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ABSTRACT
We consider the sparsi�cation of sums � : R= ! R+ where
� (G) = 51 (h01, Gi) + · · · + 5< (h0<, Gi) for vectors 01, . . . ,0< 2 R=

and functions 51, . . . , 5< : R ! R+. We show that (1 + Y)-
approximate sparsi�ers of � with support size =

Y2 (log
=
Y )$ (1) exist

whenever the functions 51, . . . , 5< are symmetric, monotone, and
satisfy natural growth bounds. Additionally, we give e�cient al-
gorithms to compute such a sparsi�er assuming each 58 can be
evaluated e�ciently.

Our results generalize the classical case of ✓? sparsi�cation,
where 58 (I) = |I |? , for ? 2 (0, 2], and give the �rst near-linear size
sparsi�ers in the well-studied setting of the Huber loss function
and its generalizations, e.g., 58 (I) = min{|I |? , |I |2} for 0 < ? 6 2.
Our sparsi�cation algorithm can be applied to give near-optimal
reductions for optimizing a variety of generalized linear models
including ✓? regression for ? 2 (1, 2] to high accuracy, via solv-
ing (log=)$ (1) sparse regression instances with< 6 =(log=)$ (1) ,
plus runtime proportional to the number of nonzero entries in the
vectors 01, . . . ,0< .

CCS CONCEPTS
• Theory of computation! Sketching and sampling.
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1 INTRODUCTION
Empirical risk minimization (ERM) is a widely studied problem in
learning theory and statistics (see, e.g., [18], for relevant references
to the expansive literature on this topic). A prominent special case
is the problem of optimizing a generalized linear model (GLM), i.e.,

min
G2R=

� (G) for � (G) :=
<’
8=1

58 (h08 , Gi � 18 ) , (1.1)

where the total loss � : R= ! R, is de�ned by vectors 01, . . . ,0< 2
R= , 1 2 R< , and loss functions 51, . . . , 5< : R ! R. Di�erent
choices of the loss functions {58 } capture important problems, in-
cluding linear regression, logistic regression, and ✓? regression
[2, 8].

Recently, e�cient algorithms for solving (1.1) to high-accuracy
have been developed in many settings [5, 7, 13] such as linear pro-
gramming and ✓1-regression, where 58 (G) = |G |. For example, when
< is on the order of =, it is known how to solve linear programs
and some GLMs in roughly (up to logarithmic factors) the time it
currently takes to multiply two general =⇥= matrices [2, 11, 16, 18]
which is, up to logarithmic factors, the best-known, running time
for solving a single linear system in a dense = ⇥ = matrix.

When< � =, a natural approach for fast algorithms is to apply
sparsi�cation techniques to reduce the value of<, while maintain-
ing a goodmultiplicative approximation of the objective value.More
precisely, say that the objective � admits an B-sparse Y-approximation
if there are non-negative weights F1, . . . ,F< 2 R<+ , at most B of
which are non-zero, and such that

|� (G) � �̃ (G) | 6 Y � (G) for all G 2 R=, where

�̃ (G) :=
<’
8=1

F8 58 (h08 , Gi � 18 ) .

When 58 (I) = |I |? are ✓? losses, near-optimal sparsi�cation re-
sults are known: If ? > 0, then � admits an B-sparse Y-approximation
for B 6 $̃ (=max{1,?/2}Y�2);1 this sparsity bound is known to be op-
timal up to polylogarithmic factors [4, 22, 25, 26]. In particular,
for ? 2 (0, 2], the size is $̃ (=Y�2), near-linear in the underlying
dimension =. The ? = 2 case has been especially in�uential in the
development of several fast algorithms for linear programming and
graph optimization over the last two decades [6, 23, 24].

1Throughout, we use $̃ (5 ) to suppress polylogarithmic quantities in<,=, Y�1 , and
5 .
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However, as far as the authors know, ✓? losses are the only
class of natural loss functions for which linear-size sparsi�ca-
tion results are known for GLMs. For instance, for the widely-
studied class of Huber loss functions (see (1.4)) and related variants,
e.g., 58 (I) = min{|I |, |I |2}, the best known sparsity bound was
$̃ (=4�2

p
2Y�2) [20]. Improving this bound to near-linear (in =) is an

established important open problem that has potential applications
to regression for Huber and ✓? losses [1, 3, 13, 20, 28].

The main result of this paper is near-optimal sparsi�cation
for a large family of loss functions {58 } that include the Huber
losses, ✓? losses, and generalizations. Informally, we show that if
the loss functions {58 } are nonnegative, symmetric, and grow at
most quadratically, then there exists an B-sparse Y-approximation
of � with B 6 $̃ (=Y�2). Moreover, the sparse approximation can be
found very e�ciently, in time proportional to the time used for $̃ (1)
instances of ✓2-sparsi�cation (Theorem 1.1). A particularly nice ap-
plication of our result is an algorithm that solves ✓? -regression to
high accuracy for 1 < ? 6 2 by reducing to $̃? (1) instances of
✓? -regression with< = $̃ (=) (Theorem 1.2). Our framework can
also be applied to minimizing sums of W? functions for ? 2 (1, 2]
(see (1.4)) to high accuracy, and to approximate Huber regression.

The main technical hurdle in obtaining these results is that the
loss functions are not necessarily homogeneous and they can exhibit
di�erent behaviors at di�erent scales. Note that this hurdle arises
already for losses like 58 (I) = min{|I |, |I |2}, even though the loss
function only has two di�erent scaling regimes. To overcome this
hurdle we develop a multiscale notion of “importance scores” for
appropriately down-sampling � into a sparse representation.

1.1 Hypotheses and Results for Sparsi�cation
Consider a generalized linear model as in (1.1), with loss functions
51, . . . , 5< : R ! R+ and vectors 01, . . . ,0< 2 R= . For simplicity,
we assume that 1 = 0 in (1.1). This is without loss of generality, as
h08 , Gi � 18 = h(08 ,18 ), (G,�1)i, and (08 ,18 ), (G,�1) 2 R=+1, so we
can re-encode the problem in = + 1 dimensions with 1 = 0.

We will often think of the case 58 (I) = ⌘8 (I)2 for some ⌘8 :
R ! R+, as the assumptions we need are stated more naturally in
terms of

p
58 . To that end, consider a function ⌘ : R: ! R+ and

the following two properties, where ! > 1 and 2, \ > 0 are some
positive constants.2

(a) (!-auto-Lipschitz) |⌘(I) �⌘(I0) | 6 ! ⌘(I � I0) for all I, I0 2 R: .
(b) (Lower \ -homogeneous) ⌘(_I) > 2_\⌘(I) for all I 2 R: and

_ > 1.

Note that if ⌘ : R ! R is concave and symmetric, then it is 1-auto-
Lipschitz.

We can now state our main theorem, whose proof appears in the
full version.

T������ 1.1. Consider 51, . . . , 5< : R ! R+, and suppose there
are numbers ! > 1, 2, \ > 0 such that each

p
58 is !-auto-Lipschitz and

lower \ -homogeneous (with constant 2). Then for any 01, . . . ,0< 2
R= , and numbers 0 < Y < 1

2 and Bmax > Bmin > 0, there are

2The setting : = 1 su�ces for the present work, though we state them for general
: > 1.

nonnegative weightsF1, . . . ,F< > 0 such that������ (G) �
<’
8=1

F8 58 (h08 , Gi)
����� 6 Y� (G) ,

8G 2 R= s.t. Bmin 6 � (G) 6 Bmax ,

where � (G) := 51 (h01, Gi) + · · · + 5< (h0<, Gi), and

|8 2 {1, . . . ,<} : F8 > 0| .!,2,\
=

Y2
log

✓
=

Y

Bmax
Bmin

◆
(log ()3 , (1.2)

where ( :=
=

Y
log

✓
2Bmax
Bmin

◆
. (1.3)

Moreover, with high probability, the weights {F8 } can be computed
in time

$̃!,2,\
�
(nnz(01, . . . ,0<) + =l +<Teval) log(<Bmax/Bmin)

�
.

Here, Teval is the maximum time needed to evaluate each 58 ,
nnz(01, . . . ,0<) is the total number of non-zero entries in the vec-
tors 01, . . . ,0< , and l is the matrix multiplication exponent. “High
probability” means that the failure probability can be made less
than =�✓ for any ✓ > 1 by increasing the running time by an $ (✓)
factor.

We use the notation $!,2,\ and $̃!,2,\ (·) to indicate an implicit
dependence on the parameters !, 2, \ , and � .!,2,\ ⌫ is shorthand
for � 6 $!,2,\ (⌫). The constant hidden by the $!,2,\ (·) notation is
about (!/2)$ (\�2 ) , thoughwemade no signi�cant e�ort to optimize
this dependence.

It is not di�cult to see that for 0 < ? 6 2, the function 58 (I) =
|I |? satis�es the required hypotheses of Theorem 1.1. In the full
version, we show that W? functions, de�ned as

W? (I) :=
(
?
2 I

2 for |I | 6 1
|I |? � (1 � ?

2 ) for |I | > 1,
(1.4)

for ? 2 (0, 2], also satisfy the conditions. The special case of W1
is known as the Huber loss. We note that this function can be
generalized to other thresholds.

The W? functions were introduced in [8] and have since been
used in several works on high-accuracy ✓? regression [1, 2, 13]. Due
to these connections, the works [13, 20] studied sparsi�cation with
W? losses, providing sparsity bounds of $̃ (=3) and $̃ (=4�2

p
2) ⇡

$̃ (=1.172), respectively. More precisely, [20] establish a bound of
$̃ (=1+X (? ) ) for ? 2 [1, 2] with X (1) = 3 � 2

p
2, and X (?) ! 0 as

? ! 2.

1.2 Fast ✓? Regression
Combining our sparsi�cation theorem with iterative re�nement
[2] yields near-optimal reductions for solving ✓? regression to high
accuracy. More speci�cally, we show that ✓? regression for matrices
� 2 R<⇥= can be reduced to a sequence of $̃? (1) instances withe� 2 R$̃ (=)⇥= . It is known how to solve such instances in time
=l0 for l0 := 2 + max

� 1
6 ,l � 2, 1�U2

 
[18], where U is the dual

matrix multiplication exponent. Alternatively, they can each be
solved in roughly =1/3 iterations and time =max{l,2+1/3} [2], where
an “iteration” refers to an operation that is dominated by the cost
of solving a particular = ⇥ = linear system.
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T������ 1.2 (F��� ✓? ����������). There is an algorithm that
given any � 2 R<⇥= , 1 2 R< , and ? 2 (1, 2] computes an G
satisfying

k�G � 1k?? 6 (1 + Y) min
G2R=

k�G � 1k??

in either $̃? (=
2�?
?+2 ) iterations and $̃? (nnz(�) +=max{l,2+1/3} ) time,

or $̃? (
p
=) iterations and $̃? (nnz(�) + =l0 ) time, with high proba-

bility.

It is standard to turn a high accuracy algorithm for an optimiza-
tion problem into one that solves a corresponding dual problem.
We present such an argument for ✓? -regression in the full version.

T������ 1.3 (D��� �� ✓? ����������). There is an algorithm
that given � 2 R<⇥= , 2 2 R< , and @ 2 [2,1) computes a ~ 2 R<

satisfying �>~ = 2 and

k~k@@ 6 (1 + Y) min
�>~=2

k~k@@

in either $̃@ (=
@�2
3@�2 ) iterations and $̃@ (nnz(�) +=max{l,2+1/3} ) time,

or $̃@ (
p
=) iterations and $̃@ (nnz(�) + =l0 ) time, with high proba-

bility.

Prior work [15] shows that ✓? -regression can be solved in
$̃? (=1/3) iterations of solving a linear system for ? 2 [2,1). Com-
bining that result with Theorem 1.2 shows that ✓? -regression can
be solved using $̃? (=1/3) linear systems for all ? > 1.

1.3 Discussion of the Hypotheses
Let us now discuss various hypotheses and the extent to which they
are necessary for sparsi�ers of nearly-linear size to exist. In addition
to the properties a and b, let us consider three others that we will
use frequently. In what follows, ⇠,D > 0 are positive constants and
⌘ : R= ! R+.
(c) (⇠-symmetric) ⌘(I) 6 ⇠⌘(�I) for all I 2 R= .
(d) (⇠-monotone) ⌘(I) 6 ⇠⌘(_I) for _ > 1.
(e) (Upper D-homogeneous) ⌘(_I) 6 ⇠_D⌘(I) for all I 2 R= and

_ > 1.
First, note that a and b imply c–e.

L���� 1.4. The following implications hold:
(1) ⌘ is !-auto-Lipschitz =) ⌘ is !-symmetric.
(2) ⌘ is lower \ -homogeneous with constant 2 =) ⌘ is 1/2-

monotone.
(3) ⌘ is !-auto-Lipschitz and ⇠-monotone =) ⌘ is upper 1-

homogeneous with constant 2⇠!.

P����. Since ⌘(0) = 0, applying the de�nition of !-auto-
Lipschitz with I = 0 gives ⌘(�I) 6 !⌘(I) for any I 2 R= . The
second implication is immediate. For the third, note that for a posi-
tive integer: , we have⌘(:I) 6 Õ:�1

9=0 |⌘(( 9+1)I)�⌘( 9I) | 6 :!⌘(I).
Using the !-auto-Lipschitz property again gives

⌘(_I) 6 ⌘(d_eI) + !⌘((d_e � _)I)
6 d_e! · ⌘(I) + !⇠⌘(I) 6 2⇠!_⌘(I) ,

where the penultimate inequality uses ⇠-monotonicity. ⇤

Symmetry c. To illustrate the need for approximate symmetry, let
us consider gluing together two functions that are otherwise “nice”
in our framework:

5 (I) :=
(
|I |2, I > 0
|I |, I < 0 .

Suppose that 51 = · · · = 5< = 5 . Consider unit vectors
0̂1, . . . , 0̂< 2 R= such that X8 9 := |h0̂8 , 0̂ 9 i | < 1

2 for 8 < 9 . A ba-
sic volume computation shows that one can choose < > 2⌦ (=) .
Denote 08 := (0̂8 , 1) 2 R=+1 for 8 = 1, . . . ,<.

Then for _ > 0 and G := _(0̂8 ,� 1
2 ), we have

59 (h0 9 , Gi) = 5 (h0 9 , _(0̂8 ,� 1
2 )i)

=

(
5 (_/2) ⇣ _2 8 = 9 ,

5 (_(X8 9 � 1
2 )) . _ otherwise.

Thus in any approximate sparsi�er �̃ = F1 51 + · · · +F< 5< , it must
be that eitherF8 > 0, or

Õ
9<8 F 9 & _. Sending _ ! 1 shows that

the latter is impossible.

Lower growth and monotonicity b, d.We consider these prop-
erties together since monotonicity is a weaker property than lower
homogeneity. A natural function that does not satisfy lower ho-
mogeneity is the Tukey loss which, for the sake of the present
discussion, one can take as 58 (I) := min{1, |I |2}, which is a natural
analog of W? (recall (1.4)) for ? = 0.

For sparsifying GLMs with the Tukey loss, previous works have
made additional assumptions. For example, that one only ensures
sparsi�cation when k08 k2 6 =$ (1) , and for inputs G 2 R= sat-
isfying kG k2 6 =$ (1) ; see [9, Assumption 2] and the discussion
afterwards, and [20, §8.3]. In the full version, we show how to
achieve a $̃ (=1+> (1)Y�2)-sparse Y-approximations under these as-
sumptions. At a high level, the simple idea is to consider the proxy
loss functions 5̂8 (I) := min{|I |? , |I |2} with ? su�ciently small.

Upper quadratic growth e. Note that, by Lemma 1.4, if
p
58 satis-

�es a, then 58 is upper 2-homogeneous. For near-linear size sparsi-
�ers, 2-homogeneity is a natural condition, since sparsifying with
loss functions 58 (G) = |G |? and ? > 2 requires the sparsi�er to have
at least ⌦(=?/2) terms [4].

The auto-Lipschitz property a. As Lemma 1.4 shows, this prop-
erty gives us approximate symmetry c and upper 1-homogeneity e.
Crucially, this property also allows us to exploit the geometry of
the vectors 01, . . . ,0< 2 R= . Note that a implies

(58 (I) � 58 (I0))2 =
(58 (I)1/2 � 58 (I0)1/2)2 (58 (I)1/2 + 58 (I0)1/2)2

6 2!2 58 (I � I0) (58 (I) + 58 (I0)) .
In particular, we have⇣

58 (h08 , Gi) � 58 (h08 ,~i)
⌘2

6 2!2 58 (h08 , G � ~i)|           {z           } (58 (h08 , Gi + 58 (h08 ,~i) .

The braced term is what us allows to access the linear structure of
the vectors in our analysis.
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Comparison to "-estimators. The works [10, 20] consider re-
gression and sparsi�cation for what they call general"-estimators.
Essentially, this corresponds to the special case of our framework
where all the loss functions are the same: 51 = · · · = 5< = " , and
one assumes" (0) = 0, monotonicity, and upper and lower growth
lower bounds. They additionally assume that" is ?-subadditive (for
? = 1/2) in the sense that" (G +~)? 6 " (G)? +" (~)? , which is a
stronger condition than the auto-Lipschitz property a for ⌘ = 5 1/28 .

Under this stronger set of assumptions, the authors of [20]
achieve approximations with sparsity $̃ (=max{2,?/2+1} ), which is a
factor = larger than what one might hope for. In the regime ? 6 2 of
possible near-linear-sized sparsi�ers, we close this gap: Theorem 1.1
gives sparsity $̃ (=).
1.3.1 Discussion of the Bmax/Bmin Dependence. Note that Theo-
rem 1.1 only achieves an approximation for Bmin 6 � (G) 6 Bmax,
and there is a logarithmic dependence on Bmax/Bmin in the sparsity
bound. Intuitively, some dependence on Bmax/Bmin is necessary in
the generality of Theorem 1.1 because nothing in our assumptions
precludes the functions 58 from behaving nearly independently on
di�erent scales (at least if the scales are su�ciently well separated).

In the case that each of the functions 51, . . . , 5< is ?-
homogeneous, in the sense that 58 (_I) = |_ |? 58 (I), then � and
the sparsi�er �̃ are both ?-homogeneous, and therefore the guar-
antee |� (G) � �̃ (G) | 6 Y for � (G) = 1 already su�ces to obtain
|� (G) � �̃ (G) | 6 Y� (G) for all G 2 R= , meaning there is no scale
dependence.

More generally, for � satisfying the hypotheses of Theorem 1.1,
the growth assumptions on 51, . . . , 5< allow one to obtain weak
guarantees even for � (G) 8 [Bmin, Bmax]. For tamer functions with
only a constant number of di�erent scaling regimes, this allows
one to avoid the Bmax/Bmin dependence by applying such scaling
arguments and a simple reduction. For the sake of concreteness,
we demonstrate this for the Huber loss (the W1 function as in (1.4)).
A similar argument applies for all the W? functionals.

L���� 1.5. Consider 01, . . . ,0< 2 R= for< > 2, and 1/< < Y <
1. Denote

� (G) := F1W1 (h01, Gi) + · · · +F<W< (h0<, Gi)
�̃ (G) := F̃1W1 (h01, Gi) + · · · + F̃<W< (h0<, Gi)

for some nonnegative weightsF , F̃ 2 R<+ . Suppose that

|� (G) � �̃ (G) | 6 Y� (G) for G 2 R= such that

Fmin 6 � (G) 6 4<2Fmax ,

whereFmax := max(max(F),max(F̃)) andFmin := min(F). Then
�̃ is a 2Y-approximation to � .

Combining this with an analysis of the weights produced by our
construction and the guarantee of Theorem 1.1 yields the follow-
ing consequence. The proof of Lemma 1.5 and the next result are
presented in the full version.

C�������� 1.6. For every Y > 0, the function

� (G) := W1 (h01, Gi) + · · · + W1 (h0<, Gi)
admits an B-sparse Y-approximation for

B .
=

Y2
(log<)

⇣
log

⇣=
Y
log<

⌘⌘3
.

Note that our sparsity bound has an< dependence, as opposed
to the classical cases of ✓? sparsi�cation, where sparsity bounds
depend only on = and Y. However, some< dependence is not sur-
prising, as [20, §4.5] present vectors 01, . . . ,0< 2 R= for which the
sum of the sensitivities (see (1.10)) can grow doubly-logarithmically
with<:

<’
8=1

max
0<G2R=

W1 (h08 , Gi)
� (G) & = log log

<

=
.

[20] also shows that
Õ<
8=1 max0<G2R=

W? (h08 ,G i )
� (G ) & = log <= is pos-

sible for ? 2 [0, 1).

1.4 Importance Sampling and Multiscale
Weights

Given � (G) = 51 (h01, Gi) + · · · + 5< (h0<, Gi), our approach to spar-
si�cation is via importance sampling. Given a probability vector
d 2 R< with d1, . . . , d< > 0 and d1 + · · · + d< = 1, we sample
" > 1 coordinates a1, . . . ,a" i.i.d. from d , and de�ne our potential
approximator by

�̃ (G) := 1
"

"’
9=1

5a9 (h0a9 , Gi)
da9

.

One can easily check that this gives an unbiased estimator for every
G 2 R= , i.e., E[�̃ (G)] = � (G).

Since we want an approximation guarantee to hold simultane-
ously for many G 2 R= , it is natural to analyze expressions of the
form

E max
� (G )6B

��� (G) � �̃ (G)�� .
Analysis of this expression involves the size of discretizations of
the set ⌫� (B) := {G 2 R= : � (G) 6 B} at various granularities,
as explained in Section 1.6.2. The key consideration (via Dudley’s
entropy inequality, Lemma 1.13) is how well ⌫� (B) can be covered
by cells on which we have uniform control on how much the terms
58 (h08 , Gi)/d8 vary within each cell.

The ✓2 case. Let’s consider the case 58 (I) = |I |2 so that � (G) =
|h01, Gi |2 + · · · + |h0<, Gi |2. Here, ⌫� (B) = {G 2 R= : k�G k22 6 B},
where � is the matrix with 01, . . . ,0< as rows.

A cell at scale 29 looks like

K9 :=
⇢
G 2 R= : max

82 [<]
|h08 , Gi |2

d8
6 29

�
,

and the pertinent question is how many translates of K9 it takes
to cover ⌫� (B). In the ✓2 case, this is the well-studied problem of
covering Euclidean balls by ✓1 balls.

If # 9 denotes the minimum number of such cells required, then
the dual-Sudakov inequality (see Lemma 1.12) tells us that

log# 9 .
B

29
log(<) max

82 [<]

k (�>�)�1/208 k22
d8

.

Choosing d8 := 1
= k (�>�)�1/208 k22, i.e., normalized leverage scores,

yields uniform control on the size of the coverings:

log# 9 .
B

29
= log< .
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The ✓? case, 1 6 ? < 2. Consider the case 58 (I) = |I |? so that
� (G) = k�G k?? . A cell at scale 29 now looks like

K9 :=
⇢
G 2 R= : max

82 [<]
|h08 , Gi |?

d8
6 29

�
,

To cover ⌫� (B) by translates of K9 , we again employ Euclidean
balls, and use ✓? Lewis weights to relate the ✓? structure to an ✓2
structure.

A classical result of Lewis [19] (see also [4, 12]) establishes that
there are nonnegative weights F1, . . . ,F< > 0 such that if, =
diag(F1, . . . ,F<) and* := (�>,�)1/2, then

F8 =
k* �108 k?2
k* �108 k22

=
58 (k* �108 k2)
k* �108 k22

. (1.5)

Assuming that � has full rank, a straightforward calculation givesÕ<
8=1F8 k* �108 k22 = tr(* 2* �2) = =.
Therefore, we can choose d8 := 1

=F8 k* �108 k22 for 8 = 1, . . . ,<,
and our cells become

K9 :=
⇢
G 2 R= : max

82 [<]
|h08 , Gi |? 6

29

=
F8 k* �108 k22

�
.

(Note that the values {F8 k* �108 k22 : 8 = 1, . . . ,<} are typically
referred to as the “✓? Lewis weights”.)

If we are trying to use ✓2-✓1 covering bounds, we face an imme-
diate problem: Unlike in the ✓2 case, we don’t have prior control
on k*G k2 for G 2 ⌫� (B). One can obtain an initial bound using the
structure of* = (�>,�)1/2:

k*G k22 =
<’
8=1

F8 h08 , Gi2
(1.5)
=

<’
8=1

k* �108 k?�22 h08 , Gi2

=
<’
8=1

✓ |h08 , Gi |
k* �108 k2

◆2�?
|h08 , Gi |? (1.6)

6 k*G k2�?2

<’
8=1

|h08 , Gi |? , (1.7)

where the last inequality is Cauchy-Schwarz: |h08 , Gi | =
|h* �108 ,*Gi | 6 k* �108 k2k*G k2. This gives the bound k*G k2 6
k�G k? 6 B1/? for G 2 ⌫� (B).

Problematically, this uniform ✓2 bound is too weak, but there is a
straightforward solution: Suppose we cover ⌫� (B) by translates of
K90 . This gives an ✓1 bound on the elements of each cell, meaning
that we can apply (1.7) and obtain a better upper bound on k*G k2
for G 2 K90 . Thus to cover ⌫� (B) by translates of K9 with 9 < 90,
we will cover �rst by translates of K90 , then cover each translate
(G + K90 ) \ ⌫� (B) by translates of K90�1, and so on.

The standard approach in this setting (see [4] and [17, §15.19])
is to instead use interpolation inequalities and duality of covering
numbers for a cleaner analytic version of such an iterated covering
bound. However, the iterative covering argument can be adapted
to the non-homogeneous setting, as we discuss next.

Generalized linear models. When we move to more general
loss functions 58 : R ! R, we lose the homogeneity property
58 (_G) = _? 58 (G), _ > 0 that holds for ✓? losses. Because of this,
we need to replace the single Euclidean structure present in (1.5)
(given by the linear operator* ) with a family of structures, one for
every relevant scale.

De�nition 1.7 (Approximate weights). Fix 01, . . . ,0< 2 R= and
loss functions 51, . . . , 5< : R ! R+. We say that a vectorF 2 R<+
is an U-approximate weight at scale B if

B

U
6
58 (k"�1/2

F 08 k2)
F8 k"�1/2

F 08 k22
6 UB , 8 = 1, . . . ,< , (1.8)

where"F :=
<’
9=1

F 90 90
>
9 . (1.9)

To motivate this de�nition, let us de�ne scale-speci�c sentivities:

b8 (B) := max
⇢
58 (h08 , Gi)
� (G) : G 2 R=, � (G) 2 [B/2, B]

�
, (1.10)

8 = 1, . . . ,< . (1.11)

As shown in Corollary 2.3, if the functions {58 } are lower \ -
homogeneous, upper 2-homogeneous, and $ (1)-symmetric (in the
sense of c), then an U-approximate weight at scale B allows us to
upper bound sensitivies by leverage scores:

b8 (B) . f8 (, 1/2�) , (1.12)

where, = diag(F1, . . . ,F<), and the implicit constant depends
on U and the homogeneity parameters. Here, f8 (+ ) denotes the 8th
leverage score of a matrix + with rows E1, . . . , E< :

f8 (+ ) := hE8 , (+>+ )+E8 i , (1.13)

where (+>+ )+ denotes the Moore-Penrose pseudoinverse. Notably,
one always has f1 (+ ) + · · ·+f< (+ ) = rank(+ ), and therefore (1.12)
gives an upper bound b1 (B) + · · · + b< (B) . =.

In order to generalize the iterated covering argument for ✓? losses,
we need there to be a relationship between weights at di�erent
scales.

De�nition 1.8 (Weight schemes). Let J ✓ Z be a contiguous
interval. A family {F ( 9 ) 2 R<+ : 9 2 J} is an U-approximate
weight scheme if eachF ( 9 ) is an U-approximate weight at scale 29
and, furthermore, for every pair 9, 9 + 1 2 J and 8 2 {1, . . . ,<},

F ( 9+1)
8 6 UF ( 9 )

8 . (1.14)

Given a weight scheme, we choose sampling probabilities

d8 / max
92J

F ( 9 )
8 k"�1/2

F ( 9 ) 08 k22 = max
92J

f8 (, 1/2
9 �) , 8 = 1, . . . ,< ,

where ,9 = diag(F ( 9 )
1 , . . . ,F ( 9 )

< ). In our setting, |J | 6
$ (log(<Bmax/Bmin)), which results in the sparsity increasing by a
corresponding factor.

In Section 2, we establish the existence of approximate weight
schemes for general families of loss functions satisfying certain
growth bounds, along with e�cient algorithms to compute the
corresponding weights.

1.5 Regression via Iterative Re�nement
Previous works have observed that combining iterative re�nement
with sparsi�cation of W? -functions (recall (1.4)) leads to improved
algorithms for ✓? -regression [1, 2, 13]. For the bene�t of the reader,
we give a description of these ideas in somewhat more generality.

Recall that our goal is to �nd a point G 2 R= that computes
an approximate minimizer of � (G) := Õ<

8=1 58 (h08 , Gi � 18 ), up to
high accuracy. For now, we assume that � is a di�erentiable convex
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function and denote �⇤ := infG2R= � (G). Later, we will introduce
additional conditions that allow for iterative re�nement to succeed.

Broadly, iterative re�nement minimizes � (G) be repeatedly solv-
ing sub-problems, each of which make multiplicative progress in
reducing the error of the current solution. Given a current point G0,
prior works on iterative re�nement de�ne a local approximation
of � suitably symmetrized and centered around G0 such that ap-
proximately minimizing this local approximation yields the desired
decrease in function error. One way to derive such local approxi-
mations is through Bregman divergences, which give a natural way
of recentering convex functions.

De�nition 1.9 (The � -divergence). For G,~ 2 R= , use ) �G (~) :=
� (G)+r� (G)> (~�G) to denote the �rst order Taylor approximation
of � at G , and de�ne the � -induced Bregman divergence by ⇡�G (~) :=
� (~) �) �G (~).

Note that for convex � , the function ⇡�G (~) is convex and mini-
mized at G . Consequently, given a point G0, the function ⇡�G0 (~) is a
natural function induced by � and minimized at G0. Note that mini-
mizing � (G) is the same as minimizing hr� (G0), G � G0i + ⇡�G0 (G)
which in turn is the same as minimizing hr� (G),�i + ⇡�G0 (G0 + �)
over � and adding the minimizer to G0.

Iterative re�nement strategies approximately minimize
hr� (G),�i + A (�), where A (�) is a suitable approximation of
⇡�G0 (G0 + �). One step of re�nement moves to G1 := G0 +[�̃, where
[ is a suitably chosen step-size and �̃ is the approximate minimizer.
As motivation for our approach, here we consider the scheme
suggested by prior work, where A (�) is a sparsi�cation of a simple
approximation to the divergence.

Informally, one can show that if the square root of the Breg-
man divergence of each 58 is !-auto-Lipschitz a and lower \ -
homogeneous for some \ > 1 b, then one step of sparsi�ca-
tion/re�nement decreases the error in the objective valuemultiplica-
tively by an absolute constant. Interestingly, auto-Lipschitzness is
only required for sparsi�cation and not for re�nement. However, we
critically need the Bregman divergence to be lower \ -homogeneous
for \ > 1 for iterative re�nement, while our sparsi�cation results
(Theorem 1.1) only require \ > 0.

L���� 1.10 (R��������� L����). Suppose A : R= ! R+ is
lower \ -homogeneous with constant 2 < 1 for \ > 1, and for G0 2 R=

and all � 2 R= and [ 2 [0, 1],

A (�) 6 ⇡�G0 (G0 + �) 6 U A (�)

where U > 1 is �xed. Then inf�2R=
�
) �G0 (G0 + �̂) + A (�̂)

 
6 �⇤ and

if �̂ 2 R= satis�es

) �G0 (G0 + �̂) + A (�̂) 6 �⇤ , (1.15)

then

� (G0 + [̂�̂) � �⇤ 6 (1 � [̂) (5 (G0) � �⇤) , (1.16)

where [̂ := (U/2)�1/(@�1) . (1.17)

P����. First note that, for all � 2 R= ,

� (G0 + �) = ) �G0 (G0 + �) + ⇡�G0 (G0 + �) . (1.18)

Since, ⇡�G0 (G0 + �) > A (�) this implies the desired bound

inf
�2R=

n
) �G0 (G0 + �) + A (�)

o
6 inf

�2R=
� (G0 + �) = �⇤ .

Next, note that for all [ 2 [0, 1] and � 2 R= ,

) �G0 (G0 + [�) = � (G0) + [r� (G0)
>� (1.19)

= (1 � [)� (G0) + [) �G0 (G0 + �) (1.20)

⇡�G0 (G0 + [�) 6 UA ([�) 6 U/2 · [
\A (�) (1.21)

Suppose that �̂ 2 R= satis�es (1.15). Then plugging (1.19) and (1.21)
into (1.18) with � = [̂�̂ yields

� (G0 + [̂�̂) 6 (1 � [̂)� (G0) + [̂ ) �G0 (G0 + �̂) + U/2 · [̂\A (�̂)

= (1 � [̂)� (G0) + [̂
⇣
) �G0 (G0 + �̂) + A (�̂)

⌘
6 (1 � [̂)� (G0) + [̂�⇤

where we used that U/2 · [̂\�1 = 1 and [̂ 2 [0, 1]. Rearranging
yields (1.16). ⇤

To apply Lemma 1.10 to ERM for general linear models, note
that

⇡�G0 (G0 + �) =
<’
8=1

⇡ 58h08 ,G0 i�18 (h08 ,�i) .

Now, if the square root of each divergence ⇡ 58I is !-auto-Lipschitz
and lower \ -homogeneous, then Theorem 1.1 gives weights F 2
R<+ with sparsity $̃ (=) such that

0.9 · ⇡�G0 (G0 + �) 6 A (�) 6 ⇡�G0 (G0 + �)

where A (�) :=
<’
8=1

F8⇡
58
h08 ,G0 i�18 (h08 ,�i) .

Thus, Lemma 1.10 applies, and we can decrease the objective value
error by a multiplicative factor by minimizing A (�). Since A (�)
only has $̃ (=) nonzero terms, one can apply previous solvers for
< = $̃ (=) [2, 18] to obtain the desired runtimes.

In the full version’s Section on ✓? regression, we verify that the
5 -divergence of 5 (I) = |I |? is the W? function, which is lower ?-
homogeneous, and has an auto-Lipschitz square root. This yields
our algorithm for ✓? regression (Theorem 1.2). A formal version of
the argument is presented in the full version. The main di�erence
is that some technical work is needed because Theorem 1.1 only
provides sparsi�cation for a range of inputs {G 2 R= : Bmin 6
� (G) 6 Bmax}. Moreover, our algorithm uses an approximate oracle
for GLMs with the functions {58 } (rather than with the approximate
divergence A (·)), and we show that the oracle does not need to be
solved to high accuracy to make su�cient progress.

1.6 Preliminaries
Throughout the paper, we denote [=] := {1, 2, . . . ,=}. We use the
notation 0 . 1 to denote that there is a universal constant ⇠ such
that 0 6 ⇠1, and 0 .! 1 to denote that ⇠ may depend on !. We
use 0 ⇣ 1 to denote the conjunction of 0 . 1 and 1 . 0, and
0 ⇣! 1 analogously. We also denote R+ := {G 2 R : G > 0} and
R++ := {G 2 R : G > 0}.
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For simplicity of presentation, we assume that the vectors
01, . . . ,0< 2 R= in (1.1) span R= and all are nonzero. In partic-
ular, this means that the matrix � with rows 01, . . . ,0< has rank
= and �>,� is invertible for any diagonal matrix, with strictly
positive entries on the diagonal.

1.6.1 Covering numbers and chaining. Consider a metric space
() ,3). For G 2 ) and A > 0, de�ne the ball ⌫(G, A ) := {~ 2 ) :
3 (G,~) 6 A }.
De�nition 1.11 (Covering numbers). For a radius A > 0, we de�ne
the covering number N() ,3, A ) as the smallest number of balls of
radius A (in the distance 3) that are required to cover ) . For (, ( 0 ✓
R= , we overload notation and use N((, ( 0) to denote the smallest
number of translates of ( 0 needed to cover ( .

We require the following “dual Sudakov inequality” (see [21]
and [17, (3.15)]) which gives bounds for covering the Euclidean ball
using balls in an arbitrary norm.

L���� 1.12 (D��� S������ ���������). Let ⌫=2 denote the unit
ball in = dimensions, and k · k- an arbitrary norm on R= . If g is a
standard =-dimensional Gaussian, thenq

logN(⌫=2 ,⌫- ) . E kgk- ,

where ⌫- := {~ 2 R= : k~k- 6 1}.
We recall Talagrand’s generic chaining functional [27, Def.

2.2.19]:

W2 () ,3) := inf
{A⌘ }

sup
G2)

1’
⌘=0

2⌘/2diam(A⌘ (G),3) , (1.22)

where the in�mum runs over all sequences {A⌘ : ⌘ > 0} of parti-
tions of ) satisfying |A⌘ | 6 22

⌘
for each ⌘ > 0. Note that we use

the notation A⌘ (G) for the unique set of A⌘ that contains G .
The chaining functional is used to control the maximum of sub-

gaussian processes (see, e.g., the discussion in [14, §2.2] where it
is applied precisely in the setting of sparsi�cation). Our use of the
functional occurs only in our application of our abstract sparsi�-
cation statement (stated in the full version), and in this paper we
will only require the following classical upper bound. (See, eg., [27,
Prop 2.2.10].)

L���� 1.13 (D�����’� ������� �����). For any metric space
() ,3), it holds that

W2 () ,3) .
’
92Z

29
q
logN() ,3, 29 ) .

The interested reader will note that this is (up to constants)
precisely the upper bound one obtains by choosingA⌘ as a uniform
discretization of () ,3), i.e., to minimize sup{diam(A⌘ (G),3) : G 2
) } over all partitions satisfying |A⌘ | 6 22

⌘
.

1.6.2 Sparsification via subgaussian processes. We discuss sparsi�-
cation via subgaussian processes. Consider

i1,i2, . . . ,i< : R= ! R,

and de�ne

� (G) :=
<’
9=1

i 9 (G) .

Given a strictly positive probability vector d 2 R<++, and an integer
B > 1 and a = (a1, . . . ,aB ) 2 [<]B , de�ne the distance

3d,a (G,~) := ©≠
´
B’
9=1

✓
ia9 (G) � ia9 (~)

da9 B

◆2™Æ
¨
1/2

. (1.23)

and the function �̃d,a : R= ! R

�̃d,a (G) :=
1
B

B’
9=1

ia9 (G)
da9

.

2 MULTISCALE IMPORTANCE SCORES
Recall the de�nitions of approximate weights (De�nition 1.7) and
weight schemes (De�nition 1.8). In the present section, we prove
the following two results.

T������ 2.1. Suppose that 51, . . . , 5< : R ! R+ are lower \ -
homogeneous and upperD-homogeneous withD > \ > 0 and uniform
constants 2,⇠ > 0. Then there is some U = U (\ , 2,D,⇠) > 1 such that
for every choice of vectors 01, . . . ,0< 2 R= and B > 0, there is an
U-approximate weight at scale B .

This is proved in Section 2.2 by considering critical points of the
functional* 7! det(* ) subject to the constraint⌧ (* ) 6 B , where
⌧ (* ) := 51 (k*01k2) + · · · + 5< (k*0< k2), which can be seen as a
generalization of Lewis’ original method.

Single-scale sensitivities. Let us now observe that, in the case
D 6 2, Theorem 2.1 allows us to bound sensitivities (recall (1.10)).
The next lemma is a generalization of (1.7).

L���� 2.2. Suppose 51, . . . , 5< : R ! R+ satisfy the assumptions
of Theorem 2.1 with D 6 2, and they are additionally  -symmetric in
the sense of c. IfF 2 R<+ is an U-approximate weight at scale B , then
for any G 2 R= , it holds that

k"1/2
F G k\2 6 max

✓
1,U

⇠ 

2

� (G)
B

◆
.

P����. We may clearly assume that k"1/2
F G k2 > 1. Then using

the Cauchy-Schwarz inequality

|h08 , Gi | 6 k"�1/2
F 08 k2k"1/2

F G k2
together with the upper quadratic growth assumption gives

58 ( |h08 , Gi |)
|h08 , Gi |2

>
1
⇠

58 (k"1/2
F G k2k"�1/2

F 08 k2)
k"1/2

F G k22k"
�1/2
F 08 k22

(2.1)

>
2

⇠

k"1/2
F G k\2 58 (k"

�1/2
F 08 k2)

k"1/2
F G k22k"

�1/2
F 08 k22

, (2.2)

where the last inequality uses the lower growth assumption.
Using"F =

Õ<
8=1F8080

>
8 , we can bound

k"1/2
F G k22 =

<’
8=1

F8 h08 , Gi2

(2.1)
6

⇠

2
k"1/2

F G k2�\2

<’
8=1

F8 58 ( |h08 , Gi |)
k"�1/2

F 08 k22
58 (k"�1/2

F 08 k2)
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6 U
⇠ 

2

1
B
k"1/2

F G k2�\2

<’
8=1

58 (h08 , Gi) ,

where the last inequality uses the de�ning property of an U-
approximate weight at scale B , along with the assumption of  -
symmetry: 58 ( |h08 , Gi |) 6  58 (h08 , Gi) for all 8 = 1, . . . ,<. ⇤

C�������� 2.3 (S���������� ����� �����). Under the assump-
tions of Lemma 2.2, it holds that

b1 (B) + · · · + b< (B) . = ,
where the implicit constant depends on the parameters U ,\ ,⇠ ,2 , .

P����. From Lemma 2.2, if � (G) 6 B , then k"1/2
F G k2 6

(U⇠ /2)1/\ . By Cauchy-Schwarz, this gives

|h08 , Gi | 6 (U⇠ /2)1/\ k"�1/2
F 08 k2,

and therefore

58 (h08 , Gi) 6  58 ( |h08 , Gi |)

6
 

2
58

⇣
(U⇠ /2)1/\ k"�1/2

F 08 k2
⌘

6
⇠ 

2

✓
U⇠ 

2

◆2/\
58 (k"�1/2

F 08 k2)

6
U⇠ 

2

✓
U⇠ 

2

◆2/\
B ·F8 k"�1/2

F 08 k22 ,

where the �rst inequality uses  -symmetry, the second uses 1/2-
monotonicity (which holds by Lemma 1.4), the third inequal-
ity uses upper homogeneity, and the last inequality uses that
F is an U-approximate weight at scale B . Finally, one notes thatÕ<
8=1F8 k"

�1/2
F 08 k22 = tr

�
"�1
F "F

�
= =, completing the proof. ⇤

We are only able to establish the existence of entire weight
schemes (where the weights at adjacent scales are related) forD < 4,
which su�ces our applications, as D 6 2 is a requirement for
Theorem 1.1. The following theorem is proved in Section 2.1, based
on the contractive iteration method introduced by Cohen and Peng
[12].

T������ 2.4. Suppose that 51, . . . , 5< : R ! R+ are lower \ -
homogeneous and upper D-homogeneous with 4 > D > \ > 0 and
uniform constants 2,⇠ > 0. Then there is some U = U (D,⇠, \ , 2)
such that for every choice of vectors 01, . . . ,0< 2 R= , there is an
U-approximate weight scheme {F ( 9 )

8 : 9 2 Z}.

In the next section, we show how to compute an approximate
weight scheme {F ( 9 )

8 : 9 2 J} using $̃ ( |J |) computations of
leverage scores (f1 (+ ), . . . ,f< (+ )) for matrices of the form + =
�>,�.

2.1 Contractive Algorithm
For a weightF 2 R<+ and 8 2 {1, . . . ,<}, de�ne

g8 (F) := f8 (, 1/2�)
F8

= h08 , (�>,�)�108 i ,

, := diag(F1, . . . ,F<) ,
and denote g (F) := (g1 (F), . . . , g< (F)).

Fix a scale parameter B > 0 and de�ne the iteration iB : R<+ !
R<+ by

(iB (F))8 :=
1
B

58 (
p
g8 (F))

g8 (F) . (2.3)

Write i: := i � · · · � i for the :-fold composition of i . In this case
where 58 (I) = |I |? and 1 6 ? 6 2, it is known, for B = 1, starting
from any F0 2 R<+ , the sequence {i:1 (F0) : : > 1} converges to
the unique �xed point of i , which are the corresponding ✓? Lewis
weights (1.5).

De�ne now a metric 3 on R<+ by

3 (D,F) := max
⇢����log D8F8

���� : 8 = 1, . . . ,<
�
.

We note the following characterization.

F��� 2.5. A vectorF 2 R<+ is an U-approximate weight at scale B
if and only if

3 (F ,iB (F)) 6 logU .

First, we observe that g is 1-Lipschitz on (R<+ ,3). In the next
proof, � denotes the ordering of two real, symmetric matrices in
the Loewner order, i.e., � � ⌫ if and only if ⌫ � � is positive
semi-de�nite.

L���� 2.6. For anyF ,F 0 2 R<+ , it holds that

3 (g (F), g (F 0)) 6 3 (F ,F 0) .

P����. Denote

, = diag(F),, 0 = diag(F 0), and U := exp(3 (F ,F 0)) .
Then U�1, �, 0 � U, , therefore

U�1�>,� � �>, 0� � U�>,�,

and by monotonicity of the matrix inverse in the Loewner or-
der, U�1 (�>,�)�1 � (�>, 0�)�1 � U (�>,�)�1. This implies
3 (g (F), g (F 0)) 6 logU , completing the proof. ⇤

P���� �� T������ 2.4. Consider the map k : R<+ ! R<+
whose 8-th coordinate is de�ned as

k8 (G) :=
58 (

p
G8 )

G8
.

Our assumptions on lower and upper-homogeneity give, for all
~8 > G8 ,

2

✓
~8
G8

◆\/2�1
6
58 (

p
~8 )/~8

58 (
p
G8 )/G8

6 ⇠
✓
~8
G8

◆D/2�1
,

yielding, for ⇠1 := max{⇠, 1/2},

3 (k (G),k (~)) 6 max
✓����\2 � 1

���� ,
���D2 � 1

���
◆
3 (G,~) + log(⇠1) . (2.4)

Fix B > 0 and consider the mapping i : R<+ ! R<+ de�ned in
(2.3). Then for D < 4 and X := max

⇣���\2 � 1
��� , ��D2 � 1

��⌘ < 1, (2.4) in
conjunction with Lemma 2.6, shows that

3 (iB (F),iB (F 0)) < X 3 (F ,F 0) + log(⇠1) . (2.5)

Applying this bound inductively, for any weightF 2 R<+ and : > 1,
we have

3
⇣
i:B (F),i:+1B (F)

⌘
6
X:3 (iB (F),F) + log⇠1

1 � X , (2.6)
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Now de�ne
F (0) := i:1 (1, . . . , 1) ,

where : > 1 is chosen large enough so that

3 (F (0) ,i1 (F (0) )) 6 2 log⇠1
1 � X .

From Fact 2.5, one sees that F (0) is an U-approximate weight at
scale 1 for U = ⇠2/(1�X )

1 .
De�ne inductively, for 9 = 1, 2, . . .,

F ( 9 ) := i29 (F ( 9�1) )
F (� 9 ) := i2� 9 (F (1� 9 ) ) .

Note that

3 (i29 (F ( 9 ) ),F ( 9 ) ) =
3 (i229 (F

( 9�1) ),i29 (F ( 9�1) ))
6 X3 (i29 (F ( 9�1) ),F ( 9�1) ) + log(⇠1)
6 X3 (i29�1 (F ( 9�1) ),F ( 9�1) ) + X log(2) + log(⇠1) ,

where the last inequality uses i2B (F) = 2iB (F) for allF 2 R<+ .
Therefore, by induction,

3 (i29 (F ( 9 ) ),F ( 9 ) ) 6 2 log(⇠1) + log 2
1 � X

for all 9 > 0. To see that the family of weights {F ( 9 ) : 9 2 Z} forms
a weight scheme, note that

3 (F ( 9 ) ,F ( 9�1) ) = 3 (i29 (F ( 9�1) ),F ( 9�1) )
6 3 (i29 (F ( 9�1) ),F ( 9�1) ) + log 2 ,

thus {F ( 9 ) : 9 2 Z} is an U-approximate weight scheme for U =
2 log(2⇠1 )

1�X , completing the proof. ⇤

2.2 A Variational Approach to Approximate
Weights

In this section we show that even if each 58 is upperD-homogeneous
for D > 4, approximate weights still exist. Our sparsi�cation anal-
ysis relies on the existence of weight schemes, where there is a
relationship between weights at di�erent scales. But the following
existence proof is instructive.

T������ 2.7. Suppose 51, . . . , 5< : R+ ! R+ are lower \ -
homogeneous with constant 2 and upperD-homogeneous with constant
⇠ with D > \ > 0. Then there is a constant U = U (\ , 2,D,⇠) such that
for every choice of vectors 01, . . . ,0< 2 R= and B > 0, there is an
U-approximate weight at scale B .

The idea behind the proof is to set up a variational problemwhose
critical points produce approximate weights at a given scale. As
observed in [22], this analysis technique does not require convexity.

L���� 2.8. Suppose61, . . . ,6< : R+ ! R+ are monotone increas-
ing, continuously di�erentiable, and satisfy 61 (0) = · · · = 6< (0) = 0.
Then for every V > 0, there are weights {F8 > 0 : 8 = 1, . . . ,<} such
that

F8 = W
608 (k"

�1/2
F 08 k2)

k"�1/2
F 08 k2

8 = 1, . . . ,< , (2.7)

W = =

 
<’
8=1

608 (k"
�1/2
F 08 k2)k"�1/2

F 08 k2
!�1

, (2.8)

V =
<’
8=1

68 (k"�1/2
F 08 k2) .

P����. For a linear operator* : R= ! R= , de�ne

⌧ (* ) :=
<’
8=1

68 (k*08 k2) ,

and consider the optimization

maximize {det(* ) : ⌧ (* ) 6 V} . (2.9)

Since ⌧ (0) = 0 and each 68 is monotone increasing, it holds that
⌧ (2� ) = V for some 2 > 0. Therefore for any maximizer* ⇤, it holds
that det(* ⇤) > 0, i.e.,* ⇤ is invertible, and ⌧ (* ⇤) = V .

For* invertible, we have

r det(* ) = det(* )* �> . (2.10)

Let us also calculate

d⌧ (* ) =
<’
8=1

608 (k*08 k2)
dk*08 k22
2k*08 k2

,

and use k*08 k22 = tr(*>*080>8 ) to write

1
2
dk*08 k22 = tr

�
(d* )>*080>8

�
,

so that
r*⌧ (* ) = *�>⇡*� ,

where ⇡* is the< ⇥< diagonal matrix with (⇡* )88 =
608 ( k*08 k2 )

k*08 k2
and � 2 R<⇥= is the matrix with rows 01, . . . ,0< .

Combined with (2.10), we see that if* is an optimal solution to
(2.9), then for some Lagrange multiplier W > 0, we have

(*>* )�1 = W�>⇡*� .

Take + := (*>* )�1 so that + =
Õ<
8=1F8080

>
8 with F8 :=

W
608 ( k+ �1/208 k2 )

k+ �1/208 k2
. To compute the value of W , calculate

= = tr(++ �1) = W
<’
8=1

608 (k+ �1/208 k2)
k+ �1/208 k2

tr(+ �1080>8 )

= W
<’
8=1

608 (k+ �1/208 k2)k+ �1/208 k2 . ⇤

The preceding lemma assumes that the functions 68 are mono-
tone increasing. However, the functions 58 only satisfy lower homo-
geneity, which is a weaker condition. To prove Theorem 2.7, one
can take monotone approximations of functions 58 by averaging
over intervals.

L���� 2.9. Suppose 5 is lower \ -homogeneous with constant 2
and upper D-homogeneous with constant ⇠ for D > 1. De�ne  :=
max(4, (2/2)1/\ ) and 6 : R+ ! R+ by

6(G) :=
π  G

G

5 (C)
C

3C .
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Then 6 is continuously di�erentiable, monotone increasing, and satis-
�es 6(0) = 0. Moreover, for all G > 0,

5 (G)
G
6 60 (G) 6 ⇠ D 5 (G)

G
, 8G > 0

2 5 (G) 6 6(G) 6 ⇠ D 5 (G) .

P����. Note that 60 (G) = 5 ( G )�5 (G )
G , and 5 ( G) >

2 \ 5 (G) > 25 (G) by lower \ -homogeneity. Thus 6 is monotone
increasing. Moreover, we have

6(G) =
π  G

G

5 (C)
C
3C > 2 5 (G)

π  G

G

1
C
3C > 2 · 5 (G),

and for D > 1,

6(G) =
π  G

G

5 (C)
C
3C 6 ⇠5 (G)

π  G

G

(C/G)D
C

3C 6 ⇠ D 5 (G) .

⇤

P���� �� T������ 2.7. Throughout the proof, we use ⇣ in
place of ⇣\ ,2,D,⇠ . Let  be as in Lemma 2.9 and de�ne 68 (G) :=Ø  G
G

58 (C )
C 3C . By Lemma 2.9, we have 608 (G) ⇣ 58 (G)/G and 6(G) ⇣

58 (G) for 8 = 1, . . . ,<.
Let {F8 } and"F be as in Lemma 2.8 when applied to 61, . . . ,6<

with V = =/_. Then,
<’
8=1

608 (k"
�1/2
F 08 k2)k"�1/2

F 08 k2 ⇣
<’
8=1

58 (k"�1/2
F 08 k2)

⇣
<’
8=1

68 (k"�1/2
F 08 k2)

= V =
=

_
.

Therefore W ⇣ _ (recall (2.8)), and thus (2.7) gives the desired result.
⇤
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