sena, Iury V Bessa, Mikhail R Gadelha, Lucas C Cordeiro, and Edjard
Mota. 2019. Incremental Bounded Model Checking of Artificial Neural Networks
in CUDA. In 2019 IX Brazilian Symposium on Computing Systems Engineering
(SBESC). IEEE, 1-8. https://doi.org/10.1109/sbesc49506.2019.9046094
Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin T
Vechev. 2018. Fast and Effective Robustness Certification. NeurIPS 1, 4 (2018), 6.
Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2018. Boost-
ing robustness certification of neural networks. In International Conference on
Learning Representations.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019. An
abstract domain for certifying neural networks. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 1-30. https://doi.org/10.1145/3290354
Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One pixel
attack for fooling deep neural networks. IEEE Transactions on Evolutionary
Computation 23, 5 (2019), 828-841. https://doi.org/10.1109/tevc.2019.2890858
Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic testing for deep neural networks. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering.
109-119. https://doi.org/10.1145/3238147.3238172

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Tan Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

Muhammad Usman, Divya Gopinath, and Corina S Pasdreanu. 2021. QuantifyML:
How Good is my Machine Learning Model? arXiv preprint arXiv:2110.12588
(2021).

Pranshu Verma and Will Oremus. 2023. ChatGPT invented a sexual harassment
scandal and named a real law prof as the accused. The Washington Post (Apr 2023).
Retrieved May 24, 2023 from https://www.washingtonpost.com/technology/2023/
04/05/chatgpt-lies/

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Efficient formal safety analysis of neural networks. Advances in neural information
processing systems 31 (2018).

Stefan Webb, Tom Rainforth, Yee Whye Teh, and M Pawan Kumar. 2018. A
statistical approach to assessing neural network robustness. arXiv preprint
arXiv:1811.07209 (2018).

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.
2018. Efficient neural network robustness certification with general activation
functions. Advances in neural information processing systems 31 (2018).

Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen. 2021.
BDD4BNN: A BDD-based Quantitative Analysis Framework for Binarized Neural
Networks. arXiv preprint arXiv:2103.07224 (2021). https://doi.org/10.1007/978-3-
030-81685-8_8

Received 2023-05-24; accepted 2023-06-07

https://doi.org/10.1145/3319535.3354245
https://doi.org/10.1609/aaai.v33i01.33013240
https://doi.org/10.1609/aaai.v34i04.5729
https://doi.org/10.1007/978-3-0348-8438-9_6
https://doi.org/10.23919/acc.2018.8431048
https://doi.org/10.23919/acc.2018.8431048
https://doi.org/10.1109/ojcsys.2022.3187429
https://doi.org/10.1109/ojcsys.2022.3187429
https://doi.org/10.1109/tac.2020.3046193
https://doi.org/10.1109/tac.2020.3046193
https://doi.org/10.1109/sp.2018.00058
https://doi.org/10.1145/2338965.2336773
https://doi.org/10.1007/978-3-030-45237-7_5
https://doi.org/10.1609/aaai.v35i5.16496
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1109/iccv48922.2021.00773
https://doi.org/10.1109/iccv48922.2021.00773
https://doi.org/10.1109/cvpr.2019.01168
https://doi.org/10.1109/cvpr.2019.01168
https://doi.org/10.1609/aaai.v32i1.12206
https://doi.org/10.1609/aaai.v32i1.12206
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1145/3510003.3510227
https://doi.org/10.1109/sbesc49506.2019.9046094
https://doi.org/10.1145/3290354
https://doi.org/10.1109/tevc.2019.2890858
https://doi.org/10.1145/3238147.3238172
https://www.washingtonpost.com/technology/2023/04/05/chatgpt-lies/
https://www.washingtonpost.com/technology/2023/04/05/chatgpt-lies/
https://doi.org/10.1007/978-3-030-81685-8_8
https://doi.org/10.1007/978-3-030-81685-8_8

	Abstract
	1 Introduction
	2 Background
	2.1 Feedforward Neural Networks with ReLU Activations
	2.2 Robustness within a Perturbation Region

	3 Quantitative Verification for Quantized Neural Networks
	4 Interval Abstraction for Quantitative Robustness of Full-Precision Networks
	5 Future Plans
	6 Conclusion
	References

