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In this paper we provide an O(mloglogo(l)n log(1/€))-expected time algorithm for solving

Laplacian systems on n-node m-edge graphs, improving upon the previous best expected
runtime of O(m+/log nloglogo(l) nlog(1/€)) achieved by (Cohen, Kyng, Miller, Pachocki, Peng,
Rao, Xu 2014). To obtain this result we provide efficient constructions of low spectral stretch
graph approximations with improved stretch and sparsity bounds. As motivation for this work,
we show that for every set of vectors in R4 (not just those induced by graphs) and all integer
k > 1 there exist an ultra-sparsifier with d — 1+ O(d/k) re-weighted vectors of relative condition
number at most k2. For small k, this improves upon the previous best known multiplicative
factor of k - O(log d), which is only known for the graph case. Additionally, in the graph case
we employ our low-stretch subgraph construction to obtain n — 1+ O(n/k)-edge ultrasparsifiers
of relative condition number k*°(1) for k = w(log5 n) for any § > 0: this improves upon the
previous work for k = o(exp(10g1/2_5 n)).
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1 INTRODUCTION

From the first proof of a nearly linear time Laplacian system solver [ST], to the current
state-of-the-art running time for Laplacian system solving [CKM*], to advances in
almost linear time approximate maximum flow [Sheb, KLOS, Pen] ultrasparsifiers
have played a key role in the design of efficient algorithms. In [ST] ultrasparsifiers
were used in the computation of sequences of graph preconditioners that enabled
nearly linear time Laplacian system solvers. This initiated a long line of work on faster
[KMP, KMP14, CKM*], simpler [LS, KOSA, KS], and more parallel [BGK*, PS, KLP*b]
Laplacian system solvers, many of which leverage ultrasparsifiers or related sparse
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2 Arun Jambulapati and Aaron Sidford
graph approximation, e.g. low stretch spanning trees. These results in turn fueled
advances of graph decompositions for a range of problems including approximate
maximum flow [Sheb, KLOS, Pen], directed Laplacian solving [CKP*a, CKP*b], and
transshipment [Li].

The current fastest Laplacian solver [CKM*] computes expected e-approximate
solutions to Laplacians on n-node, m-edge graphs in time' O(m-/log nlog(1/€)). These
solvers start from the graphs associated with Laplacians and compute randomized tree-
based approximations with bounded expected £,-stretch: they use these to construct
a sequence of preconditioners that efficiently decrease the error in expectation. The
ultimate runtime achieved by this approach, O(m+/log nlog(1/€)), matches that of
the runtime one would achieve if the best known ultrasparsfiers for graphs, due to
[KMST], could be constructed in linear time and then preconditioning approaches
related to [KMP] were applied. Though it is known that preconditioners exist that
would enable an O(m) log(1/€) time solver, the current best construction of such
preconditioners takes O(mpoly(log(n))) time due to the need to compute linear sized
sparsifiers [BSS14] of Schur complements.

Consequently, the best known bounds of ultrasparsifiers for graphs due to [KMST]
constitute a fundamental barrier towards designing faster Laplacian system solvers.
[KMST] showed that arbitrary n-vertex graphs possess O (k log n)-spectral approxima-
tions with n+ 7 edges, and their proof is based on the existence of low-stretch spanning
trees with average stretch é(log n). In turn [CKM*] achieves their running times
by leveraging that [5 stretch variants of these trees can be computed in O(m) time.
These methods all pay this log n factor due to the best known bounds combinatorial
techniques for ball-growing and graph decomposition. It is known that the stretch
bound of O(log n) is optimal up to an iterated logarithmic factor in a wide variety of
graphs, such as the n-vertex grid or hypercube. In other words, if using just distance
based combinatorial graph decomposition, one must pay a factor of ©(logn) in the
worst case. This factor then appears in the best known ultrasparsifier bounds and
as a +/log n factor in the current best Laplacian solver runtimes, due to the nature of
iterative methods for solving Laplacian systems.

The main conceptual contribution of this paper is that this barrier can be broken and
this ©(log n) factor can, perhaps surprisingly, be avoided. As a quick, broad proof-of-
concept, in Appendix A we show that [KMST] is not optimal in all parameter regimes.
For arbitrary matrices and small target distortion we show that there exist sparser
ultrasparsifiers that do not pay this ©(logn) factor. Interestingly, we give a simple
[BSS14] based argument that arbitrary matrices have low-stretch subgraphs and then
we apply the arguments of [KMST] to get our bounds.

Inspired by this proof of concept, the main technical contribution of this paper is to
show that for the specific goal of constructing low-distortion spectral subgraphs, i.e.
those that would suffice for Laplacian system solving, better bounds can be achieved
and the ©(log n)-factor can be avoided. We carefully combine both spectral methods
and combinatorial decomposition techniques for this purpose. In particular, we show
that traditional ball growing techniques can be augmented or patched by careful use
of spectral sparsifiers to achieve lower distortion graph approximations.

Here and throughout this paper, the notation O(-) hides loglog factors.
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Interestingly, our procedure for augmenting a low-diameter decomposition requires
us to efficiently compute stronger notions of spanners in sufficiently dense graphs. We
provide an efficient procedure for computing a type of graph approximation related
to fault-tolerant spanners, which we call path spanners. In turn, to compute path
sparsifiers we show that there are many short vertex disjoint paths in a dense near-
regular expander. This proofs builds upon the seminal work of [KR] which showed
that every dense expander has many short edge-disjoint paths. We leverage this fact in
an algorithm which combines a near-linear time expander decomposition procedure
of [SW] with a new routine for approximately finding regular dense subgraphs. The
resulting path sparsification algorithm serves as a type of vertex-based sparsification in
our low-distortion subgraph computation algorithm. It is an interesting open problem
if an alternative sparsification procedure can be used instead, however we think the
tools developed for obtaining path sparsifiers may be of intrinsic interest.

Ultimately, we show that careful application of this routine for constructing low
distortion spectral subgraphs yields an O(mlog(1/€))-time algorithm for computing
expected e-approximate solutions to Laplacian systems. This solver leverages heavily
recursive preconditioning machinery of [CKP*a] and our efficiently computable spec-
tral subgraphs. To simplify and clarify the derivation and analysis of this recursive
solver we provide an analysis of a stochastic preconditioned variant of accelerated
gradient descent (AGD) [Nes83].

We hope that this work may serve as the basis for further improvements in ultra-
sparsification and graph decomposition. Given the myriad of applications of these
techniques and the simplicity and generality of our approach for overcoming the
©(log n)-factor in previous combinatorial approaches we hope this work may find
further applications.

Paper Organization. In the remainder of this introduction we provide preliminaries
and notation we use throughout the paper (Section 1.1), our main results (Section 1.2),
our approach for achieving them (Section 1.3), and provide a brief discussion of
previous work (Section 1.4). In Section 2 we then give our main graph decomposition
and use it to obtain low-distortion spectral subgraphs. The results of this section hinge
on the efficient construction of a new combinatorial object known as path sparsifiers,
which we compute efficiently in Section 3. In Section 4 we leverage our low-distortion
spectral subgraph construction to obtain our Laplacian system solver results. Our
existence proof for ultrasparsifiers is given briefly in Appendix A, our AGD analysis is
given in Appendix C, and additional proofs are given in the other appendix sections.

1.1 Preliminaries

Here we provide notation and basic mathematical facts we use throughout the paper.

Graphs: Throughout this paper we let G = (V, E, w) denote an undirected graph
on vertices V, with edges E C V x V, with integer positive edge weights w € Z& .
Though many graphs in this paper are undirected, we typically use (a, b) € E notation
to refer to an edge where we suppose without loss of generality that a canonical
orientation of each edge has been chosen. Often in this paper we consider unweighted
graphs G = (V, E) where implicitly w := 1. Unless stated otherwise (e.g. much of
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4 Arun Jambulapati and Aaron Sidford
Section 1.3.2) we make no assumption about whether graphs are simple in this paper
and often consider graphs with multi-edges and self-loops.

Degrees and Weights: For graph G = (V,E,w) and a € V we let deg;(a) =
2ecElace We- Further, we let diyin (G) = mingey deg;(a), dmax(G) = max,ev degs(a),
dratio(G) = dmax(G)/dmin(G) and davg(G) = ZaeV degG(a)/|V| For Weighted graph
G = (V,E,w) we let wpin(G) = mingecg We, Wmax(G) = maXecg, and wiaio (G) =
Wmax(G)/Wmin(G)-

Volumes: For graph G = (V,E,w) and S C V we let Volg(S) = X ,csdegs;(a)
where w € RE are the edge weights of the graph. Note that when we allow self-loops,
if a vertex has self-loops of total weight w this contributes w to the degree of that
vertex and the volume of any set it is in. We further define the boundary volume
VOIG(aS) = Z(u,v)eE(G),ueS,véS W(u,0)-

Distances and Shortest Path Balls: For graph G = (V,E,w) and path P C E
between vertices a and b we let £(P) = },.p we denote the length of the path and
we let dg(a, b) denote the length of the shortest path between a and b. Further, we let
Bg(v,r) = {a €V |dg(v,a) < r} denote the (shortest-path) ball of distance r from .

Neighbors: For graph G and vertex set S C V we let N(S) = {a € V| (b,a) €
E for some b € S} denote the neighbors of S. Overloading notation we let N(a) =
N({a}) foralla e V.

Subgraphs and Contractions: For graph G = (V,E,w) and S C V we let G[S]
denote the subgraph induced by S, i.e. the graph with vertices S, edges EN (S X S), and
edge weights the same as in G. We overload notation and, similarly, for F C E we let
G[F] denote the subgraph of G induced by edge set F, i.e. the graph with vertices V,
edges F, and edge weights the same as in G. For S C V, we let G\S denote the graph
by contracting all vertices in S into a single supernode, while preserving multi-edges
and possibly inducing self-loops.

Graph Matrices: For weighted graph G = (V,E,w) we let L5 € RV*V denote
its Laplacian matrix where for all a,b € V we have L} = —w{qpy if {a,b} € E and
Laa = degg(a).

Effective Resistances: For graph G = (V, E, w) and nodes u, v, we say the effective
resistance between u and v is ‘Rgff(u, v) = (e, — eu)TLE(eu — e,) where .E'G denotes
the Moore-Penrose pseudoinverse of L. Throughout the paper, we make use of
several standard facts about effective resistances stated in Appendix D.

Solver: We use the following notation for linear system solvers:

Definition 1.1 (Approximate Solver). We call a randomized procedure an e-solver for
PSD A € R™" fore € [0,1) if given arbitrary b € R" it outputs random x € R" with

E|jx - ATb|[} < elIbll%, (1)

Definition 1.2 (Laplacian Solver). We call a randomized procedure an e-Laplacian

(system) solver for graph G = (V, E, w) if it is an e-solver for L, i.e. given arbitrary
b € R it outputs random x € R"™ with E[||x — 1%”2&;] < e||£gb||2£6.

Error guarantees in the A and L norm are standard to the literature; they corre-

sponds to an e-multiplicative decrease in the function error on the objective f(x) =

(1/2)x" Ax — b x from initial point 0. However, that our solver error is defined with
respect to the expected square norm of the matrices is less standard. By concavity of
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4/ for appropriate choice of e this guarantee is stronger than defining error in terms of
just the norm: for all PSD A € R™" and vectors x € R” we have [E ||x||4]* < E ||x||f\.
Asymptotics and Runtimes: Throughout we use O(-) to hide poly(log log) factors
in n, the number of vertices in the largest graph considered.
Misc. All logarithms in this paper are in base e unless a base is explicitly specified.

1.2 Our Results

Here we present the main results of our paper. First, as discussed in the introduction
we provide new bounds on existence of ultrasparsifiers for arbitrary matrices. Our
construction is based on the spectral-sparsification results of [BSS14]. We prove this
existence result briefly in Appendix A:

THEOREM 1.3 (ULTRASPARSIFIER EXISTENCE). Letvy,...0,m € R" and A = ¥ () 0:0; .

For any integer k > 2, there exists S C [m] with|S|=n+0 (\/l];) and w € RT, where
A< Z wiviviT < kA.

i€eS

This result when specialized to graphs immediately yields n+O (\/% ) -edge subgraphs

with relative condition number k, and is a proof of concept towards the main results
of this paper. We obtain it by a two-stage construction: we first find an ultrasparse
subset of vectors satisfying a certain “on average" notion of spectral approximation,
and then we correct this to a true ultrasparsifier with a procedure based on the
spectral sparsification algorithm of [BSS14]. In the case of graphs, we give an improved
guarantee for the first phase of our construction. We call the objects we compute low
distortion spectral subgraphs, defined as follows.

Definition 1.4 (x-Distortion Spectral Subgraph). Given a weighted graphG = (V, E, w)
we call H = (V, Eg, wi) a k-Distortion Spectral Subgraph if Ly < L and
DR (@) = 3 (wedT L) <
ecE e€E
IfH is a subgraph of G in addition to the above, we call it a x-distortion subgraph.

To give context for this definition, observe that H = G is an n-distortion spectral
subgraph of G, and any strict subgraph of G has spectral distortion strictly larger than n.
In fact, we show something slightly stronger than what this definition encompasses. We
show that there exist subgraphs with this guarantee that can be computed efficiently.

Our main theorem for this construction (specialized for its application for Laplacian
solvers) is as follows.

THEOREM 1.5 (EFFICIENT CONSTRUCTION OF ULTRASPARSE K-DISTORTION SUB-
GRAPHS). Let G = (V, E, w) be a polynomially-bounded weighted graph, and let ¢ > 1
be any fixed constant. Algorithm 3 equipped with Theorem 1.9 runs in O(m) time and

returns a k-distortion subgraph H withn + O (m) edges, for

k=0 (m (loglog n)‘@“”(l)) .
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6 Arun Jambulapati and Aaron Sidford
It also returns a vector T € R}io with ||t]|; < k where foranye € G, 7, > we5;r.£;{5e is
an overestimate of the leverage score of e measured through H.

We use this result to obtain preconditioners: employing a framework based on
[CKM*], we thus obtain our main result on solving Laplacian linear systems.

THEOREM 1.6 (O(m)-LAPLACIAN SYSTEM SOLVER). There is a randomized algorithm
which is an e-approximate Laplacian system solver for any input n-vertex m-edge graph
with polynomially-bounded edge weights (see Definition 1.2) and € € (0,1) and has the
following runtime for any y > 0

O(m(log log n)**2V1%*X og(1/e)) .

We assume polynomially-bounded weights primarily for simplicity of presentation:
it can be removed via standard techniques (see for instance [CKP*a] for details) Further,
in Appendix A show that techniques for constructing k-distortion subgraphs yield
ultrasparsifiers with the following improved guarantees over Theorem 1.3.

THEOREM 1.7 (IMPROVED ULTRASPARSIFIERS). There exists a polynomial time al-
gorithm which given an input graph G with polynomially-bounded edge weights can
compute a reweighted subgraph H with either of the following guarantees:

e For any constant c, H hasn + edges and satisfies

__n_
(loglogn)¢
Lo < Ly < O((loglog ¥+ £,

e For any constant § > 0 and a = w(log® n), H has n + ~ edges and satisfies

Lo <Ly = O(HO(U.EG.

When compared to the previous state-of-the-art ultrasparsifier algorithm [KMST],
our construction provides improved spectral approximation qualities for sparsities up

ton+ 2 fora=0 (exp (log1/2_5 n

for any 6 > 0, and improves upon Theorem A.2
for @ = w (poly(loglog n)). In particular, our method improves upon the previous-best
methods in the important regime of @ = poly(log n) by a factor of O(logl_"(l) n). Ul-
trasparsifiers of this quality form a critical part of the current best-known approximate
max flow algorithms ([Sheb, Pen, Shea]), and thus we believe our techniques may be
used to improve the running times of these methods.

To compute k-distortion subgraphs efficiently we introduce a new combinatorial
object we call a (a, §)-Path Sparsifier, defined as follows.

Definition 1.8 ((, f)-Path Sparsifiers). Given unweighted graph G = (V,E) and
F C E we call subgraph H = G[F] an (a, f)-path sparsifer if for all edges (u,v) € E,
either (u,v) € F or there are a vertex-disjoint paths of length at most  from u tov in H,
where we do not count u, v as part of the paths.

Path sparsifiers provide a type of approximation for distance in unweighted graphs
that is even stronger than that of fault-tolerant spanners [DK, BP] and crucial for ob-
taining our linear system solving runtimes. We prove the following theorem regarding
path sparsifiers.
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Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 7

THEOREM 1.9 (EFFICIENT PATH SPARSIFICATION). Given any n-node, m-edge graph
and parameter k > 1 the procedure, PathSparsify (G, k) (Algorithm 9) outputs w.h.p.
F C E with |F| = O(nklog®(n)) such that G[F] is a (k, O(log® n))-path-sparsifier of G
in expected time O(m + nk log" (n)).

When used to prove Theorem 1.6, we avoid the (large) polylogarithmic dependence

of Theorem 1.9 by applying it to graphs with O(m) edges and O(m) vertices.
Thus the cost associated with computing path sparsifiers is O(m): it does not affect

our final O(m) runtime claim for Laplacian solvers.

1.3 Overview of Approach

Here we provide a brief overview of our approach towards obtaining the results of
Section 1.2.

1.3.1 Ultrasparse Low Distortion Subgraphs. Our techniques for computing ultra-
sparse low-distortion subgraphs are based on existing algorithms for computing
low-stretch spanning trees: in particular we base our construction on a simple re-
cursive procedure from [AKPW95] (with analysis insights from [CKM*]). Given a
graph G, our algorithm begins by partitioning its vertices into V3, Vs.... such that the
partition cuts few edges and each G[V;] has low diameter. With this, it then computes
an ultrasparse subgraph inside each G[V;] such that each edge inside a G[V;] receives
a small effective resistance overestimate when measured though the subgraph. It then
recurses on a graph formed by appropriately contracting parts of each G[V;] and
deleting all edges which lie inside a V;. In the case where the graph computed inside
each G[V;] is a shortest-path tree, the algorithm described is exactly the low-stretch
spanning tree procedure of [AKPW95]. Our algorithm extends this classic result by
adding a small number of extra edges within each G[V;] to improve the effective resis-
tance overestimate: we use fast algorithms for path sparsifiers developed in Section 3
for this. Combining this with a more careful graph decomposition gives us our result.

1.3.2  Path Sparsifiers. Here we briefly outline our approach for proving Theorem 1.9,
i.e. efficiently computing path sparsifiers. Recall that subgraph H is an («, )-path
sparsifier of G = (V,E) if every edge in G is either present in H or connected by «
vertex-disjoint paths of length at most . Consequently, constructing a path-sparsifier
essentially involves replacing dense components of a graph with sparse subgraphs
containing many short vertex disjoint paths.

One natural starting point for construct sparse subgraphs with vertex disjoint paths
is to consider expanders, i.e. (informally) graphs where the number of edges leaving
every small enough vertex subset is some bounded fraction of the number of edges
contained inside the subset. It is known that by seminal work of [KR] that in every
sufficiently dense expander every pair of vertices is connected by many short edge-
disjoint paths. Consequently, our first step in constructing path sparsifiers is to show
that in fact this result generalizes to graph that are good vertex expanders: graphs
where the number of nodes neighboring every small enough vertex subset is some
bounded fraction of the number of nodes contained inside the subset. By a standard
connection between vertex-expansion and edge-expansion, this immediately yields
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8 Arun Jambulapati and Aaron Sidford
that every dense enough graph with nearly uniform degrees has many short paths
between every pair of vertices.

Given this primitive, our task of computing a path sparsifiers reduces to the problem
of decomposing an arbitrary dense graph into subsets where we can find sparser
expanders of nearly uniform degree. To achieve this we provide a procedure for
decomposing an arbitrary dense graph into nearly degree uniform dense subgraphs,
sample these subgraphs uniformly, and apply known expander decompositions to the
result. We show that these expanders with high probability contain enough of the
volume of the original graph that by repeating on the edges not contained in these
expanders we ultimately obtain a path sparsifier. Further, by careful sampling and
use of known nearly linear time expander decompositions, i.e. [SW], our algorithm is
time efficient as well and yields the desired Theorem 1.9.

1.3.3 Laplacian System Solvers. Finally, we leverage the contributions of Sections 2
and 3 to obtain our improved Laplacian solving algorithms. Our approach is a modifi-
cation of the “preconditioning in expectation” framework used in [CKM™*] to obtain
O(m+flognlog(1/€)) time Laplacian solvers. Given a graph G we first compute a
low-distortion subgraph H, and then aim to solve linear systems in G’ =G + (5 — 1)H
for some appropriately chosen n. We use a modified version of accelerated gradient
descent [Nes83] (given in Appendix C for completeness) to show that solving linear
systems in L can be reduced to solving O(4/n) linear systems in L. To solve linear
systems in G’, we form a series of preconditioners G; by sampling each edge e in
G’ with probability proportional to werg(e), where rg(e) is the effective resistance
overestimate of e given by the copy of 7H contained in G’. While asking for these G;
to be true sparsifiers of G’ would require paying a logarithmic oversampling factor
(and hence appear as an O(+4/log n) in the runtime guarantee), an insight of [CKM™]
shows that sampling without this logarithmic factor still suffices to ensure that solving
linear systems in a few randomly sampled Lg; enables one to solve linear systems in
G’. Finally, via some parameter tradeoffs we can ensure that the G; consist of a tree
plus a small number of edges: we then apply a combinatorial contraction procedure
to eliminate the vertices and edges of the tree and recursively apply our solver to the
remaining graphs.

We remark that our analysis of our recursion more closely resembles the original
analysis of [KMP] which yields slower runtimes, and not the more sophisticated one
given in [CKM*]. Although this tighter analysis was necessary in the previous work
to reduce the logarithmic dependence, applying the same techniques here would only
reduce our algorithm’s poly(loglogn) dependence. Further, doing this introduces
several technical issues which complicate the presentation of our algorithm. For the
sake of clarity, we give the analysis which loses poly(loglogn) factors in this paper
and make only limited attempt to control the polynomial dependence on loglogn
throughout the paper.

1.4 Previous Work

Sparsifiers: Spectral graph sparsification has been heavily studied since its invention
by [ST] in the process of constructing the first near-linear time Laplacian solver. While
the original procedure was somewhat involved, a dramatic simplification by [SS] shows
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Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 9
that sampling edges with probability proportional to their statistical leverage score
gives a (1 + €)-approximate sparsifier with O(nlog ne~?) edges with high probability.
[BSS14] showed that there is a more computationally expensive procedure that obtains
sparsifiers with the same approximation quality and without the log n dependence
in size. [KMP] extend this idea by showing that sampling edges with probability
proportional to leverage score overestimates induced by a sparse subgraph also gives
sparsifiers with high probability. They use this insight to construct ultrasparsifiers:
edges where Ly < L < kLpy.

nlogn

given an input graph G they find H with n+ O("%6")

Extending this result, [KMST] improves the spars1ty to n+ O("58") by replacing the
random sampling of [KMP] with a procedure based on a sparsity- optlmal algorithm by
[BSS14]. However, progress on removing this final log n factor has stalled, partially due
to a intrinsic barrier posed by the use of low-stretch spanning trees as a primitive. We
bypass this barrier in two ways: we give a purely spectral argument which improves
on the sparsity of [KMST] in certain parameter regimes, and we give a procedure
which constructs ultrasparse subgraphs with better leverage score overestimates than
trees can provide. While our results stop just short of obtaining truly comparable
ultrasparsifiers (due to our graph decomposition approach), we provide the first
methods to bypass the low-stretch tree barrier present in the previous work.

Graph Decomposition: While our specific notion of a k-distortion spectral subgraph
has (to our knowlege) not been studied before specifically, many related spectral prim-
itives have been considered in the literature. We remark that standard sparsification
routines [BSS14] trivially give O(n)-distortion spectral subgraphs with O(n) edges,
and that a low-stretch spanning tree of a sparsifier gives a tree which is an O(nlog n)-
distortion spectral subgraph: these are the facts which inspire our definition. The
previous fastest Laplacian solver [CKM*] modifies this latter guarantee by providing
a tree which is a spectral subgraph satisfying a certain £, notion of distortion. They
provide a construction of a tree where the sum of the p!" powers of weﬂeﬁ(e) is

bounded by O ( ) ——nlog? n) for any 0 < p < 1.2 Although this guarantee does

not recover the standard low-stretch tree guarantee (which yields a bound for p = 1),
[CKM*] gives an algorithm which computes this tree in O(m) time: this has not yet
been achieved by more standard low-stretch spanning tree algorithms. Our work
extends this result by giving O(m) time algorithms which trade off the sparsity of the
output subgraph with «.

Laplacian System Solvers: Our result on Laplacian system solvers draws on a long
series of work on time-optimal Laplacian system solvers. Our specific approach draws
heavily from ultrasparsifier-based algorithms as pioneered by [ST] and refined by
[KMP, KMP14, CKM*]. These papers solve the Laplacian linear system Lx = b by
first recursively solving linear systems in £’x = b, where L’ is spectrally close to £
but sparse. They then use this ability to solve linear systems in £’ to precondition
a conjugate gradient-type method. Although the specific way of constructing the

2We remark that [CKM*] does not phrase their guarantee in this way. The tree they compute has steiner
vertices, and their graph actually has k = O( oz M logP n). These issues can be eliminated by stan-

dard vertex elimination techniques in trees and 1n1t1ally sparsifying the input, respectively. Further, the
dependence on m in their claim has no impact on their final Laplacian solver algorithm.

, Vol. 1, No. 1, Article . Publication date: January 2023.



10 Arun Jambulapati and Aaron Sidford
ultrasparse £’ has changed significantly over the previous line of work, all base
their construction on low-stretch trees (or dominating trees) trees which “on average”
contain a short path across the endpoints of a randomly chosen edge from their
base graph. Our departure from this line of work is to base our ultrasparsifiers on
graphs which are merely ultrasparse: we instead start with a subgraph consisting of
a tree with o(m) edges. While the presence of this small number of extra edges may
seem inconsequential, we demonstrate that this small overhead allows us to bypass a
O(m+/log n) barrier present in all of the previous work following the ultrasparsifier
archetype.

As we remarked earlier, there is an alternative approach for solving Laplacian
systems based on sparsification alone, e.g. [PS, KLP*b, KS], which is known to yield
preconditioners that (once computed) yield O(m) Laplacian system solvers. However,
constructing such preconditioners currently requires Q(mlog® n) time, where ¢ > 1
derives from the need to compute O(n)-edge sparsifiers. In our solver, we too need
efficient strong sparsification-like results, however we show that it is possible to use
the path sparsifiers we provide for this purpose.

Another approach proposed by [KLPa] gives Laplacian solvers running in O(m +
nlog®Y n) time: this is O(m) for any slightly dense graph. Their approach is based
on computing coarse O(log®") n)-quality n + o(m)-edge sparsifiers in O(m) time.
They then compute effective resistance overestimates in their computed sparsifier in
O(m+n logo(l) n) time by leveraging low-stretch spanning tree algorithms, and they
finally leverage these estimates to obtain o(m)-edge O(1)-sparsifiers to their original
graph. By finally using existing near-linear time Laplacian solvers to solve in this
approximation to the input graph, they are able to use a standard preconditioning
approach to obtain their claimed runtime. While their approach does not yield linear-
time algorithms for graphs with m < n logo(l) n, we find it an interesting question to
see if their techniques can be combined with ours to obtain O(m + n(loglog n)°™M)-
time Laplacian solvers.

Fault Tolerant Spanners. To computing our k-distortion subgraphs, we construct
efficient algorithms for («, §)-path sparsifiers. These are related to multipath spanners
[GGV] and vertex fault-tolerant spanners [DK, BP] studied by the combinatorial graph
algorithm community. A k-fault tolerant spanner of input G is a subgraph H such
that for any “fault set" F with |F| < k, H — F is a spanner of G — F. Intuitively, such
subgraphs must contain many short disjoint paths across the endpoints of any edge
not retained from the parent graph: if there was a small set of “bottleneck” nodes
present in any short path between u and v for (u,v) € E(G), deleting these would
mean H —F no longer spanned G — F. Our definition extends this notion by additionally
requiring these short paths to be vertex-disjoint. Our algorithm also departs from the
previous work by using the spectral notion of expander decomposition to construct
path sparsifiers, in a similar spirit to the independently developed ideas in [BvdBG*20]
and in contrast to the random sampling approach of [DK] and the greedy approach of
[BP]. While the use of expander decomposition comes with some significant drawbacks
(most notably algorithm complexity), it enables us to obtain a linear dependence on
the number of edges in our algorithm’s runtime.
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Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 11

2 LOW DISTORTION SPECTRAL SUBGRAPHS

In this section we prove Theorem 1.5 showing that we can efficiently compute k-
distortion subgraphs in O(m) time. First, we provide a single-level graph decompo-
sition result in Section 2.1. Then, leveraging our efficient path-sparsification pro-
cedure of Section 3 we recursively apply our decomposition to provide our effi-
cient construction of k-distortion subgraphs in Section 2.2. Later, in Section 4 we
use these in a solver framework related to that of [CKM™*] to obtain our claimed
O(m(loglog n)°™ log(1/€)) time Laplacian solver.

2.1 Graph Decomposition

In this section we give our core combinatorial graph-decomposition technique, which
we use to compute low distortion subgraphs. This single-level graph decomposition
can be interpreted as a significant modification of low-diameter decomposition as
originally conceived by [Awe85]. Broadly, our algorithm chooses an arbitrary vertex
and grows a shortest-path ball out from it. Whenever the cut defined by the ball is
sufficiently small relative to its volume, we cut the edges defined by the cut, mark the
vertices of the ball as a partition piece, and repeat on the remaining vertices in the
graph. This basic procedure, known as low-diameter decomposition, has seen many
applications in graph algorithms [CKM™*, MPX, LSY, Bar]. We state the guarantee here:

THEOREM 2.1. Let G = (V, E) be an unweighted graph and let § > 0 be a parameter.
There is an algorithm which runs in O(m) time and computes a partition of the vertices
into V1, Vs... such that

e Each G[V;] has diameter O(f log n)
o At most % edges G cross different partition pieces.

Unfortunately a significant limitation of the above procedure is the O(log n) factor
in the diameter of the partition pieces. This is neccessary: for example a constant-
degree unweighted expander graph has diameter O(log n) but any partition of G into
balls of diameter o(log n) must necessarily cut at least a constant fraction of its edges.

We avoid this logarithmic factor by settling for a weaker guarantee that still suffices
for Theorem 1.5. Our modification is this: after we have grown a ball Bs(v,r) and
made a cut, we “retract” the ball by distance § and consider Bg (v, r — §). The key
insight is that although the vertices of B (v, r) formed a low-conductance cut in G, the
cut defined by Bg (v, r") was sufficiently high conductance for any r’ < r. With this
we upper bound the size of B; (v, r — §), and consequently ensure that most vertices
in Bg (v, r) are close to a small number of nodes in Bg (v, r — §).

Unfortunately, the presence of weights in a graph somewhat complicates this
picture, due to the inherently unweighted nature of our expansion-based low-diameter
decomposition algorithm. We circumvent this complication with a technique borrowed
from [AKPW95]: we bucket the weights of the edges into a few classes Ej, E, ..., and
decide to make a cut when Bg (v, r) forms a low-conductance cut in the graph restricted
to each E;. Formally, we prove the following lemma.

Lemma 2.2. Let G = (V, E) be an unweighted m-edge (multi)graph, let E1, Es, ...E; be
a partition of the edges, Letr > 0, and let § € [0,1/6]. Algorithm 1 computes in O(m)
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12 Arun Jambulapati and Aaron Sidford
Algorithm 1: {V;, Ul.j},-,jzl = Decompose(G, {E1, E, ...}, B, 1)
Input: Graph G = (V, E), partition of E into Ey, E, - - - E;, and parameters
Br=0
Output: {V;,...V,} partition of V, U}, U?, ...U; partition of V;
11«1
2 while G # 0 do
3 v « arbitrary vertex in G
4 R« 0
5 V; « Bg(v,R)
s | while e~ Volg(aV;) + Volgyz, (3V,) > 3p (e_$VolG(Vt) +vO1G[EJ.](vt))
foranyE; do

7 R+« R+1
8 V; « Bg(v,R)
9 end

10 T « shortest path tree from v in Bg (v, R)
11 if R > r then

12 E; < edges of T contained in Bg(v, R —r)

13 UL UZ ...Utj’ « connected components of T — E;
14 else

15 | U<V,

16 end

17 G<— G-Bg(v,R)andt «— t+1

18 end

J
19 return {V;, U }; j>1

time a partition of G’s vertices, V1, Va, - - - Vy, and trees, Ul.l, Ul.z, cee Uiji, whose vertices
partition V; such that

B
e For alli € [f], at most 6f|E;| + 6fme™ ¢ edges of E; cross the V1, Vo, -+, V,
partition.
e Each U is a tree of radiusr.

. rﬂ
o The total number ofUi], ie. Zie[a] Ji, is at most @ + 4me”~ ¢ .

Proor. We first bound the running time of Algorithm 1. Observe that any time an
edge (u,v) is traversed during the ball growing phase, one of its endpoints is deleted
from G: thus we encounter each edge at most once during our traversal. Building
the shortest path trees, the V;, and the Uij can be done in O(m) total work given this.
Checking the condition in the while loop on Line 6 can be done in O(m) total time by
updating the relevant volumes whenever a new vertex is introduced to V;.

We now prove the correctness of Algorithm 1’s output. First, observe that we only
cut a cluster V; of G when for every E;

_rB _rB
e~ % Volg (aV;) + Volas, 1 (Vi) < 38 (¢ 7 Volg (Vi) + Volg, (V1))
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Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 13
Further, by construction V; = Bg(s,R) for some choice s € V[G],R > 0. We cut

Volg(g;1(dV;) from E; when we partition off V;: this is therefore at most 3 e~ 7 Volg (V;)+
3pVolg(g,;)(V;) from Ej, for any j. As the total of all the Volg (V;) terms for this bound
on edges removed from E; is m and the total of the Volg(g;|(V;) terms is 2|E}| at the

end of the partitioning procedure we cut at most 64|E;| + 6/)’me’$ edges from E;.

We now show each generated partition piece V; contains a forest U}, ..., Utj ! with
the desired properties. Let R, be the parameter such that V; = Bs (s, R;) when cutting
it out from the rest of the graph, and let T; be the spanning tree rooted at s in V;. If
R; < r, then only one Uti is created and it is equal to T;. If instead R; > r, the algorithm
constructs a forest U} where each subtree has diameter r: each U} is the subtree of
T; from a node at distance R; — r from s while no node is further than R; from s.
Further, the forest is constructed by deleting at most Vol(Bg (s, R; — r)) edges from T;.
By the pigeonhole principle, at least one edge partition piece E; must have passed the
expansion condition on Line 7 of the algorithm at least r/¢ times. Now as

Vol (By (s, a + 1)) = Volg(Bg (s, @)) + Vol (dBy (s, @))

for any H a subgraph of G and since volume of balls is monotone increasing, for E;
we observe

_rB
e~ Volg(Bg (s, Rt)) + Volg(E,) (BG (s, Rt))
> (1+3p)/° (e*?vOlg(BG(s, R, = ) + Volg(, | (Bo (s, R, — r)))
Now since 0 < f < 1/6 implies (1+38) > %, (1+3p)"/ > exp(2$). Further,

_rB
e~ ¢ Volg(Bg (s, Ry)) + Volg(g;| (Bg(s, R)) < 2Volg(Bg(s, R;)) = 2Volg(V;).

Substituting in and rearranging we observe
2exp (—%) Volg(V;) = Volg(Bg (s, Rt — r)).

Thus U}, ..., Utj’ consists of at most 2 exp(—%)Vol(Vt) trees. Summing over all V; gives
the result. o

2.2 Obtaining Ultrasparse x-Distortion Subgraphs

Here we leverage the graph decomposition primitive from the previous section to
obtain k-distortion subgraphs consisting of a tree plus a small number of edges. Our
algorithm is a modification of a classic algorithm for construction low-stretch spanning
trees due to [AKPW95]. Briefly, [AKPW95]’s algorithm on a graph G performs the
following steps: it first computes a low-diameter decomposition of G into V3, V5, .. ., it
then forms a shortest-path tree within each G[V;], and finally it contracts each V; to a
single node and recurses on the remaining graph. Unfortunately due to aforementioned
Q(log n) loss intrinsic to low-diameter decomposition mentioned, any algorithm based
on standard low-diameter decomposition is insufficient for our purposes.

To improve, we leverage that the combinatorial stretch bounds given by low-stretch
spanning trees are stronger than what is needed for our purposes. We show that
adding a tree plus a small number of edges inside each partition piece enables us to
obtain effective resistance overestimates that do not lose an O(log n) factor. For an
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14 Arun Jambulapati and Aaron Sidford
explicit demonstration, consider the case of a constant-degree expander G seen in
the previous subsection. By growing a shortest-path tree from an arbitrary root and
removing the edges in all but the last O(log k) levels (as is done in Algorithm 1), we
see that G contains a forest consisting of O(n/k) trees each of depth at most O(logk).
We then show that by adding O(%) edges to this forest we can ensure every
edge in G is retained in the subgraph or possesses many sufficiently disjoint paths
between its endpoints. These sufficiently disjoint paths then enable us to bound the
effective resistance across every edge in G when measured through the subgraph.
Although there could be different ways to add edges and form these disjoint paths, our
specific approach will call a near-linear time algorithm for computing path sparsifiers
on a graph obtained by contracting low-diameter clusters inside G. Hence, throughout
this section we make reference to an abstract algorithm for path sparsification of
unweighted graphs (we give a specific instantiation in Section 3).

Definition 2.3 (Path Sparsification Algorithm). We call an algorithm a (Sps, Tps, @)-
path sparsification algorithm if it takes in an unweighted graph G with n nodes and
m edges and returns a (10a, a)-path sparsifier for it with Sps(m, n) edges in Tps(m, n)
time. We assume the functions Sps, Tps are supermodular® and non-decreasing in both
arguments.

We first give a procedure which returns an ultrasparse subgraph which generates
small effective resistance overestimates whenever the input graph’s vertices can be
partitioned into a small number of low-diameter clusters.

Lemma 2.4. LetG = (V, E, w) be a weighted n-node m-edge graph with all edge weights
at least wyin. Let Ty, Ty, . . . Ty, be a spanning forest of G such that each individual tree T;
has effective resistance diameter* at most 8. Let AbstractPathSparsify be a (Sps, Tps, @)-
path sparsification algorithm (Definition 2.3). Algorithm 2 computes a subgraph G such
that H = \J; T; U G” has at most with at most n + Sps(m, v) edges and for any edge
(u,v) € E, R;ff(u, v) < 38+ 1/Wmin. Further Algorithm 2 runs in time O(m) +7ps(m, v)
if v > 1 and O(m) time otherwise.

Algorithm 2: G” = AugmentTree(G, {Ty, T5, . . . T\, }, AbstractPathSparsify)

Input: Graph G = (V,E, w), {11, T, ... T,,} forest in G, AbstractPathSparsify
path-sparsification algorithm

Output: Subgraph G”

1 G « (V,E1); // Unweighted copy of G without edge weights

{V1,Va,...V,} = connected components of forest {11, 5, ... Tp,}

G «— G'\{W, V,...V,}, deleting self-loops

if G’ = 0 then return 0;

G” « AbstractPathSparsify(G’)

return G” with output edges mapped to the original (uncontracted) vertex set

[ S

3A function f(x, y) is supermodular if f(a+b,c+d) > f(a,c) + f(b,d) for any a, b, c,d.
4The effective resistance diameter of a graph H is defined as max,, ye gy R;[ff (u,v)
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Proor. We first bound the runtime of the algorithm. If v = 1, the algorithm clearly
runs in O(m) time: we may thus assume v > 1. We can compute the contracted graph
G’ directly in O(m) time. Further, as G’ has v vertices and at most m edges, the cost
of the call to AbstractPathSparsify is bounded by 7ps(m, v).

Next we bound the number of edges in the graph H = |JT; U G”. H consists
of a forest | J; T; combined with the output of AbstractPathSparsify, with the edges
mapped to the original (uncontracted) graph. As AbstractPathSparsify is called on
a graph with v vertices and at most m edges we add at most Sps(m, v) edges to it
yielding the claim.

Finally, we prove the bound on ‘R;ff (u,v) for any edge (u,v) € E(G). We analyze
this in cases. First, we consider the case when the edge (u, ) is fully contained inside
a tree T;. We observe that T; has effective resistance diameter at most § by assumption.
Thus as H contains T; we have by Claim D.1 that ‘R;{f(u, v) < R;ff(u, v) < 4. 1If
instead (u,v) is not contained inside a tree T;, it must be that u lies in some T; and
v lies in some Ty for j # k. In this case, we argue that the low resistance diameter
of the trees in forest combined with the path sparsifier G enables us to certify a
bound on Rleff (u,v). We observe that the graph G’ obtained by contracting every tree
T; contains an edge from T; to Tj corresponding to (u,v). By the guarantee of path
sparsification either this edge is retained in G”, or G’ contains 10« vertex-disjoint
paths of length at most & connecting T; to Ti in G’. In the former case, the edge (u,v)

is retained in G”” and hence the output graph H contains (u, v): thus ‘R;{f (u,v) < 1.In
the latter case, G”’ contains 10« vertex-disjoint paths of length at most @ connecting
T; to T in G’. Now the edges in G”” correspond to weighted edges in the original input
graph and therefore each have weight at least W. As each vertex in G’ corresponds to
a tree T; and since each T; has resistance diameter at most §, we observe that these
paths correspond to paths in H of effective resistance at most a(d + 1/W) connecting
vertices in V; to vertices in Vi. By Lemma D.2, bounding the effective resistance in
such settings, and Claim D.1, this implies the effective resistance between u and v is
bounded by 26 + ZHW < 354+ 1/w. O

We now recursively combine this result with the graph decomposition from Sec-
tion 2.1 to prove the main result of this section.

THEOREM 2.5. Let G = (V, E, w) be an n-node, m-edge graph with edge weights which
are polynomially-bounded in n. Let k,y > 2 be parameters. Let AbstractPathSparsify
be an (Sps, Tps, a)-path sparsification algorithm (in the sense of Definition 2.3) for any
a.InO(m+Tps (O(m), O (%)) time Algorithm 3 finds a subgraph H with at most

1
)’

)*SPS (O(’") O(k))

edges which is a k-distortion subgraph of G for

\/g logy - log (48 log k+/log )) log k+/log )

K= (m exp

It also returns a vector t € RE which satsifies 7(y) > W, U)RH (u,0) and ||7]|; <
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16 Arun Jambulapati and Aaron Sidford

Algorithm 3:
H = SpectralSubgraph(G = (V, E, w), AbstractPathSparsify, k, y)
Input: Graph G = (V, E, w), (Sps, Tps, @)-path sparsifier oracle
AbstractPathSparsify, k, y parameters
Output: Subgraph H with potentially smaller edge weights satisfying
Theorem 2.5, 7 leverage score overestimates of the edges in G
1 Set re «— Wpax/we foralle € E; // Edge lengths for AKPW
2 Fe—0,S— 0,7 1€eRE

3 f=exp (—\/0.510gy - log (48 log k+/log y)) o=log;py. 0= 48ap logk

4 E1,E,, - -+ Ep « partition of edges where E; contains all edges with

Fe € [8771,6)

5 1«1

6 while F does not span G ort < ¢ do

7 E U;:t—aﬂ Ej

8 | G < G[E']\Fi

9 G, — (V(G;),E(Gy), 1) 5 // Unweighted copy of G;
10 Viis Tt{i <« Decompose(G;, {Et—g, Et—g+1 - - - E+}, $/6,6/4)

11 for each V;; do

12 G:i < AugmentTree(G;[V;,], {Ttl’l., th’l., ... }, AbstractPathSparsify)
13 Fr — F1UU;; thl

14 S —SUG;

15 for e € G[V;;] do

16 Te «— dwew L 81

17 Ej «— E; —{e}

18 end

19 end

20 forj=t—-o+1,...tdo

21 Y; « arbitrary subset of 6m/k? edges from each E;

22 S SUY;

23 Ej — Ej - Y]

24 end

25 S—SUE;_,

26 t—1t+1
27 end
28 F=F;_4
29 fore e FUS do

30 ‘ Te «<— 1 // Set stretch overestimate to 1 if in output subgraph
31 end

32 return H=FUS,7 // Edges in H are given the same weight they
had in G
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We remark that the sparsity and runtime guarantees in the above are independent
of a. Before we prove this theorem, we state and prove some structural invariants
about the algorithm:

Lemma 2.6. Consider an execution of Algorithm 3, and consider an iteration t of the
while loop on Line 6. Each time a weight bucket E; is included in G; on Line 8, we conclude
that iteration of the while loop by decreasing the number of edges in E; by a factor of B.
In addition, each connected component of F; is a tree of effective resistance diameter at

-1 gt+1
most w . 6"

Proor. We first prove that |E;| decreases by a factor of S each iteration. Let E; be
processed in iteration ¢, and note that the graph G;’s edges are partitioned into at
most o buckets. For our value § = 480 logk, if edge set E; is processed in iteration ¢
Lemma 2.2 implies the call to Decompose forms a vertex partition V;; which cuts at

most
_ G019 _3B _2
BIEi| +6|E(Gr)le™ @ — = BIEi| + 6|E(Gy)|e” 5o < BIE;| + 6mk

edges from E;, where we used |E(G,)| < m. Further, on Line 22 we move 6m/k? edges
from E; to S during every iteration E; is processed. Thus we see that E; ends the
iteration with at most f|E;| edges as desired.

For the second condition, we induct on t. For t = 1, observe that every edge seen in
G; has resistance between 1 and §: this implies it has weight between wy,ay /6 and wiay.
By the guarantee of Algorithm 1 (Lemma 2.2), the trees Tl{ ; have unweighted radius

at most % and hence unweighted diameter at most g. As every edge in these trees
has effective resistance at most Swy;., the claim follows. Now assume the claim for

t = v: we will show it for t = v+ 1. The edges in G, have effective resistance at most
max0 1. Now, the edges added to F,.,; belong to T, .: in the unweighted contracted

max

graph G

W,

’

' 1 these are trees of (unweighted) diameter at most g by Lemma 2.2. In G, the

edges from T‘{ +1; connect together subsets of vertices which correspond to the forests

in F,: by the induction hypothesis the trees of F, have effective resistance diameter at
most w1 51, Combining these two observations, any path through a forest in F.;

max
travels through at most ‘2—5 edges with resistance at most w;,} . 6"*' (coming from the

edges of Tlf +1;) and at most g forests in F,, with effective resistance diameter w,,}, §"*1.
Adding these together, we obtain an effective resistance overestimate of
O 1wy, O 1 e -1 gvi2
5 (WmaX5V ) + 5 (WmaX(SV ) = Wmax5v N
O

With Lemma 2.6 established, we prove that Algorithm 3 outputs a low-distortion
subgraph:

Lemma 2.7. Let G = (V,E, w) be a n-node m-edge graph and let H, T be the output of
Algorithm 3 in the setting of Theorem 2.5. Then H is a k-distortion subgraph of G for

k=0 (m exp (\/8 logy - log (48 log k+/log y)) log k+/log y)

Further, T satisfies () > w(u,v)R;{f(u, v) for any (u,0) € E and ||7||; < k.
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18 Arun Jambulapati and Aaron Sidford
Proor. Since H is clearly a subgraph of G it suffices to show that ||7]|; < x and
T(wo) = W(u,u)R;{f(u, v) for any (u,0) € E(G). We do this by using the effective

resistance guarantee of Algorithm 2 to certify resistance bounds on edges contained
within a partition piece V; ;.

Since H is a subgraph of G, every edge of G that is added H receives 7(,,) = 1 >
w(u,v)R;{f(u, v). Now let e = (u,v) € E(G) be contained in some V; ;. We will show
that the forest F; combined with the path sparsifier G;; computed with AugmentTree
give e an effective resistance overestimate of 4w} 6"*!.

First, observe that each vertex in G; corresponds to a tree in F;_; and therefore V;;
corresponds to a subset of those trees. Since Ttll., thl., ... are trees inside G, [V ;], we see
that every tree in F; is fully contained in some V“ Let F;; = F;[V;;], and note that by
Lemma 2.6 each tree in F;; has effective resistance diameter w;,} 6"*! when the edges
are given the edge weights they have in G. In addition, the edges in G,;[V;;] which
we pass into AugmentTree have weight at least wy,x6 ! in G. Therefore, Lemma 2.4
ensures that any for any edge (u,v) in V;; we have

RIS (u,0) < RIS . (u,0) < 3wk 5 + wil 6 < 4wyl 67

F;UG; ; max max max

We remark that this corresponds to the value given to 7(, ) in the algorithm.

The above shows that the effective resistance through H across the endpoints of
any edge contained in a V;; is bounded. We now fix a weight bucket E; and bound
E;’s contribution to H’s spectral distortion. Observe that the number of edges in E;
which are not within a V;; in iteration ¢ = j + x of the algorithm is at most |E;|f* by
Lemma 2.6. As the weight of any edge in E; is at most wimax8' ™/, we see that at most
|Ej|* end up receiving a 7(,,,) value larger than

(Wmaxél_j) (4W1;1911x5j+x+1) — 452+x.

Therefore, the edges in E; get effective resistance overestimates summing to at most

o—1
4|Ej| Z ﬂx5(2+x)
x=0

since after o iterations we add the remaining edges in E; to H. This is at most

o-1 o-1
4|Ej Z pr8E) = 4|E;| Z 5% (480 logk)*
x=0 x=0
< 5|E;16 (485 log k) ™! = 5|E;| 2 (480 log k) 7+

where we used

48logklogy 48logklogy
-lo -
e/ \/O.Slogy -log (48 log k+/log y)

S 48log k+/logy S s
- log (48 log k+/log y) -

48clogk =
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fork,y > 2and Y} ¢’ = cn;% < %c" for ¢ > 5. Our choice of f yields log 1/ =

\/0.5 logy - log (48 log k+/log y): this implies
1 1
o= —8V _ By < ylogy.

log1
cel/f \/O.Slogy~log (4810gk\/logy)

Thus we have

p (48ologh)™™ < 7 (48log klogy ) (4810 kx/@ ) i
(48 log k+/log ) v ) exp (2 log1/p +

/ 5lo (48 log k+/log ))
= 48exp (\/8 logy - log (48 log k+/log y)) vlogylogk.

The last equality used the definition of § and the algebraic fact that c;x+c, /x = 24/cic;

for x = +/cz/c;i. Substituting this in yields that E;’s contribution to the spectral
distortion of H is bounded by

240|E;| exp (\/8 logy - log (48 log k+/log y)) log k+/logy.

implying the claimed bound. O

Finally, we bound the runtime and sparsity guarantees of Algorithm 3:

Lemma 2.8. Let G be a weighted graph with n nodes and m edges, and let H be the
output of Algorithm 3 in the setting of Theorem 2.5. Then H has at at most

w0 (%4 22+ sis (om0 (7))

edges. Further, Algorithm 3 runs in time O(m + Tps (O(m), O ().

Proor. Observe that there are four different ways edges can be added to H: they
can be added to the forest F; on Line 13, to S through the path sparsifiers G;; on
Line 14, to S via the extra edges from each E; we keep on Line 22, or to S by the check
on Line 25 (after a weight bucket has been processed in a G; sufficiently many times).
We bound these in order. Clearly, the returned forest F consists of at most n edges.
By the guarantee of Algorithm 2, the calls to AugmentTree during iteration t are on
graphs G;[V;;]: let m(t) denote the total number of edges contained in the G, [V;;].
We observe that G;’s edge set is a subset of Uj-:t_‘, E;, and moreover each edge in E; is
contained inside at most one G;[V; ;] (as once this happens we delete it from our edge
set): thus >, m(t) < m. Next, each G;[V;;] contains a forest Ttl’ ;+ by the guarantee of
Decompose we observe that the total number of Tt{ ; is the number of V;; plus at most

_(5/4)'(/}/6) —2losk . .
4m(t)e = 4m(t)e *'°8* < 4m(t)/k. Now as AbstractPathSparsify is called

inside AugmentTree only when T’ consists of more than 1 tree, we may aggregate all
the calls to AbstractPathSparSIfy in iteration f into a single call on a graph with m(t)
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edges and O(m(t)/k) nodes. Since Spg is supermodular and non-decreasing in both
arguments, we see that the number of edges added to H via path sparsifiers is at most

33 vs (m0.0( ") = 855 (m0 ().

For the edges added on Line 22, we again see that each E; is included in E’ at most ¢

times— thus this collectively adds O(57) < O( mlOgy) edges. Finally, after an E; has
been processed ¢ times we observe that it decreases in size by a factor of y: thus the
addition on Line 25 adds O(m/y) edges to H. Combining gives our claimed size bound.

Finally, we prove the running time of our algorithm. We first bound the cost of all
steps excluding the calls to AugmentTree. Each time a weight class is fed to Decompose
on Line 10, the number of edges in that class falls by a factor of f. Thus, the total
contribution of weight class E; to the running time of all calls to Decompose is only
O(m): the number of edges left to consider in the recursively generated subprob-
lems falls geometrically. The time it takes to sort the edges into weight buckets E;
is at most O(m) via radix sort with base poly(n) (here we use our assumption of
polynomially-bounded edge weights) and the running time of every other step in the
algorithm can be implemented in the trivial fashion in O(m) time. Finally, to bound
the runtime of the calls to AugmentTree we again observe that during iteration ¢ we
can aggregate the nontrivial calls it makes to AbstractPathSparsify to a single one on
a graph with at most m(t) edges and O(m(t)/k) vertices. As 7ps is also superlinear
in both arguments, the runtime of these calls to AbstractPathSparsify can again be
bounded by 7ps(O(m), O(m/k)) as desired. O

Combining the last two lemmas gives Theorem 2.5. To conclude this section, we
show that combining Theorem 2.5 with the path sparsification algorithm construction
in Section 3 and choosing parameters appropriately yields an efficient construction of
k-distortion subgraphs.

THEOREM 1.5 (EFFICIENT CONSTRUCTION OF ULTRASPARSE K-DISTORTION SUB-
GRAPHS). Let G = (V, E, w) be a polynomially-bounded weighted graph, and let ¢ > 1
be any fixed constant. Algorithm 3 equipped with Theorem 1.9 runs in O(m) time and

returns a k-distortion subgraph H withn + O (W) edges, for

k=0 (m (loglog n)\@“”(l)) .

It also returns a vectort € RE with ||7]|; < k where foranye € G, 7, > we5T£ O Is
an overestimate of the leverage score of e measured through H.

PROOF. Let PathSparsify (G, O(log® n)) be the algorithm guaranteed by Theorem 1.9:
note that this is a (O(nlog® n),0(m + nlog' n), O(log® n))-path sparsification al-
gorithm. We apply SpectralSubgraph to G with parameters k = log®*n and y =
(loglog n)¢. Combining this with the guarantee of Theorem 2.5, we therefore see that
H contains

n+0

1 10
mlog n+mlogy+m Cn+O m
k k? Y (loglog n)¢
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edges, and it is computed in time

mlog'® n

0 (m(loglog n)'/? 4 1 ) =0 (m(loglog n)l/z) .

og'®n
It remains to bound the spectral distortion of the computed subgraph. We use the

notation log(i) (n) to denote the result of applying the log function i times: hence

(i+1)

log(l) (n) =logn and log n = log (log(i) n) For our values of y and k we see

\/8 logy - log (48 log k+/log y) = \/8c log® n - (log(S) n+O0(log™® n))
= (@ + o(l)) 10g<3) n.

Thus by Theorem 2.5 our computed subgraph is a k-distortion subgraph for

k=0 [mexp [(V8c +0(1)) log® n)log® niflog® n
P g g g

)\/§+l+o(1))

=0 (m (loglogn
Assembling these pieces yields the claim. O

3 EFFICIENT PATH SPARSIFICATION

In this section we prove Theorem 1.9 showing that path sparsifiers can be efficiently
computed. To prove this result we provide several new algorithmic components of
possible independent interest. First, in Section 3.1 we show that dense near-regular
expanders have many short vertex disjoint paths. Then, in Section 3.2 we leverage
this result with a new sampling scheme and previous expander partitioning results to
show that we can efficient path-sparsify large amount of the volume of dense near-
regular graphs. In Section 3.3 we then show that every dense graph can be efficiently
decomposed into dense near-regular subgraphs. Carefully applying these tools yields
our desired result in Section 3.4.

3.1 Short Vertex Disjoint Paths in Expanders

In this section we show that in every dense expander of balanced degrees, for every
pair of vertices s and ¢ there are many vertex disjoint paths between them (where here
and throughout we ignore the necessary shared use of s and ). The number of paths
and the length of these paths depend on the degree ratio and the conductance of the
graph. Formally we define conductance, Definition 3.1, and present the main theorem
of this section, Theorem 3.2 below.

Definition 3.1 ((Edge) Conductance). For undirected graph G = (V, E) (possibly with
self-loops) and S C V we define the (edge) conductance of S and G by

. o(5)1
¢edge (8) = min{Vol(S), Vol(V \ S)}

and @edge(G) = ngrgl;?m " Pedge(S) respectively.

We call any family of n-node graphs G with ¢eqge(G) = Q(logn) for some c,
expanders. Our main result of this section is the following theorem regarding vertex
disjoint paths in such expanders.
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THEOREM 3.2 (SHORT VERTEX DISJOINT PATHS IN APPROXIMATELY REGULAR Ex-
PANDERS). For all pairs of vertices s and t in an n-node undirected graph G = (V,E)
(possibly with self-loops) there is a set of at least ¢edge (G)dmin(G)/(8dratio (G)) vertex-
disjoint paths from s to t of length at most (4dratio (G)/Pedge (G)) - log(n/dmin(G)).

Our main technical tool towards proving Theorem 3.2 is that graphs with large
vertex conductance have many short vertex-disjoint paths. The formal definition of
vertex conductance, Definition 3.3, and this tool, Lemma 3.4, are given below.

Definition 3.3 (Vertex Conductance). For undirected graph G = (V,E) andS C V we
define the vertex conductance of S and G by

_ N\ S| _ . .
(]ﬁvert(S) = m and ¢vert(G) = ngr’glé?ﬁ,v} gbvert(S) respectlvely.
Note that for any set S with |S| = [|V]/2] we have ¢yert(S) < 1. Consequently
dvert (G) € [0, 1] for all undirected G.

Lemma 3.4 (Short Vertex-Disjoint Paths in Vertex Expanders). Let G = (V, E) be an
n-node undirected graph with ¢yert(G) > ¢. Then for all nodess,t € V withs # t of
degree at least d there is a set of at least ¢d[8-vertex disjoint paths from s to t of length
at most (4/¢$) log(n/d).

Lemma 3.4 implies Theorem 3.2 by a standard technique of relating edge and vertex
expansion.

Proor oF THEOREM 3.2. By Lemma 3.4 it suffices to show that
Pvert(G) 2 Pedge(G)/dratio (G). To prove this, let S C V be arbitrary and note that
by assumption Vol(S) > dupin(G)|S|, Vol(V \ S) = duin(G)|V \ S|, and [9(S)| <
dimax (G)|N(S) \ S|. Consequently,

¢ (S) _ |N(S) \Sl > (dmax(G))_lla(S)| _ ¢edge(s)
VT min{ISLIV A\ S|} T (dmin(G)) ! min{Vol(S), Vol(V \ )}~ dratio(G)
The claim then follows by the definition of ¢yert (G) and gedge (G). O

Consequently, in the rest of this section, we prove Lemma 3.4. Our inspiration
for this lemma is the seminal result of [KR] which proved an analogous result edge-
disjoint paths in expanders. Their proof considered the minimum cost flow problem
of routing flow of minimum total length between s and ¢ and by reasoning about
primal and dual solutions to this linear program, they obtained their result. We prove
Lemma 3.4 similarly, by considering the minimum-length flow in the natural directed
graph which encodes vertex-disjointness defined as follows.

Definition 3.5 (Directed Representation of Vertex Capacitated Graphs). Given undi-
rected graph G = (V,E) we let G = (T/),_E)) denote the directed graph where for each
a € V we have vertices a™, and a® and edge (a™, a®"*) and for each edge {a, b} € E we
have edges (b°*, a') and (a°*, b™™).

Note that any path of vertices a, b, ¢, d, e € V has an associated path aoyt, bin, bout,
Cins Cout> din> dout> din € 7 path in 8 Further a set of a to b paths are vertex-disjoint in

G if and only if their associated paths are edge-disjoint in G. Alsoa simple path in G
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has length k if and only if its associated path in G has length 2k — 1. Consequently,
to reason about short vertex disjoint paths in G it suffices to reason about short
edge-disjoint paths in G.

To reason about the length of these paths, as in [KR] we consider the minimum
cost flow problem corresponding to sending a given given amount of flow from s to ¢
while using the fewest number of edges. However, unlike [KR] the graph we use is

—
directed, i.e. G, and thus we need to characterize the minimizers of a slightly different
minimum cost problem. This optimality characterization of the minimum cost flow
problem is given below and proven in Appendix B.

Lemma 3.6 (Dual Characterization of Shortest Flow). For directed graph G = (V,E)
and vertices s,t € V if there are at most F edge-disjoint paths from s to t then there is
an integral s-t flow f € {0,1}% corresponding to F edge-disjoint paths from s tot using
a minimum number of edges and v € RV such that for every (a,b) € e if f, = 1 then
Vg —0p > 1andiffo =0thenv, —vp < 1.

As in [KR], our approach to showing that the paths are short is to sweep over v
and show that the associated sets increase rapidly. Here, we tailor the analysis to the
structure of our directed (as opposed to undirected) minimum cost flow problem. Our
main structural lemma is given below.

Lemma 3.7 (Characterization of Shortests Flow). Let G = (V, E) be an undirected
n-node graph for which there are F vertex disjoint paths froms € V tot € V. Further, let
f €{0,1}F be an integral flow corresponding to F disjoint paths from sou; to tin inG
using a minimum number of edges and letv € R be as described in Lemma 3.6. The
following properties hold:
(1) The values of v decrease monotonically along each path in f and decrease by at
least 1 after each edge. Consequently, the length of each path is at most ysout — Yyin.
(2) For all @ € [ysou,y,m] if S} = {a € T/)Iya < a}andS) = {a € V|a" €
S;/ or a®" € SX} then either |S;/72| >n/2or |SX72| > (1 + Pyert) - (|SX| —F).
(3) We have |S‘y/0ut71| > deg(s)+1—-F

Proor. Claim I: By Lemma 3.6, whenever f, = 1 for e = (a,b) then v, —vp > 1.
Combined with the fact that f corresponds to disjoint s to ¢ paths immediately yields
the claim. .

Claim 2: By claim 1, the set of edges leaving S is of size exactly F. Consequently,
leveraging that if f, = 0 for e = {a, b} we have v, > v, — 1 by Lemma 3.6 we have

that if a € SY, then either (1) a € Sa » fiain gy = 1, and a®* ¢ SV or (2) a®t € SV

Further, if a®* € SY_ and b € N(a) and f(qow piny = 0 then we have bresy agaln
by Lemma 3.6. Consequently, if there are ¢ vertices for which case (1) holds then the
neighbors of all the other |SY | vertices are in |S;/72| except for at most F — ¢ vertices.

The claim then follows as ¢ € [0, F] and
|Se—2l = (14 dvert) - (ISy 1 =) = (F =) = (1+ pvert) ISy | = F)

Claim 3: Again by Lemma 3.6 we have b € SV for all b™ where {a,b} € E and

Ysout —1

f(aow piny = 0, which happens for all but F edges.

, Vol. 1, No. 1, Article . Publication date: January 2023.



24 Arun Jambulapati and Aaron Sidford
[m]

We now have everything we need to prove Lemma 3.4

ProOF OF LEMMA 3.4. Let T := (N(s) N N(¢)) \ {s, t}. Note that there are |T| vertex
disjoint paths of length at most 2 from s to ¢ (ignoring the shared use of s and t).
Further, we see that N(s) \ T and N(¢) \ T each have size at least d — |T| and by
assumption of vertex conductance this implies that every set S with (N(s) \T) ¢ S
and SN(N(t)\T) = 0 has [N(S)\ S| = ¢(d—|T|) and therefore if we further constrain
that SN (T \ {s,t}) = 0 this implies that [(N(S) \ (SUT))| = ¢(d — |T|) — |T|. By
maxflow minimum cut theorem on G this implies that there are at least ¢d — (1+¢)|T|
disjoint paths from s to ¢, not using T. Consequently, the number of vertex disjoint
paths in total from s to ¢ is

max{¢d — (1 +¢)|T|,0} +|T| = max{¢(d ~ |T|),|TI} > min max{¢(d - @), a}

6\, 80
(1+¢)d

It simply remains to bound the length of a smaller set of paths.
To bound the length of these paths, let F = ¢d/8. Further, let f € {o, l}E be an

integral flow corresponding to F disjoint paths from s°% to ¢ in G andleto € RV be
described as in Lemma 3.6. We now prove by induction that for all ¢ > 0 it is the case
that either

|Sye—1-0el 2 1/2 or ISy 5| 2 (1+(¢/2))'d/2 @
Note that for the base case we have that
ISy, ol =d+1-F>d/2.

For the inductive case note that if the claim holds for t and it is not the case that
|SV e 2(t+1)| > n/2then F < |SV ¢/4 and consequently, by Lemma 3.7 and

the inductive hypothesis we have
1Sy 1oy = (140)-(1Sy,—1-2e|=F) = (14¢) (1=¢/4) ISy, -1-2:] = (1=($/2))|Sy,-1-2]

where we used ¢ € (0, 1). Consequently by induction (2) holds for all t > 0 and for
some t < 2 log(n/d) we have |S _1-2;| = n/2. By symmetry this also 1mphes that

el

Yy < ys+ 2 + % log(n/d). Since a path of length k in G is length 2k — 1 in G the result
then follows again by Lemma 3.7. O

3.2 Path Sparsification on Dense Near-Regular Expanders

Here we provide an efficient procedure to compute path sparsifiers of a constant
fraction of the edges in a dense degree regular graph. This procedure leverages The-
orem 3.2, which shows that dense near-regular expanders have many short vertex
disjoint paths. Coupled with a procedure for partitioning a graph into approximately
regular subgraphs (Section 3.3) this yields our main theorem of this section, an efficient
path sparsification procedure. Consequently, in the remainder of this subsection our
goal is to prove the following theorem.
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THEOREM 3.8 (PARTIAL PATH SPARSIFICATION OF NEARLY REGULAR GRAPHS). Given
any n-node m-edge undirected unweighted graph G = (V,E) and k > 1, the procedure
PartialPathSparsify(G, k) (Algorithm 4) in time O(m + nk - draio (G) log®(n)), outputs
F,Ecyt C E such that wh.p. inn
e (Size Bound): |F| = O(nk - dyatio (G) log(n)), |Ecut| < |E|/2 and
e (Path Sparsification): G[F] is a (Q(k/(dzatio (G) log? (1)), O(dratio (G) log* (n))) -
path sparsifier of (V,E \ Ecyt).

Our partial path sparsification procedure, PartialPathSparsify(G, k) (Algorithm 9),
works simply by randomly sampling the edges, partition the resulting graph into
expanders, and output the edges of those expanders as a path sparsifier of the edges
on those node induced subgraphs in the original graph. In the following lemma
we give basic properties of this random sampling procedure, Lemma 3.9, which is
reminiscent of the sublinear sparsification result of [Lee14]. After that we give the
expander partitioning procedure we use, Theorem 3.10 from [SW] and our algorithm,
Algorithm 9. We then prove Theorem 3.8 by showing that the expanders found have
sufficiently many vertex disjoint paths by Theorem 3.2 and the right size properties
by Theorem 3.10

Lemma 3.9. Let G = (V,E) be an unweighted n-node graph, d < dunin(G), and
let H be a graph constructed by sampling every edge from G with probability p =
min{1,0(d"'logn)} for some parameter d < duin(G). With high probability in n

1 d 3 d
L -Pr, < pLo < T Lu+ Pry,.
2 n 2 n

and
degy(a) € ‘g -deg;(a), 2p - degs(a)| forallae V. (3)

ProOF. Define auxiliary graph G’ with L = L + 24 L . We observe that for

n
any nodes u, v,
fF N eff 1
RG (u,0) < ﬁﬂ%n(u, v) = 7

Thus, we interpret our sampling procedure to construct H as sampling edges from G’
with the leverage score overestimates

— 1/d ifeeG
Reﬁ(e) = . 2d
1 ife € K.

We observe that these values are valid leverage score overestimates in G’: thus sampling
and reweighting the edges in G with probability p and preserving the edges in %dKn
produces a graph H' with Ly = I%LH + %LKH such that %LH, < Lo = %LH/ (see,
e.g. Lemma 4 [CLM*14] ). Rearranging yields the desired

1 d 3. pd
Ly -Pr, < pLo < 2 Lu+ sy,
2 n 2 n

Finally, (3) follows by an application of the Chernoff bound to the number of edges
picked incident to each node in G. Since d < dpi, (G) this number concentrates around
its expected value with high probability in n for appropriate choice of constant in the
assumption of p. O
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THEOREM 3.10 (ExPANDER DECOMPOSITION [SW]). There is a procedure

ExpanderDecomp(G) which given any m-edge graph G = (V, E), in time O(mlog’ m)
with high probability outputs a partition of V into V4, Va, - - - Vi such that

® fedge(G{Vi}) = Q(1/log’(m)) for alli € [K],

o Xilog(Vi)l < m/8,
where G{V;} denotes the induced subgraph of G with self-loops added to vertices such
that their degrees match their original degrees in G.

Proor. This is a specialization of Theorem 1.2 from [SW] where ¢ in that theorem
is chosen to be ©(1/log>(m)). )

Algorithm 4: F = PartialPathSparsify(G,k > 1)
Input: G = (V, E) simple input graph with degrees between dpin and dmax
Output: (F, E.y;) such that F is a path sparsifier for (V, E \ E¢y) and

|Ecut| < |E|/2
// Sample edges uniformly at random to apply Lemma 3.9

1d:= d’“i“Tg(G) and p = min{1,0(d ! logn)} (where the constant in © is as in

Lemma 3.9);
2 if p = 1 then return (E, 0);
3 E=0;
4 for e € E do Add e to E’ with probability p. ;
5 G =(V,E');

// Find expanders and use their edges as a path sparsifier
(V1, V, - - - V) < ExpanderDecomp(G’) ; // Computed via Theorem 3.10
Foralli € [r] let G; = (V;, E;) = G'[V;];

Let Ecut = Uie[r196(Vh);

Let F == Ui Es;

10 return (F, Eqy);

© . NN

Proor oF THEOREM 3.8. First, suppose that p = 1. In this case, by Line 2 the algo-
rithm outputs F = E and E; = 0 in linear time. Consequently, F is a path sparsifier
of desired quality with m edges and |Ecy| < |E|/2. Since, in this case d~!logn = Q(1)
we have dnin (G) = O(klog n) and the theorem follows as

2pm < O(ndmax(g)) = O(ndratio(G)dmin(G)) = O(nk - dratio(G) log(n)) >

Consequently, in the remainder of the proof we assume p < 1.
Next, note that by design, G’ was constructed so Lemma 3.9 applies. Consequently,
with high probability in n the following hold:

e G’ is an edge-subgraph of G satisfying pLs < %.EG/ + %LKH.
o deg;;(a) € [£ - degs(a), 2p - degs(a)| foralla e V.

e G’ contains at most 2pm edges.
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Leveraging the bounds we prove the path sparsification property and size bound for
F. By Theorem 3.10 we have that for all i € [k], the V; output by ExpanderDecomp
satisfy that &g (v, = Q(1/log*(m)) for all i € [k]. Further, by the above properties
of G’ we have that dipin(G'{Vi}) > £ - dinin(G) and dmax(G'{V;i}) < 2p - dmax(G).
Consequently, by Theorem 3.2 and the fact that p < 1 we have that G’{V;} has at least

( dumin (G)p ) _ ( k )
dratio (G) 10g3 (n) dratio (G) logz (n)
vertex disjoint paths from s to ¢ of length at most O(dratio (G) log*(n)) for any s, t € V;.

Further, since every edge in (F, E \ E¢y) has both endpoints in some V; we see that F
is a path sparsifier as desired. Further, F has at most

2pm = O(ndmax(G) log(n)k/dmm) = O(nk IOg(n)dratio (G))

edges by the properties above.
Next, we bound the size of E.y. Note that
1 1
[Eeul = 5 D 106Vl =5 ) o] Lo(Vioy @

ielr] ie[r]

where v; is the indicator vector for V;, i.e. v; € RV with [v;], = 1ifa € V; and [v;], = 0
ifa ¢ V;. Since, pL; < %ch + p—:LKn we have that for all i € [r] that

3 d 3 d
Plac ()] = pof Laos < 2of Lo+ 25 = Zae i1+ Ewiv vl 9
Combining (4) and (5) yields that

|Ecut| < %lez[r] (%WG/(V,” +d|Vi|| < %le +dn < 31—21 + % < %
where in the third to last step we used that 3};¢(,) |96/ (V)| < |E’|/8 by Theorem 3.10,
in the second to last step we used that |E’| < 2pm and that d = dp,;, (G)/(10k), and in
the last step we used that din(G)n < |E|.

Finally, we bound the running time of the algorithm. Every line except for Line 6
in our algorithm is a standard graph operation that can be implemented in linear
total time. The call to ExpanderDecomp on Line 6 is on a graph with O(mp) edges.
Consequently, by Theorem 3.10 the call takes time

O(mplog’(m)) = O(m(log(n)/d) log’ (n)) = O(nk - dratio(G) log® (n))
where the first equality used the simplicity of G and that p = ©(d!logn) < 1 and
the second equality used that m < ndy.x(G) and the definition of d. ]

3.3 Approximately Degree Regular Graph Decompositon

Here we provide a linear time procedure to decompose a constant fraction of a dense
graph into a nearly-regular dense pieces supported on a bounded number of vertices.
We use degree regularity to turn edge expansion bounds on a graph into vertex
expansion bounds and finding vertex disjoint paths in Section 3.1 which in turn we
use to efficiently compute path sparsifiers.

The main result of this section is the following theorem on computing such a
decomposition.
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THEOREM 3.11 (REGULAR DECOMPOSITION). Given n-vertex m-edge simple undirected
graph G = (V, E) with daye(G) > 2000(log(2n))?, RegularDecomp(G) (Algorithm 8)
in expected O(m) time outputs graphs H; = (V4, E1), ..., Hy = (Vp, E;) which are edge
disjoint subsets of G such that

(1) (Vertex Size Bound): 3;cp |Vi| < 4nlogn.

(2) (Volume Lower Bound): Y;c, Vol(E;) > Vol(G)/100

(3) (Degree Regularity Bound): dyatio (H;) < 1000(log(2n)) for alli € [¢]

(4) (Minimum Degree Bound): diin (H;) 2 davg(G)/(250logn) for alli € [£] 3

We build RegularDecomp and prove Theorem 3.11 in several steps. First we provide
DegreeLowerbound (Algorithm 5) which simply removes vertices of degree less than
a multiple of the average. It is easy to show (Lemma 3.12) that this procedure runs in
linear time, doesn’t remove too many edges, and ensures that the minimum degree is
a multiple of the average.

Leveraging DegreeLowerbound we provide two procedures, BipartiteSplit (Algo-
rithm 6) and BipartiteDecomp (Algorithm 7) which together, show how to prove a
variant of Theorem 3.11 on bipartite graphs where the max degree is not too much
larger than the average degree for each side of the bipartition. We show that pro-
vided these average degrees are sufficiently large, BipartiteSplit (Algorithm 6) splits
the graph into pieces of roughly the same size where the degrees on the larger side
are preserved up to a multiplicative factor (See Lemma 3.13). This procedure simply
randomly partitions one of the sides and the result follows by Chernoff bound. The
procedure BipartiteDecomp (Algorithm 7) then carefully applies BipartiteSplit and
DegreeLowerbound.

Our main algorithm, RegularDecomp (Algorithm 8) operates by simply bucketing
the vertices into to groups with similar degree and considering the subgraphs of
edges that only go between pairs of these buckets. The algorithm then applies either
BipartiteDecomp or DegreeLowerbound to subgraphs of sufficiently high volume and
analyzing this procedure proves Theorem 3.11.

Algorithm 5: {G;};c[x] = DegreeLowerbound(G, c)
Input: Graph G = (V, E), parameter c € (0,1)

1 Let dyyg == 2m/n,S=V,R=0;

2 while dy,in (G[S]) < ¢ - dayg do

3 Pick a € § with degg)(a) < ¢ - davg;

4 S:=5\{a};

5 end

6 return G[S] ;

Lemma 3.12 (Degree Lower Bounding). For any n-node m-edge graph G = (V,E) and
c € (0,1), DegreeLowerbound(G, c) (Algorithm 5) outputs G[S] for S C V such that

Vol(G[S]) = (1 — ¢)Vol(G) and dumin(G[S]) = ¢ - daye(G)

5This condition is not use for our path sparsification construction, but is included due to its possible utility.
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Proor. This procedure can be implemented in linear time by storing deggs;(a)
for all @ € V and updating it in O(1) per edge when a vertex is removed. Further,
dmin (G[S]) = cdavg(G) by design of the algorithm. Finally, every time we remove a
vertex a from S we remove at most cd,y; edges from G[S]. Consequently, the final S
satisfies [V'\ S| - cdavg < 1+ ¢+ davg = 2cm = ¢ - Vol(G) and Vol(G[S]) = (1 - ¢)Vol(G).
m}

Algorithm 6: {G;};c[x] = BipartiteSplit(G, (L, R), k)

Input: Bipartite graph G = (V, E), bipartition (L,R) of V, k € [1, |L|]

// Assume for all e=(a,b)€E, acL, beR

// Assume deg;(b)/k > 20log(2n) for all b€ R and |L|/k > 20log(2n)
1 do

2 LetL; =0 C Lforallie€ [k];

3 For each a € L add a to L; for i € [k] uniformly, independently at random ;
4 Let G; = G[L; UR] for all i € [k];

5 while degy, (b) ¢ [*8a®) 4B o 7 ) g [LL 3L o someb € R, i € [K];
6 return {G;}ic(x] ;

Lemma 3.13 (Bipartite Graph Splitting). Given n-node m-edge simple bipartite graph
G = (V, E) with bipartition into (L,R) C V and k € [1,|L|] where
d b L
eg%() > 20log(4n) forallb € R and % > 20log(4n)
BipartiteSplit(G, (L, R), k) (Algorithm 6) in expected O(m) time outputs {G;};e(x] that
partition the edges such that for alli € [k] andb € R

degG(b) 3degG(b) |L|| 3|L|
dege, (b) € | —1— —5 2% 2%

Proor. Note that each loop of the algorithm clearly takes linear time and if the
algorithm terminates its output is as desired. Consequently, it suffices to show that
the probability the loop repeats is bounded by some fixed constant probability.

Let y = min{minpcg deg;(b)/k, |L|/k}. Further, for each a € L and i € [k] let x;,
be a random variable set to 1 if a € L; and 0 otherwise. Now note that for all b € R we
have by the fact that E[x;,] = 1/k we have

(6)

and |L;| € [

deg (D)
degg, (b) = Z X;q and E [deg, (b)] = glf > u
aeNg (b)
Consequently, by Chernoff bound we have that for allb € Rand i € [k]
degg (D) | p [ 3deg, (b) u
Pr [degci(b) < ok < exp (—g) and Pr »degGi(b) > —r < exp (_E)

Further, for all i € [k], by the same reasoning (e.g. suppose there was a vertex in R of
degree |L|),
o)
< -
< exp ( m
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Now since by assumption y > 201log(4n), by applying union bound to the 2(|L| +
1) - k different reasons the loop in BipartiteSplit might repeat, the loop repeats with
probability at most

2(IL] +1) - k- exp(—p/10) < 2(|L| +1) - k <

W

1
8n?
n

where we used that since the graph is non-empty |L| +1 < O

Lemma 3.14 (BipartiteDecomp (Algorithm 7)). Let G = (V,E) be an arbitrary sim-
ple bipartite graph with bipartition (L, R) such that divg = Volg(L)/|L| and davg =
Vol (R)/|R| satisfy dk ave = 40log(2n) and d avg > 40log(2n). In expected O(m) time,
BipartiteDecomp(G, (L, R)) outputs graphs H; = (V1, E1), ..., Hx = (Vi, Ex) which are

edge disjoint subsets of G with
(1) (Vertex Size Bound): 3;cp |Vi| < 4n.
(2) (Volume Lower Bound): Y,;c, Vol(E;) > Vol(G)/8
(3) (Degree Regularity Bound): dyatio (H;) < 16¢ for alli € [k] where

c = max{dmax/ avg? max/dan}

fordk, = max,e; degs(a) and dX, = max,cg deg;(a).
(4) (Minimum Degree Bound): dyin(H;) > min{d!;vg, dgvg}/lé.

Algorithm 7: {H;};cx] = BipartiteDecomp(G, (L, R))

Input: Bipartite graph G = (V, E) and bipartition (L,R) of V

// Assume Vol(L)/|L| > 40 log(2n) and Vol(R)/|R| = 40log(2n)
1 Let dﬁvg = Vol(L)/|L| and d. avg = Vol(R)/|R| ;
2 Swap L and R if needed so that |R| < |L|;
3 Let R’ = {a € R| deg;(a) > (1/2)dR avgt and G = G(LUR');
4 if |R’| > |L|/2 then return DegreeLowerbound(G,1/2) ;
5 {Gi}ie[k] = BipartiteSplit(G’, (L,R’), k) for k = [ |L|/|R'|] ;
6 return {H;};c[x] where H; = DegreeLowerbound(G;, 1/2);

Proor. First, note that G’ is a vertex induced subgraph of G where only vertices in
R with degree less than half the average in R are removed. Since },cp\ g degs (A) <
IR |davg /2 < Volg(R) it follows that Volg/ (R") > VolG (R). Further, since G is bipartite
this implies that Vol(G’) > Vol(G)/2.

Next, suppose the algorithm returns on Line 4 (i.e. |[R| < |L|/2 ). In this case,
Lemma 3.12 (which analyzes DegreeLowerbound) implies that the returned graph,
which we denote H, is a vertex induced subgraph of G’ with Vol(H) > Vol(G )/2 >
Vol(G) /4 and duin(H) > dug(G')/2 > doe(G) /4. Since dyg(G) > min{dL,, dR,,},
this immediately yields the desired vertex size bound, vertex lower bound, and the
minimum degree bound. Further, since the graph is b1part1te we have davg /dR avg =

|R|/|L]. Therefore, since |L|/2 < |R| < L we have d avg/2 <d avg < dfvg and davg(G) >
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dL, > dR /2. Consequently

avg = “avg

( H) maX( ) < 4 { dII'I‘IaX dﬁax } < 4 dIIIl]aX dﬁax < 8
ra io s -max N < max _— < oC
B duvg(G) /4 avg (G) davg(G) dL. (1/2)dR,

and the result holds in this case.
Therefore, in the remainder of the proof we assume instead that |R’| < |L|/2. Further,
since G is bipartite we know that d% , > 2dR avg- Note that this implies that [L[/|R] > 2

and therefore k € [|L|/(2|R’|), |L|/|R’|]. Note that the average degree of a vertex in

Lin G’ is at least davg /2, by our reasoning regarding G’ and consequently, since the

graph is simple |R’| > davg /2. This implies

L
|L| IRl _ davg
>|R| > — > — >20log(2
7 2 IRlz =52 —= >20log(2n)
where the last inequality follows from the assumption on the input. Further, by design
we have that for all b € R

degs (b) > davg/z > 20log(2n) .

Consequently, Lemma 3.13 applies to BipartiteSplit(G’, (L,R’), k) and for all i € [k]
and b e R

degg, (b) 3degg (b)
2k 2k

degg;, (b) €

and L] < [|L| 3|L|]

2k’ 2k @)

Now letdk  := = Volg (1) /IL] anddavg := Volg' (R")/|R’|. Note that |L;| < 3|L|/(2k) <

avg

3|R’| and k < |L|/|R’| = deg/d This implies

avg®

degG,(b) avg
davg (G d b) > > )
6 = TRy ILIbZR;, egc,(b) = 2|R’| Z ak

Since the average degree of a vertex in R’ in G’ is at least the average degree of a
vertex in R in G, we have davg > dfvg Further, we have divg < dang < gg /k by the
construction of G’. This implies

dmax (Gi) < max{(3/(2K))df o diax} < € - max{(3/(2k))dig, die/k} < 2¢-df, /K
and dratio (G;) < 8c . Further, since dfvg > dfvgk and difvg > d;fvg /2 by the construction
of G, we have that dayg(G;) > d avg/8. Consequently, the volume lower bound, degree
regularity bound, and minimum degree bound follow from the fact that invoking
DegreeLowerbound(G;, 1/2) only removes edges and decreases the volume by at most
a factor of 2 and decreases the min degree to at most (1/2) the average by Lemma 3.12.
Finally, the vertex size bound followed from the bound on k and that the only vertices
repeated are R’ which are repeated at most k times. O

We now have everything we need to present RegularDecomp (Algorithm 8), our

graph decomposition algorithm, and analyze it to prove Theorem 3.11, the main result
of this section.
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Algorithm 8: {G;}c[x] = RegularDecomposition(G)

Input: Undirected, unweighted, connected graph G = (V, E) with n-vertices
and m-edges
1 G’ = (V',E’) for G’ := DegreeLowerbound(G, 1/2);
2 Let® S; :={a € V' | degs(a) € [e"},e')} foralli € [1,k] where k = [log(n)];
3 Hour =0 ;
4 for i,j € [k] withi < j (including i = j)do
5 LetVij:=S;US;jand E;; .= {{a,b} € E' |a € S;,b € S;} ;
6 Let G;j := (S;US;, Eij) ;
7 if Vol(G; ;) > Volg (S;)/(21logn) and Vol(G; ;) > Volg (S;)/(21og(n))

then
8 if i = j then Hoy := Hour U {DegreeLowerbound(G; ;), 1/2} ;
9 else Hour := Hour U BipartiteDecomp(G; j, (S;,S;))
10 end

11 end
12 return all output graphs computed

ProoF oF THEOREM 3.11. First we show that whenever BipartiteDecomp(G) is in-
voked by the algorithm in Line 9 on G; j then Lemma 3.14 applies with ¢ < 4elogn,
dﬁvg > 40log(2n), dfvg > 401log(2n). Fix an invocation of BipartiteDecomp(G) on
Line 9 fori # jandlet L = §;, R = §;, and dﬁvg = Volg,,;(Si)/|Si| and dfvg =

Volg, ;(S;)/S;|. By design, for all a € S; and b € S;
deg. (a) € [e'™',€'] and degg, (b) € [e/7, /] .
Therefore, by the guarantees of Lemma 3.12 for G’ := DegreeLowerbound(G, 1/2)
¢! 2 e dmin(G') 2 (1/(2€))davg(G) = (1000/e) (log(2n))? .

Further, since Vol(G; ;) > Volg/(S;)/(21logn) and Vol (S;) > |S;i|e’~! /2 by the degree
bounds of a € S; we see that
" Volg, ;(Si) _ Vol (Si) el! 1000 log(2n)?

d = > > > > 401 2 .
e |S;:] NI Zlogn - 4logn - 4610gn = Og( n)

By the same reasoning dfvg > 40log(2n). To bound ¢, note that deleting edges can
only decrease degree and therefore

degg, (a) degs (a) e’
max < ma - < —
acl da{-vg acL (e=1/(4log(n))) = (ei=1/(4-logn))

Since by symmetry the same bound holds for R, the desired bound for ¢ holds.
(Vertex Bound): Note that a vertex can appear in at most k different G; ;. Conse-
quently, the result follows by Lemma 3.12 and Lemma 3.14.
First note that by Lemma 3.12 we have Vol(G”) > (1/2)Vol(G) and dp, (G') >
(1/2)davg (G).

=4elogn .

, Vol. 1, No. 1, Article . Publication date: January 2023.



Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 33
(Volume Bound): Note that by Lemma 3.12 we have Vol(G’) > (1/2)Vol(G). Further,

define the set P := {(i, j) € [k] x [k] | i < j} and let

Py = {(i, j) € P|Vol(G;;) = Volg'(S;)/(21logn) and Vol(G; ;) > Vol (S;)/(2logn)}.

Note that P contains the indices for every G; ; considered and that P> denotes the

subset of them for which the volume of G;; is large enough that Line 7 is true. By

design,
Vol(G'(S;)) Vol(G'(S;
Z Vol(Gy ;) < Z (max{ 02(1 (J)), 02(1 (l))})
(i,j)€P\Ps (if)eP ogn ogn
k 1
< Vol(G'(S;)) < =Vol(G) .
< Togn 2 Vel(G'(5)) < 3Vel(G)

ie[k]

Since every edge e € E’ is in some G; ; this then implies that

Z Vol(G; ) = Z Vol(G; j)— Z Vol(Gy ) > Vol(G’)—%Vol(G’) > iVOl(G) .
(i.j) P (i.j)eP (i.j)eP\P>
Since our output is simply the result of invoking DegreeLowerbound and
BipartiteDecomp on these graphs and by Lemma 3.12 and Lemma 3.14 and these
procedures decrease the volume by at most a factor of 8, the result follows.

(Degree Regularity Bound): For graph G; ; with i # j this follows from the bound
on ¢ < 4elogn given in the first paragraph of this proof, Lemma 3.14, and that
16 - 4elogn < 1000 log(2n). For graph G; ; with i = j, the same reasoning implies the
ratio of the maximum degree to the average degree is at most ¢ and the result follows
by Lemma 3.12, which shows that DegreeLowerbound(G; j, 1/2) only decreases the
maximum degree and makes the minimum degree is at least half the average degree.

(Minimum Degree Bound): By the reasoning of the first paragraph of this section we
know that whenever BipartiteDecomp(G) is invoked by the algorithm in Line 9 on
Gi,j then

k> Volg/ (S;) > Ain(G”) > dan(G)

8 7 1S - 2logn — 4logn 8logn
where in the last step we used that the average degree in G’ is at least the average
degree in G by Lemma 3.12. Consequently, the result follows again by Lemma 3.12,
Lemma 3.14, and the fact that 16 - 8§ < 250. m|

3.4 Putting it All Together

Here we show how to put together all the results of the previous subsection to prove
Theorem 1.9. Our algorithm, PathSparsify (Algorithm 9) simply performs a regular
decomposition of the input graph by Algorithm 8 (Theorem 3.11) of Section 3.3 and
then performs of partial path sparsification of each of these graphs by Algorithm 4
(Theorem 3.8) of Section 3.2. In the remainder of this section we provide and analyze
PathSparsify (Algorithm 9) to prove Theorem 1.9 (restated below for convenience).

THEOREM 1.9 (EFFICIENT PATH SPARSIFICATION). Given any n-node, m-edge graph
and parameter k > 1 the procedure, PathSparsify(G, k) (Algorithm 9) outputs w.h.p.
F C E with |F| = O(nk log®(n)) such that G[F] is a (k, O(log’ n))-path-sparsifier of G
in expected time O(m + nk log™ (n)).
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Algorithm 9: F = PathSparsify(G,k > 1)

Input: G = (V, E) simple input graph with degrees between dpin and dpmax

Output: F C E with |F| = O(nklog’(n)) such that G[F] is a

(k, O(log’ n))-path-sparsifier of G

1 kpartial :G)(log3 n); // For constants in kpatal See Theorem 1.9 proof
2 Eremain < E, F < 0;
3 while dayg(G(Eremain)) > 2000(log(2n))? do
4 {Hi = (Vi, Ei) }ie[r] < RegularDecomposition(G) ; // Algorithm 8
(Theorem 3.11)
5 fori € [¢] do
6 (FD,EY) — PartialPathSparsify (H, Kpartial) 3 // Algorithm 4
(Theorem 3.8)

7 end
8 F « Uie[{’]F(i) and Eremain < Uie[f]Eélll)t >
9 end

10 F < F U Eremain;
11 return F;

Proor oF THEOREM 1.9. We first consider the execution of a single loop of Algo-
rithm 9, i.e. Line 3 to Line 9. Since dayg(G(Eremain)) > 2000(log(2n))? we can apply
Lemma 3.12 to analyze the execution of RegularDecomp. Lemma 3.12 implies that
this line takes expected O(|Eremain|) time and outputs {H; = (V;, E;) }i¢[,] such that at
least constant fraction of the edges of Eemain are in the E;, 3¢, |V (H;)| = O(n logZ n),
dratio (H;)) = Q(log(2n)), and dmin(H;) = Q(davg(G) /logn) for all i € [£] (where we
used that the number of vertices in |Eremain| is at most n). Consequently, in a single
execution of the while loop, Theorem 3.8 shows that Line 6 takes time

@) Z |El| + |Vi|kpartialdrati0 (Hl) 10g8(n) =0 (|Eremain| + nkpartial logg(n)) (8)
ie[¢]

and w.h.p. in n outputs {(F, Ec(‘i)t)},-e[[] such that

Z |F(l)| =0 Z |Vi|kpartia1 . dratio(Hi) log(n) =0 (nkpartial logz(’l))
ie[¢] i€[¢]

each H;(F) is a (Q(kpartial/log3(n)), O(log5 n))-path sparsifier of (V;, E; \ Eélll)t) and
2iele] |E£;)t| < ¢|Eremain| for some constant ¢ € (0, 1).

The preceding paragraph ultimately shows that w.h.p. each iteration of the loop,
i.e. Line 3 to Line 9, takes expected time O(|Eremain| + Mkpartial log’(n)) to output a
(Q(kpamal/log3(n)), O(log5 n))-path sparsifier on a constant fraction of the edges.
Consequently, the loop terminates in O(log|E|) = O(logn) iterations. Note that
when the loop terminates dayg (G (Eremain)) < 2000(log(2n))? and therefore |Eemain| =

O(nlog®(n)) = O (nkpartial log®(n)). Consequently, F returned by the algorithm has size
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Algorithm 10: Z = Sample({Yy, ..., Y }, X, 7, §) (from [CKM*])
Input: Y; = v;0] are rank one matrices, 7; are upper bounds of leverage scores,

ie. 7; > tr[Y;X"] for all i, and § < 1 is an arbitrary parameter.

Output: Matrix X satisfying conditions of Lemma 4.1.

1Z <X, 5= Yie(m) Tt = 5 1s

2 r « randomly chosen integer in [, 2t — 1]

3 forj=1,2...rdo

4 Pick index i with probability proportional to ;

5 | Ze—Z+ TéiY,-

6 end

7 return Z

at most O (nkpartial log3 n). Further, note that if for any edge-disjoint graphs G; = (V, E;)
for i € [k] and F; C E; it is the case that each G[F;] is an (, f)-path sparsifier of
G; then G[U;e[k)F;] is an (a, f)-path sparsifier of G = (V, U;e(x]E;). Consequently,
G[F] is an (Q(kpartial/ log®(n)), O(log® n))-path-sparsifier of G. By choice of constants
in the setting of kpariial = O(k log® n) we have that the output of the algorithm is as
desired. Further, the run time follows from the reasoning in the preceding paragraph
about the runtime of a single loop (i.e. (8)) and that the number of edges in Eyemain
decrease by a constant in each iteration.

[m}

4 LAPLACIAN SOLVERS WITH LOW-STRETCH SUBGRAPHS

In this section, we prove our main theorem regarding algorithms with improved
running times for solving Laplacian linear systems. We show how to use the low
distortion spectral subgraphs developed in Section 2.2 to prove the following theorem.

THEOREM 1.6 (O(m)-LAPLACIAN SYSTEM SOLVER). There is a randomized algorithm
which is an e-approximate Laplacian system solver for any input n-vertex m-edge graph
with polynomially-bounded edge weights (see Definition 1.2) and € € (0,1) and has the
following runtime for any y > 0

O(m(loglog n)**2V1%X 1og(1/e)) .

Our proof is based on an analogous claim in [CKM*] regarding different spectral
subgraph guarantees. Several proofs in this section are adaptations of lemmas from
[CKM*] to our setting. We provide the proof in full here both for completeness and
because the specific guarantees of [CKM*] do not tolerate the extra edges in our
preconditioners coming from our path sparsifiers. In addition our analysis based on
noisy accelerated gradient descent is slightly tighter than that of [CKM*], enabling us
to obtain an improved guarantee.

A key matrix fact we apply in this section is a slight extension of a claim from
[CKM*] regarding Sample (Algorithm 10), a matrix sampling procedure from [CKM*].

Lemma 4.1 (Adaptation of Lemma 2.3 from [CKP*14]). Suppose X andY = ¥;cp) Yi
are symmetric matrices with the same null space such that X <Y, b = Yx, and x is
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an arbitrary vector. Let the Y; matrices be rank-one, and let T € Rgo be leverage score
overestimates in that they satisfy 7; > tr[Y;X']. Let Z = Sample({Yy, .. Y }, X, 7, %),
and define x’ as
x'=x- iZT(Yx - b).
10

Then
’ _ 1 B
B (I 18] < (1= 35 =l ©)

Further, Z can be computed in O(m + ||7||,) time, and each matrixY; is added at least
once to Z with probability at most min{1, 20z;}. Finally, for some fixed constant cs with
high probability in n we have

Y < Z < ¢slognY.
cslogn

Proor. Equation 9 and the bound on the algorithm’s runtime are directly copied
from Lemma 2.3 from [CKP*14]. For the bound on the probability Y; is added to Z,
we look at each execution of line 5 of the algorithm. For iteration j, we pick Y; with
probability %. Thus, we pick Y; at most rZ < % < = 207; times in expectation. The
conclusion follows by Markov’s inequality. The final claim follows immediately from
Lemma C.2 from [CKP*14]. O

We additionally employ a partial Cholesky factorization lemma from [CKM™*] which
enables us to reduce solving ultrasparse graph Laplacians to solving Laplacians with a
much smaller number of edges.

Lemma 4.2. Let G be a weighted graph on n vertices and n+m’ edges. There is a routine
EliminateAndSolve(G, Solve, b) which computes a vector x satisfying

v

< (—:HLZEb‘

2 2
Ls Lo
using O(n + m’) time plus one call to Solve, which is an e-approximate solve for graphs
with at most O(m’) nodes and edges.

Variants of this result are used in many prior Laplacian system solvers, e.g. [ST,
KMP, KMP14]. For a detailed proof of this lemma with floating-point error analysis
see Appendix C of [Pen13].

We now assemble these pieces to give an algorithm for solving Laplacians in graphs
which contain ultrasparse low-stretch subgraphs:

Lemma 4.3. Let G be a weighted n-node m-edge graph and let G’ be a subgraph of
G withn +m’ edges. Let 11, ... 7nRE be values satisfying 7, > weRgf(u, v) for any
e = (u,0). Let b be a vector, and let x = ..Céb. Then if Solve is a (1600c2 log® n)~!-
Laplacian solver (Definition 1.2)’, Algorithm PreconRichardson(G, G’, 7, b, €) computes
a vector x satisfying
B [|lx - 2%, | < ellelly,

using O(log 1/¢) iterations. Each iteration consists of O(m + ||z||,) work plus one call to
Solve on a graph with O(||z||; + m") edges.
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Algorithm 11: Z = PreconRichardson(G, G’, 7, b, €, Solve)

Input: G graph, G’ subgraph, 7; are upper bounds of leverage scores through
G’, b vector, € error tolerance.
Output: x approximately satisfying Lgx = b.
1 x1<0
2 fori < 1to200log1/e do

3 H; « Sample(G,G’, t, %

4 if |[E(H;)| < 1600 ||z]|; + |[E(G’)| then

5 ri— Lgxi—b

6 y; < EliminateAndSolve(H;, Solve, r;)
7 Xit1 < Xj — %yi

8 end

9 else

10 ‘ Xi+1 < Xj

11 end

12 end

13 return x;

Proor. We bound the expected decrease of ||x; — 32||2£G in an iteration. We first
show the condition on Line 4 holds with large probability. By Lemma 4.1 the expected
number of edges added to G’ when forming H is at most 20 ||7||;. Thus by Markov’s
inequality H contains fewer than |[E(G”)| + 1600 ||z||,; edges with probability at least
1- %. If we call this event p, by Markov’s inequality we have

2

E

] e
x- (xi - Eﬁ}{i(ﬁGxi - b))

1 - 2
E s@—%%u—muG

Lc

where the expectation is over the randomness within a single iteration of the while
loop. Now by the guarantees of Solve and Lemma 4.1 we know that in each iteration
with high probability

? 2 cslogn 2
E ”-—LT rH < (¢slo nE[”-—LT r“ <5 Tr,”
[ Yi H| . (cslogn) Yi T Lu, 1600¢2 logzn ;i n,
1 _ 2 cslogn B ,
P Za)2. < _Sstoen T
< 1600cslognllllc(x x,)ll% < 16000510gn”'£G(x I

1 - 2
=—||x—x; .
s lE-xil,
Now, note that for any two vectors u, v and any Euclidean norm we have

llu+ol? = llull® +loll® +2uTo < (1+a) Jlull* + (1+a™") Jlo||*
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for any a > 0 by the Cauchy-Schwarz inequality and the AM-GM inequality. With
this, we obtain for any a > 0

1 1 1
llx - xi+1“2£(; = '9_5 - (xi - Eyi + E‘ETz—ri - ELLiri)
L

2
1 1 2
<(l+a)|x—|xi—-—Lr +— (1+a? )-—LT rH

(1+a) (’ 10 il)LG 100( v e
. _ 1 .
Choosing a = 105> We thus obtain

1 1 401
E [||x — x|l <1+ —=||1- = lIx-xl%. +— | —|lI% - x>
(15 = %1l Ie] ( 400)( 80)” %, 100(1600)” %,

1 2
<l1-=|lIx=xl>. .
( o5 I =l
Therefore we obtain

E [IIx = xi11l%, | < Pr(p)E [lIx = xisall%,, Ip] + Pr(=p)E [I% = xis1ll,, 1-p]
1 1 _ 2 1 . 2
< (1 - %) (1 - ﬁ) lI% = xill%y, + 20 lI% = xill %,

1 - 2
< (1— m) % = xill %, -

As we perform 200 log 1/¢ iterations, this error decrease guarantee implies the output
x satisfies the desired bound of
1 )20010g1/e

2
_ 2 = 2 —12
E[I%-xl%, | < (1 - % = xill%, < ell=ll%, = e”.ﬁéb”LG .

200

We now bound the runtime per iteration. In each iteration we make 1 call to Sample,
which by Lemma 4.1 requires O(m + ||z||;) time. Now if the sampled subgraph H; does
not satisfy the condition on line 4 of the algorithm, we conclude the iteration. If we
instead have |E(H;)| < 3200 ||z||; + |E(G")|, the call to EliminateAndSolve on line 6
requires O(m) work plus a single call to Solve on a graph with O(||z]||; + m) edges.
The claim follows. O

Finally, we apply this primitive recursively to precondition an accelerated gradient
descent algorithm with guarantees given by the following theorem.

THEOREM 4.4 (RANDOMIZED PRECONDITIONED AGD). Let A, B € R™*" be symmetric
PSD matrices with A < B < kA fork > 1, letb € im(A), let € € (0,1) and let Solvep
be a ﬁ—approximate solver for B. Then PreconditionedNoisyAGD(A, b, €, x, Solvep)
(Algorithm 13) is an e-approximate solver for A and its runtime is the runtime of
O(+klog(1/e€)) iterations each of which consist of applying A to a vector, invoking

Solveg, and additional O(n) time operations.

While related theorems are standard to the literature and a deterministic variant
analyzing Chebyshev iteration appears in [CKM*], we provide this theorem both for
completeness and to simplify and improve our analysis. The theorem is discused in
greater detail and proved in Appendix C. With this, we have the pieces to give our
final algorithm for solving Laplacian linear systems:
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Algorithm 12: Z = RecursiveSolver(G, b, €, §, LowStretch)
Input: G graph,b vector, LowStretch oracle that returns low-stretch subgraphs,
€ € (0,1/2] error tolerance, § € (0, 1)
Output: x approximately satisfying Lsx = b.
Let z denote the solution of f(z) + 2 + § = z, where f is defined in Theorem 4.5
v = C(loglog n)?, for sufficiently large constant C
{H, t} <« LowStretch(G, z)
K < an overestimate of ||z||; output by LowStretch, n « y_r:
G =G+(y-1)H,7 <—%

6 RecSolver « RecursiveSolver(-, -,

[

gaoe W N

1
16002 o’ LowStretch)

7 RichardsonSolverg: = PreconRichardson(G’, yH, v’ , RecSolver)

L
> Tog
8 x « PreconNoisyAGD(G, b, €, n, RichardsonSolverg/)

9 return x

THEOREM 4.5. Let G = (V, E, w) be a n-node m-edge graph and let LowStretch by an
algorithm which takes as input an n’-node m’-edge graph G’ and parameters C,c > 0
and returns a x-distortion subgraph of G with at most n’ + m edges and a
corresponding vector of leverage score overestimates in O(mloglog n) time, where

k=0 (m (loglog n')f(c))

for some concave, monotone increasing function f with f(0) > 0. Let § > 0 be a
parameter, and let z denote the (unique) solution to the equation f(z) + 2+ 6 = z. Then
for all sufficiently large n RecursiveSolver is an e-approximate Laplacian solver for G
with running time

O (m(loglogn)* ' log(1/e)).

Proor. We first prove the algorithm is an e-approximate Laplacian solver. We
proceed by strong induction on m, the number of edges in the input graph G. Assume
that RecursiveSolver’s output is correct for all graphs with fewer than m edges. In one
level of recursion, we construct a subgraph H with associated stretch overestimates 7
with n +y~!m edges that achieves x-spectral distortion for

x < {m(loglogn)f®),

where { is an absolute constant. We use this to form a graph G” with stretch overesti-
mates 7’ = % We observe that

nH<G" and GG =(n-1)H+G=nG

since H is a subgraph of G: thus we conclude that 7’ are valid stretch overestimates of
the edges in G’. Further, the choice of parameters 7, k, y implies that PreconRichardsong
on line 7 applies RecursiveSolver to graphs with O(y~'m + 7 'x) = O(y~'m) edges:
for sufficiently large constant C we see that this is less than m. Thus the calls to
RecursiveSolver are correct by induction, and by Lemma 4.3 RichardsonSolverg
is a ﬁ-solver for G'. Finally since G’ =, G we conclude by Theorem 4.4 that
PreconNoisyAGD is an e-appoximate Laplacian solver: this completes the induction.
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We now bound the running time of the algorithm. Fix a constant value m,, and
note that RecursiveSolver runs in O(1) time for all graphs with fewer than mg edges
since the proof of correctness implies that the algorithm runs in finite time. Let
7 (m, €) denote the running time of our algorithm on a graph with m > m, edges with
error parameter €. In one level of recursion, we first perform one call to LowStretch-
this requires O (mloglog n) time. All remaining steps in our recursive algorithm are
trivially O(m) time except for the call to PreconNoisyAGD on line 8. We recall L5 <
L < nLg: by Theorem 4.4 the call to PreconNoisyAGD performs O(+/i7log(1/¢))
iterations, each of which performs O(m) work plus one call to RichardsonSolvergss with
error parameter ﬁ Observing that ||7'||; < 7'k = y"'m < m, by Lemma 4.3 each
of these calls to PreconRichardson runs in time O(mlog(n)) plus the time needed for
O(log(n)) calls to RecursiveSolver on graphs with O(y~!m) edges and error parameter

! . Thus, one recursive loop of the algorithm performs

1600c log® n
O(mloglogn) + O (m+/log(1/€) logn)

work plus the cost of O (y/7log(1/€) logn) calls to RecursiveSolver on graphs with at
most By~ 'm edges (where f3 is the constant hidden in the big-O notation) and error
parameter &04¢. This implies the recurrence

T (m,€) <y (loglogn ++fylog(1/e)logn) (m+T (By~'m, esorve))

for some explicit constant 1. Define ;7v'(m) = T (m, €5010e). We first establish and solve
a recurrence for 7 (m): we will use this to prove the full runtime claim. Since fy~'m <
m we may apply our induction hypothesis: further as > 1 and log(1/éso10e) <
2loglogn+ O(1) < 3loglogn for n sufficiently large we have

T (m) < 4y (7 log nloglogn) (m + %(ﬂy‘lm)) .
We will show that

Esolve =

NN

4y (Vi lognloglogn) fy™" <

for the appropriate choice of constant C: this will allow us to apply the master theorem
for this recurrence. Observe

n="" < ¢ (loglogn)’®y = { (loglogn)* > y = {C'y* (loglog ) 2~ (10)
m
Thus

4 (v lognloglogn) By~ < ayV2CV2Blog n (loglogn) /2.

Aslogn < 2logy + O(1) = O(logloglogn) and m > my, we choose my sufficiently
large and conclude

4y (Vilognloglogn) fy™! < 4y *C™1/? < Z

for a sufficiently large choice of C. Thus for any m > my we have
T (m) < Za_l (m +‘7~'(am))

for @ = fy~!. The master theorem thus implies

7 (m) < O(am) =0 (m (loglogn)*®)
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for all m. Applying this to the recurrence for 7 (m, €), we obtain

T (m,€) < ¢ (loglogn + /nlog(1/€) logn) (m +T (ﬁyflm))
< O (mloglogn + m+/nlog(1/e€)logn)
since ;I:(,By_lm) = O(m). We note by (10) that

Vn <0 ()’ (loglog n)_l_‘s/z) =0 ((log log n)z—l—5/2) .

We now observe logn < (loglogn)®/? for large enough nand z = 2 + § + f(z) > 2:
these together imply

T (m,€) < O (mloglogn +m (loglogn)* ' log(1/€)) = O (m (loglogn)*~ ' log(1/€))

as desired.
m}

Finally, we apply the k-distortion subgraphs computed in Theorem 1.5 to obtain
our main result:

THEOREM 1.6 (O(m)-LAPLACIAN SYSTEM SOLVER). There is a randomized algorithm
which is an e-approximate Laplacian system solver for any input n-vertex m-edge graph
with polynomially-bounded edge weights (see Definition 1.2) and € € (0, 1) and has the
following runtime for any y > 0

O(m(log log n)**2V1%*X og(1/e)) .

Proor. We observe that the procedure given in Theorem 1.5 yields k-distortion

subgraphs with n + m edges, for

k=0 (m (loglog n)“‘/g“’(l)) )

For sufficiently large n and constant in the big-O notation, this satisfies the conditions
of Theorem 4.5 for function f(x) = 1+ V8x + § for any § > 0. Theorem 1.5 constructs
such subgraphs in O(m) time which is sufficient for our guarantee. Substituting these
into the guarantee of Theorem 12 gives an e-approximate solver running in time

O (m(loglogn)*'log(1/e)),

where z is the solution to Y8z + 3 + 28 = z for any > 0. Solving this equation reveals
z = 7+ V40 + 85 + 28: by choosing § sufficiently small this gives an exponent of
6 + V40 + y for any y > 0. We remark that 6 + V40 ~ 12.324. O

We made only limited attempts to optimize the loglog dependence of this algorithm.
We believe this dependence may be improved and here describe possible improvements.
First, our method of analyzing the recursion is in some sense, weaker than that of
[CKM*]. In their setting the low stretch subgraph is a tree: in that case the recursively
generated subproblems natively contain a low-distortion subgraph with k = O(m).
This observation enables them to make different choices for the recursion parameter 5.
Although this observation is key to ensure their algorithm runs in O(m+/log n) time
and not O(m log n), in our case the only effect is to reduce the polynomial dependence
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on loglog n. By carefully applying this technique to our setting we believe our runtime
can be improved.

A larger obstruction in obtaining a better runtime is the use of a “bottom-up"
recursion based on [AKPW95] in our construction of k-distortion subgraphs. While
this suffices to obtain our claim, our running time would be much improved by using
a “top-down" graph decomposition more closely resembing [CKM™*]. We leave it as an
interesting problem for future work.

As an additional remark we observe that we can convert the expected-decrease
guarantee of Theorem 1.6 to a high-probability bound, provided that we allow our
runtime bound to hold in expectation and with an extra O(log log n) factor. To obtain
this, we use Lemmas 4.5 and 4.9 from [CKP*14], which allow us to construct a linear
operator Z satisfying £7 < Z < log*nL" which can be computed and applied

in O(mloglogn) time.” With this, we simply apply Theorem 1.6 with € « 210;4’1:

Markov’s inequality implies the output x has || Lx — b||2£T = ”x - LTbHZL < log+n ”bHZL
with probability 1/2. If this holds, we may use Z to verify in O(mloglogm) time

whether Hx - .C"'b”zl <e ”bHZL' The claim follows by repeating this procedure until a
desired solution is found.
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A ULTRASPARSIFIERS BY SPECTRAL GRAPH THEORY

In this section, we prove our two main results regarding ultrasparsifiers. We begin by
proving the existence of ultrasparsifiers for sums of arbitrary rank-1 matrices.
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THEOREM 1.3 (ULTRASPARSIFIER EXISTENCE). Letvy,...0m € R" and A = }icm) o]

For any integer k > 2, there exists S C [m] with |S| =n+0O (L

\@) andw € R'Z”o where

A< Z wiviv;r < kA.
ies
To obtain this result we first give the following Theorem A.1 regarding spectral
properties of subsets of sums of rank one matrices and then we use it to prove Theo-
rem 1.3.

THEOREM A.1. Letv;...0,, € R" and let A = 3¢, viv] be full rank. For anyk > 1
there exists S C [m] with |S| < n+ % such that B = };csv;0] has tr[B~1A] < mk.

Proor. We start with S = [m] and greedily remove elements from S to minimize
the increase in tr[B~!A]. Observe that the initial value of this trace is n since B = A.
By the Sherman-Morrison formula for rank 1 matrix updates, for any invertible matrix
M and vector v with o "TM™ 1y # 1

~1,, TAf-1
M-00")' =M1+ M and is invertible .
1-0™™M '
With this, we analyze the change to tr[B~'A] after one element is removed from S.
Foranyi € S,

v/ BTTAB'y;

tr[ B - v;0; _1A] =tr[B'A] + — ——
( i) [ | 1-9/Bly;

We consider randomly sampling i to remove from S with probability p; o« 1-v B~ '0;.
We will show the increase to the trace is bounded in expectation. Since for i € S,
v;v] < B, all the p; are all nonnegative and non-zero only when 1 —v/B™'v; > 0.
Selecting i in this way yields

v/ B 'AB " y;

]E[tr[(B—viv ” 1A]+Z: B T B '
<0, BTTAB™ 10-

= tr[B'A] + Z’ES d '

ZiGS 1- U;B_lvi '
By the cyclic property of trace, we observe ;.50 B"'AB 'o; = tr[BBT'AB™'] =
tr[B~'A] and };c5 1 — v, B 'v; = |S| — n. Applying these equations yields

B [tr [(B-00]) " A|| = (Bl (1 + ISl;—n)
and therefore whenever [S| > n, there exists some i € S satisfying
S| —-n+1
L=y

By repeatedly applying this bound from |S| = m to [S| = n + [£], we remove all but
n + ¢ elements from S and end up with B satisfying the desired bound of

tr[BflA] <n 1_[ (s;il:;l) :n(m:l/nk+l) < mk.

s=n+[ %]

tr [(B - viv;r)_l A] < tr[B7'A] (1 + |5|;—n) = tr[B!A] (
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[m]

We now show a modification of [BSS14] which allows us to convert the output of
Theorem A.1 into an ultrasparsifier.

THEOREM A.2. Letv,0s,...,0, € R™ be vectors such that ); viv;'— =1 Let A € R™"
be a matrix satisfying A < I and tr[A™'] = k. Then for any q > 0 with [(x +2n)q] < n,
there exists S C [m] with |S| = [(x +2n)q] with corresponding weights w; > 0 such that

gl <A+ Z wivivgr < 3L

ieS

Our proof of this result is as a consequence of technical lemmas from [BSS14]
restated below.

Lemma A.3 (Combination of Lemmas 3.3, 3.4, 3.5 from [BSS14]). Let vy, vy, ...0,, € R”
be vectors such that Y,;v;v] = I Define the functions ®*(M) = tr[(ul - M)~'] and
®;(M) = tr[ (M — I)71]. Let A be a matrix satisfying I < A < ul as well as

®“(A) <yy and P;(A) <yr.

Then for 8y, 81, satisfying 1/6y + yu < 1/61 — y1 there existsi € [m] and t > 0 such
that (1+6.)I < A+ tvp] < (u+y)I as well as

putou (A+tvo]) <yu and Pus, (A+too]) <yr.

Our use of Lemma A.3 mirrors its use in [KMST]: we iteratively add vectors to
the output of Theorem A.1 to increase the spectral upper and lower bounds on A
appropriately. After a small number of iterations, we certify that A is appropriately
spectrally bounded and terminate.

PRrOOF OF THEOREM A.2. We let A(®) := A and for j > 0 iteratively define AU*V :=
AV 4+ to] for some t > 0 and i € [m] (each depending on j). Further, we set yy = n,
yL =K1y =21 =08y =1 6 = 7. Observe that

ot (A<°>) —tr(2I-A) <t <n=y
and
D, (A(O)) =tr (A_l) =K=Yyr.

Further, the choice of parameters ensures 1/6y + yu < 1/6r — y1. Thus, inductively
applying Lemma A.3 yields that for each j > 1 there exists t > 0, and i € [S] where
AV = AU-D 4 too] satisfies

Uty (A(j)) <yy and Dy (A(j)) <y
Therefore A®) for s = [(x + 2n)q] satisfies the desired bound of

gl < (Ip+s8) T < A < (ug +s6y) 1 < 31

where in the last inequality we used the upper bound on s. O
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Finally, we combine Theorem A.1 and Theorem A.2 and give the proof of Theo-
rem 1.3.

PROOF OF THEOREM 1.3. We note that we may assume A = 3 ;c(,,) 0;0; is full-rank:
otherwise we may add u; € ker(A) to make the result full rank, run the rest of the
proof, and remove the added u; before returning the output. Since the u; are orthogonal
to the v;, removing them cannot affect the space spanned by A’s eigenvectors.

By applying [BSS14], we can find a collection of 34n vectors 01,0, .. .,v;,, which
are reweighted copies of the v; and satisfy A < };c[16n] 0] (z;lf)T < 2A. We assume
k > 1000 in the rest of the argument: the v; immediately satisfy our requirements
otherwise as k was assumed to be at least 2.

Given the vectors v},0),...,0},,, define C = ¢34, 0] (vlf)T: note that %C < 2A.
As C is therefore full-rank, we apply Theorem A.1 and thus obtain a set S of n + 7
vectors such that

-1
tr|C (Z v,-oiT) < 34nk.

ieS

Thus, B = CV2 (¥;e5v;07) C™V/2 has B < I (as it is formed from an unweighted
subset of the vectors that form C) and tr(B~!) < 34nk. Applying Theorem A.2 with
k = 34nk and q = ﬁ, we observe that there exists a set T of (x +2n)q < ¢ vectors
with corresponding weights w; > 0 such that

1
36k?

C < C*BCY2+ Y wo] < 3C.
ieT

Using the definition of B and rearranging, we obtain

1 1
—A<X—C=x wivo; < 3C < 6A
36k? 36k?2 i;T T

Finally, [SUT| < |S|+|T| <n+ g +7 =n+ %: the output is a sum of outer products
of at most n + ZT" vectors. The claim follows by choosing k < 216k? and scaling the
output. O

We made no attempt to optimize the constants in the above proof. We additionally
remark that Theorem 1.3 immediately implies the existence of k-ultrasparsifiers with

n+0 ( \/1:171) edges: we simply apply it to a graph Laplacian written in the form

YeerG) (VWebe) (Vwebe) . We now construct ultrasparsifiers for graphs with im-
proved guarantees by combining our x-distortion subgraph construction with this
BSS-derived framework. We begin with the general claim of our construction: we
specialize it to several interesting parameter regimes as a corollary.

THEOREM A.4 (POLYNOMIAL-TIME ULTRASPARSIFIER CONSTRUCTION IN GRAPHS).
Let G be any n-vertex graph with polynomially-bounded edge weights. There exists a

polynomial time algorithm which constructs a reweighted subgraph H withn + O (%)
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edges such that Ly < L < aLy for

yexp (\/8 logy - log (48 log (ylog" n) y/log y)) log (ylog' n) y/log y)

Proor. We note that by preprocessing the graph with [BSS14], we may assume that
the graph has O(n) edges with at most a constant factor loss in the final approximation
error. We employ Theorem 2.5 with k = ylog'® n and path sparsification algorithm
given by Theorem 1.9. By the theorem’s guarantee, this returns a subgraph G’ in
polynomial time with

1 10 10
+O(n o8 n+nlogy+2):n+o(nlog n+ﬁ)=n+0(ﬁ)
k k2 % ylogn v Y
edges. Further, the output subgraph is a x-distortion subgraph with

k=0 (ny exp (\/8 logy - log (48 log (ylog" n) y/log y)) log (ylog" n) ylog y) )

a=0

We note that tr [.EIG/ ZLZ;,LE;/ 2] < k by definition of k-distortion, and that the col-

lection of rank-1 matrices weLC_;l/zbeb;rLC_;l/z, e € G sums to L If b.b/ are the edge
Laplacian matrices that form Lg, applying Theorem A.2 with « = 3K—’;/ yields a set S

of [(k +2n)a] =0 ()Q/) edges with corresponding weights w; > 0 such that

3al < L5 L6 L5117+ 3w L5 beb] L5 <31
e€sS

Scaling down the resulting matrix and multiplying both sides of the matrices by
ng gives a reweighted subgraph H with n + O ()ﬂ/) such that a.Lg < Ly < L as
desired. O

As a corollary of this result, we prove Theorem 1.7, which we now recall.

THEOREM 1.7 (IMPROVED ULTRASPARSIFIERS). There exists a polynomial time al-
gorithm which given an input graph G with polynomially-bounded edge weights can
compute a reweighted subgraph H with either of the following guarantees:

e For any constant c, H hasn + edges and satisfies

L = Ly = 0((loglogn)**V&+1+) £,
e For any constant § > 0 and a = w(log® n), H has n + ~ edges and satisfies
Lo < Ly <a™W L.

Proor. We employ Theorem A.4 with different values of y. For the first claim, we
choose y = (loglog n)¢, and note that Theorem A.4 yields a-ultrasparsifiers, with

yexp (\/8 logy - log (48 log (ylog' n) y/log y)) log (ylog' n) ylog y)

=0 ((loglog n)c+\/§+1+0(1))

a=0
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by applying the definition of y. For the second claim, we choose y = « in Theorem A 4:
we obtain an ultrasparsifier of quality

o) (oc exp (\/8 log a - log (48 log (alog" n) y/log a)) log (alog" n) y/log a) .

Since & = w(log® n) for some fixed constant § > 0, we have log (alogn) <
log (¢*19%) + 0(1) = (1+2)loga + O(1) < (2+ Z)loga for sufficiently large
n. Substituting this in, we obtain

o (a exp (\/8 log & - log (48 log (erlog' n) y/log a)) log (e log' n) y/log a)

960
<O|aexp \/8loga-log((96+T)logwa) log*? «

3
=O|aexp \/810ga . (E logloga + O(l)))logg’/2 al=atte®
as claimed. O

B PRIMAL DUAL CHARACTERIZATION OF SHORTEST FLOW

Here we prove our primal-dual characterization of minimum cost flow that we use to
reason about vertex disjoint paths in expanders. Though this is fairly standard and
straightforward, we include a brief derivation here for completeness.

Lemma 3.6 (Dual Characterization of Shortest Flow). For directed graph G = (V,E)
and vertices s,t € V if there are at most F edge-disjoint paths from s tot then there is
an integral s-t flow f € {0,1}% corresponding to F edge-disjoint paths from s to t using
a minimum number of edges and v € RV such that for every (a,b) € e if f, = 1 then
Vg —0p > 1andiff, =0thenv, —vp < 1.

ProoF oF LEMMA 3.6. Forall a,b € V' let 1,5 = 1, — 1, where for allc € V we et
1. € RY denote the indicator vector for c, i.e. the vector that is a zero in all coordinates
except for ¢ where it has value 1. Further, let B € REXV denote the edge-vertex
incidence matrix of graph where for each edge e = (a,b) € E row e of B is 4.

Leveraging this notation, we consider the following minimum cost flow problem
of computing the flow of minimum total length that sends F units of flow from s to ¢
and puts at most one unit of non-negative flow is put on each edge:

min 1 (11)
feRE:f,€[0,1] for all e€E and BT f=F -5,

To see that (11) corresponds to the desired flow problem, note that for all a € V and
feRE BT fla = 1] Ze-(ap)er Sapfe = Le=(ab)er fo = Le=(b.a) fo- i-e. the net flow
leaving leaving vertex a through f in the graph.

There is always an integral minimizer for this problem and it corresponds to F
disjoint paths from s to ¢ using a minimum number of edges.® Letting, 0z, Iy € REXE

8This is a standard result regarding minimum cost flow. One way to see this is to note that given any
solution f to (11) if the edges e with fe ¢ {0, 1} form a cycle (viewing each directed edge (a,b) as an
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denote the all zero matrix and identity matrix respectively, letting Og, 1z € RE denote
the all zero vector and all ones vector respectively, and letting

(B L), (in _(F- 6,
A—(OE IE),b—(am),andC—( i, )

we can write this problem equivalently as

(P) = min bbTx and (D) = max c'y (12)

xeREFE . ATx= yeRV+E seREE : Ax—s=b

where we use RE*E and RV*E denote concatenations of two RE vectors and concate-

nation of a RV vector with a RE vector, respectively. That (P) is equivalent to the
original minimum cost flow problem follows from the fact that f < 1 entrywise if and
only if f + x = 1 for some x € RE | and that (D) = (P) follows from standard strong
duality of linear programs.

Now, let x € R?OE and (y,s) € RV*E x R%E be optimal solutions ot (P) and (D)
respectively in (12). Further, let without loss of generality f be the concatenation of
fe Rgo and1-f e Rgo, let y be the concatenation of v € RY and z € R, and let s
be the concatenation of s' € Rgo and s? € R}io. Further, let f be an integral minimizer
and note that it corresponds to F disjoint paths, and either f, =0 or 1 — f, = 0 for all
ecE.

Now, by optimality of x and s we know that x"s = 0 and therefore f, - s} = 0 for all
e € Eand (1 - f;) - s = 0 for all e € E. Further, for all edges e € (a, b) feasibility of
(y,s) for (D) implies

Ua—0b+ze—sé=1andze—s§=0.

Consequently, if f, = 1 then s} = 0 and we have s} =0, z, = s? and v, —vp = 1 -5, i.e.
0g—vp < 1. Further, if f, = 0 then s? = 0,2z, = 0,and v, —vp = 1+s),ie.0,—vp > 1. O

C RANDOMIZED PRECONDITIONED ACCELERATED GRADIENT
DESCENT

In this section we prove the following Theorem 4.4 regarding preconditioned accel-
erated gradient descent (AGD) for solving linear systems with random error in the
preconditioner. That this accelerated preconditioned linear system solver handles
randomized error aids our analysis in Section 4.

THEOREM 4.4 (RANDOMIZED PRECONDITIONED AGD). Let A, B € R™*" be symmetric
PSD matrices with A < B < kA fork > 1, letb € im(A), let € € (0,1) and let Solveg

be a ﬁ—approximate solver for B. Then PreconditionedNoisyAGD(A, b, €, x, Solvep)

(Algorithm 13) is an e-approximate solver for A and its runtime is the runtime of

undirected edges {a, b}) then flow can be sent in one direction of the cycle without increasing f71 while
preserving feasibility until at least one less edge has f, ¢ {0, 1}. Consequently, there is an optimal solution
to (11) where the edges with f; ¢ {0, 1} are acyclic (when viewed as undirected edges). However, by the
constraint BT f = F - &5, this implies that all edges have f, € {0, 1} in this case. Consequently, there is an
optimal integral flow f. (This holds more generally, see e.g. [DS, Sch03].) Further, if there is a directed cycle
in G with a positive value of f. on each edge, a feasible f with decreased f T1 can be found by sending
flow in the reverse of each cycle. Consequently, there is an optimal integral acyclic flow and again by the
the constraints this implies that f corresponds to F disjoint paths from s to ¢.

, Vol. 1, No. 1, Article . Publication date: January 2023.



Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 51
O(«vxlog(1/€)) iterations each of which consist of applying A to a vector, invoking
Solveg, and additional O(n) time operations.

The robustness of accelerated methods to error has been studied in a variety of
contexts (see e.g. [LS, MS13, DGN14, BJL*]).We provide the proof in this section for
completeness and to obtain a statement tailored to our particular setting. Limited
attempts were made to optimize for the parameters and error tolerance for the pre-
conditioner in the method.

We remark that this theorem is similar to one in [CKM*] which analyzed precondi-
tioned Chebyshev iteration with bounded solving error. Interestingly, a similar result
as to Theorem 4.4 can be achieved by analyzing the method of that paper with ran-
domized error in the solver. Straightforward modification of their analysis yields a
variant of Theorem 4.4 where Equation (1) in the definition of a solver is replaced with
E Hx - ATb”A < Ve ||b|| and the accuracy required for the solver for B scales with
€. We chose to provide the analysis of AGD as it provides an interesting alternative
to preconditioned Chebyshev and naturally supported analysis of expected squared
errors and preconditoners with accuracy that does not scale with e.

In the remainder of this section we provide PreconditionedNoisyAGD (Algorithm 13)
and prove Theorem 4.4. Our notation and analysis are similar to [HSS] and [CKM™*]
in places and specialized to our setting in others.

Algorithm 13: F = PreconditionedNoisyAGD(A, b, €, k, Solvep)

Input: Symmetric PSD A € R™", vector b € R", and accuracy € € (0, 1)
Input: Condition number bound «, ﬁ-solver, Solveg, for symmetric PSD
B e R™" with A <B < kA
Output: A vector such that algorithm is an e-approximate solver for A
1 x:=0€R",9y:=0€R"” and T := [4+/k log(2/e)] ;

2 fort=0toT —1do

2V |
142k ’
4 Xt41 := Yr — g¢ Where g; := Solvep (Ay; — b) ;

3 yr = ax; + (1 — a)v; where a =
5 U1 = Por + (1 = B) [yr — ng:] where n := 2k and f := 1 — ﬁ; ;
6 end

7 return x;;

To analyze PreconditionedNoisyAGD (Algorithm 13) we first provide the following
lemma for bounding the error from an approximate solve.

Lemma C.1. Let A, B € R™" be symmetric PSD matrices with A < B < kA and let
b € im(A). If g = Solvep(Ax — b) where Solvep is an e-approximate solver for B then,
x. = A'b and

A:=g-B'(Ax-b) =g-B'A(x - x.) (13)

satisfies

2 2 2 2 2
ENIAI < llx - x5 < €llx = xll3 and B gl < (1+V0) Ilx - x.ll% 50, - (14)
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Proor. Note that b = Ax, by the assumption that b € im(A) thereby proving (13).
Further, by definition of an e-approximate solver and A we have

2
E[IAllG < € |[BT (Ax = b)|[5 = € llx — x| ellx = xlz (15)

2 <
ABTA =
where in the last step we used that since A < B we have B' < A" and AB'A < A.

Further, since E || Al < +/E [|A||3 by concavity of /- we have
T 2 2
E|lgll3 = E||A + BT A(x - x| = E [||A||f3 +2[ATBBIA(x - x,)] +||BFA(x - x*)HB]
<E|Al§ + 2E |Allg lIx — x.llapra + [1x = x|l

< [e+2\/2+1] [|x = x|

2
ABA

2

ABTA

where we used Cauchy Schwarz for Euclidean semi-norms, i.e. a'Bb < ||a|lg ||bllg
and (15). O

Next we analyze the residual error decrease, i.e. change in ||x — x.|| 5, from taking a
single gradient step using Solve. We will use this to analyze the error in computing
X¢4+1 from y; using PreconditionedNoisyAGD (Algorithm 13).

Lemma C.2. Let A, B € R™" be symmetric PSD matrices with A < B < kA and for
arbitrary x and b € im(A) lety = x — g where g = Solveg(Ax — b) and Solveg is an
e-approximate linear system solver for B. x. = A'b satisfies
1-¢€
Elly - x4 < llx x4 = (1 =€) llx —xly, < (1 - ) e - .l .

PRrOOF. Let x, := ATh and A := g — B (Ax — b). By Lemma C.1 we have

y=x-— (BTA(x —x) + A) and E|All§ < ellx- x*“,zc\BTA :

Consequently,
lly = xll3 = llx = x4 - 20x - %) TA [BFA(x = x.) + A] + BT AGx - x.) + A[]} -
Since A < B,

IBfAGx —x.) + Al < BT AGe = x.) + Allg = llx = xel2 0, +20—x) TAA+ AL -

2
ABTA
Now B < xA and therefore BY > x"'A" and AB'A > x"'A. Combining the above
inequalities yields

Elly —xll3 < llx = xll3 = llx = x5, +ElAlG

2

ABfA
2 2 l-¢ 2

Sllx—xla —(1—e) ||x_x*”AB*AS I_T [lx = x.lla -

O

Lemma C.3 (Single Step Analysis). In the setting of Theorem 4.4 let ¢; = ||x; — x. ||1241
andr, = |[v; — x.||5 forx. == ATb. Conditioned on the value of x; andv; and considering
the randomness in g, we have

1 1
€r+1 + §rt+1] < (1 - m)
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Proor. Throughout we let z; = fo; + (1 — By, ety = |y - x*||z and rty =
lly: — x.||5. Note that ||z, — x.||3 < Br + (1 — B)r/ by the convexity of ||-||3 and the
definition of z; . Consequently, expanding the definition of v;;; and applying that

n(1 - p) = vk yields
rev = llze — % — (1= B)ngelly
= llze = x.llg + (1 = B)n [-29; B(z: = x.) +n(1 = B) llgeI5]
< Pre+ (1= Pyr) + Vi [~29/B(z = x.) + Vi llge I ]
Now Lemma C.1 implies that
9 =B'A(y, —x.) + A, and E||A]|3 < €|y — xli=€-¢€,

and the formulas for y; and z; imply that

@
zp = % (yr —ax;) + (1= Plyr =yr + 1_ﬂa(yt —Xt) .
Combining yields that
T a
9, B(z; — x,) = (BTA(yt - x*)) B (yt - Xt —ﬂa (yr — x1) | + A/ B(z; — x.)
2 T ap T
= lyr — xilla + Ay B(zr — xi) + -2 [(yt —x) Ay — xt)] .

Further, since
2 2 2
1 — x:lla = llyr — x:lla +2(yr — x:) TA(x, — yr) + |y = xelly -

we have that

-29;B(z; — x.) < —2¢] — 2A]B(z; — x.) + 1'3_0‘0[ [€r - Ety]
Now since E ||A;||5 < € - €/, the concavity of /- yields
E [—A:B(zt - X*)] < E|Atllg llzr = x:llg < A/E ||At||123 llz: — x:llg
< Je e (Bllor = x.llg + (1= B) llge - x.1lg)
\Je-€lr + Ve k(1 - P/
%\/§+§(\/E+l)etys %\/§+}Lety.

where in the second to last line we used that r/ < xe/ and < 1 and in the last
line we used that Vab < % + bTP forall a,b € R and p > 0, that vk(1 - f) = %, and
Veé(vk +1) < 1. Combining, and again using that r} < ke, yields

K v y

— € —2¢ +

1- e 1
a-p. el
2K K 2

Vi
Pa y \/?
—€; + € —€ | +riq/—.
t l—a[t t] t K
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Further, by Lemma C.1 and Lemma C.2 and that (1 + ve€)?/(1—¢€) < 2 fore < 1/10

_ (+ve?
||9t||B < (1++Ve)? lly: — x. ||AB g = 1—c [fty —E€t+1] < 2[ — Eern]

Combining then yields that

o
Ert+1<ﬁrt+‘/z[rt\/;_ety+ ﬂ_a[ ]+2‘/_ — €41]

1
e (PR et e ]
= (ﬂ + \/E) re + 2k [Be; — Eeppa] -

in the second line we used that & was chosen so that -% = 2+/k, and in the third hne
we used that § = 1—7 implying 1—2ﬁ\/_+2\/_—0 Since f < f+e<1- = 4{
rearranging yields the desired bound. O

Leveraging the preceding analysis we can now prove the theorem.

PROOF OF THEOREM 4.4. Applying Lemma C.3 repeatedly we have that for x, = ATb

1
llx0 = x.ll3 + 5= llxo = x.lIg

1 T
Ellxr — x|y £ (1 - —=
b=l < (1- 1] -

4k

However, since xo = 0 and B < kA we have

1 3 2 3
2 2 T 2
xo — X4 + — |lxo — x|z < =||[A"D|[, == ||b .
llxo ||A o llxo IIs 2 H ”A 2 Il ”AT

Further, by choice of T we have

b <onf) <

The result follows by combining these inequalities and applying the definition of an
e-solver and noticing that the iterations consist only of standard arithmetic operations
of vector and applying Solvep and applying A to a vector. O

D EFFECTIVE RESISTANCE FACTS

Here we give a variety of facts about effective resistance that we use throughout the
paper. First, in the following claim we collect a variety of well known facts about
effective resistance that we use throughout the paper and then we give additional
technical lemmas we use throughout the paper.

Claim D.1 (Effective Resistance Properties). For any connected graph G = (V, E) with
positive edge weights w € RE and all a,b,c € V it is the case that
e Flow Characterization: ‘Rgﬂ(a, b) = minypis o flow ferE Deek 2/ we.
e Triangle Inequality: Recﬂ(a, c) < ‘Rgﬂ(a, b) + Recﬁ(b, c).
e Monotonicity:IfH is an connected edge subgraph of G then ReGﬁ(a, b) < R;f(a, b).
It is a well known fact that the effective resistance between two vertices s and ¢ in a
graph consisting k edge-disjoint parallel paths between s and t of length at most £ is

¢/k. Here we give a slight generalization of this fact to bound the effective resistance
of two vertices in low-depth trees connected by many short edge-disjoint paths.
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Lemma D.2 (Effective Resistance in Well-connected Trees). Let G = (V,E, w) be a
weighted unweighted graph which contains two edge disjoint trees T;, T, C E each of
which has effective resistance diameter at most d, i.e. the effective resistance between any
pair of vertices in a tree is at most d. Further suppose that there are at least k edge-disjoint
paths between T; and T, each of which have effective resistance length at most ¢, i.e.
for path P C E we have },,cp(1/w,) < {. Then foralla € T and b € T, we have
R (a,b) < 2d + ¢/k.

ProOF. For each of the k edge-disjoint path P; C RF let f; denote a flow that send
unit from the path’s start in T, denoted g;, to the path’s end in T, denoted b;. Further,
for all i € [k] let g; denote the unique unit flow from a to a; using only edges of Ty
and let h; denote the unique unit flow from b; to b using only edges of T,. Note, that
for all i € [k] we have that r; := f; + g; + h; is a unit a to b flow in G and consequently,
fo = % Yie[x) i» is a unit a to b flow in G.

Now, f; restricted to T; is the unique flow f; on T; that sends one unit from a to the
uniform distribution over the a;. Since T; has effective resistance diameter at most d,
by the flow characterization of effective resistance (Lemma D.2) we can decompose
this flow into a distribution over paths of effective resistance length at most d, i.e.
fi =2 ait; where each o; > 0, }; @; = 1, and each ¢; is a unit flow corresponding to a
path P of effective resistance length at most d. Therefore, by convexity of x* we have

Z [fl Z [Z 2%} tl e < Z Wiezai[ti]g

ecTy We eeTy eeTy

—Za,z t,]iSZadzd.

i ecT)

By symmetric reasoning, f; restricted to Ty, denoted f; has Y., [ 2]%/we < d.
Since Tj, T, and the P; are edge disjoint, are the only edges with non-zero flow, and
have effective resistance length at most £ we have

DR = ) Al +Z D IPIETS

ecE € ecT) eeTz ie[k] e€P;

<2d+ze; <2d+t/k.

The result follows as Rgﬁ(a, b) < ek Ve [ £:]2 by the flow characterization of effective
resistances, Claim D.1. O
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