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ABSTRACT

Neural networks are an increasingly common tool for solving prob-
lems that require complex analysis and pattern matching, such
as identifying stop signs or processing medical imagery. Accord-
ingly, veri�cation of neural networks for safety and correctness
is of great importance, as mispredictions can have catastrophic
results in safety critical domains. One metric for veri�cation is
robustness, which answers whether or not a misclassi�ed input
exists in a given input neighborhood. I am focusing my research at
quantitative robustness—�nding not only if there exist misclassi�ed
inputs within a given neighborhood but also how many exist as a
proportion of the neighborhood size. My overall goal is to expand
the research on quantitative neural network robustness veri�cation
and create a variety of quantitative veri�cation tools geared towards
expanding our understanding of neural network robustness.

CCS CONCEPTS

• Software and its engineering→ Formal software veri�ca-
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1 INTRODUCTION

With the growing prevalence of neural networks, especially in
safety critical domains like self-driving cars or medical diagnoses,
evaluating the correctness of these networks is essential. While
accuracy measures on a previously unseen dataset give one metric
for this correctness, neural networks have been shown to be vulner-
able to adversarial attacks in which a correctly classi�ed input is
perturbed in some small manner [35] to make the network produce
a misclassi�cation that a human analyzing the same information
would not. Thus, analyzing the robustness of neural networks
against these types attacks is an important part of assuring safety.
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In this paper, I describe my work up to this point in quantitative
robustness, my plan for an upcoming project in quantitative robust-
ness, and then my further research plans in the �eld.

Problem Description. There exist a number of veri�ers for the
robustness of full-precision networks [3, 5, 6, 8–11, 14, 17, 20, 21, 23,
25, 26, 29–32, 34, 36, 38–40]. However, themajority of these veri�ers
look at a traditional (non-quantitative) veri�cation problem—asking
whether or not a misclassi�ed input exists in a perturbation region.
A more in-depth analysis with quantitative veri�cation asks in-
stead how many misclassi�ed inputs exist within the radius, to
give a more detailed analysis of how vulnerable a network is to
adversarial attacks—how likely it is to encounter one of these mis-
classi�cations. Within this quantitative realm, there exist a handful
of full-precision quantitative veri�ers [3, 25, 36, 39]. Of these veri-
�ers, [25, 36] describe methods for quantitative veri�cation based
on symbolic analysis, which can produce reasonably precise results
but are di�cult to scale. Alternatively, sampling-based quantitative
veri�ers [3, 39] are more scalable and able to handle very large
networks, but struggle to make a conclusive distinction between
fully robust and almost fully robust regions.

Moving from full-precision networks, there exist a class of neural
networks called quantized networks, where the weights, biases,
and computations use generally smaller, �xed-point values to save
storage space and allow for faster computation [2, 15]. These can be
limited as far as 1 bit, which is a special class called binary networks.
There exist traditional and quantitative veri�ers for these binary
networks [1, 4, 19, 24, 41], but to the best of my knowledge there
only exist traditional veri�ers [13, 16, 18, 22, 28] for quantized
networks with greater than binary precision. Here I see another
area in which the current state of the art is insu�cient to solve
a problem—traditional veri�cation cannot always provide a full
picture of the robustness of a network, but for quantized networks
no quantitative robustness veri�cation currently exists.

With this current state of the art, in Section 2 I give a brief
overview of feedforward neural networks and robustness, in Sec-
tion 3 I introduce my research in creating a quantitative veri�er
for quantized neural networks, in Section 4 I lay out my plan for
more scalable quantitative analysis of full-precision networks using
interval analysis, and �nally in Section 5 I brie�y go over future
plans beyond my upcoming experiments.

2 BACKGROUND

To explain my research contributions and future plans I will brie�y
summarize how a feedforward neural network with the ReLU (Rec-
ti�ed Linear Unit) activation function is used for classi�cation tasks.
I also give a brief de�nition of quantitative robustness within a per-
turbation region, and a quick explanation of why this allows for
greater analysis of networks than traditional veri�cation methods.
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2.1 Feedforward Neural Networks with ReLU

Activations

In Figure 1, I show a small neural network with two input features
G0 and G1, one hidden layer with two nodes, and two possible output
classi�cations ~0 and ~1. Weights and biases are marked along their
edges, or above the nodes where they are added.

Figure 1: Small example network with 2 input features, 1

hidden layer with 2 nodes, and 2 output nodes.

To compute the value of a node, the values of nodes in the
previous layer are multiplied by their respective weights (shown
along the arrows), and then added together as a sum with the bias
value. For the output nodes, this is the total computation. However,
for internal nodes the ReLU activation function is applied—if the
result of the weights and bias computation is less than 0, the node
is set to 0, otherwise the node is set to the result of the weights and
bias computation.

Once values have been computed for all output nodes, the output
node with the greatest value determines the classi�cation that the
network returns.

2.2 Robustness within a Perturbation Region

Robustness for a neural network, at a high level, is the ability of
the network to withstand small adversarial attacks—essentially, to
be able to make correct predictions even in the presence of noise.
If a human observer could ignore the noise and correctly interpret
the data, then a neural network should also be able to do so as well.
To evaluate robustness, a common approach is to choose a region
around a correctly classi�ed input and �nd if any misclassi�cations
exist within the region. I will call this the perturbation region.

Selecting this region is a matter of choosing small modi�cations
that could be made to the correctly classi�ed input that should not
produce meaningful di�erences, and thus should not produce a
di�erent classi�cation.

Traditional robustness asks a yes/no question—does a misclassi-
�ed input exist in a given perturbation region. However, a yes/no
answer to a veri�cation query about robustness does not give any in-
formation about how many of the perturbations change the output.
For example in Fig. 2, both of these examples would be determined
not robust by a traditional veri�er. As both neural networks fail the
robustness test, we cannot determine which one misclassi�es fewer
perturbed inputs. Alternatively, with quantitative veri�cation the
number of misclassi�ed inputs is counted, and thus a distinction can

be made. A network with a higher number of misclassi�ed inputs in
a given perturbation region is less robust (and, thus, more prone to
adversarial attacks) than a network with fewer misclassi�ed inputs
in the same region.

Figure 2: Image of two perturbation regions about an input,

with di�erent numbers of adversaries within the radius.

For a given neural network N , an input -2 = ⟨G0, · · · , G#−1⟩

(the center of the perturbation), and a perturbation limit Δlim
=

⟨X lim0 , · · · , X lim
=−1⟩ (denoting the perturbation limit value per feature),

the quantitative robustness measure '(N , -2 ,Δ
lim) is as follows:

'(N , -2 ,Δ
lim) = |(RobustSet |/|(PerturbRegion | where

(RobustSet = {-̃2 | argmaxN(-̃2 ) = argmaxN(-2 )

∧ G8 − X lim8 ≤ G̃8 ≤ G8 + X lim8 }

(PerturbRegion = {-̃2 | G8 − X lim8 ≤ G̃8 ≤ G8 + X lim8 }

In the de�nition above, (PerturbRegion denotes the set of all per-

turbed inputs within the perturbation region Δ
lim, and (RobustSet

denotes the set of all perturbed inputs within the radius where the
output of N does not change.

This is a general form of robustness de�nition that can repre-
sent attacks such as one or two-pixel attacks, or general !∞ ball
constraints over the input [33, 34].

3 QUANTITATIVE VERIFICATION FOR

QUANTIZED NEURAL NETWORKS

The goal of this direction of research is to produce a working quan-
titative veri�er for quantized neural networks and show some im-
provement over a simple sampling-based robustness evaluation. I
created a tool which uses probabilistic symbolic execution [12] to
count the number of incorrectly classi�ed inputs within a pertur-
bation region around a correctly classi�ed input.

Brie�y, symbolic execution is a veri�cation technique in which a
program is evaluated not by testing individual inputs, but rather by
constructing a symbolic execution tree of all of the possible paths
through the program. Constraints are recorded at each node to
mark what must be true of the input to reach that node.

At a branch point, one or more of the possible paths may be
infeasible, and if a path is infeasible there is no need to traverse
further down. The feasibility of a path can be checked using a
constraint solver, which checks to see if the path constraints at
each node are satis�able (if there is at least one assignment of the
variables in the constraint that makes the constraint true).
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Beyond satis�ability, probabilistic symbolic execution draws
on model counting, which returns the number of solutions to a
satis�able constraint, or 0 if the constraint is unsatis�able.

The �rst key aspect involved in the creation of this tool was
�nding translations between �xed-point constraints and equivalent
integer constraints, so that I could use an integer model counter to
count misclassi�ed inputs at the end of the symbolic execution tree.
This allowed me in turn to evaluate the performance of multiple
linear integer arithmetic model counters to �nd which one was
best equipped for counting the constraints generated by neural
networks.

The next key aspect involved creating optimization strategies to
improve symbolic execution time, speci�cally to reduce the time
taken by a constraint solver during symbolic execution. Through ex-
periments, I was able to �nd two successful optimization strategies
which resulted in a notable decrease in veri�cation time.

I currently have a paper in submission at Automated Software
Enginnering (ASE) 2023 with the results of this research, includ-
ing the quantitative veri�cation tool. Brie�y, I will summarize the
results of one experiment from the paper.

Figure 3 shows the results of a direct comparison between my
symbolic quantitative veri�er and a concrete enumeration scheme
where distinct inputs are sampled from the perturbation region
until a time limit, run concretely with the network, and incorrect
classi�cations are counted. The networks tested here all contained
between 20 and 70 internal nodes. First, I ran the symbolic veri�er
on a set of networks and perturbations with a 10 minute timeout,
then for each of those experiments I ran the concrete enumeration
for the same exact time that symbolic analysis had taken (for exam-
ple, if for an individual test the symbolic method took 52 seconds,
concrete enumeration was given 52 seconds for the same test). This
chart shows that the symbolic veri�er I created performs better on
over half of the tested cases, either by producing an exact result
(which in these experiments would have taken 5.42 hours, the time
for all inputs to be evaluated concretely), or by �nding more incor-
rectly classi�ed inputs in the same time as concrete enumeration.

Figure 3: Comparison between my symbolic quantitative

veri�er and concrete enumeration for evaluating robustness.

The three slices on the right of the graph are cases where

symbolic veri�cation performed better.

4 INTERVAL ABSTRACTION FOR

QUANTITATIVE ROBUSTNESS OF

FULL-PRECISION NETWORKS

Interval analysis, and other forms of abstraction, have been used to
great e�ect in traditional neural network veri�cation [10, 11, 32].
This technique can also be used for �nding a bound on theminimum
adversarial distortion, as shown in [40], by running the abstract
analysis multiple times with di�erent perturbation regions.

My goal with this research is to leverage the success of interval
analysis to produce an estimate of the quantitative robustness when
full robustness cannot be proven, for a more scalable quantitative
veri�cation approach than the current state of the art symbolic
veri�ers, but with the ability to guarantee full robustness unlike
sampling-based veri�ers.

For a brief overview of interval analysis, given a network and
a known range by which each input feature (G0 · · · G#−1) is per-
turbed, it is possible to propagate these ranges through the network
and �nd an upper and lower limit for the value of each internal
node, followed by an upper and lower limit for each of the output
nodes (~0 · · ·~� −1).

With concrete values, the output classi�cation of the network
is decided by �nding the greatest output node value. With inter-
vals, we have two notable options: the correct (expected) output
classi�cation has an interval where the lowest value is greater than
all other output node interval maximums, or there is some over-
lap. With traditional veri�cation, this corresponds respectively to
two outcomes—either the network is robust on all inputs within
the perturbation region, or the robustness cannot be determined
conclusively (it is also technically possible for the correct output
interval to be fully below all other output node intervals, but with
a robustness query there should be one "central" input which is
known to be classi�ed correctly, so I do not explore this outcome).
In traditional veri�cation, these two outcomes are the end of this
analysis. However, it is intuitive that a greater overlap between
intervals indicates lower robustness than a slight overlap, so I seek
to add more analysis to the unknown result of traditional interval
analysis and estimate quantitative robustness for cases where full
robustness cannot be proven.

For this goal, I will start by adding a volume computation on
the output intervals using the tool Vinci [7]. With this volume
computation I can �nd the proportion of the interval space for
which the output node indicating the correct classi�cation is greater
than all other output nodes. I do this by dividing the volume of
the space where that node is greatest by the volume of the output
interval space without node comparison. This, on its own, gives
a measure of quantitative robustness. However, in the interval
analysis leading up to this volume computation a great deal of
information has been lost, so I plan to provide further re�nement
through a splitting technique loosely based on the PReach-I variant
of the PReach tool [27].

Going back to the beginning of the interval analysis, after com-
puting the possible interval of values for the �rst hidden node ℎ0,
it is possible to split this interval by whether or not the value is
positive or negative—whether or not the ReLU sets the value to 0 or
not. At this point, we can estimate the proportion of that interval
that takes each branch of that condition, and begin to construct
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a tree of intervals rather than a single path through the program.
At the leaves of the tree, there will still be a set of intervals for
each output node, but there will also be a probability attached—the
likelihood (based on an assumption of uniform input distribution)
that the necessary set of decisions was taken to reach this spe-
ci�c leaf node. The sum of these probabilities across all leaf nodes
must equal 1. Using this probability and the same volume compu-
tation as before, I can construct a more accurate estimation of the
quantitative robustness.

This approach leads to two key research questions:

RQ1: How should the probability of each path be decided at a
split?

RQ2: What is the best balance between accuracy and scalability
to produce usable results?

For RQ1, there are two simple probability strategies I plan
to analyze: uniform and Gaussian splitting. Figure 4 shows this
distinction—assuming a uniform distribution and interval bounds
[−1, 2] gives a probability of 33.33% that the node will be set to
0, whereas assuming a Gaussian distribution with f = 0.17 ∗

8=C4AE0;_;4=, ` = (8=C4AE0;_<0G + 8=C4AE0;_<8=)/2, and the same
bounds gives a probability of 16.34% that the node will be set to 0. I
chose 0.17 of the interval length for f as this will make the distance
between −f and f about one third of the interval length.

Figure 4: ReLU activation functions with a uniform and

Gaussian possible distribution of input values overlaid.

My hypothesis is that the Gaussian distribution will produce
more accurate results, as the weights and bias computation used
to produce each input to the ReLU will include a sum of multiple
values which are not directly dependent on each other.

Next, for RQ2, I plan to set up a tunable input variable which
determines how far into the network the splitting strategy is used,
before the traditional single interval strategy is applied on each
branch of the tree for any remaining nodes. This will allow me to
analyze the trade-o� between scalability and accuracy with more
re�nement than just splitting or not splitting. I expect that splitting
for a higher proportion of nodes will increase accuracy, but it will
also cause exponential blowup in the size of the tree, so the main
focus of this research will be �nding a good balance so that results
can be obtained quickly with meaningful accuracy.

For my evaluation, I plan to �rst produce a "ground truth" for the
robustness of a set of perturbation queries by sampling and testing
randomly selected inputs from the perturbation region for a long
period of time (at least 2 hours). I will do a brief statistical analysis
on these results to evaluate the probabilistic likelihood that they
are within 5% of the actual robustness.

Once I have this ground truth, I will evaluate the same robust-
ness queries using interval analysis as described above, varying

the parameters of path probability function and proportion of eval-
uation with splitting. I will analyze both the time taken for each
experiment and the accuracy of the results with relation to the
ground truth determined by sampling.

Additionally, I plan to evaluate direct comparisons with sampling
given the same time (the same approach as is shown in Section 3),
as well as a comparison with the existing full precision quantitative
veri�cation tool described in [36]. With these experiments I hope to
show that this interval analysis can scale better than more precise
methods for quantitative analysis and also produce more accurate
results than sampling in a short time frame.

At the end of this study I aim to produce a interval-based quan-
titative veri�cation tool, with results showing its advantages over
the current state of the art quantitative veri�cation approaches.

5 FUTURE PLANS

For more distant future work, I plan to investigate how quantitative
analysis can be applied to NLP models, as their current successes
and drawbacks are coming to the forefront with ChatGPT. This and
similar tools have made great strides in language processing, but
have also shown some notable and dangerous drawbacks. One of
these is the creation and citation of fake sources, which has shown
to have concerning consequences such as accusing people of crimes
they could not have committed [37]. This I believe is a clear case
where traditional veri�cation will not su�ce. We already know a
tool like ChatGPT can be incorrect or produce false citations, but
for adequate analysis of the risk we need to know how often this
can occur—which necessitates quantitative analysis.

6 CONCLUSION

In sum, my goal for my dissertation is to show a variety of ways
in which quantitative veri�cation can be performed on neural net-
works to improve our current knowledge about these networks.
I have worked already to create a quantitative veri�er for the ro-
bustness quantized networks, a type of network that quantitative
veri�cation has not been applied to yet. Moving forward, I plan
to explore options for more scalable quantitative robustness veri�-
cation via interval analysis. Further into the future, I aim to look
at speci�c domains (such as NLP) to analyze using quantitative
techniques. Overall, I seek to employ quantitative veri�cation in a
variety of ways and on a variety of types of networks, to expand
upon current quantitative veri�cation options.
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