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ABSTRACT
We consider the sparsification of sums F : R” — R* where
F(x) = fi{a1,x)) + - - - + fm({am, x)) for vectors ay,...,am € R"
and functions fi,...,f,, : R — R*. We show that (1 + ¢)-

approximate sparsifiers of F with support size gﬂz (log %)O(l) exist
whenever the functions fj, ..., fi, are symmetric, monotone, and
satisfy natural growth bounds. Additionally, we give efficient al-
gorithms to compute such a sparsifier assuming each f; can be
evaluated efficiently.

Our results generalize the classical case of £, sparsification,
where f;(z) = |z|P, for p € (0, 2], and give the first near-linear size
sparsifiers in the well-studied setting of the Huber loss function
and its generalizations, e.g., fi(z) = min{|z|?, |z|?} for 0 < p < 2.
Our sparsification algorithm can be applied to give near-optimal
reductions for optimizing a variety of generalized linear models
including ¢, regression for p € (1,2] to high accuracy, via solv-
ing (log n)©() sparse regression instances with m < n(logn)°(,
plus runtime proportional to the number of nonzero entries in the
vectors ay, ..., am.
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1 INTRODUCTION

Empirical risk minimization (ERM) is a widely studied problem in
learning theory and statistics (see, e.g., [18], for relevant references
to the expansive literature on this topic). A prominent special case
is the problem of optimizing a generalized linear model (GLM), i.e.,

in F
2 F

for F(x) = Zﬁ-((ai,x) —b), (11
i=1

where the total loss F : R™ — R, is defined by vectors ay, ..., am €
R™, b € R™, and loss functions fi,..., fm : R — R. Different
choices of the loss functions {f;} capture important problems, in-
cluding linear regression, logistic regression, and £, regression
(2, 8].

Recently, efficient algorithms for solving (1.1) to high-accuracy
have been developed in many settings [5, 7, 13] such as linear pro-
gramming and #;-regression, where f;(x) = |x|. For example, when
m is on the order of n, it is known how to solve linear programs
and some GLMs in roughly (up to logarithmic factors) the time it
currently takes to multiply two general n X n matrices [2, 11, 16, 18]
which is, up to logarithmic factors, the best-known, running time
for solving a single linear system in a dense n X n matrix.

When m > n, a natural approach for fast algorithms is to apply
sparsification techniques to reduce the value of m, while maintain-
ing a good multiplicative approximation of the objective value. More
precisely, say that the objective F admits an s-sparse e-approximation
if there are non-negative weights wy, ..., wp, € R, at most s of
which are non-zero, and such that

|F(x) — F(x)| < ¢F(x) forall x € R", where
m

F(x) = Z wifi((ai,x) = by) .

i=1

When f;(z) = |z|P are £, losses, near-optimal sparsification re-
sults are known: If p > 0, then F admits an s-sparse e-approximation
for s < O(n™ax{1.p/2} =21 thig sparsity bound is known to be op-
timal up to polylogarithmic factors [4, 22, 25, 26]. In particular,
for p € (0, 2], the size is O(ne™?%), near-linear in the underlying
dimension n. The p = 2 case has been especially influential in the
development of several fast algorithms for linear programming and
graph optimization over the last two decades [6, 23, 24].

1

Throughout, we use O(f) to suppress polylogarithmic quantities in m, n, ¢!, and

f.
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However, as far as the authors know, p losses are the only
class of natural loss functions for which linear-size sparsifica-
tion results are known for GLMs. For instance, for the widely-
studied class of Huber loss functions (see (1.4)) and related variants,
e.g., fi(z) = min{|z],|z|?}, the best known sparsity bound was
é(n4_2‘&£_2) [20]. Improving this bound to near-linear (in n) is an
established important open problem that has potential applications
to regression for Huber and &y losses [1, 3, 13, 20, 28].

The main result of this paper is near-optimal sparsification
for a large family of loss functions {f;} that include the Huber
losses, &y losses, and generalizations. Informally, we show that if
the loss functions {f;} are nonnegative, symmetric, and grow at
most quadratically, then there exists an s-sparse e-approximation
of F with s < O(ne™?%). Moreover, the sparse approximation can be
found very efficiently, in time proportional to the time used for O(1)
instances of #;-sparsification (Theorem 1.1). A particularly nice ap-
plication of our result is an algorithm that solves £,-regression to
high accuracy for 1 < p < 2 by reducing to ép(l) instances of
fp-regression with m = O(n) (Theorem 1.2). Our framework can
also be applied to minimizing sums of y; functions for p € (1,2]
(see (1.4)) to high accuracy, and to approximate Huber regression.

The main technical hurdle in obtaining these results is that the
loss functions are not necessarily homogeneous and they can exhibit
different behaviors at different scales. Note that this hurdle arises
already for losses like f;(z) = min{|z], |z|*}, even though the loss
function only has two different scaling regimes. To overcome this
hurdle we develop a multiscale notion of “importance scores” for
appropriately down-sampling F into a sparse representation.

1.1 Hypotheses and Results for Sparsification

Consider a generalized linear model as in (1.1), with loss functions
fis-- s fm : R > R4 and vectors ay, . . ., am € R™. For simplicity,
we assume that b = 0 in (1.1). This is without loss of generality, as
(aj, x) = bi = {(aj, b;), (x,-1)), and (a;, b;), (x, -1) € R™! so we
can re-encode the problem in n + 1 dimensions with b = 0.

We will often think of the case fi(z) = h;(z)? for some h; :
R — R4, as the assumptions we need are stated more naturally in
terms of \/]T, . To that end, consider a function & : RF R, and
the following two properties, where L > 1 and ¢, 0 > 0 are some
positive constants.?

(a) (L-auto-Lipschitz) |h(z) — h(2')| < Lh(z—2’) forall z, 2’ € R,
(b) (Lower -homogeneous) h(Az) > cA%h(z) for all z € R¥ and
Azl

Note that if h : R — R is concave and symmetric, then it is 1-auto-
Lipschitz.

We can now state our main theorem, whose proof appears in the
full version.

THEOREM 1.1. Consider fi, ..., fm : R = Ry, and suppose there
are numbersL > 1,¢,0 > 0 such that each \/]Tl is L-auto-Lipschitz and
lower 0-homogeneous (with constant c). Then for any ay, . ..,am €

R", and numbers 0 < ¢ < % and Smax > Smin = 0, there are

2The setting k = 1 suffices for the present work, though we state them for general
k>1
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nonnegative weights wi, ..., wp > 0 such that

< eF(x),

F(x) = )" wifi({ai,x))
i=1

Vx € R"® s.t. Spmin < F(x) < Smax»
where F(x) := fi({a1,x)) + - + fm({am, x)), and
lie{l,....,m}:w >0 Speo %mg(fsﬂ) (logs)®, (1.2)
£ £ Smi

min
2Smax )

Smin

where §:="_ log( (1.3)
€

Moreover, with high probability, the weights {w;} can be computed
in time

OL,C,O((nnZ(al, o am) +n + MTeval) log(msmax/smin)) .
Here, 7oy, is the maximum time needed to evaluate each f;,
nnz(ai, ..., am) is the total number of non-zero entries in the vec-
tors ai, ..., am, and w is the matrix multiplication exponent. “High

probability” means that the failure probability can be made less
than n~¢ for any ¢ > 1 by increasing the running time by an O(¢)
factor.

We use the notation Oy . g and éL’C’g( -) to indicate an implicit
dependence on the parameters L, ¢, 8, and A <y, . ¢ B is shorthand
for A < Or (9(B). The constant hidden by the Or . g(-) notation is
about (L/ 0)0(0_2), though we made no significant effort to optimize
this dependence.

It is not difficult to see that for 0 < p < 2, the function f;(z) =
|z|P satisfies the required hypotheses of Theorem 1.1. In the full
version, we show that Yp functions, defined as

for |z| <1
12 (1.4)
[>1

>

Yp(l) = {|z|p 3 (1 3 ’%)

for p € (0,2], also satisfy the conditions. The special case of y;
is known as the Huber loss. We note that this function can be
generalized to other thresholds.

The y, functions were introduced in [8] and have since been
used in several works on high-accuracy ¢, regression [1, 2, 13]. Due
to these connections, the works [13, 20] studied sparsification with

4—2w/§) ~

for |z

Yp losses, providing sparsity bounds of O(n?) and O(n
O(n'172), respectively. More precisely, [20] establish a bound of
O(n**9®P)) for p € [1,2] with §(1) = 3 — 22, and §(p) — 0 as
p—2

1.2 Fast £, Regression

Combining our sparsification theorem with iterative refinement
[2] yields near-optimal reductions for solving £, regression to high
accuracy. More specifically, we show that £, regression for matrices
A € R™*" can be reduced to a sequence of ép(l) instances with

A e ROMXn Tt is known how to solve such instances in time
n® for wy = 2 + max {%,w -2, 1770‘} [18], where « is the dual
matrix multiplication exponent. Alternatively, they can each be
solved in roughly nl/3 jterations and time nMax{®2+1/3} [2], where
an “iteration” refers to an operation that is dominated by the cost
of solving a particular n X n linear system.
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THEOREM 1.2 (FAST £, REGRESSION). There is an algorithm that
given any A € R™" b € R™, and p € (1,2] computes an x
satisfying

Ax — b||f < (1+¢) min ||Ax - b||?
lx = BIFp < (1-+¢) min, 1 Ax - bIf
~ 2-p ~
in either Op(n?+?) iterations and Op(nnz(A) + amax{@.241/3}y e
or ép(\/ﬁ) iterations and ép(nnz(A) + n®) time, with high proba-
bility.

It is standard to turn a high accuracy algorithm for an optimiza-
tion problem into one that solves a corresponding dual problem.
We present such an argument for £,-regression in the full version.

THEOREM 1.3 (DUAL OF £, REGRESSION). There is an algorithm
that given A € R™ " ¢ € R™, and q € [2, o) computes ay € R™
satisfying ATy = ¢ and

< (1+¢€) min g
llyllg < ( )ATy:CIIyIIq

~ a2 ~
in either Og(n3a-2) iterations and Ogq(nnz(A) + nmax{@.2+1/3}y i e
or Oq(\/ﬁ) iterations and Oq(nnz(A) + n®0) time, with high proba-
bility.

Prior work [15] shows that £,-regression can be solved in
ép(n1/3) iterations of solving a linear system for p € [2, c0). Com-
bining that result with Theorem 1.2 shows that £,-regression can
be solved using ép(n1/3) linear systems for all p > 1.

1.3 Discussion of the Hypotheses

Let us now discuss various hypotheses and the extent to which they

are necessary for sparsifiers of nearly-linear size to exist. In addition

to the properties a and b, let us consider three others that we will

use frequently. In what follows, C, u > 0 are positive constants and

h:R" - R,.

(c) (C-symmetric) h(z) < Ch(-z) for all z € R™.

(d) (C-monotone) h(z) < Ch(Az) for A > 1.

(e) (Upper u-homogeneous) h(Az) < CA%h(z) for all z € R™ and
A>1

<
<

First, note that a and b imply c—e.

LEMMA 1.4. The following implications hold:

(1) h is L-auto-Lipschitz = h is L-symmetric.

(2) h is lower 6-homogeneous with constant ¢ = h is 1/c-
monotone.

(3) h is L-auto-Lipschitz and C-monotone = h is upper 1-
homogeneous with constant 2CL.

ProoOF. Since h(0) = 0, applying the definition of L-auto-
Lipschitz with z = 0 gives h(-z) < Lh(z) for any z € R". The
second implication is immediate. For the third, note that for a posi-
tive integer k, we have h(kz) < Z?:_ol |h((j+1)z)—h(jz)| < kLh(z).
Using the L-auto-Lipschitz property again gives

h(A2) < h([A12) + Lh(([A] = 1)z)
[AL - h(z) + LCh(z) < 2CLA(z),

VAN

where the penultimate inequality uses C-monotonicity. O
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Symmetry c. To illustrate the need for approximate symmetry, let
us consider gluing together two functions that are otherwise “nice”

in our framework:
|22, z=0
f(2) = {

lzl, z<0.

Suppose that i = --- = fi, = f. Consider unit vectors
d1,...,dm € R™ such that §;; = [(d;,dj)| < %fori # j. A ba-
sic volume computation shows that one can choose m > 20(n),
Denote g; = (d;,1) e R* 1 fori=1,...,m.

Then for A > 0 and x := A(d;, —%), we have

fiajx)) = f({aj, A, —3)))

_[f(y2) =22 i=],
f(A(8ij— %)) <A otherwise.

Thus in any approximate sparsifier F = wy fi + - - - + Wy, fn, it must
be that either w; > 0, or Z#i wj 2 A Sending A — oo shows that
the latter is impossible.

Lower growth and monotonicity b, d. We consider these prop-
erties together since monotonicity is a weaker property than lower
homogeneity. A natural function that does not satisfy lower ho-
mogeneity is the Tukey loss which, for the sake of the present
discussion, one can take as f;(z) := min{1, |z|2}, which is a natural
analog of y (recall (1.4)) for p = 0.

For sparsifying GLMs with the Tukey loss, previous works have
made additional assumptions. For example, that one only ensures
sparsification when ||aj|l2 < n°W | and for inputs x € R” sat-
isfying [|x||2 < nPW; see [9, Assumption 2] and the discussion
afterwards, and [20, §8.3]. In the full version, we show how to
achieve a O(n'*°(1) ¢=2)_gparse ¢-approximations under these as-
sumptions. At a high level, the simple idea is to consider the proxy
loss functions ﬁ(z) := min{|z|?, |z|?} with p sufficiently small.

Upper quadratic growth e. Note that, by Lemma 1.4, if \/j_”l satis-
fies a, then f; is upper 2-homogeneous. For near-linear size sparsi-
fiers, 2-homogeneity is a natural condition, since sparsifying with
loss functions fj(x) = |x|P and p > 2 requires the sparsifier to have
at least Q(nP/?) terms [4].

The auto-Lipschitz property a. As Lemma 1.4 shows, this prop-
erty gives us approximate symmetry ¢ and upper 1-homogeneity e.
Crucially, this property also allows us to exploit the geometry of
the vectors ay, . .., am € R™. Note that a implies

(fiz) - fi(2')? =
(i)Y = (VD2 (fi(2) V2 + fi(2)?)?
<2L2%fi(z - 2) (fi(2) + fi(2))) .

In particular, we have

(a2 ~ fiGan, )
<2L? fi(Gaix = y)) (fillai, x) + fi(aiy)) -

N—— ——

The braced term is what us allows to access the linear structure of
the vectors in our analysis.
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Comparison to M-estimators. The works [10, 20] consider re-
gression and sparsification for what they call general M-estimators.
Essentially, this corresponds to the special case of our framework
where all the loss functions are the same: fi =--- = f;, = M, and
one assumes M(0) = 0, monotonicity, and upper and lower growth
lower bounds. They additionally assume that M is p-subadditive (for
p = 1/2) in the sense that M(x + y)? < M(x)? + M(y)P, which is a
stronger condition than the auto-Lipschitz property a for h = fil/ 2,

Under this stronger set of assumptions, the authors of [20]
achieve approximations with sparsity O(n™@{22/2+1}) which is a
factor n larger than what one might hope for. In the regime p < 2 of
possible near-linear-sized sparsifiers, we close this gap: Theorem 1.1
gives sparsity O(n).

1.3.1 Discussion of the smax/Smin Dependence. Note that Theo-
rem 1.1 only achieves an approximation for spin < F(x) < Smaxs
and there is a logarithmic dependence on smax/smin in the sparsity
bound. Intuitively, some dependence on smax/Smin is necessary in
the generality of Theorem 1.1 because nothing in our assumptions
precludes the functions f; from behaving nearly independently on
different scales (at least if the scales are sufficiently well separated).

In the case that each of the functions fi,...,fm is p-
homogeneous, in the sense that fj(1z) = [A|?f;(z), then F and
the sparsifier F are both p-homogeneous, and therefore the guar-
antee |F(x) — F(x)| < ¢ for F(x) = 1 already suffices to obtain
|F(x) — F(x)| < eF(x) for all x € R", meaning there is no scale

dependence.
More generally, for F satisfying the hypotheses of Theorem 1.1,
the growth assumptions on fi, ..., f,, allow one to obtain weak

guarantees even for F(x) € [Smin, Smax]. For tamer functions with
only a constant number of different scaling regimes, this allows
one to avoid the smax/smin dependence by applying such scaling
arguments and a simple reduction. For the sake of concreteness,
we demonstrate this for the Huber loss (the y; function as in (1.4)).
A similar argument applies for all the y;, functionals.

LEmMA 1.5. Consideray,...,am € R™ form > 2, and 1/m < ¢ <
1. Denote

F(x) =wiy1({a, x)) + - - + Wm¥ym((am, X))
F(x) = wiy1({a1,x)) + - - + Winym ((am, X))
for some nonnegative weights w,w € RI*. Suppose that
[F(x) — F(x)| < eF(x) forx € R™ such that
Winin < F(x) < 4m*wiay ,

where wpax = max(max(w), max(w)) and wy, = min(w). Then
F is a 2e-approximation to F.

Combining this with an analysis of the weights produced by our
construction and the guarantee of Theorem 1.1 yields the follow-
ing consequence. The proof of Lemma 1.5 and the next result are
presented in the full version.

COROLLARY 1.6. For every e > 0, the function
F(x) =y1({a1,x}) + -+ y1({am, x))

admits an s-sparse e-approximation for

s < 522 (log m) (10g (g log m))3 .
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Note that our sparsity bound has an m dependence, as opposed
to the classical cases of £, sparsification, where sparsity bounds
depend only on n and ¢. However, some m dependence is not sur-
prising, as [20, §4.5] present vectors ay, . .., am € R™ for which the
sum of the sensitivities (see (1.10)) can grow doubly-logarithmically
with m:

S (¢ai, x)) m
Z max Y2e X)) 2 nloglog — .
< 0#xeR" F(x) n

[20] also shows that }.72 | maxo4xepn %

sible for p € [0,1).

2 nlog 2 is pos-

1.4 Importance Sampling and Multiscale
Weights

Given F(x) = fi({a1,x)) + - - - + fimn({am, x)), our approach to spar-
sification is via importance sampling. Given a probability vector
p € R™ with p1,...,pm > 0and p; + -+ + pym = 1, we sample
M > 1 coordinates vy, ..., vjs i.i.d. from p, and define our potential
approximator by

M
g L S @)

j=1 Pv;

One can easily check that this gives an unbiased estimator for every
x € R, ie, E[F(x)] = F(x).

Since we want an approximation guarantee to hold simultane-
ously for many x € R", it is natural to analyze expressions of the
form

[EFr(l)lce)néS |F(x) - f’(x)| .

Analysis of this expression involves the size of discretizations of
the set Bp(s) := {x € R" : F(x) < s} at various granularities,
as explained in Section 1.6.2. The key consideration (via Dudley’s
entropy inequality, Lemma 1.13) is how well Bp(s) can be covered
by cells on which we have uniform control on how much the terms
fi({ai, x))/ pi vary within each cell.

The £, case. Let’s consider the case f;(z) = |z|? so that F(x) =
[{a1,x)|> + - - - + |{am, x)|?. Here, Bp(s) = {x € R" : ||Ax||§ < s},
where A is the matrix with ay, ..., a;, as rows.

A cell at scale 2/ looks like

2
Kj = {x € R™: max —|(a,,x)| < 2j},
ie[m] Pi
and the pertinent question is how many translates of K; it takes
to cover Br(s). In the £ case, this is the well-studied problem of
covering Euclidean balls by £« balls.
If Nj denotes the minimum number of such cells required, then
the dual-Sudakov inequality (see Lemma 1.12) tells us that

(AT A)~2q;|2

s

log N; < — log(m) max
81 27 e )ie[m] Pi

Choosing p; = %H(ATA)_l/zain, i.e., normalized leverage scores,

yields uniform control on the size of the coverings:

s

logNj < 2

nlogm.
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The ¢, case, 1 < p < 2. Consider the case fi(z) = |z|P so that
F(x) = ||Ax||§. A cell at scale 2/ now looks like

Kas 0P _ zj}’
l€[m] pi
To cover Br(s) by translates of Kj, we again employ Euclidean
balls, and use tp Lewis weights to relate the £p structure to an £
structure.

A classical result of Lewis [19] (see also [4, 12]) establishes that
there are nonnegative weights wi,..., wy > 0 such that if W =

K; —{xGR"'

diag(wi,...,wn) and U = (ATWA)'/2, then
WU~tailly _ fi(lu~tailla)
wi = 2 T2 - (1.5)
U~ aill5 U~ aill5

Assuming that A has full rank, a straightforward calculation gives
S willU Al = tr(U2U2) = n.

Therefore, we can choose p; := %wiHU’lai
and our cells become

||§ fori=1,...,m,

Kj = {x € R™: max [{(a;, x)|P < 2w~||U_1a~||2}
I Cielm] St (-
(Note that the values {w,-||U_1ai||§ : i =1,...,m} are typically
referred to as the “f, Lewis weights”.)

If we are trying to use £3-fo covering bounds, we face an imme-
diate problem: Unlike in the # case, we don’t have prior control
on |[|Ux||2 for x € Bg(s). One can obtain an initial bound using the
structure of U = (ATWA)Y/2:

m m
(1.5) - -2
U3 = > witan )2 =" Y IIU™ agllh ™ (as, )

=1 i=1
o (_lai.x)| o
-2l N e
< “UXHZ_P Z |<ai,x>|P’ (1.7)
=1

where the last inequality is Cauchy-Schwarz: [(a;,x)| =
[(U™1a;, Ux)| < ||ULa;||2||Ux]|2. This gives the bound ||Ux|| <
lAx]lp < sUP for x € Bp(s).

Problematically, this uniform ¢, bound is too weak, but there is a
straightforward solution: Suppose we cover Br(s) by translates of
Kj,. This gives an £o bound on the elements of each cell, meaning
that we can apply (1.7) and obtain a better upper bound on ||Ux||2
for x € Kj,. Thus to cover Br(s) by translates of K; with j < jo,
we will cover first by translates of Kj;, then cover each translate
(x + Kj,) N Br(s) by translates of K1, and so on.

The standard approach in this setting (see [4] and [17, §15.19])
is to instead use interpolation inequalities and duality of covering
numbers for a cleaner analytic version of such an iterated covering
bound. However, the iterative covering argument can be adapted
to the non-homogeneous setting, as we discuss next.

Generalized linear models. When we move to more general
loss functions f; : R — R, we lose the homogeneity property
fi(Ax) = APfi(x),A > 0 that holds for £, losses. Because of this,
we need to replace the single Euclidean structure present in (1.5)
(given by the linear operator U) with a family of structures, one for
every relevant scale.
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Definition 1.7 (Approximate weights). Fix ay,...,an € R™ and
loss functions fi, ..., fm : R — R,. We say that a vector w € R}
is an a-approximate weight at scale s if

-1/2
s RO Parl)

i=1,...,m (1.8)
< 7 i=1,...,m,
@M, a2

m
where M,, := Z Wjaja}— . (1.9)
Jj=1
To motivate this definition, let us define scale-specific sentivities:
__ filtaix))
&i(s) = maX{ Fx)

i=1,...,m. (1.11)

x € R", F(x) € [s/2, s]} (1.10)

As shown in Corollary 2.3, if the functions {f;} are lower 6-
homogeneous, upper 2-homogeneous, and O(1)-symmetric (in the
sense of ¢), then an a-approximate weight at scale s allows us to
upper bound sensitivies by leverage scores:

Ei(s) < o(W1/24), (1.12)

where W = diag(wy, ..., wnm), and the implicit constant depends
on « and the homogeneity parameters. Here, 0;(V) denotes the ith
leverage score of a matrix V with rows vy, ..., 0m:

0i (V) = (vi, (VT V) 03), (1.13)

where (VTV)* denotes the Moore-Penrose pseudoinverse. Notably,
one always has 01(V) +- - -+ 0, (V) = rank(V), and therefore (1.12)
gives an upper bound & (s) + -+ - + Ep(s) S n.

In order to generalize the iterated covering argument for £, losses,
we need there to be a relationship between weights at different
scales.

Definition 1.8 (Weight schemes). Let J C Z be a contiguous
interval. A family {w(/) € R™ : j € J} is an a-approximate
weight scheme if each w(/) is an a-approximate weight at scale 2/
and, furthermore, for every pair j, j+1€ J andi € {1,...,m},

w < qwld) (1.14)
Given a weight scheme, we choose sampling probabilities

1/2

pi inajxw(’) M,

ai||§ = %ajxai(W}l/ZA), i=1,...,m,
where W; = diag(wl(]), w,(,{)). In our setting, |J| <
O(log(msmax/Smin)), Which results in the sparsity increasing by a
corresponding factor.

In Section 2, we establish the existence of approximate weight
schemes for general families of loss functions satisfying certain
growth bounds, along with efficient algorithms to compute the
corresponding weights.

1.5 Regression via Iterative Refinement

Previous works have observed that combining iterative refinement
with sparsification of yp-functions (recall (1.4)) leads to improved
algorithms for fp-regression [1, 2, 13]. For the benefit of the reader,
we give a description of these ideas in somewhat more generality.

Recall that our goal is to find a point x € R” that computes
an approximate minimizer of F(x) = %70, fi({a;,x) — b;), up to
high accuracy. For now, we assume that F is a differentiable convex
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function and denote F, := inf,cpn F(x). Later, we will introduce
additional conditions that allow for iterative refinement to succeed.

Broadly, iterative refinement minimizes F(x) be repeatedly solv-
ing sub-problems, each of which make multiplicative progress in
reducing the error of the current solution. Given a current point xg,
prior works on iterative refinement define a local approximation
of F suitably symmetrized and centered around xo such that ap-
proximately minimizing this local approximation yields the desired
decrease in function error. One way to derive such local approxi-
mations is through Bregman divergences, which give a natural way
of recentering convex functions.

Definition 1.9 (The F-divergence). For x,y € R”, use Tf (y) :=
F(x)+VF(x)T (y—x) to denote the first order Taylor approximation
of F at x, and define the F-induced Bregman divergence by DE (y) =

F(y) - Tf (y).

Note that for convex F, the function D (y) is convex and mini-
mized at x. Consequently, given a point xp, the function D,fﬂ (y)isa
natural function induced by F and minimized at xp. Note that mini-
mizing F(x) is the same as minimizing (VF(xp), x — xo) + D 5 (x)
which in turn is the same as minimizing (VF(x), A) + D , (X0 +A)
over A and adding the minimizer to xo.

Iterative refinement strategies approximately minimize
(VF (x), Ay + r(A), where r(A) is a suitable approximation of

(xo + A). One step of refinement moves to xj = x¢ + r]A where
1 is a suitably chosen step-size and A is the approximate minimizer.
As motivation for our approach, here we consider the scheme
suggested by prior work, where r(A) is a sparsification of a simple
approximation to the divergence.

Informally, one can show that if the square root of the Breg-
man divergence of each f; is L-auto-Lipschitz a and lower 6-
homogeneous for some § > 1 b, then one step of sparsifica-
tion/refinement decreases the error in the objective value multiplica-
tively by an absolute constant. Interestingly, auto-Lipschitzness is
only required for sparsification and not for refinement. However, we
critically need the Bregman divergence to be lower 8-homogeneous
for 6 > 1 for iterative refinement, while our sparsification results
(Theorem 1.1) only require 6 > 0.

LEMMA 1.10 (REFINEMENT LEMMA). Supposer : R" — R, is
lower 0-homogeneous with constant ¢ < 1 for @ > 1, and for xo € R"

and all A € R" andn € [0,1],
r(A) < (xo +A) < ar(N)

where a > 1 is fixed. Then infpcgn { Jg(xo +A) + r(A)} < Fi and

if A € R™ satisfies
TE (xo + A) +r(A) < Fe, (1.15)
then
Fxo +7A) = F < (1= 1) (f(x0) = Fo). (1.16)
where fj == (a/c)_l/(q_l) . (1.17)
Proor. First note that, for all A € R”,

F(xo+A) = (xO +A) +D , (X0 +A). (1.18)
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Since, DF (x0 +A) > r(A) this implies the desired bound

. F .
inf {Txo (xo +A) + r(A)} < inf F(xo+4)=F..

Next, note that for all € [0,1] and A € R,
F(xo) +nVF(x0)T A (1.19)
TF (x0 + A) (1.20)

T)E] (x0 +nA) =
= (1= n)F(x0) +n T
ar(nA) < afc-n r(A) (1.21)

Suppose that A € R” satisfies (1.15). Then plugging (1.19) and (1.21)
into (1.18) with A = AA yields

(1= )P (x0) +1
= (1= )F(xo) +1 (T (xo + 4) + r(B)
< (1= )F(x0) + iF.

L (xo+1A) <

F(xo +AA) < TE (xo + A) + a/c - 7197 (A)

where we used that «/c - ﬁe_l = 1and ) € [0,1]. Rearranging
yields (1.16). o

To apply Lemma 1.10 to ERM for general linear models, note
that

m

DE (xo+8) = Y D

{aj,xg

1, (i ).

i=1

Now, if the square root of each divergence Df' is L-auto-Lipschitz
and lower §-homogeneous, then Theorem 1.1 gives weights w €
R with sparsity O(n) such that

0.9 DE (x0 +A) < r(A) < DE (x0 + )

where  r(A) := Zwl <a x0)— b,»(<ai’ A)).

Thus, Lemma 1.10 applies, and we can decrease the objective value
error by a multiplicative factor by minimizing r(A). Since r(A)
only has O(n) nonzero terms, one can apply previous solvers for
m = O(n) [2, 18] to obtain the desired runtimes.

In the full version’s Section on £p regression, we verify that the
f-divergence of f(z) = |z|? is the y, function, which is lower p-
homogeneous, and has an auto-Lipschitz square root. This yields
our algorithm for £, regression (Theorem 1.2). A formal version of
the argument is presented in the full version. The main difference
is that some technical work is needed because Theorem 1.1 only
provides sparsification for a range of inputs {x € R"” : sy, <
F(x) < smax}. Moreover, our algorithm uses an approximate oracle
for GLMs with the functions {f;} (rather than with the approximate
divergence r(+)), and we show that the oracle does not need to be
solved to high accuracy to make sufficient progress.

1.6 Preliminaries

Throughout the paper, we denote [n] := {1,2,...,n}. We use the
notation a < b to denote that there is a universal constant C such
that a < Cb, and a < b to denote that C may depend on L. We
use a < b to denote the conjunction of a < b and b < a, and
a <1 b analogously. We also denote Ry := {x € R : x > 0} and
Ryt ={xeR:x > 0}.
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For simplicity of presentation, we assume that the vectors
ai,...,am € R™in (1.1) span R" and all are nonzero. In partic-
ular, this means that the matrix A with rows ay, ..., a;,; has rank
nand AT WA is invertible for any diagonal matrix W with strictly
positive entries on the diagonal.

1.6.1 Covering numbers and chaining. Consider a metric space
(T,d). For x € T and r > 0, define the ball B(x,r) := {y € T :
d(x,y) <r}.

Definition 1.11 (Covering numbers). For a radius r > 0, we define
the covering number N (T, d, r) as the smallest number of balls of
radius r (in the distance d) that are required to cover T. For S, " C
R", we overload notation and use N(S,S’) to denote the smallest
number of translates of S’ needed to cover S.

We require the following “dual Sudakov inequality” (see [21]
and [17, (3.15)]) which gives bounds for covering the Euclidean ball
using balls in an arbitrary norm.

LEMMA 1.12 (DUAL SUDAKOV INEQUALITY). Let By denote the unit
ball in n dimensions, and || - ||x an arbitrary norm on R"™. If g is a
standard n-dimensional Gaussian, then

\J1og N(By, Bx) < Ellgllx .

where By :={y € R" : [lyl[x <1}.

We recall Talagrand’s generic chaining functional [27, Def.
2.2.19]:

v2(T,d) == inf sup Y 2"2diam(A(x),d), (1.22)
{ﬂh}xeThzzo

where the infimum runs over all sequences {Ay, : h > 0} of parti-
tions of T satisfying | Ap| < 22" for each h > 0. Note that we use
the notation Ay (x) for the unique set of Ay, that contains x.

The chaining functional is used to control the maximum of sub-
gaussian processes (see, e.g., the discussion in [14, §2.2] where it
is applied precisely in the setting of sparsification). Our use of the
functional occurs only in our application of our abstract sparsifi-
cation statement (stated in the full version), and in this paper we
will only require the following classical upper bound. (See, eg., [27,
Prop 2.2.10].)

LEMMA 1.13 (DUDLEY’S ENTROPY BOUND). For any metric space
(T,d), it holds that

yv2(T,d) < Z 2/ \Jlog N(T.d, 2J) .
jez

The interested reader will note that this is (up to constants)
precisely the upper bound one obtains by choosing Ay, as a uniform
discretization of (T, d), i.e., to minimize sup{diam(Ay(x),d) : x €
T} over all partitions satisfying |Ap| < 22"
1.6.2  Sparsification via subgaussian processes. We discuss sparsifi-
cation via subgaussian processes. Consider

@102 om : R" 5 R,
and define
m
F(x) = )" 0(x).

J=1
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Given a strictly positive probability vector p € RY,, and an integer

s21landv=(vy,...,vs) € [m]®, define the distance

(o) =0y )
vi\X) = @y,
dp’v(x,y) = Z(M) . (1.23)

= Pv; S

and the function I:'p’V :R?” - R

Fpy(x) = %Z oy

Jj=1 Pv;

2 MULTISCALE IMPORTANCE SCORES

Recall the definitions of approximate weights (Definition 1.7) and
weight schemes (Definition 1.8). In the present section, we prove
the following two results.

THEOREM 2.1. Suppose that fi, ..., fm : R — Ry are lower 6-
homogeneous and upper u-homogeneous withu > 6 > 0 and uniform
constants ¢, C > 0. Then there is some a = (6, c,u,C) > 1 such that
for every choice of vectors ay,...,am € R"™ ands > 0, there is an
a-approximate weight at scale s.

This is proved in Section 2.2 by considering critical points of the
functional U + det(U) subject to the constraint G(U) < s, where
GU) = fillUa1ll2) + - - - + fm(lUam||2), which can be seen as a
generalization of Lewis’ original method.

Single-scale sensitivities. Let us now observe that, in the case
u < 2, Theorem 2.1 allows us to bound sensitivities (recall (1.10)).
The next lemma is a generalization of (1.7).

LEMMA 2.2. Suppose fi, ..., fm : R = Ry satisfy the assumptions
of Theorem 2.1 withu < 2, and they are additionally K-symmetric in
the sense of c. If w € R is an a-approximate weight at scale s, then
for any x € R", it holds that

1/2

CKF
|M,, x||g < max (l,a—ﬁ) .

s
Proor. We may clearly assume that ||M$V/ 2x||2 > 1. Then using
the Cauchy-Schwarz inequality

-1/2

1/2
(ai, x)| < [IM;, /

aill2||M;y “x|l2

together with the upper quadratic growth assumption gives

filltan D) | 1 fillMy M5 aill) @)
v, aill
e I AOM Pal)

>
e 12 _n2ya—1/2, 112
”Mw x||2||MW ai”z

where the last inequality uses the lower growth assumption.
Using M,, = Zg’;l wiaia;'—, we can bound

m
1/2
IMyPxl3 = widas, x)?
i=1

—-1/2
1My, a2

FUIM ai]12)

21 C P
< ZIMHIE0 Y wifi(la 0D
i=1
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N

CK1, 1/2 12 9%
a— < lImy ;0 2 fitan ),
i=
where the last inequality uses the defining property of an a-
approximate weight at scale s, along with the assumption of K-
symmetry: f;(|{a;, x)|) < Kfi({ai,x)) foralli=1,...,m. O

COROLLARY 2.3 (SENSITIVITY UPPER BOUND). Under the assump-
tions of Lemma 2.2, it holds that

&(s)+---+&mu(s) <n,

where the implicit constant depends on the parameters a,0,C,c.K.

Proor. From Lemma 2.2, if F(x) < s, then ||M$V/2x||2 <
(aCK [c)'/?. By Cauchy-Schwarz, this gives

Kai, x)| < (aCK /)0 IMy, a1z,
and therefore
fiai, %)) < Kfi(I{ai, x)])

K -
< — i (K /0) P10, )

FUIMy 2 allz)

CK (aCK)2/9
< —_ P
C

X

2/0
aCK (aCK _
< ( ) s - will My, a2,

C C

where the first inequality uses K-symmetry, the second uses 1/c-
monotonicity (which holds by Lemma 1.4), the third inequal-
ity uses upper homogeneity, and the last inequality uses that
w is an a-approximate weight at scale s. Finally, one notes that

s wi||M;,1/zai||§ = tr (M;,' M,y) = n, completing the proof. O

We are only able to establish the existence of entire weight
schemes (where the weights at adjacent scales are related) for u < 4,
which suffices our applications, as u < 2 is a requirement for
Theorem 1.1. The following theorem is proved in Section 2.1, based
on the contractive iteration method introduced by Cohen and Peng

[12].

THEOREM 2.4. Suppose that fi,..., fm : R — Ry are lower 0-
homogeneous and upper u-homogeneous with4 > u > 6 > 0 and
uniform constants ¢,C > 0. Then there is some ¢« = a(u,C,6,c)

such that for every choice of vectors ay,...,am € R", there is an
a-approximate weight scheme {wi(j) 1 jezZ}.

In the next section, we show how to compute an approximate

weight scheme {w.(j) 1 j € J} using o(lTN computations of
leverage scores (01(V),...,0m(V)) for matrices of the form V =
ATWA.

2.1 Contractive Algorithm
For a weight w € R7 and i € {1,...,m}, define

url/2
r(w) = ZWTA o aTway .,
wi
W := diag(wi, ..., Wm),
and denote 7(w) = (1 (w),..., Tm(w)).
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Fix a scale parameter s > 0 and define the iteration ¢ : RI* —

RY by
(s = V), @3
s Ti(w)

Write (pk =@ o--- o0 ¢ for the k-fold composition of ¢. In this case
where f;(z) = |z|P and 1 < p < 2, it is known, for s = 1, starting
from any wy € R, the sequence {q)f(wo) : k > 1} converges to
the unique fixed point of ¢, which are the corresponding £, Lewis
weights (1.5).

:i:1,4..,m}.

Define now a metric d on R} by
d(u, w) = max {
We note the following characterization.

Uj
log —
og "

Fact 2.5. A vector w € R is an a-approximate weight at scale s
if and only if
d(w, ps(w)) < loga.

First, we observe that 7 is 1-Lipschitz on (R?,d). In the next
proof, < denotes the ordering of two real, symmetric matrices in
the Loewner order, i.e., A < B if and only if B — A is positive
semi-definite.

LEMMA 2.6. For any w,w’ € R, it holds that
d(t(w), 7(w)) < d(w,w").
Proor. Denote
W = diag(w), W' = diag(w’), and & := exp(d(w, w")).
Then a”!'W < W’ < aW, therefore
a TATWA < ATWA < aATWA,

and by monotonicity of the matrix inverse in the Loewner or-
der, a 1 (ATWA)™! < (ATW/A)~! < a(ATWA)~L. This implies
d(r(w),7(w’)) < log @, completing the proof. O

ProoF oF THEOREM 2.4. Consider the map ¢ : R? — RJ?
whose i-th coordinate is defined as

i = L0

Our assumptions on lower and upper-homogeneity give, for all
Yi = Xi,
c(g)e/“ _ i/ _ c(ﬂ)“/“

xi Ji(Nxi) /xi Xi ’
yielding, for C; := max{C, 1/c},

A (). Y () < m(

Fix s > 0 and consider the mapping ¢ : R}? — R defined in
(2.3). Then for u < 4 and § := max (‘g - 1‘ , ‘% - 1|) < 1,(24)in
conjunction with Lemma 2.6, shows that

d(ps(w), ps(w")) < §d(w,w’) +log(Cy). (2.5)

Applying this bound inductively, for any weight w € R7* and k > 1,
we have

g - 1“% - 1() d(x,y) +1og(C1). (2.4)

5kd(q)s(w), w) +log C;
1-6 ’

d (ko W) < 26)
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Now define

w(® = (pf(l,...,l),
1 is chosen large enough so that
2log Cq
-5
From Fact 2.5, one sees that w(®) is an a-approximate weight at
scale 1 for a = Cf/(l_‘s).

Define inductively, for j = 1,2,.. .,
wl) = 0o (wU=1)
w=h = . (w=9)y.

where k >

d(w®, g (w)) <

Note that
d(py) (w(j)), W(j)) —
A2 (w™), gy (w1
< 8d(y; (wl=1), wl=V) 4 log(Cy)
< 8d(pyi1 (wI D), wU D) 4 5log(2) +1log(Cr),
where the last inequality uses @25(w) = 2¢5(w) for all w € R
Therefore, by induction,
2log(Cy) +1og2
1-46
for all j > 0. To see that the family of weights {w) : j e Z} forms
a weight scheme, note that

(@, (w(j)),w(j)) <

d(wD w0y = d(g,; (w1, wl=1)
< d(py) (wl=1), w1y +log2,
thus {w) : j € Z}isan a-approximate weight scheme for a =
2log(2Cy)

=5 completing the proof. O

2.2 A Variational Approach to Approximate
Weights

In this section we show that even if each f; is upper u-homogeneous
for u > 4, approximate weights still exist. Our sparsification anal-
ysis relies on the existence of weight schemes, where there is a
relationship between weights at different scales. But the following
existence proof is instructive.

THEOREM 2.7. Suppose fi,...,fm : Ry — Ry are lower 0-
homogeneous with constant c and upperu-homogeneous with constant
C withu > 0 > 0. Then there is a constant a = «(0, ¢, u, C) such that
for every choice of vectors ay, . ..,am € R"™ and s > 0, there is an
a-approximate weight at scale s.

The idea behind the proof'is to set up a variational problem whose
critical points produce approximate weights at a given scale. As
observed in [22], this analysis technique does not require convexity.

LEmMMA 2.8. Supposegs, . ..,gm : Ry — Ry are monotone increas-
ing, continuously differentiable, and satisfy g1(0) = - - - = g (0) = 0.
Then for every f > 0, there are weights {w; > 0:i=1,...,m} such
that

L a—1/2
(M, " aill2)
wi:yg—’ hid ! i=1,....,m, (2.7)

—-1/2
17, a2
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m -1

Z AV Pl g Parllz | L @8

p= Zgl(uM 2aill)
Proor. For a linear operator U : R" — R”, define

G(W) =) gilllUaillz),
i=1

and consider the optimization
maximize {det(U) : G(U) < B} . (2.9)

Since G(0) = 0 and each g; is monotone increasing, it holds that
G(cI) = B for some ¢ > 0. Therefore for any maximizer U™, it holds
that det(U*) > 0, i.e., U* is invertible, and G(U*) = .

For U invertible, we have

Vdet(U) = det(U)U . (2.10)
Let us also calculate

dlUai

dG(U) = Zg,(IIUazllz) ATal”

and use ||Ua,-||§ = tr(UTUal-alT) to write

1
5d||Ua,-||§ =tr ((dU) "Ua;a, ),

so that
VyG(U) =UATDyA,

g:UlUaill2)

where Dy is the m x m diagonal matrix with (Dy);; = Uall,

and A € R™*" is the matrix with rows ay, .. ., am.
Combined with (2.10), we see that if U is an optimal solution to
(2.9), then for some Lagrange multiplier y > 0, we have

(UTU) ' =yATDyA.

Take V := (UTU)7! so that V = xn lw,ala with w; :=
gV aill) te the value of y, calculat
S [V-i2a,, - Lo compute the value of y, calculate

m s -1/2 .
GV gl
n= eV = )

i=1

m
=1 > g1V ayllo) [V a5 o
i=1

tr(V_laia;r)

The preceding lemma assumes that the functions g; are mono-
tone increasing. However, the functions f; only satisfy lower homo-
geneity, which is a weaker condition. To prove Theorem 2.7, one
can take monotone approximations of functions f; by averaging
over intervals.

LEMMA 2.9. Suppose f is lower 0-homogeneous with constant c
and upper u-homogeneous with constant C foru > 1. Define K :=
max(e, (2/c)!/?) andg: Ry — Ry by

Kx
g(x) = @ dt
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Then g is continuously differentiable, monotone increasing, and satis-
fies g(0) = 0. Moreover, for all x > 0,

Proor. Note that ¢’(x) M and f(Kx) >
ck? f(x) = 2f(x) by lower 8-homogeneity. Thus g is monotone
increasing. Moreover, we have

Kx Kx
g(x):/x @dtch(x)/x %dt>c-f(x),

and foru > 1,

LW 4 Cf(x)/

X t X

Kx (t/x)u

g(x) = Tdt < CK“f(x).

Proor oF THEOREM 2.7. Throughout the proof, we use < in
place of =g ., c. Let K be as in Lemma 2.9 and define g;(x) =
fox ]@ dt. By Lemma 2.9, we have g} (x) < fi(x)/x and g(x) =<
filx)fori=1,...,m.

Let {w;} and M,, be as in Lemma 2.8 when applied to g1, . .., gm
with = n/A. Then,

m m
D G M il Mg P aills = 3 fiIMy P aillz)

i=1 i=1
m
= > giIMy, ailz)
i=1
n
=p=7-
Therefore y < A (recall (2.8)), and thus (2.7) gives the desired result.
O
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