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In this paper we provide an $ (<loglog$ (1)= log(1/n))-expected time algorithm for solving
Laplacian systems on =-node <-edge graphs, improving upon the previous best expected
runtime of $ (<

p
log=loglog$ (1)= log(1/n)) achieved by (Cohen, Kyng, Miller, Pachocki, Peng,

Rao, Xu 2014). To obtain this result we provide e�cient constructions of low spectral stretch
graph approximations with improved stretch and sparsity bounds. As motivation for this work,
we show that for every set of vectors in R3 (not just those induced by graphs) and all integer
: > 1 there exist an ultra-sparsi�er with 3�1+$ (3/:) re-weighted vectors of relative condition
number at most :2. For small : , this improves upon the previous best known multiplicative
factor of : · $̃ (log3), which is only known for the graph case. Additionally, in the graph case
we employ our low-stretch subgraph construction to obtain = � 1+$ (=/:)-edge ultrasparsi�ers
of relative condition number :1+> (1) for : = l (logX =) for any X > 0: this improves upon the
previous work for : = > (exp(log1/2�X =)).
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1 INTRODUCTION
From the �rst proof of a nearly linear time Laplacian system solver [ST], to the current
state-of-the-art running time for Laplacian system solving [CKM+], to advances in
almost linear time approximate maximum �ow [Sheb, KLOS, Pen] ultrasparsi�ers
have played a key role in the design of e�cient algorithms. In [ST] ultrasparsi�ers
were used in the computation of sequences of graph preconditioners that enabled
nearly linear time Laplacian system solvers. This initiated a long line of work on faster
[KMP, KMP14, CKM+], simpler [LS, KOSA, KS], and more parallel [BGK+, PS, KLP+b]
Laplacian system solvers, many of which leverage ultrasparsi�ers or related sparse
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2 Arun Jambulapati and Aaron Sidford

graph approximation, e.g. low stretch spanning trees. These results in turn fueled
advances of graph decompositions for a range of problems including approximate
maximum �ow [Sheb, KLOS, Pen], directed Laplacian solving [CKP+a, CKP+b], and
transshipment [Li].
The current fastest Laplacian solver [CKM+] computes expected n-approximate

solutions to Laplacians on=-node,<-edge graphs in time1 $̃ (<
p
log= log(1/n)). These

solvers start from the graphs associated with Laplacians and compute randomized tree-
based approximations with bounded expected ✓? -stretch: they use these to construct
a sequence of preconditioners that e�ciently decrease the error in expectation. The
ultimate runtime achieved by this approach, $̃ (<

p
log= log(1/n)), matches that of

the runtime one would achieve if the best known ultraspars�ers for graphs, due to
[KMST], could be constructed in linear time and then preconditioning approaches
related to [KMP] were applied. Though it is known that preconditioners exist that
would enable an $̃ (<) log(1/n) time solver, the current best construction of such
preconditioners takes$ (<poly(log(=))) time due to the need to compute linear sized
sparsi�ers [BSS14] of Schur complements.

Consequently, the best known bounds of ultrasparsi�ers for graphs due to [KMST]
constitute a fundamental barrier towards designing faster Laplacian system solvers.
[KMST] showed that arbitrary =-vertex graphs possess $̃ (: log=)-spectral approxima-
tions with =+ =

: edges, and their proof is based on the existence of low-stretch spanning
trees with average stretch $̃ (log=). In turn [CKM+] achieves their running times
by leveraging that ✓?? stretch variants of these trees can be computed in $̃ (<) time.
These methods all pay this log= factor due to the best known bounds combinatorial
techniques for ball-growing and graph decomposition. It is known that the stretch
bound of $̃ (log=) is optimal up to an iterated logarithmic factor in a wide variety of
graphs, such as the =-vertex grid or hypercube. In other words, if using just distance
based combinatorial graph decomposition, one must pay a factor of ⇥(log=) in the
worst case. This factor then appears in the best known ultrasparsi�er bounds and
as a

p
log= factor in the current best Laplacian solver runtimes, due to the nature of

iterative methods for solving Laplacian systems.
The main conceptual contribution of this paper is that this barrier can be broken and

this ⇥(log=) factor can, perhaps surprisingly, be avoided. As a quick, broad proof-of-
concept, in Appendix A we show that [KMST] is not optimal in all parameter regimes.
For arbitrary matrices and small target distortion we show that there exist sparser
ultrasparsi�ers that do not pay this ⇥(log=) factor. Interestingly, we give a simple
[BSS14] based argument that arbitrary matrices have low-stretch subgraphs and then
we apply the arguments of [KMST] to get our bounds.

Inspired by this proof of concept, the main technical contribution of this paper is to
show that for the speci�c goal of constructing low-distortion spectral subgraphs, i.e.
those that would su�ce for Laplacian system solving, better bounds can be achieved
and the ⇥(log=)-factor can be avoided. We carefully combine both spectral methods
and combinatorial decomposition techniques for this purpose. In particular, we show
that traditional ball growing techniques can be augmented or patched by careful use
of spectral sparsi�ers to achieve lower distortion graph approximations.

1Here and throughout this paper, the notation $̃ ( ·) hides loglog factors.
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Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 3

Interestingly, our procedure for augmenting a low-diameter decomposition requires
us to e�ciently compute stronger notions of spanners in su�ciently dense graphs. We
provide an e�cient procedure for computing a type of graph approximation related
to fault-tolerant spanners, which we call path spanners. In turn, to compute path
sparsi�ers we show that there are many short vertex disjoint paths in a dense near-
regular expander. This proofs builds upon the seminal work of [KR] which showed
that every dense expander has many short edge-disjoint paths. We leverage this fact in
an algorithm which combines a near-linear time expander decomposition procedure
of [SW] with a new routine for approximately �nding regular dense subgraphs. The
resulting path sparsi�cation algorithm serves as a type of vertex-based sparsi�cation in
our low-distortion subgraph computation algorithm. It is an interesting open problem
if an alternative sparsi�cation procedure can be used instead, however we think the
tools developed for obtaining path sparsi�ers may be of intrinsic interest.
Ultimately, we show that careful application of this routine for constructing low

distortion spectral subgraphs yields an $̃ (< log(1/n))-time algorithm for computing
expected n-approximate solutions to Laplacian systems. This solver leverages heavily
recursive preconditioning machinery of [CKP+a] and our e�ciently computable spec-
tral subgraphs. To simplify and clarify the derivation and analysis of this recursive
solver we provide an analysis of a stochastic preconditioned variant of accelerated
gradient descent (AGD) [Nes83].
We hope that this work may serve as the basis for further improvements in ultra-

sparsi�cation and graph decomposition. Given the myriad of applications of these
techniques and the simplicity and generality of our approach for overcoming the
⇥(log=)-factor in previous combinatorial approaches we hope this work may �nd
further applications.

Paper Organization. In the remainder of this introduction we provide preliminaries
and notation we use throughout the paper (Section 1.1), our main results (Section 1.2),
our approach for achieving them (Section 1.3), and provide a brief discussion of
previous work (Section 1.4). In Section 2 we then give our main graph decomposition
and use it to obtain low-distortion spectral subgraphs. The results of this section hinge
on the e�cient construction of a new combinatorial object known as path sparsi�ers,
which we compute e�ciently in Section 3. In Section 4 we leverage our low-distortion
spectral subgraph construction to obtain our Laplacian system solver results. Our
existence proof for ultrasparsi�ers is given brie�y in Appendix A, our AGD analysis is
given in Appendix C, and additional proofs are given in the other appendix sections.

1.1 Preliminaries
Here we provide notation and basic mathematical facts we use throughout the paper.
Graphs: Throughout this paper we let ⌧ = (+ , ⇢,F) denote an undirected graph

on vertices + , with edges ⇢ ✓ + ⇥ + , with integer positive edge weights F 2 Z⇢>0.
Though many graphs in this paper are undirected, we typically use (0,1) 2 ⇢ notation
to refer to an edge where we suppose without loss of generality that a canonical
orientation of each edge has been chosen. Often in this paper we consider unweighted
graphs ⌧ = (+ , ⇢) where implicitly F B Æ1. Unless stated otherwise (e.g. much of
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4 Arun Jambulapati and Aaron Sidford

Section 1.3.2) we make no assumption about whether graphs are simple in this paper
and often consider graphs with multi-edges and self-loops.
Degrees and Weights: For graph ⌧ = (+ , ⇢,F) and 0 2 + we let deg⌧ (0) BÕ
42⇢ |024 F4 . Further, we let3min (⌧) B min02+ deg⌧ (0),3max (⌧) B max02+ deg⌧ (0),

3ratio (⌧) B 3max (⌧)/3min (⌧) and 3avg (⌧) B
Õ
02+ deg⌧ (0)/|+ |. For weighted graph

⌧ = (+ , ⇢,F) we let Fmin (⌧) B min42⇢ F4 , Fmax (⌧) B max42⇢ , and Fratio (⌧) B
Fmax (⌧)/Fmin (⌧).

Volumes: For graph ⌧ = (+ , ⇢,F) and ( ✓ + we let Vol⌧ (() B
Õ
02( deg⌧ (0)

whereF 2 R⇢ are the edge weights of the graph. Note that when we allow self-loops,
if a vertex has self-loops of total weight F this contributes F to the degree of that
vertex and the volume of any set it is in. We further de�ne the boundary volume
Vol⌧ (m() B

Õ
(D,E)2⇢ (⌧ ),D2(,E8( F (D,E) .

Distances and Shortest Path Balls: For graph ⌧ = (+ , ⇢,F) and path % ✓ ⇢
between vertices 0 and 1 we let ✓ (%) B

Õ
42% F4 denote the length of the path and

we let 3⌧ (0,1) denote the length of the shortest path between 0 and 1. Further, we let
⌫⌧ (E, A ) B {0 2 + | 3⌧ (E,0)  A } denote the (shortest-path) ball of distance A from E .
Neighbors: For graph ⌧ and vertex set ( ✓ + we let # (() B {0 2 + | (1,0) 2

⇢ for some 1 2 (} denote the neighbors of ( . Overloading notation we let # (0) B
# ({0}) for all 0 2 + .
Subgraphs and Contractions: For graph ⌧ = (+ , ⇢,F) and ( ✓ + we let ⌧ [(]

denote the subgraph induced by ( , i.e. the graph with vertices ( , edges ⇢ \ (( ⇥(), and
edge weights the same as in ⌧ . We overload notation and, similarly, for � ✓ ⇢ we let
⌧ [� ] denote the subgraph of⌧ induced by edge set � , i.e. the graph with vertices + ,
edges � , and edge weights the same as in ⌧ . For ( ✓ + , we let ⌧\( denote the graph
by contracting all vertices in ( into a single supernode, while preserving multi-edges
and possibly inducing self-loops.
Graph Matrices: For weighted graph ⌧ = (+ , ⇢,F) we let L⌧ 2 R+ ⇥+ denote

its Laplacian matrix where for all 0,1 2 + we have L0,1 = �F {0,1} if {0,1} 2 ⇢ and
L0,0 = deg⌧ (0).

E�ective Resistances: For graph⌧ = (+ , ⇢,F) and nodes D, E , we say the e�ective
resistance between D and E is R4 5 5⌧ (D, E) = (eD � eE)>L†

⌧ (eD � eE) where L
†

⌧ denotes
the Moore-Penrose pseudoinverse of L⌧ . Throughout the paper, we make use of
several standard facts about e�ective resistances stated in Appendix D.
Solver: We use the following notation for linear system solvers:

De�nition 1.1 (Approximate Solver). We call a randomized procedure an n-solver for
PSD A 2 R=⇥= for n 2 [0, 1) if given arbitrary 1 2 R= it outputs random G 2 R= with

E
��G � A†1

��2
A  n k1k

2
A† (1)

De�nition 1.2 (Laplacian Solver). We call a randomized procedure an n-Laplacian
(system) solver for graph ⌧ = (+ , ⇢,F) if it is an n-solver for L⌧ , i.e. given arbitrary
1 2 R= it outputs random G 2 R= with E[kG � L†

⌧ k
2
L⌧

]  n kL†

⌧1k
2
L⌧

.

Error guarantees in the A and L⌧ norm are standard to the literature; they corre-
sponds to an n-multiplicative decrease in the function error on the objective 5 (G) =
(1/2)G>AG � 1>G from initial point Æ0. However, that our solver error is de�ned with
respect to the expected square norm of the matrices is less standard. By concavity of
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Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 5
p
· for appropriate choice of n this guarantee is stronger than de�ning error in terms of

just the norm: for all PSD A 2 R=⇥= and vectors G 2 R= we have [E kG kA]2  E kG k2A.
Asymptotics and Runtimes: Throughout we use $̃ (·) to hide poly(log log) factors

in =, the number of vertices in the largest graph considered.
Misc. All logarithms in this paper are in base 4 unless a base is explicitly speci�ed.

1.2 Our Results
Here we present the main results of our paper. First, as discussed in the introduction
we provide new bounds on existence of ultrasparsi�ers for arbitrary matrices. Our
construction is based on the spectral-sparsi�cation results of [BSS14]. We prove this
existence result brie�y in Appendix A:

T������ 1.3 (U�������������� E��������). Let E1, . . . E< 2 R= andA B
Õ
82 [<] E8E

>

8 .

For any integer : � 2, there exists ( ✓ [<] with |( | = = +$
⇣
=
p
:

⌘
andF 2 R<

�0 where

A �
’
82(

F8E8E
>

8 � :A.

This result when specialized to graphs immediately yields=+$
⇣
=
p
:

⌘
-edge subgraphs

with relative condition number : , and is a proof of concept towards the main results
of this paper. We obtain it by a two-stage construction: we �rst �nd an ultrasparse
subset of vectors satisfying a certain “on average" notion of spectral approximation,
and then we correct this to a true ultrasparsi�er with a procedure based on the
spectral sparsi�cation algorithm of [BSS14]. In the case of graphs, we give an improved
guarantee for the �rst phase of our construction. We call the objects we compute low
distortion spectral subgraphs, de�ned as follows.

De�nition 1.4 (̂ -Distortion Spectral Subgraph). Given a weighted graph⌧ = (+ , ⇢,F)

we call � = (+ , ⇢� ,F� ) a ^-Distortion Spectral Subgraph if L� � L⌧ and’
42⇢

(F4R
e�
� (4)) =

’
42⇢

⇣
F4X

>

4 L
†

�X4
⌘
 ^ .

If � is a subgraph of ⌧ in addition to the above, we call it a ^-distortion subgraph.

To give context for this de�nition, observe that � = ⌧ is an =-distortion spectral
subgraph of⌧ , and any strict subgraph of⌧ has spectral distortion strictly larger than=.
In fact, we show something slightly stronger thanwhat this de�nition encompasses.We
show that there exist subgraphs with this guarantee that can be computed e�ciently.
Our main theorem for this construction (specialized for its application for Laplacian
solvers) is as follows.

T������ 1.5 (E�������� C����������� �� U���������� ^�D��������� S���
������). Let ⌧ = (+ , ⇢,F) be a polynomially-bounded weighted graph, and let 2 � 1
be any �xed constant. Algorithm 3 equipped with Theorem 1.9 runs in $ (<) time and
returns a ^-distortion subgraph � with = +$

⇣
<

(log log=)2
⌘
edges, for

^ = $
⇣
< (log log=)

p
82+1+> (1)

⌘
.
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6 Arun Jambulapati and Aaron Sidford

It also returns a vector g 2 R⇢
�0 with kg k1  ^ where for any 4 2 ⌧ , g4 � F4X>4 L

†

�X4 is
an overestimate of the leverage score of 4 measured through � .

We use this result to obtain preconditioners: employing a framework based on
[CKM+], we thus obtain our main result on solving Laplacian linear systems.

T������ 1.6 ($̃ (<)�L�������� S����� S�����). There is a randomized algorithm
which is an n-approximate Laplacian system solver for any input =-vertex<-edge graph
with polynomially-bounded edge weights (see De�nition 1.2) and n 2 (0, 1) and has the
following runtime for any j > 0

$ (<(log log=)6+2
p
10+j log(1/n)) .

We assume polynomially-bounded weights primarily for simplicity of presentation:
it can be removed via standard techniques (see for instance [CKP+a] for details) Further,
in Appendix A show that techniques for constructing ^-distortion subgraphs yield
ultrasparsi�ers with the following improved guarantees over Theorem 1.3.

T������ 1.7 (I������� U���������������). There exists a polynomial time al-
gorithm which given an input graph ⌧ with polynomially-bounded edge weights can
compute a reweighted subgraph � with either of the following guarantees:

• For any constant 2 , � has = + =
(log log=)2 edges and satis�es

L⌧ � L� � $ ((log log=)2+
p
82+1+> (1)

)L⌧ .

• For any constant X > 0 and U = l (logX =), � has = + =
U edges and satis�es

L⌧ � L� � U
1+> (1)

L⌧ .

When compared to the previous state-of-the-art ultrasparsi�er algorithm [KMST],
our construction provides improved spectral approximation qualities for sparsities up
to = + =

U for U = $
⇣
exp

⇣
log1/2�X =

⌘⌘
for any X > 0, and improves upon Theorem A.2

for U = l (poly(log log=)). In particular, our method improves upon the previous-best
methods in the important regime of U = poly(log=) by a factor of $ (log1�> (1) =). Ul-
trasparsi�ers of this quality form a critical part of the current best-known approximate
max �ow algorithms ([Sheb, Pen, Shea]), and thus we believe our techniques may be
used to improve the running times of these methods.
To compute ^-distortion subgraphs e�ciently we introduce a new combinatorial

object we call a (U, V)-Path Sparsi�er, de�ned as follows.

De�nition 1.8 ((U, V)-Path Sparsi�ers). Given unweighted graph ⌧ = (+ , ⇢) and
� ✓ ⇢ we call subgraph � = ⌧ [� ] an (U, V)-path sparsifer if for all edges (D, E) 2 ⇢,
either (D, E) 2 � or there are U vertex-disjoint paths of length at most V from D to E in � ,
where we do not count D, E as part of the paths.

Path sparsi�ers provide a type of approximation for distance in unweighted graphs
that is even stronger than that of fault-tolerant spanners [DK, BP] and crucial for ob-
taining our linear system solving runtimes. We prove the following theorem regarding
path sparsi�ers.
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Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 7

T������ 1.9 (E�������� P��� S�������������). Given any =-node,<-edge graph
and parameter : � 1 the procedure, PathSparsify(⌧,:) (Algorithm 9) outputs w.h.p.
� ✓ ⇢ with |� | = $ (=: log3 (=)) such that ⌧ [� ] is a (:,$ (log5 =))-path-sparsi�er of ⌧
in expected time $ (< + =: log13 (=)).

When used to prove Theorem 1.6, we avoid the (large) polylogarithmic dependence
of Theorem 1.9 by applying it to graphs with $ (<) edges and $ (

<
poly log= ) vertices.

Thus the cost associated with computing path sparsi�ers is $ (<): it does not a�ect
our �nal $̃ (<) runtime claim for Laplacian solvers.

1.3 Overview of Approach
Here we provide a brief overview of our approach towards obtaining the results of
Section 1.2.

1.3.1 Ultrasparse Low Distortion Subgraphs. Our techniques for computing ultra-
sparse low-distortion subgraphs are based on existing algorithms for computing
low-stretch spanning trees: in particular we base our construction on a simple re-
cursive procedure from [AKPW95] (with analysis insights from [CKM+]). Given a
graph ⌧ , our algorithm begins by partitioning its vertices into +1,+2.... such that the
partition cuts few edges and each⌧ [+8 ] has low diameter. With this, it then computes
an ultrasparse subgraph inside each⌧ [+8 ] such that each edge inside a⌧ [+8 ] receives
a small e�ective resistance overestimate when measured though the subgraph. It then
recurses on a graph formed by appropriately contracting parts of each ⌧ [+8 ] and
deleting all edges which lie inside a +8 . In the case where the graph computed inside
each ⌧ [+8 ] is a shortest-path tree, the algorithm described is exactly the low-stretch
spanning tree procedure of [AKPW95]. Our algorithm extends this classic result by
adding a small number of extra edges within each⌧ [+8 ] to improve the e�ective resis-
tance overestimate: we use fast algorithms for path sparsi�ers developed in Section 3
for this. Combining this with a more careful graph decomposition gives us our result.

1.3.2 Path Sparsifiers. Here we brie�y outline our approach for proving Theorem 1.9,
i.e. e�ciently computing path sparsi�ers. Recall that subgraph � is an (U, V)-path
sparsi�er of ⌧ = (+ , ⇢) if every edge in ⌧ is either present in � or connected by U
vertex-disjoint paths of length at most V . Consequently, constructing a path-sparsi�er
essentially involves replacing dense components of a graph with sparse subgraphs
containing many short vertex disjoint paths.

One natural starting point for construct sparse subgraphs with vertex disjoint paths
is to consider expanders, i.e. (informally) graphs where the number of edges leaving
every small enough vertex subset is some bounded fraction of the number of edges
contained inside the subset. It is known that by seminal work of [KR] that in every
su�ciently dense expander every pair of vertices is connected by many short edge-
disjoint paths. Consequently, our �rst step in constructing path sparsi�ers is to show
that in fact this result generalizes to graph that are good vertex expanders: graphs
where the number of nodes neighboring every small enough vertex subset is some
bounded fraction of the number of nodes contained inside the subset. By a standard
connection between vertex-expansion and edge-expansion, this immediately yields
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8 Arun Jambulapati and Aaron Sidford

that every dense enough graph with nearly uniform degrees has many short paths
between every pair of vertices.

Given this primitive, our task of computing a path sparsi�ers reduces to the problem
of decomposing an arbitrary dense graph into subsets where we can �nd sparser
expanders of nearly uniform degree. To achieve this we provide a procedure for
decomposing an arbitrary dense graph into nearly degree uniform dense subgraphs,
sample these subgraphs uniformly, and apply known expander decompositions to the
result. We show that these expanders with high probability contain enough of the
volume of the original graph that by repeating on the edges not contained in these
expanders we ultimately obtain a path sparsi�er. Further, by careful sampling and
use of known nearly linear time expander decompositions, i.e. [SW], our algorithm is
time e�cient as well and yields the desired Theorem 1.9.

1.3.3 Laplacian System Solvers. Finally, we leverage the contributions of Sections 2
and 3 to obtain our improved Laplacian solving algorithms. Our approach is a modi�-
cation of the “preconditioning in expectation” framework used in [CKM+] to obtain
$̃ (<

p
log= log(1/n)) time Laplacian solvers. Given a graph ⌧ we �rst compute a

low-distortion subgraph � , and then aim to solve linear systems in⌧ 0 = ⌧ + ([ � 1)�
for some appropriately chosen [. We use a modi�ed version of accelerated gradient
descent [Nes83] (given in Appendix C for completeness) to show that solving linear
systems in L⌧ can be reduced to solving$ (

p
[) linear systems in L⌧ 0 . To solve linear

systems in ⌧ 0, we form a series of preconditioners ⌧ 08 by sampling each edge 4 in
⌧ 0 with probability proportional toF4A� (4), where A� (4) is the e�ective resistance
overestimate of 4 given by the copy of [� contained in ⌧ 0. While asking for these ⌧ 08
to be true sparsi�ers of ⌧ 0 would require paying a logarithmic oversampling factor
(and hence appear as an $ (

p
log=) in the runtime guarantee), an insight of [CKM+]

shows that sampling without this logarithmic factor still su�ces to ensure that solving
linear systems in a few randomly sampled L⌧ 08

enables one to solve linear systems in
⌧ 0. Finally, via some parameter tradeo�s we can ensure that the ⌧ 08 consist of a tree
plus a small number of edges: we then apply a combinatorial contraction procedure
to eliminate the vertices and edges of the tree and recursively apply our solver to the
remaining graphs.
We remark that our analysis of our recursion more closely resembles the original

analysis of [KMP] which yields slower runtimes, and not the more sophisticated one
given in [CKM+]. Although this tighter analysis was necessary in the previous work
to reduce the logarithmic dependence, applying the same techniques here would only
reduce our algorithm’s poly(log log=) dependence. Further, doing this introduces
several technical issues which complicate the presentation of our algorithm. For the
sake of clarity, we give the analysis which loses poly(loglog=) factors in this paper
and make only limited attempt to control the polynomial dependence on loglog=
throughout the paper.

1.4 Previous Work
Sparsi�ers: Spectral graph sparsi�cation has been heavily studied since its invention

by [ST] in the process of constructing the �rst near-linear time Laplacian solver. While
the original procedure was somewhat involved, a dramatic simpli�cation by [SS] shows
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Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers 9

that sampling edges with probability proportional to their statistical leverage score
gives a (1 + n)-approximate sparsi�er with $ (= log=n�2) edges with high probability.
[BSS14] showed that there is a more computationally expensive procedure that obtains
sparsi�ers with the same approximation quality and without the log= dependence
in size. [KMP] extend this idea by showing that sampling edges with probability
proportional to leverage score overestimates induced by a sparse subgraph also gives
sparsi�ers with high probability. They use this insight to construct ultrasparsi�ers:
given an input graph⌧ they �nd � with = + $̃ (

= log2 =
: ) edges whereL� � L⌧ � :L� .

Extending this result, [KMST] improves the sparsity to = + $̃ (
= log=
: ) by replacing the

random sampling of [KMP] with a procedure based on a sparsity-optimal algorithm by
[BSS14]. However, progress on removing this �nal log= factor has stalled, partially due
to a intrinsic barrier posed by the use of low-stretch spanning trees as a primitive. We
bypass this barrier in two ways: we give a purely spectral argument which improves
on the sparsity of [KMST] in certain parameter regimes, and we give a procedure
which constructs ultrasparse subgraphs with better leverage score overestimates than
trees can provide. While our results stop just short of obtaining truly comparable
ultrasparsi�ers (due to our graph decomposition approach), we provide the �rst
methods to bypass the low-stretch tree barrier present in the previous work.

Graph Decomposition: While our speci�c notion of a ^-distortion spectral subgraph
has (to our knowlege) not been studied before speci�cally, many related spectral prim-
itives have been considered in the literature. We remark that standard sparsi�cation
routines [BSS14] trivially give $ (=)-distortion spectral subgraphs with $ (=) edges,
and that a low-stretch spanning tree of a sparsi�er gives a tree which is an $̃ (= log=)-
distortion spectral subgraph: these are the facts which inspire our de�nition. The
previous fastest Laplacian solver [CKM+] modi�es this latter guarantee by providing
a tree which is a spectral subgraph satisfying a certain ✓? notion of distortion. They
provide a construction of a tree where the sum of the ?C⌘ powers of F4Re�

� (4) is
bounded by $

⇣
1

(1�? )2= log
? =

⌘
, for any 0 < ? < 1.2 Although this guarantee does

not recover the standard low-stretch tree guarantee (which yields a bound for ? = 1),
[CKM+] gives an algorithm which computes this tree in $̃ (<) time: this has not yet
been achieved by more standard low-stretch spanning tree algorithms. Our work
extends this result by giving $̃ (<) time algorithms which trade o� the sparsity of the
output subgraph with ^.

Laplacian System Solvers: Our result on Laplacian system solvers draws on a long
series of work on time-optimal Laplacian system solvers. Our speci�c approach draws
heavily from ultrasparsi�er-based algorithms as pioneered by [ST] and re�ned by
[KMP, KMP14, CKM+]. These papers solve the Laplacian linear system LG = 1 by
�rst recursively solving linear systems in L

0G = 1, where L0 is spectrally close to L

but sparse. They then use this ability to solve linear systems in L
0 to precondition

a conjugate gradient-type method. Although the speci�c way of constructing the
2We remark that [CKM+] does not phrase their guarantee in this way. The tree they compute has steiner
vertices, and their graph actually has ^ = $ (

1
(1�? )2< log? =) . These issues can be eliminated by stan-

dard vertex elimination techniques in trees and initially sparsifying the input, respectively. Further, the
dependence on< in their claim has no impact on their �nal Laplacian solver algorithm.
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10 Arun Jambulapati and Aaron Sidford

ultrasparse L
0 has changed signi�cantly over the previous line of work, all base

their construction on low-stretch trees (or dominating trees) trees which “on average”
contain a short path across the endpoints of a randomly chosen edge from their
base graph. Our departure from this line of work is to base our ultrasparsi�ers on
graphs which are merely ultrasparse: we instead start with a subgraph consisting of
a tree with > (<) edges. While the presence of this small number of extra edges may
seem inconsequential, we demonstrate that this small overhead allows us to bypass a
$ (<

p
log=) barrier present in all of the previous work following the ultrasparsi�er

archetype.
As we remarked earlier, there is an alternative approach for solving Laplacian

systems based on sparsi�cation alone, e.g. [PS, KLP+b, KS], which is known to yield
preconditioners that (once computed) yield $̃ (<) Laplacian system solvers. However,
constructing such preconditioners currently requires ⌦(< log2 =) time, where 2 � 1
derives from the need to compute $̃ (=)-edge sparsi�ers. In our solver, we too need
e�cient strong sparsi�cation-like results, however we show that it is possible to use
the path sparsi�ers we provide for this purpose.
Another approach proposed by [KLPa] gives Laplacian solvers running in $ (< +

= log$ (1) =) time: this is $ (<) for any slightly dense graph. Their approach is based
on computing coarse $ (log$ (1) =)-quality = + > (<)-edge sparsi�ers in $ (<) time.
They then compute e�ective resistance overestimates in their computed sparsi�er in
$ (< + = log$ (1) =) time by leveraging low-stretch spanning tree algorithms, and they
�nally leverage these estimates to obtain > (<)-edge $ (1)-sparsi�ers to their original
graph. By �nally using existing near-linear time Laplacian solvers to solve in this
approximation to the input graph, they are able to use a standard preconditioning
approach to obtain their claimed runtime. While their approach does not yield linear-
time algorithms for graphs with< < = log$ (1) =, we �nd it an interesting question to
see if their techniques can be combined with ours to obtain $ (< + =(log log=)$ (1)

)-
time Laplacian solvers.

Fault Tolerant Spanners. To computing our ^-distortion subgraphs, we construct
e�cient algorithms for (U, V)-path sparsi�ers. These are related to multipath spanners
[GGV] and vertex fault-tolerant spanners [DK, BP] studied by the combinatorial graph
algorithm community. A :-fault tolerant spanner of input ⌧ is a subgraph � such
that for any “fault set" � with |� |  : , � � � is a spanner of ⌧ � � . Intuitively, such
subgraphs must contain many short disjoint paths across the endpoints of any edge
not retained from the parent graph: if there was a small set of “bottleneck" nodes
present in any short path between D and E for (D, E) 2 ⇢ (⌧), deleting these would
mean� �� no longer spanned⌧�� . Our de�nition extends this notion by additionally
requiring these short paths to be vertex-disjoint. Our algorithm also departs from the
previous work by using the spectral notion of expander decomposition to construct
path sparsi�ers, in a similar spirit to the independently developed ideas in [BvdBG+20]
and in contrast to the random sampling approach of [DK] and the greedy approach of
[BP].While the use of expander decomposition comes with some signi�cant drawbacks
(most notably algorithm complexity), it enables us to obtain a linear dependence on
the number of edges in our algorithm’s runtime.
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2 LOW DISTORTION SPECTRAL SUBGRAPHS
In this section we prove Theorem 1.5 showing that we can e�ciently compute ^-
distortion subgraphs in $ (<) time. First, we provide a single-level graph decompo-
sition result in Section 2.1. Then, leveraging our e�cient path-sparsi�cation pro-
cedure of Section 3 we recursively apply our decomposition to provide our e�-
cient construction of ^-distortion subgraphs in Section 2.2. Later, in Section 4 we
use these in a solver framework related to that of [CKM+] to obtain our claimed
$ (<(log log=)$ (1) log(1/n)) time Laplacian solver.

2.1 Graph Decomposition
In this section we give our core combinatorial graph-decomposition technique, which
we use to compute low distortion subgraphs. This single-level graph decomposition
can be interpreted as a signi�cant modi�cation of low-diameter decomposition as
originally conceived by [Awe85]. Broadly, our algorithm chooses an arbitrary vertex
and grows a shortest-path ball out from it. Whenever the cut de�ned by the ball is
su�ciently small relative to its volume, we cut the edges de�ned by the cut, mark the
vertices of the ball as a partition piece, and repeat on the remaining vertices in the
graph. This basic procedure, known as low-diameter decomposition, has seen many
applications in graph algorithms [CKM+, MPX, LSY, Bar]. We state the guarantee here:

T������ 2.1. Let ⌧ = (+ , ⇢) be an unweighted graph and let V > 0 be a parameter.
There is an algorithm which runs in $ (<) time and computes a partition of the vertices
into +1,+2... such that

• Each ⌧ [+8 ] has diameter $ (V log=)
• At most <V edges ⌧ cross di�erent partition pieces.

Unfortunately a signi�cant limitation of the above procedure is the $ (log=) factor
in the diameter of the partition pieces. This is neccessary: for example a constant-
degree unweighted expander graph has diameter $ (log=) but any partition of ⌧ into
balls of diameter > (log=) must necessarily cut at least a constant fraction of its edges.

We avoid this logarithmic factor by settling for a weaker guarantee that still su�ces
for Theorem 1.5. Our modi�cation is this: after we have grown a ball ⌫⌧ (E, A ) and
made a cut, we “retract” the ball by distance X and consider ⌫⌧ (E, A � X). The key
insight is that although the vertices of ⌫⌧ (E, A ) formed a low-conductance cut in⌧ , the
cut de�ned by ⌫⌧ (E, A 0) was su�ciently high conductance for any A 0 < A . With this
we upper bound the size of ⌫⌧ (E, A � X), and consequently ensure that most vertices
in ⌫⌧ (E, A ) are close to a small number of nodes in ⌫⌧ (E, A � X).
Unfortunately, the presence of weights in a graph somewhat complicates this

picture, due to the inherently unweighted nature of our expansion-based low-diameter
decomposition algorithm.We circumvent this complication with a technique borrowed
from [AKPW95]: we bucket the weights of the edges into a few classes ⇢1, ⇢2, ..., and
decide to make a cut when ⌫⌧ (E, A ) forms a low-conductance cut in the graph restricted
to each ⇢8 . Formally, we prove the following lemma.

Lemma 2.2. Let ⌧ = (+ , ⇢) be an unweighted<-edge (multi)graph, let ⇢1, ⇢2, ...⇢✓ be
a partition of the edges, Let A � 0, and let V 2 [0, 1/6]. Algorithm 1 computes in $ (<)
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12 Arun Jambulapati and Aaron Sidford

Algorithm 1: {+8 ,* 9
8 }8, 9�1 = Decompose(⌧, {⇢1, ⇢2, ...}, V, A )

Input: Graph ⌧ = (+ , ⇢), partition of ⇢ into ⇢1, ⇢2, · · · ⇢✓ , and parameters
V, A � 0

Output: {+1, ...+U } partition of + ,* 1
8 ,*

2
8 , ...*8 partition of +8

1 C  1
2 while ⌧ < ; do
3 E  arbitrary vertex in ⌧
4 '  0
5 +C  ⌫⌧ (E,')

6 while 4�
AV
✓ Vol⌧ (m+C ) +Vol⌧ [⇢ 9 ] (m+C ) � 3V

⇣
4�

AV
✓ Vol⌧ (+C ) + Vol⌧ [⇢ 9 ] (+C )

⌘
for any ⇢ 9 do

7 '  ' + 1
8 +C  ⌫⌧ (E,')
9 end

10 )  shortest path tree from E in ⌫⌧ (E,')
11 if ' � A then
12 ⇢C  edges of ) contained in ⌫⌧ (E,' � A )
13 * 1

C ,*
2
C , ...*

9C
C  connected components of ) � ⇢C

14 else
15 * 1

C  +C
16 end
17 ⌧  ⌧ � ⌫⌧ (E,') and C  C + 1
18 end
19 return {+8 ,*

9
8 }8, 9�1

time a partition of ⌧ 0B vertices, +1,+2, · · ·+U , and trees, * 1
8 ,*

2
8 , · · · ,*

98
8 , whose vertices

partition +8 such that

• For all 8 2 [✓], at most 6V |⇢8 | + 6V<4�
AV
✓ edges of ⇢8 cross the +1,+2, · · · ,+U

partition.
• Each* 9

8 is a tree of radius A .
• The total number of* 9

8 , i.e.
Õ
82 [U ] 98 , is at most U + 4<4�

AV
✓ .

P����. We �rst bound the running time of Algorithm 1. Observe that any time an
edge (D, E) is traversed during the ball growing phase, one of its endpoints is deleted
from ⌧ : thus we encounter each edge at most once during our traversal. Building
the shortest path trees, the +8 , and the* 9

8 can be done in $ (<) total work given this.
Checking the condition in the while loop on Line 6 can be done in $ (<) total time by
updating the relevant volumes whenever a new vertex is introduced to +C .
We now prove the correctness of Algorithm 1’s output. First, observe that we only

cut a cluster +C of ⌧ when for every ⇢ 9

4�
AV
✓ Vol⌧ (m+C ) + Vol⌧ [⇢ 9 ] (m+C ) < 3V

⇣
4�

AV
✓ Vol⌧ (+C ) + Vol⌧ [⇢ 9 ] (+C )

⌘
.
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Further, by construction +C = ⌫⌧ (B,') for some choice B 2 + [⌧],' � 0. We cut
Vol⌧ [⇢ 9 ] (m+C ) from⇢ 9 whenwe partition o�+C : this is therefore atmost 3V4�

AV
✓ Vol⌧ (+C )+

3VVol⌧ [⇢ 9 ] (+C ) from ⇢ 9 , for any 9 . As the total of all the Vol⌧ (+C ) terms for this bound
on edges removed from ⇢ 9 is< and the total of the Vol⌧ [⇢ 9 ] (+C ) terms is 2|⇢ 9 | at the
end of the partitioning procedure we cut at most 6V |⇢ 9 | + 6V<4�

AV
✓ edges from ⇢ 9 .

We now show each generated partition piece +C contains a forest * 1
C , ...,*

9C
C with

the desired properties. Let 'C be the parameter such that +C = ⌫⌧ (B,'C ) when cutting
it out from the rest of the graph, and let )C be the spanning tree rooted at B in +C . If
'C  A , then only one* 8C is created and it is equal to)C . If instead 'C > A , the algorithm
constructs a forest * 8C where each subtree has diameter A : each * 8C is the subtree of
)C from a node at distance 'C � A from B while no node is further than 'C from B .
Further, the forest is constructed by deleting at most Vol(⌫⌧ (B,'C � A )) edges from )C .
By the pigeonhole principle, at least one edge partition piece ⇢ 9 must have passed the
expansion condition on Line 7 of the algorithm at least A/✓ times. Now as

Vol⌧ (⌫� (B,U + 1)) � Vol⌧ (⌫� (B,U)) + Vol⌧ (m⌫� (B,U))

for any � a subgraph of ⌧ and since volume of balls is monotone increasing, for ⇢ 9
we observe

4�
AV
✓ Vol⌧ (⌫⌧ (B,'C )) + Vol⌧ [⇢ 9 ] (⌫⌧ (B,'C ))

� (1 + 3V)A/✓
⇣
4�

AV
✓ Vol⌧ (⌫⌧ (B,'C � A )) + Vol⌧ [⇢ 9 ] (⌫⌧ (B,'C � A ))

⌘

Now since 0  V  1/6 implies (1 + 3V) � 42V , (1 + 3V)A/✓ � exp(2 AV✓ ). Further,

4�
AV
✓ Vol⌧ (⌫⌧ (B,'C )) + Vol⌧ [⇢ 9 ] (⌫⌧ (B,'C ))  2Vol⌧ (⌫⌧ (B,'C )) = 2Vol⌧ (+C ).

Substituting in and rearranging we observe

2 exp
✓
�
AV

✓

◆
Vol⌧ (+C ) � Vol⌧ (⌫⌧ (B,'C � A )) .

Thus* 1
C , ...,*

9C
C consists of at most 2 exp(� AV✓ )Vol(+C ) trees. Summing over all+C gives

the result. ⇤

2.2 Obtaining Ultrasparse ^-Distortion Subgraphs
Here we leverage the graph decomposition primitive from the previous section to
obtain ^-distortion subgraphs consisting of a tree plus a small number of edges. Our
algorithm is a modi�cation of a classic algorithm for construction low-stretch spanning
trees due to [AKPW95]. Brie�y, [AKPW95]’s algorithm on a graph ⌧ performs the
following steps: it �rst computes a low-diameter decomposition of⌧ into+1,+2, . . . , it
then forms a shortest-path tree within each⌧ [+8 ], and �nally it contracts each +8 to a
single node and recurses on the remaining graph. Unfortunately due to aforementioned
⌦(log=) loss intrinsic to low-diameter decomposition mentioned, any algorithm based
on standard low-diameter decomposition is insu�cient for our purposes.

To improve, we leverage that the combinatorial stretch bounds given by low-stretch
spanning trees are stronger than what is needed for our purposes. We show that
adding a tree plus a small number of edges inside each partition piece enables us to
obtain e�ective resistance overestimates that do not lose an $ (log=) factor. For an

, Vol. 1, No. 1, Article . Publication date: January 2023.



14 Arun Jambulapati and Aaron Sidford

explicit demonstration, consider the case of a constant-degree expander ⌧ seen in
the previous subsection. By growing a shortest-path tree from an arbitrary root and
removing the edges in all but the last $ (log:) levels (as is done in Algorithm 1), we
see that⌧ contains a forest consisting of $ (=/:) trees each of depth at most $ (log:).
We then show that by adding $ (

=poly(log=)
: ) edges to this forest we can ensure every

edge in ⌧ is retained in the subgraph or possesses many su�ciently disjoint paths
between its endpoints. These su�ciently disjoint paths then enable us to bound the
e�ective resistance across every edge in ⌧ when measured through the subgraph.
Although there could be di�erent ways to add edges and form these disjoint paths, our
speci�c approach will call a near-linear time algorithm for computing path sparsi�ers
on a graph obtained by contracting low-diameter clusters inside⌧ . Hence, throughout
this section we make reference to an abstract algorithm for path sparsi�cation of
unweighted graphs (we give a speci�c instantiation in Section 3).

De�nition 2.3 (Path Sparsi�cation Algorithm). We call an algorithm a (S%( ,T%( ,U)-
path sparsi�cation algorithm if it takes in an unweighted graph ⌧ with = nodes and
< edges and returns a (10U,U)-path sparsi�er for it with S%( (<,=) edges in T%( (<,=)
time. We assume the functions S%( ,T%( are supermodular3 and non-decreasing in both
arguments.

We �rst give a procedure which returns an ultrasparse subgraph which generates
small e�ective resistance overestimates whenever the input graph’s vertices can be
partitioned into a small number of low-diameter clusters.

Lemma 2.4. Let⌧ = (+ , ⇢,F) be a weighted =-node<-edge graph with all edge weights
at leastFmin. Let )1,)2, . . .)a be a spanning forest of ⌧ such that each individual tree )8
has e�ective resistance diameter4 at most X . Let AbstractPathSparsify be a (S%( ,T%( ,U)-
path sparsi�cation algorithm (De�nition 2.3). Algorithm 2 computes a subgraph⌧ 00 such
that � =

–
8 )8 [ ⌧

00 has at most with at most = + S%( (<,a) edges and for any edge
(D, E) 2 ⇢, R4 5 5� (D, E)  3X +1/Fmin. Further Algorithm 2 runs in time$ (<) +T%( (<,a)
if a > 1 and $ (<) time otherwise.

Algorithm 2: ⌧ 00 = AugmentTree(⌧, {)1,)2, . . .)a },AbstractPathSparsify)
Input: Graph ⌧ = (+ , ⇢,F), {)1,)2, . . .)a } forest in ⌧ , AbstractPathSparsify

path-sparsi�cation algorithm
Output: Subgraph ⌧ 00

1 ⌧ 0  (+ , ⇢, 1) ; // Unweighted copy of ⌧ without edge weights
2 {+1,+2, . . .+a } = connected components of forest {)1,)2, . . .)a }
3 ⌧ 0  ⌧ 0\{+1,+2, . . .+a }, deleting self-loops
4 if ⌧ 0 = ; then return ;;
5 ⌧ 00  AbstractPathSparsify(⌧ 0)
6 return ⌧ 00 with output edges mapped to the original (uncontracted) vertex set

3A function 5 (G, ~) is supermodular if 5 (0 + 1, 2 + 3 ) � 5 (0, 2 ) + 5 (1,3 ) for any 0,1, 2,3 .
4The e�ective resistance diameter of a graph � is de�ned as maxD,E2� R

45 5
� (D, E)
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P����. We �rst bound the runtime of the algorithm. If a = 1, the algorithm clearly
runs in $ (<) time: we may thus assume a > 1. We can compute the contracted graph
⌧ 0 directly in $ (<) time. Further, as ⌧ 0 has a vertices and at most< edges, the cost
of the call to AbstractPathSparsify is bounded by T%( (<,a).
Next we bound the number of edges in the graph � =

–
)8 [ ⌧ 00. � consists

of a forest
–
8 )8 combined with the output of AbstractPathSparsify, with the edges

mapped to the original (uncontracted) graph. As AbstractPathSparsify is called on
a graph with a vertices and at most < edges we add at most S%( (<,a) edges to it
yielding the claim.
Finally, we prove the bound on R

4 5 5
� (D, E) for any edge (D, E) 2 ⇢ (⌧). We analyze

this in cases. First, we consider the case when the edge (D, E) is fully contained inside
a tree)8 . We observe that)8 has e�ective resistance diameter at most X by assumption.
Thus as � contains )8 we have by Claim D.1 that R4 5 5� (D, E)  R

4 5 5
)8

(D, E)  X . If
instead (D, E) is not contained inside a tree )8 , it must be that D lies in some )9 and
E lies in some ): for 9 < : . In this case, we argue that the low resistance diameter
of the trees in forest combined with the path sparsi�er ⌧ 00 enables us to certify a
bound on R

4 5 5
� (D, E). We observe that the graph⌧ 0 obtained by contracting every tree

)8 contains an edge from )9 to ): corresponding to (D, E). By the guarantee of path
sparsi�cation either this edge is retained in ⌧ 00, or ⌧ 00 contains 10U vertex-disjoint
paths of length at most U connecting )9 to ): in ⌧ 0. In the former case, the edge (D, E)
is retained in⌧ 00 and hence the output graph� contains (D, E): thus R4 5 5� (D, E)  1. In
the latter case, ⌧ 00 contains 10U vertex-disjoint paths of length at most U connecting
)9 to): in⌧ 0. Now the edges in⌧ 00 correspond to weighted edges in the original input
graph and therefore each have weight at least, . As each vertex in ⌧ 0 corresponds to
a tree )8 and since each )8 has resistance diameter at most X , we observe that these
paths correspond to paths in � of e�ective resistance at most U (X + 1/, ) connecting
vertices in +9 to vertices in +: . By Lemma D.2, bounding the e�ective resistance in
such settings, and Claim D.1, this implies the e�ective resistance between D and E is
bounded by 2X + X+1/,

10  3X + 1/, . ⇤

We now recursively combine this result with the graph decomposition from Sec-
tion 2.1 to prove the main result of this section.

T������ 2.5. Let⌧ = (+ , ⇢,F) be an =-node,<-edge graph with edge weights which
are polynomially-bounded in =. Let :,W � 2 be parameters. Let AbstractPathSparsify
be an (S%( ,T%( ,U)-path sparsi�cation algorithm (in the sense of De�nition 2.3) for any
U . In $ (< + T%(

�
$ (<),$

�<
:

�
)
�
time Algorithm 3 �nds a subgraph � with at most

= +$

✓
<

W
+
< logW
:2

◆
+ S%(

⇣
$ (<),$

⇣<
:

⌘⌘

edges which is a ^-distortion subgraph of ⌧ for

^ = $

 
< exp

 r
8 logW · log

⇣
48 log:

p
logW

⌘!
log:

p
logW

!

It also returns a vector g 2 R⇢ which satsi�es g (D,E) � F (D,E)R
4 5 5
� (D, E) and kg k1  ^.
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Algorithm 3:
� = SpectralSubgraph(⌧ = (+ , ⇢,F),AbstractPathSparsify,:,W)
Input: Graph ⌧ = (+ , ⇢,F), (S%( ,T%( ,U)-path sparsi�er oracle

AbstractPathSparsify, :,W parameters
Output: Subgraph � with potentially smaller edge weights satisfying

Theorem 2.5, g leverage score overestimates of the edges in ⌧
1 Set A4  Fmax/F4 for all 4 2 ⇢ ; // Edge lengths for AKPW
2 �  ;, (  ;, g  1 2 R⇢

3 V = exp
✓
�

r
0.5 logW · log

⇣
48 log:

p
logW

⌘◆
, f = log1/V W , X = 48fV�1 log:

4 ⇢1, ⇢2, · · · ⇢✓  partition of edges where ⇢8 contains all edges with
A4 2 [X8�1, X8 )

5 C  1
6 while � does not span ⌧ or C  ✓ do
7 ⇢0  

–C
9=C�f+1 ⇢ 9

8 ⌧C  ⌧ [⇢0]\�C�1
9 ⌧ 0C  (+ (⌧C ), ⇢ (⌧C ), 1) ; // Unweighted copy of ⌧C

10 +C,8 ,)
9
C ,8  Decompose(⌧ 0C , {⇢C�f , ⇢C�f+1 . . . ⇢C }, V/6, X/4)

11 for each +C,8 do
12 ⌧C ,8  AugmentTree(⌧C [+C,8 ], {) 1

C ,8 ,)
2
C,8 , . . . },AbstractPathSparsify)

13 �C  �C�1 [
–
8, 9 )

9
C ,8

14 (  ( [⌧C ,8
15 for 4 2 ⌧ [+C ,8 ] do
16 g4  4F4F�1maxX

C+1

17 ⇢ 9  ⇢ 9 � {4}
18 end
19 end
20 for 9 = C � f + 1, . . . C do
21 .9  arbitrary subset of 6</:2 edges from each ⇢ 9
22 (  ( [ .9
23 ⇢ 9  ⇢ 9 � .9
24 end
25 (  ( [ ⇢C�f
26 C  C + 1
27 end
28 � = �C�1
29 for 4 2 � [ ( do
30 g4  1 // Set stretch overestimate to 1 if in output subgraph
31 end
32 return � = � [ (, g // Edges in � are given the same weight they

had in ⌧
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We remark that the sparsity and runtime guarantees in the above are independent
of U . Before we prove this theorem, we state and prove some structural invariants
about the algorithm:

Lemma 2.6. Consider an execution of Algorithm 3, and consider an iteration C of the
while loop on Line 6. Each time a weight bucket ⇢ 9 is included in⌧C on Line 8, we conclude
that iteration of the while loop by decreasing the number of edges in ⇢ 9 by a factor of V .
In addition, each connected component of �C is a tree of e�ective resistance diameter at
mostF�1maxX

C+1.

P����. We �rst prove that |⇢8 | decreases by a factor of V each iteration. Let ⇢8 be
processed in iteration C , and note that the graph ⌧C ’s edges are partitioned into at
most f buckets. For our value X = 48fV log: , if edge set ⇢8 is processed in iteration C
Lemma 2.2 implies the call to Decompose forms a vertex partition +C ,8 which cuts at
most

V |⇢8 | + 6|⇢ (⌧C ) |4�
(X/4) (V/6)

f = V |⇢8 | + 6|⇢ (⌧C ) |4�
XV
24f  V |⇢ 9 | + 6<:�2

edges from ⇢8 , where we used |⇢ (⌧C ) |  <. Further, on Line 22 we move 6</:2 edges
from ⇢8 to ( during every iteration ⇢8 is processed. Thus we see that ⇢8 ends the
iteration with at most V |⇢8 | edges as desired.

For the second condition, we induct on C . For C = 1, observe that every edge seen in
⌧C has resistance between 1 and X : this implies it has weight betweenFmax/X andFmax.
By the guarantee of Algorithm 1 (Lemma 2.2), the trees ) 91,8 have unweighted radius
at most X4 and hence unweighted diameter at most X2 . As every edge in these trees
has e�ective resistance at most XF�1max the claim follows. Now assume the claim for
C = a : we will show it for C = a + 1. The edges in⌧a+1 have e�ective resistance at most
F�1maxX

a+1. Now, the edges added to �a+1 belong to) 9a+1,8 : in the unweighted contracted
graph⌧ 0a+1 these are trees of (unweighted) diameter at most X2 by Lemma 2.2. In⌧ , the
edges from ) 9a+1,8 connect together subsets of vertices which correspond to the forests
in �a : by the induction hypothesis the trees of �a have e�ective resistance diameter at
mostF�1maxX

a+1. Combining these two observations, any path through a forest in �a+1
travels through at most X2 edges with resistance at mostF�1maxX

a+1 (coming from the
edges of) 9a+1,8 ) and at most X2 forests in �a with e�ective resistance diameterF�1maxX

a+1.
Adding these together, we obtain an e�ective resistance overestimate of

X

2
�
F�1maxX

a+1�
+
X

2
�
F�1maxX

a+1� = F�1maxX
a+2 .

⇤

With Lemma 2.6 established, we prove that Algorithm 3 outputs a low-distortion
subgraph:

Lemma 2.7. Let ⌧ = (+ , ⇢,F) be a =-node<-edge graph and let � , g be the output of
Algorithm 3 in the setting of Theorem 2.5. Then � is a ^-distortion subgraph of ⌧ for

^ = $

 
< exp

 r
8 logW · log

⇣
48 log:

p
logW

⌘!
log:

p
logW

!

Further, g satis�es g (D,E) � F (D,E)R
4 5 5
� (D, E) for any (D, E) 2 ⇢ and kg k1  ^.
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18 Arun Jambulapati and Aaron Sidford

P����. Since � is clearly a subgraph of ⌧ it su�ces to show that kg k1  ^ and
g (D,E) � F (D,E)R

4 5 5
� (D, E) for any (D, E) 2 ⇢ (⌧). We do this by using the e�ective

resistance guarantee of Algorithm 2 to certify resistance bounds on edges contained
within a partition piece +C,8 .

Since � is a subgraph of ⌧ , every edge of ⌧ that is added � receives g (D,E) = 1 �
F (D,E)R

4 5 5
� (D, E). Now let 4 = (D, E) 2 ⇢ (⌧) be contained in some +C ,8 . We will show

that the forest �C combined with the path sparsi�er ⌧C ,8 computed with AugmentTree
give 4 an e�ective resistance overestimate of 4F�1maxX

C+1.
First, observe that each vertex in ⌧C corresponds to a tree in �C�1 and therefore +C ,8

corresponds to a subset of those trees. Since) 1
C,8 ,)

2
C ,8 , . . . are trees inside⌧C [+C ,8 ], we see

that every tree in �C is fully contained in some+C,8 . Let �C,8 = �C [+C ,8 ], and note that by
Lemma 2.6 each tree in �C ,8 has e�ective resistance diameterF�1maxX

C+1 when the edges
are given the edge weights they have in ⌧ . In addition, the edges in ⌧C [+C,8 ] which
we pass into AugmentTree have weight at leastFmaxX�C in ⌧ . Therefore, Lemma 2.4
ensures that any for any edge (D, E) in +C ,8 we have

R
4 5 5
� (D, E)  R

4 5 5
�C[⌧C ,8

(D, E)  3F�1maxX
C+1

+F�1maxX
C
 4F�1maxX

C+1.

We remark that this corresponds to the value given to g (D,E) in the algorithm.
The above shows that the e�ective resistance through � across the endpoints of

any edge contained in a +C,8 is bounded. We now �x a weight bucket ⇢ 9 and bound
⇢ 9 ’s contribution to � ’s spectral distortion. Observe that the number of edges in ⇢ 9
which are not within a +C ,8 in iteration C = 9 + G of the algorithm is at most |⇢ 9 |VG by
Lemma 2.6. As the weight of any edge in ⇢ 9 is at mostFmaxX1� 9 , we see that at most
|⇢ 9 |VG end up receiving a g (D,E) value larger than�

FmaxX
1� 9 � �

4F�1maxX
9+G+1� = 4X2+G .

Therefore, the edges in ⇢ 9 get e�ective resistance overestimates summing to at most

4|⇢ 9 |
f�1’
G=0

VGX (2+G )

since after f iterations we add the remaining edges in ⇢ 9 to � . This is at most

4|⇢ 9 |
f�1’
G=0

VGX (2+G ) = 4|⇢ 9 |
f�1’
G=0

X2 (48f log:)G

 5|⇢ 9 |X2 (48f log:)f�1 = 5|⇢ 9 |V�2 (48f log:)f+1

where we used

48f log: =
48 log: logW
� log V

=
48 log: logWr

0.5 logW · log
⇣
48 log:

p
logW

⌘

�
48 log:

p
logW

log
⇣
48 log:

p
logW

⌘ � 5
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for :,W � 2 and
Õ=
8=0 2

8 = 2=+1�1
2�1 

5
42
= for 2 � 5. Our choice of V yields log 1/V =r

0.5 logW · log
⇣
48 log:

p
logW

⌘
: this implies

f =
logW
log 1/V

=
logWr

0.5 logW · log
⇣
48 log:

p
logW

⌘ 
p
logW .

Thus we have

V�2 (48f log:)f+1  V�2
⇣
48 log:

p
logW

⌘ ⇣
48 log:

p
logW

⌘ logW
log 1/V

=
⇣
48 log:

p
logW

⌘
exp

✓
2 log 1/V +

logW
log 1/V

log
⇣
48 log:

p
logW

⌘◆

= 48 exp

 r
8 logW · log

⇣
48 log:

p
logW

⌘! p
logW log: .

The last equality used the de�nition of V and the algebraic fact that 21G +22/G = 2p2122
for G =

p
22/21. Substituting this in yields that ⇢ 9 ’s contribution to the spectral

distortion of � is bounded by

240|⇢ 9 | exp

 r
8 logW · log

⇣
48 log:

p
logW

⌘!
log:

p
logW .

implying the claimed bound. ⇤

Finally, we bound the runtime and sparsity guarantees of Algorithm 3:

Lemma 2.8. Let ⌧ be a weighted graph with = nodes and< edges, and let � be the
output of Algorithm 3 in the setting of Theorem 2.5. Then � has at at most

= +$

✓
<

W
+
< logW
:2

◆
+ S%(

⇣
$ (<),$

⇣<
:

⌘⌘

edges. Further, Algorithm 3 runs in time $ (< + T%(
�
$ (<),$

�<
:

� �
.

P����. Observe that there are four di�erent ways edges can be added to � : they
can be added to the forest �C on Line 13, to ( through the path sparsi�ers ⌧ 0C ,8 on
Line 14, to ( via the extra edges from each ⇢ 9 we keep on Line 22, or to ( by the check
on Line 25 (after a weight bucket has been processed in a ⌧C su�ciently many times).
We bound these in order. Clearly, the returned forest � consists of at most = edges.
By the guarantee of Algorithm 2, the calls to AugmentTree during iteration C are on
graphs ⌧C [+C,8 ]: let<(C) denote the total number of edges contained in the ⌧C [+C,8 ].
We observe that⌧C ’s edge set is a subset of

–C
9=C�f ⇢ 9 , and moreover each edge in ⇢ 9 is

contained inside at most one⌧C [+C,8 ] (as once this happens we delete it from our edge
set): thus

Õ
C<(C)  <. Next, each ⌧C [+C ,8 ] contains a forest ) ;C,8 : by the guarantee of

Decompose we observe that the total number of ) ;C,8 is the number of +C ,8 plus at most

4<(C)4�
(X/4) · (V/6)

f = 4<(C)4�2 log:  4<(C)/: . Now as AbstractPathSparsify is called
inside AugmentTree only when) ;C,8 consists of more than 1 tree, we may aggregate all
the calls to AbstractPathSparsify in iteration C into a single call on a graph with<(C)
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edges and $ (<(C)/:) nodes. Since S%( is supermodular and non-decreasing in both
arguments, we see that the number of edges added to � via path sparsi�ers is at most

’
C

S%(

✓
<(C),$

✓
<(C)

:

◆◆
 S%(

⇣
<,$

⇣<
:

⌘⌘
.

For the edges added on Line 22, we again see that each ⇢ 9 is included in ⇢0 at most f
times– thus this collectively adds $ (

<f
:2 )  $ (

< logW
:2 ) edges. Finally, after an ⇢ 9 has

been processed f times we observe that it decreases in size by a factor of W : thus the
addition on Line 25 adds$ (</W) edges to � . Combining gives our claimed size bound.

Finally, we prove the running time of our algorithm. We �rst bound the cost of all
steps excluding the calls toAugmentTree. Each time aweight class is fed toDecompose
on Line 10, the number of edges in that class falls by a factor of V . Thus, the total
contribution of weight class ⇢ 9 to the running time of all calls to Decompose is only
$ (<): the number of edges left to consider in the recursively generated subprob-
lems falls geometrically. The time it takes to sort the edges into weight buckets ⇢ 9
is at most $ (<) via radix sort with base poly(=) (here we use our assumption of
polynomially-bounded edge weights) and the running time of every other step in the
algorithm can be implemented in the trivial fashion in $ (<) time. Finally, to bound
the runtime of the calls to AugmentTree we again observe that during iteration C we
can aggregate the nontrivial calls it makes to AbstractPathSparsify to a single one on
a graph with at most<(C) edges and $ (<(C)/:) vertices. As T%( is also superlinear
in both arguments, the runtime of these calls to AbstractPathSparsify can again be
bounded by T%( ($ (<),$ (</:)) as desired. ⇤

Combining the last two lemmas gives Theorem 2.5. To conclude this section, we
show that combining Theorem 2.5 with the path sparsi�cation algorithm construction
in Section 3 and choosing parameters appropriately yields an e�cient construction of
^-distortion subgraphs.

T������ 1.5 (E�������� C����������� �� U���������� ^�D��������� S���
������). Let ⌧ = (+ , ⇢,F) be a polynomially-bounded weighted graph, and let 2 � 1
be any �xed constant. Algorithm 3 equipped with Theorem 1.9 runs in $ (<) time and
returns a ^-distortion subgraph � with = +$

⇣
<

(log log=)2
⌘
edges, for

^ = $
⇣
< (log log=)

p
82+1+> (1)

⌘
.

It also returns a vector g 2 R⇢
�0 with kg k1  ^ where for any 4 2 ⌧ , g4 � F4X>4 L

†

�X4 is
an overestimate of the leverage score of 4 measured through � .

P����. LetPathSparsify(⌧,$ (log5 =)) be the algorithm guaranteed by Theorem 1.9:
note that this is a ($ (= log8 =),$ (< + = log18 =),$ (log5 =))-path sparsi�cation al-
gorithm. We apply SpectralSubgraph to ⌧ with parameters : = log18 = and W =
(log log=)2 . Combining this with the guarantee of Theorem 2.5, we therefore see that
� contains

= +$

✓
< log10 =

:
+
< logW
:2

+
<

W

◆
= = +$

✓
<

(log log=)2

◆
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edges, and it is computed in time

$

✓
<(log log=)1/2 +

< log18 =
log18 =

◆
= $

⇣
<(log log=)1/2

⌘
.

It remains to bound the spectral distortion of the computed subgraph. We use the
notation log(8 ) (=) to denote the result of applying the log function 8 times: hence
log(1) (=) = log= and log(8+1) = = log

⇣
log(8 ) =

⌘
. For our values of W and : we see

r
8 logW · log

⇣
48 log:

p
logW

⌘
=

r
82 log(3) = ·

⇣
log(3) = +$ (log(4) =)

⌘

=
⇣p

82 + > (1)
⌘
log(3) =.

Thus by Theorem 2.5 our computed subgraph is a ^-distortion subgraph for

^ = $
✓
< exp

⇣
(
p
82 + > (1)) log(3) =

⌘
log(2) =

q
log(3) =

◆

= $
⇣
< (log log=)

p
82+1+> (1)

⌘
.

Assembling these pieces yields the claim. ⇤

3 EFFICIENT PATH SPARSIFICATION
In this section we prove Theorem 1.9 showing that path sparsi�ers can be e�ciently
computed. To prove this result we provide several new algorithmic components of
possible independent interest. First, in Section 3.1 we show that dense near-regular
expanders have many short vertex disjoint paths. Then, in Section 3.2 we leverage
this result with a new sampling scheme and previous expander partitioning results to
show that we can e�cient path-sparsify large amount of the volume of dense near-
regular graphs. In Section 3.3 we then show that every dense graph can be e�ciently
decomposed into dense near-regular subgraphs. Carefully applying these tools yields
our desired result in Section 3.4.

3.1 Short Vertex Disjoint Paths in Expanders
In this section we show that in every dense expander of balanced degrees, for every
pair of vertices B and C there are many vertex disjoint paths between them (where here
and throughout we ignore the necessary shared use of B and C ). The number of paths
and the length of these paths depend on the degree ratio and the conductance of the
graph. Formally we de�ne conductance, De�nition 3.1, and present the main theorem
of this section, Theorem 3.2 below.

De�nition 3.1 ((Edge) Conductance). For undirected graph ⌧ = (+ , ⇢) (possibly with
self-loops) and ( ✓ + we de�ne the (edge) conductance of ( and ⌧ by

qedge (() B
|m(() |

min{Vol((),Vol(+ \ ()}
and qedge (⌧) B min

(✓+ ,(8{;,+ }

qedge (() respectively.

We call any family of =-node graphs ⌧ with qedge (⌧) = ⌦(log2 =) for some 2 ,
expanders. Our main result of this section is the following theorem regarding vertex
disjoint paths in such expanders.
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T������ 3.2 (S���� V����� D������� P���� �� A������������ R������ E��
�������). For all pairs of vertices B and C in an =-node undirected graph ⌧ = (+ , ⇢)
(possibly with self-loops) there is a set of at least qedge (⌧)3min (⌧)/(83ratio (⌧)) vertex-
disjoint paths from B to C of length at most (43ratio (⌧)/qedge (⌧)) · log(=/3min (⌧)).

Our main technical tool towards proving Theorem 3.2 is that graphs with large
vertex conductance have many short vertex-disjoint paths. The formal de�nition of
vertex conductance, De�nition 3.3, and this tool, Lemma 3.4, are given below.

De�nition 3.3 (Vertex Conductance). For undirected graph ⌧ = (+ , ⇢) and ( ✓ + we
de�ne the vertex conductance of ( and ⌧ by

qvert (() B
|# (() \ ( |

min{|( |, |+ \ ( |}
and qvert (⌧) B min

(✓+ ,(8{;,+ }

qvert (() respectively.

Note that for any set ( with |( | = d|+ |/2e we have qvert (()  1. Consequently
qvert (⌧) 2 [0, 1] for all undirected ⌧ .

Lemma 3.4 (Short Vertex-Disjoint Paths in Vertex Expanders). Let ⌧ = (+ , ⇢) be an
=-node undirected graph with qvert (⌧) � q . Then for all nodes B, C 2 + with B < C of
degree at least 3 there is a set of at least q3/8-vertex disjoint paths from B to C of length
at most (4/q) log(=/3).

Lemma 3.4 implies Theorem 3.2 by a standard technique of relating edge and vertex
expansion.

P���� �� T������ 3.2. By Lemma 3.4 it su�ces to show that
qvert (⌧) � qedge (⌧)/3ratio (⌧). To prove this, let ( ✓ + be arbitrary and note that
by assumption Vol(() � 3min (⌧) |( |, Vol(+ \ () � 3min (⌧) |+ \ ( |, and |m(() | 
3max (⌧) |# (() \ ( |. Consequently,

qvert (() =
|# (() \ ( |

min{|( |, |+ \ ( |}
�

(3max (⌧))�1 |m(() |

(3min (⌧))�1 min{Vol((),Vol(+ \ ()}
=
qedge (()

3ratio (⌧)
.

The claim then follows by the de�nition of qvert (⌧) and qedge (⌧). ⇤

Consequently, in the rest of this section, we prove Lemma 3.4. Our inspiration
for this lemma is the seminal result of [KR] which proved an analogous result edge-
disjoint paths in expanders. Their proof considered the minimum cost �ow problem
of routing �ow of minimum total length between B and C and by reasoning about
primal and dual solutions to this linear program, they obtained their result. We prove
Lemma 3.4 similarly, by considering the minimum-length �ow in the natural directed
graph which encodes vertex-disjointness de�ned as follows.

De�nition 3.5 (Directed Representation of Vertex Capacitated Graphs). Given undi-
rected graph ⌧ = (+ , ⇢) we let

�!
⌧ B (

�!
+ ,
�!
⇢ ) denote the directed graph where for each

0 2 + we have vertices 0in, and 0out and edge (0in,0out) and for each edge {0,1} 2 ⇢ we
have edges (1out,0in) and (0out,1 in).

Note that any path of vertices 0, 1, 2 , 3 , 4 2 + has an associated path 0out, 1in, 1out,
2in, 2out, 3in, 3out, 3in 2

�!
+ path in

�!
⌧ . Further a set of 0 to 1 paths are vertex-disjoint in

⌧ if and only if their associated paths are edge-disjoint in
�!
⌧ . Also a simple path in⌧
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has length : if and only if its associated path in
�!
⌧ has length 2: � 1. Consequently,

to reason about short vertex disjoint paths in ⌧ it su�ces to reason about short
edge-disjoint paths in

�!
⌧ .

To reason about the length of these paths, as in [KR] we consider the minimum
cost �ow problem corresponding to sending a given given amount of �ow from B to C
while using the fewest number of edges. However, unlike [KR] the graph we use is
directed, i.e.

�!
⌧ , and thus we need to characterize the minimizers of a slightly di�erent

minimum cost problem. This optimality characterization of the minimum cost �ow
problem is given below and proven in Appendix B.

Lemma 3.6 (Dual Characterization of Shortest Flow). For directed graph ⌧ = (+ , ⇢)
and vertices B, C 2 + if there are at most � edge-disjoint paths from B to C then there is
an integral B-C �ow 5 2 {0, 1}⇢ corresponding to � edge-disjoint paths from B to C using
a minimum number of edges and E 2 R+ such that for every (0,1) 2 4 if 54 = 1 then
E0 � E1 � 1 and if 54 = 0 then E0 � E1  1.

As in [KR], our approach to showing that the paths are short is to sweep over E
and show that the associated sets increase rapidly. Here, we tailor the analysis to the
structure of our directed (as opposed to undirected) minimum cost �ow problem. Our
main structural lemma is given below.

Lemma 3.7 (Characterization of Shortests Flow). Let ⌧ = (+ , ⇢) be an undirected
=-node graph for which there are � vertex disjoint paths from B 2 + to C 2 + . Further, let
5 2 {0, 1}

�!
⇢ be an integral �ow corresponding to � disjoint paths from Bout to Cin in

�!
⌧

using a minimum number of edges and let E 2 R
�!
+ be as described in Lemma 3.6. The

following properties hold:
(1) The values of E decrease monotonically along each path in 5 and decrease by at

least 1 after each edge. Consequently, the length of each path is at most ~Bout �~C in .
(2) For all U 2 [~Bout ,~C in ] if (

�!
+
U B {0 2

�!
+ |~0  U} and (+U B {0 2 + |0in 2

(
�!
+
U or 0out 2 (

�!
+
U } then either |(+U�2 | � =/2 or |(

+
U�2 | � (1 + qvert) · ( |(+U | � � ).

(3) We have |(+~Bout�1 | � deg(B) + 1 � �

P����. Claim 1: By Lemma 3.6, whenever 54 = 1 for 4 = (0,1) then E0 � E1 � 1.
Combined with the fact that 5 corresponds to disjoint B to C paths immediately yields
the claim.

Claim 2: By claim 1, the set of edges leaving (
�!
+
U is of size exactly � . Consequently,

leveraging that if 54 = 0 for 4 = {0,1} we have E1 � E0 � 1 by Lemma 3.6 we have
that if 0 2 (+U , then either (1) 0in 2 (

�!
+
U , 5(0in,0out ) = 1, and 0out 8 (

�!
+
U or (2) 0out 2 (

�!
+
U�1.

Further, if 0out 2 (+U�1 and 1 2 # (0) and 5(0out,1in ) = 0 then we have 1 in 2 (+U�2, again
by Lemma 3.6. Consequently, if there are ✓ vertices for which case (1) holds then the
neighbors of all the other |(+U | vertices are in |(+U�2 | except for at most � � ✓ vertices.
The claim then follows as ✓ 2 [0, � ] and

|(+U�2 | � (1 + qvert) · ( |(+U | � ✓) � (� � ✓) � (1 + qvert) ( |(+U | � � )

Claim 3: Again by Lemma 3.6 we have 1 in 2 (+~Bout�1 for all 1
in where {0,1} 2 ⇢ and

5(0out,1 in ) = 0, which happens for all but � edges.
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⇤

We now have everything we need to prove Lemma 3.4

P���� �� L���� 3.4. Let) B (# (B) \# (C)) \ {B, C}. Note that there are |) | vertex
disjoint paths of length at most 2 from B to C (ignoring the shared use of B and C ).
Further, we see that # (B) \ ) and # (C) \ ) each have size at least 3 � |) | and by
assumption of vertex conductance this implies that every set ( with (# (B) \) ) ⇢ (
and (\ (# (C) \) ) = ; has |# (() \( | � q (3� |) |) and therefore if we further constrain
that ( \ () \ {B, C}) = ; this implies that | (# (() \ (( [ ) )) | � q (3 � |) |) � |) |. By
max�ow minimum cut theorem on

�!
⌧ this implies that there are at least q3 � (1+q) |) |

disjoint paths from B to C , not using ) . Consequently, the number of vertex disjoint
paths in total from B to C is

max{q3 � (1 + q) |) |, 0} + |) | = max{q (3 � |) |), |) |} � min
U�0

max{q (3 � U),U}

=
✓
q

1 + q

◆
3 �

q3

2
.

It simply remains to bound the length of a smaller set of paths.
To bound the length of these paths, let � = q3/8. Further, let 5 2 {0, 1}

�!
⇢ be an

integral �ow corresponding to � disjoint paths from Bout to C in in
�!
⌧ and let E 2 R

�!
+ be

described as in Lemma 3.6. We now prove by induction that for all C � 0 it is the case
that either

|(+~B�1�2C | � =/2 or |(+~B�2C | � (1 + (q/2))C3/2 (2)

Note that for the base case we have that

|(+~B�2 | � 3 + 1 � � � 3/2 .

For the inductive case note that if the claim holds for C and it is not the case that
|(+~B�1�2(C+1) | � =/2 then �  |(+~B�1�2C | · q/4 and consequently, by Lemma 3.7 and
the inductive hypothesis we have

|(+~B�1�2(C+1) | � (1+q)·( |(~B�1�2C |�� ) � (1+q) (1�q/4) |(~B�1�2C | � (1�(q/2)) |(~B�1�2C |

where we used q 2 (0, 1). Consequently by induction (2) holds for all C > 0 and for
some C  2

q log(=/3) we have |(+~B�1�2C | � =/2. By symmetry this also implies that

~C  ~B + 2 + 4
q log(=/3). Since a path of length : in⌧ is length 2: � 1 in

�!
⌧ the result

then follows again by Lemma 3.7. ⇤

3.2 Path Sparsification on Dense Near-Regular Expanders
Here we provide an e�cient procedure to compute path sparsi�ers of a constant
fraction of the edges in a dense degree regular graph. This procedure leverages The-
orem 3.2, which shows that dense near-regular expanders have many short vertex
disjoint paths. Coupled with a procedure for partitioning a graph into approximately
regular subgraphs (Section 3.3) this yields our main theorem of this section, an e�cient
path sparsi�cation procedure. Consequently, in the remainder of this subsection our
goal is to prove the following theorem.
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T������ 3.8 (P������ P��� S������������� �� N����� R������ G�����). Given
any =-node<-edge undirected unweighted graph ⌧ = (+ , ⇢) and : � 1, the procedure
PartialPathSparsify(⌧,:) (Algorithm 4) in time $ (< + =: · 3ratio (⌧) log8 (=)), outputs
� , ⇢cut ✓ ⇢ such that w.h.p. in =

• (Size Bound): |� | = $ (=: · 3ratio (⌧) log(=)), |⇢cut |  |⇢ |/2 and
• (Path Sparsi�cation):⌧ [� ] is a (⌦(:/(3ratio (⌧) log2 (=))),$ (3ratio (⌧) log4 (=)))-
path sparsi�er of (+ , ⇢ \ ⇢cut).

Our partial path sparsi�cation procedure, PartialPathSparsify(⌧,:) (Algorithm 9),
works simply by randomly sampling the edges, partition the resulting graph into
expanders, and output the edges of those expanders as a path sparsi�er of the edges
on those node induced subgraphs in the original graph. In the following lemma
we give basic properties of this random sampling procedure, Lemma 3.9, which is
reminiscent of the sublinear sparsi�cation result of [Lee14]. After that we give the
expander partitioning procedure we use, Theorem 3.10 from [SW] and our algorithm,
Algorithm 9. We then prove Theorem 3.8 by showing that the expanders found have
su�ciently many vertex disjoint paths by Theorem 3.2 and the right size properties
by Theorem 3.10

Lemma 3.9. Let ⌧ = (+ , ⇢) be an unweighted =-node graph, 3  3min (⌧), and
let � be a graph constructed by sampling every edge from ⌧ with probability ? =
min{1,⇥(3�1 log=)} for some parameter 3  3min (⌧). With high probability in =

1
2
L� �

?3

=
L = � ?L⌧ �

3
2
L� +

?3

=
L = .

and
deg� (0) 2

h?
2
· deg⌧ (0) , 2? · deg⌧ (0)

i
for all 0 2 + . (3)

P����. De�ne auxiliary graph ⌧ 0 with L⌧ 0 = L⌧ +
23
= L = . We observe that for

any nodes D, E ,
R

e�
⌧ 0 (D, E) 

=

23
R

e�
 =

(D, E) =
1
3
.

Thus, we interpret our sampling procedure to construct � as sampling edges from ⌧ 0

with the leverage score overestimates

gRe� (4) =

(
1/3 if 4 2 ⌧
1 if 4 2 23

=  = .

Weobserve that these values are valid leverage score overestimates in⌧ 0: thus sampling
and reweighting the edges in ⌧ with probability ? and preserving the edges in 23

=  =
produces a graph � 0 with L� 0 = 1

?L� +
23
= L = such that 1

2L� 0 � L⌧ 0 �
3
2L� 0 (see,

e.g. Lemma 4 [CLM+14] ). Rearranging yields the desired

1
2
L� �

?3

=
L = � ?L⌧ �

3
2
L� +

?3

=
L =

Finally, (3) follows by an application of the Cherno� bound to the number of edges
picked incident to each node in⌧ . Since 3  3min (⌧) this number concentrates around
its expected value with high probability in = for appropriate choice of constant in the
assumption of ? . ⇤
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T������ 3.10 (E������� D������������ [SW]). There is a procedure
ExpanderDecomp(⌧) which given any<-edge graph ⌧ = (+ , ⇢), in time $ (< log7<)

with high probability outputs a partition of + into +1,+2, · · ·+: such that
• qedge (⌧{+8 }) � ⌦(1/log3 (<)) for all 8 2 [:],
•

Õ
8 |m⌧ (+8 ) |  </8,

where ⌧{+8 } denotes the induced subgraph of ⌧ with self-loops added to vertices such
that their degrees match their original degrees in ⌧ .

P����. This is a specialization of Theorem 1.2 from [SW] where q in that theorem
is chosen to be ⇥(1/log3 (<)). ⇤

Algorithm 4: � = PartialPathSparsify(⌧,: � 1)
Input: ⌧ = (+ , ⇢) simple input graph with degrees between 3min and 3max
Output: (� , ⇢cut) such that � is a path sparsi�er for (+ , ⇢ \ ⇢cut) and

|⇢cut |  |⇢ |/2
// Sample edges uniformly at random to apply Lemma 3.9

1 3 B 3min (⌧ )

10: and ? = min{1,⇥(3�1 log=)} (where the constant in ⇥ is as in
Lemma 3.9);

2 if ? = 1 then return (⇢, ;);
3 ⇢0 = ; ;
4 for 4 2 ⇢ do Add 4 to ⇢0 with probability ? . ;
5 ⌧ 0 = (+ , ⇢0);

// Find expanders and use their edges as a path sparsifier
6 (+1,+2, · · ·+A )  ExpanderDecomp(⌧ 0) ; // Computed via Theorem 3.10
7 For all 8 2 [A ] let ⌧8 = (+8 , ⇢8 ) B ⌧ 0 [+8 ];
8 Let ⇢cut B [82 [A ]m⌧ (+8 );
9 Let � B [82 [A ]⇢8 ;

10 return (� , ⇢cut);

P���� �� T������ 3.8. First, suppose that ? = 1. In this case, by Line 2 the algo-
rithm outputs � = ⇢ and ⇢cut = ; in linear time. Consequently, � is a path sparsi�er
of desired quality with< edges and |⇢cut |  |⇢ |/2. Since, in this case 3�1 log= = ⌦(1)
we have 3min (⌧) = $ (: log=) and the theorem follows as

2?<  $ (=3max (6)) = $ (=3ratio (⌧)3min (⌧)) = $ (=: · 3ratio (⌧) log(=)) ,

Consequently, in the remainder of the proof we assume ? < 1.
Next, note that by design,⌧ 0 was constructed so Lemma 3.9 applies. Consequently,

with high probability in = the following hold:

• ⌧ 0 is an edge-subgraph of ⌧ satisfying ?L⌧ � 3
2L⌧ 0 +

?3
= L = .

• deg� (0) 2
⇥ ?
2 · deg⌧ (0) , 2? · deg⌧ (0)

⇤
for all 0 2 + .

• ⌧ 0 contains at most 2?< edges.
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Leveraging the bounds we prove the path sparsi�cation property and size bound for
� . By Theorem 3.10 we have that for all 8 2 [:], the +8 output by ExpanderDecomp
satisfy that �⌧ 0 {+8 } = ⌦(1/log3 (<)) for all 8 2 [:]. Further, by the above properties
of ⌧ 0 we have that 3min (⌧ 0{+8 }) �

?
2 · 3min (⌧) and 3max (⌧ 0{+8 })  2? · 3max (⌧).

Consequently, by Theorem 3.2 and the fact that ? < 1 we have that⌧ 0{+8 } has at least

⌦

✓
3min (⌧)?

3ratio (⌧) log3 (=)

◆
= ⌦

✓
:

3ratio (⌧) log2 (=)

◆

vertex disjoint paths from B to C of length at most$ (3ratio (⌧) log4 (=)) for any B, C 2 +8 .
Further, since every edge in (� , ⇢ \ ⇢cut) has both endpoints in some +8 we see that �
is a path sparsi�er as desired. Further, � has at most

2?< = $ (=3max (⌧) log(=):/3min) = $ (=: log(=)3ratio (⌧))

edges by the properties above.
Next, we bound the size of ⇢cut. Note that

|⇢cut | =
1
2

’
82 [A ]

|m⌧ (+8 ) | =
1
2

’
82 [A ]

E>8 L⌧ (+8 )E8 (4)

where E8 is the indicator vector for+8 , i.e. E8 2 R+ with [E8 ]0 = 1 if 0 2 +8 and [E8 ]0 = 0
if 0 8 +8 . Since, ?L⌧ � 3

2L⌧ 0 +
?3
= L = we have that for all 8 2 [A ] that

? |m⌧ (+8 ) | = ?E>8 L⌧E8 
3
2
E>8 L⌧ 0E8 +

?3

=
=
3
2
|m⌧ 0 (+8 ) | +

?3

=
|+8 | |+ \+8 | . (5)

Combining (4) and (5) yields that

|⇢cut | 
1
2

’
82 [A ]

✓
3
2?

|m⌧ 0 (+8 ) | + 3 |+8 |

◆


3
32?

|⇢0 | + 3= 
3<
16

+
3min (⌧)=

10:


|⇢ |

2

where in the third to last step we used that
Õ
82 [A ] |m⌧ 0 (+8 ) |  |⇢0 |/8 by Theorem 3.10,

in the second to last step we used that |⇢0 |  2?< and that 3 = 3min (⌧)/(10:), and in
the last step we used that 3min (⌧)=  |⇢ |.
Finally, we bound the running time of the algorithm. Every line except for Line 6

in our algorithm is a standard graph operation that can be implemented in linear
total time. The call to ExpanderDecomp on Line 6 is on a graph with $ (<?) edges.
Consequently, by Theorem 3.10 the call takes time

$ (<? log7 (<)) = $ (<(log(=)/3) log7 (=)) = $ (=: · 3ratio (⌧) log8 (=))

where the �rst equality used the simplicity of ⌧ and that ? = ⇥(3�1 log=)  1 and
the second equality used that<  =3max (⌧) and the de�nition of 3 . ⇤

3.3 Approximately Degree Regular Graph Decompositon
Here we provide a linear time procedure to decompose a constant fraction of a dense
graph into a nearly-regular dense pieces supported on a bounded number of vertices.
We use degree regularity to turn edge expansion bounds on a graph into vertex
expansion bounds and �nding vertex disjoint paths in Section 3.1 which in turn we
use to e�ciently compute path sparsi�ers.
The main result of this section is the following theorem on computing such a

decomposition.
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T������ 3.11 (R������ D������������). Given =-vertex<-edge simple undirected
graph ⌧ = (+ , ⇢) with 3avg (⌧) � 2000(log(2=))2, RegularDecomp(⌧) (Algorithm 8)
in expected $ (<) time outputs graphs �1 = (+1, ⇢1), ...,�✓ = (+✓ , ⇢✓ ) which are edge
disjoint subsets of ⌧ such that
(1) (Vertex Size Bound):

Õ
82✓ |+8 |  4= log=.

(2) (Volume Lower Bound):
Õ
82✓ Vol(⇢8 ) � Vol(⌧)/100

(3) (Degree Regularity Bound): 3ratio (�8 )  1000(log(2=)) for all 8 2 [✓]
(4) (Minimum Degree Bound): 3min (�8 ) � 3avg (⌧)/(250 log=) for all 8 2 [✓].5

We build RegularDecomp and prove Theorem 3.11 in several steps. First we provide
DegreeLowerbound (Algorithm 5) which simply removes vertices of degree less than
a multiple of the average. It is easy to show (Lemma 3.12) that this procedure runs in
linear time, doesn’t remove too many edges, and ensures that the minimum degree is
a multiple of the average.
Leveraging DegreeLowerbound we provide two procedures, BipartiteSplit (Algo-

rithm 6) and BipartiteDecomp (Algorithm 7) which together, show how to prove a
variant of Theorem 3.11 on bipartite graphs where the max degree is not too much
larger than the average degree for each side of the bipartition. We show that pro-
vided these average degrees are su�ciently large, BipartiteSplit (Algorithm 6) splits
the graph into pieces of roughly the same size where the degrees on the larger side
are preserved up to a multiplicative factor (See Lemma 3.13). This procedure simply
randomly partitions one of the sides and the result follows by Cherno� bound. The
procedure BipartiteDecomp (Algorithm 7) then carefully applies BipartiteSplit and
DegreeLowerbound.
Our main algorithm, RegularDecomp (Algorithm 8) operates by simply bucketing

the vertices into to groups with similar degree and considering the subgraphs of
edges that only go between pairs of these buckets. The algorithm then applies either
BipartiteDecomp or DegreeLowerbound to subgraphs of su�ciently high volume and
analyzing this procedure proves Theorem 3.11.

Algorithm 5: {⌧8 }82 [: ] = DegreeLowerbound(⌧, 2)
Input: Graph ⌧ = (+ , ⇢), parameter 2 2 (0, 1)

1 Let 3avg := 2</=, ( = + , ' = ;;
2 while 3min (⌧ [(]) < 2 · 3avg do
3 Pick 0 2 ( with deg⌧ [( ] (0) < 2 · 3avg;
4 ( := ( \ {0};
5 end
6 return ⌧ [(] ;

Lemma 3.12 (Degree Lower Bounding). For any =-node<-edge graph⌧ = (+ , ⇢) and
2 2 (0, 1), DegreeLowerbound(⌧, 2) (Algorithm 5) outputs ⌧ [(] for ( ✓ + such that

Vol(⌧ [(]) � (1 � 2)Vol(⌧) and 3min (⌧ [(]) � 2 · 3avg (⌧)

5This condition is not use for our path sparsi�cation construction, but is included due to its possible utility.
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P����. This procedure can be implemented in linear time by storing deg⌧ [( ] (0)
for all 0 2 + and updating it in $ (1) per edge when a vertex is removed. Further,
3min (⌧ [(]) � 23avg (⌧) by design of the algorithm. Finally, every time we remove a
vertex 0 from ( we remove at most 23avg edges from ⌧ [(]. Consequently, the �nal (
satis�es |+ \ ( | · 23avg  = · 2 ·3avg = 22< = 2 ·Vol(⌧) and Vol(⌧ [(]) � (1� 2)Vol(⌧).

⇤

Algorithm 6: {⌧8 }82 [: ] = BipartiteSplit(⌧, (!,'),:)
Input: Bipartite graph ⌧ = (+ , ⇢), bipartition (!,') of + , : 2 [1, |! |]
// Assume for all 4 = (0,1) 2 ⇢, 0 2 !, 1 2 '
// Assume deg⌧ (1)/: � 20 log(2=) for all 1 2 ' and |! |/: � 20 log(2=)

1 do
2 Let !8 = ; ✓ ! for all 8 2 [:] ;
3 For each 0 2 ! add 0 to !8 for 8 2 [:] uniformly, independently at random ;
4 Let ⌧8 = ⌧ [!8 [ '] for all 8 2 [:];
5 while deg⌧8

(1) 8 [
deg⌧ (1 )

2: ,
3 deg⌧ (1 )

2: ] or |!8 | 8 [
|! |
2: ,

3 |! |
2: ] for some 1 2 ', 8 2 [:];

6 return {⌧8 }82 [: ] ;

Lemma 3.13 (Bipartite Graph Splitting). Given =-node<-edge simple bipartite graph
⌧ = (+ , ⇢) with bipartition into (!,') ✓ + and : 2 [1, |! |] where

deg⌧ (1)
:

� 20 log(4=) for all 1 2 ' and
|! |

:
� 20 log(4=)

BipartiteSplit(⌧, (!,'),:) (Algorithm 6) in expected $ (<) time outputs {⌧8 }82 [: ] that
partition the edges such that for all 8 2 [:] and 1 2 '

deg⌧8
(1) 2


deg⌧ (1)

2:
,
3 deg⌧ (1)

2:

�
and |!8 | 2


|! | |

2:
,
3|! |
2:

�
(6)

P����. Note that each loop of the algorithm clearly takes linear time and if the
algorithm terminates its output is as desired. Consequently, it su�ces to show that
the probability the loop repeats is bounded by some �xed constant probability.
Let ` = min{min12' deg⌧ (1)/:, |! |/:}. Further, for each 0 2 ! and 8 2 [:] let G8,0

be a random variable set to 1 if 0 2 !8 and 0 otherwise. Now note that for all 1 2 ' we
have by the fact that E[G8,0] = 1/: we have

deg⌧8
(1) =

’
02#⌧ (1 )

G8,0 and E
⇥
deg⌧8

(1)
⇤
=
deg⌧ (1)

:
� ` · .

Consequently, by Cherno� bound we have that for all 1 2 ' and 8 2 [:]

Pr

deg⌧8

(1) 
deg⌧ (1)

2:

�
 exp

⇣
�
`

8

⌘
and Pr


deg⌧8

(1) �
3 deg⌧ (1)

2:

�
 exp

⇣
�
`

10

⌘

Further, for all 8 2 [:], by the same reasoning (e.g. suppose there was a vertex in ' of
degree |! |),

Pr

|!8 | 

|! |

2:

�
 exp

⇣
�
`

8

⌘
and Pr


|!8 | �

3|! |
2:

�
 exp

⇣
�
`

10

⌘
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Now since by assumption ` � 20 log(4=), by applying union bound to the 2( |! | +
1) · : di�erent reasons the loop in BipartiteSplit might repeat, the loop repeats with
probability at most

2( |! | + 1) · : · exp(�`/10)  2( |! | + 1) · : ·
1
8=2


1
4

where we used that since the graph is non-empty |! | + 1  =. ⇤

Lemma 3.14 (BipartiteDecomp (Algorithm 7)). Let ⌧ = (+ , ⇢) be an arbitrary sim-
ple bipartite graph with bipartition (!,') such that 3!avg B Vol⌧ (!)/|! | and 3'avg B
Vol⌧ (')/|' | satisfy 3!avg � 40 log(2=) and 3'avg � 40 log(2=). In expected $ (<) time,
BipartiteDecomp(⌧, (!,')) outputs graphs �1 = (+1, ⇢1), ...,�: = (+: , ⇢: ) which are
edge disjoint subsets of ⌧ with
(1) (Vertex Size Bound):

Õ
82✓ |+8 |  4=.

(2) (Volume Lower Bound):
Õ
82✓ Vol(⇢8 ) � Vol(⌧)/8

(3) (Degree Regularity Bound): 3ratio (�8 )  162 for all 8 2 [:] where

2 B max{3!max/3
!
avg,3

'
max/3

'
avg}

for 3!max B max02! deg⌧ (0) and 3'max B max02' deg⌧ (0).
(4) (Minimum Degree Bound): 3min (�8 ) � min{3!avg,3'avg}/16.

Algorithm 7: {�8 }82 [: ] = BipartiteDecomp(⌧, (!,'))
Input: Bipartite graph ⌧ = (+ , ⇢) and bipartition (!,') of +
// Assume Vol(!)/|! | � 40 log(2=) and Vol(')/|' | � 40 log(2=)

1 Let 3!avg := Vol(!)/|! | and 3'avg := Vol(')/|' | ;
2 Swap ! and ' if needed so that |' |  |! | ;
3 Let '0 = {0 2 ' | deg⌧ (0) � (1/2)3'avg} and ⌧ 0 = ⌧ (! [ '0);
4 if |'0 | � |! |/2 then return DegreeLowerbound(⌧, 1/2) ;
5 {⌧8 }82 [: ] = BipartiteSplit(⌧ 0, (!,'0),:) for : = b |! |/|'0 |c ;
6 return {�8 }82 [: ] where �8 = DegreeLowerbound(⌧8 , 1/2);

P����. First, note that ⌧ 0 is a vertex induced subgraph of ⌧ where only vertices in
' with degree less than half the average in ' are removed. Since

Õ
02'\'0 deg⌧ (�) 

|' |3'avg/2  Vol⌧ (') it follows that Vol⌧ 0 ('0) � 1
2Vol⌧ ('). Further, since⌧ is bipartite

this implies that Vol(⌧ 0) � Vol(⌧)/2.
Next, suppose the algorithm returns on Line 4 (i.e. |' | < |! |/2 ). In this case,

Lemma 3.12 (which analyzes DegreeLowerbound) implies that the returned graph,
which we denote � , is a vertex induced subgraph of ⌧ 0 with Vol(� ) � Vol(⌧ 0)/2 �
Vol(⌧)/4 and 3min (� ) � 3avg (⌧ 0)/2 � 3avg (⌧)/4. Since 3avg (⌧) � min{3!avg,3'avg},
this immediately yields the desired vertex size bound, vertex lower bound, and the
minimum degree bound. Further, since the graph is bipartite we have 3!avg/3'avg =
|' |/|! |. Therefore, since |! |/2  |' |  ! we have 3'avg/2  3!avg  3'avg and 3avg (⌧) �
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3!avg � 3
'
avg/2. Consequently

3ratio (� ) 
3max (⌧)

3avg (⌧)/4
 4·max

⇢
3!max

3avg (⌧)
,
3'max

3avg (⌧)

�
 4max

(
3!max

3!avg
,

3'max

(1/2)3'avg

)
 82

and the result holds in this case.
Therefore, in the remainder of the proof we assume instead that |'0 |  |! |/2. Further,

since ⌧ is bipartite we know that 3!avg � 23'avg. Note that this implies that |! |/|' | � 2
and therefore : 2 [|! |/(2|'0 |), |! |/|'0 |]. Note that the average degree of a vertex in
! in ⌧ 0 is at least 3!avg/2, by our reasoning regarding ⌧ 0 and consequently, since the
graph is simple |'0 | � 3!avg/2. This implies

|! |

:
� |'0 | �

|' |

2
�
3!avg
2
� 20 log(2=)

where the last inequality follows from the assumption on the input. Further, by design
we have that for all 1 2 '0

deg⌧ 0 (1) � 3
'
avg/2 � 20 log(2=) .

Consequently, Lemma 3.13 applies to BipartiteSplit(⌧ 0, (!,'0),:) and for all 8 2 [:]
and 1 2 '0

deg⌧8
(1) 2


deg⌧ 0 (1)

2:
,
3 deg⌧ 0 (1)

2:

�
and |!8 | 2


|! |

2:
,
3|! |
2:

�
. (7)

Now let3!0avg B Vol⌧ 0 (!) /|! | and3'
0

avg B Vol⌧ 0 ('0)/|'0 |. Note that |!8 |  3|! |/(2:) 
3|'0 | and :  |! |/|'0 | = 3'

0

avg/3
!0
avg. This implies

3avg (⌧8 ) =
2

|'0 | + |!8 |

’
12'0

deg⌧8
(1) �

1
2|'0 |

’
12'0

deg⌧ 0 (1)
2:

�
3'
0

avg

4:
.

Since the average degree of a vertex in '0 in ⌧ 0 is at least the average degree of a
vertex in ' in ⌧ , we have 3'0avg � 3'avg. Further, we have 3!avg  3!

0

avg  3
'0
avg/: by the

construction of ⌧ 0. This implies

3max (⌧8 )  max{(3/(2:))3'max,3
!
max}  2 ·max{(3/(2:))3'

0

avg,3
'0
avg/:}  22 · 3'

0

avg/:

and 3ratio (⌧8 )  82 . Further, since 3'0avg � 3!
0

avg: and 3!0avg � 3!avg/2 by the construction
of ⌧ , we have that 3avg (⌧8 ) � 3!avg/8. Consequently, the volume lower bound, degree
regularity bound, and minimum degree bound follow from the fact that invoking
DegreeLowerbound(⌧8 , 1/2) only removes edges and decreases the volume by at most
a factor of 2 and decreases the min degree to at most (1/2) the average by Lemma 3.12.
Finally, the vertex size bound followed from the bound on : and that the only vertices
repeated are '0 which are repeated at most : times. ⇤

We now have everything we need to present RegularDecomp (Algorithm 8), our
graph decomposition algorithm, and analyze it to prove Theorem 3.11, the main result
of this section.
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Algorithm 8: {⌧8 }82 [: ] = RegularDecomposition(⌧)
Input: Undirected, unweighted, connected graph ⌧ = (+ , ⇢) with =-vertices

and<-edges
1 ⌧ 0 = (+ 0, ⇢0) for ⌧ 0 := DegreeLowerbound(⌧, 1/2);
2 Let6 (8 := {0 2 + 0 | deg0⌧ (0) 2 [48�1, 48 )} for all 8 2 [1,:] where : B blog(=)c;
3 H>DC := ; ;
4 for 8, 9 2 [:] with 8  9 (including 8 = 9) do
5 Let +8, 9 := (8 [ ( 9 and ⇢8, 9 := {{0,1} 2 ⇢0 | 0 2 (8 ,1 2 ( 9 } ;
6 Let ⌧8, 9 := ((8 [ ( 9 , ⇢8, 9 ) ;
7 if Vol(⌧8, 9 ) � Vol⌧ 0 ((8 )/(2 log=) and Vol(⌧8, 9 ) � Vol⌧ 0 (( 9 )/(2 log(=))

then
8 if 8 = 9 then H>DC := H>DC [ {DegreeLowerbound(⌧8, 9 ), 1/2} ;
9 else H>DC := H>DC [ BipartiteDecomp(⌧8, 9 , ((8 , ( 9 )) ;

10 end
11 end
12 return all output graphs computed

P���� �� T������ 3.11. First we show that whenever BipartiteDecomp(⌧) is in-
voked by the algorithm in Line 9 on ⌧8, 9 then Lemma 3.14 applies with 2  44 log=,
3!avg � 40 log(2=), 3'avg � 40 log(2=). Fix an invocation of BipartiteDecomp(⌧) on
Line 9 for 8 < 9 and let ! = (8 , ' = ( 9 , and 3!avg B Vol⌧8,9 ((8 )/|(8 | and 3'avg B
Vol⌧8,9 (( 9 )/|( 9 |. By design, for all 0 2 (8 and 1 2 ( 9

deg⌧ 0 (0) 2 [48�1, 48 ] and deg⌧ 0 (1) 2 [4 9�1, 4 9 ] .

Therefore, by the guarantees of Lemma 3.12 for ⌧ 0 := DegreeLowerbound(⌧, 1/2)

48�1 � 4�13min (⌧
0
) � (1/(24))3avg (⌧) � (1000/4) (log(2=))2 .

Further, since Vol(⌧8, 9 ) � Vol⌧ 0 ((8 )/(2 log=) and Vol⌧ 0 ((8 ) � |(8 |48�1/2 by the degree
bounds of 0 2 (8 we see that

3!avg B
Vol⌧8,9 ((8 )

|(8 |
�

Vol⌧ 0 ((8 )
|(8 | · 2 log=

�
48�1

4 log=
�

1000 log(2=)2

44 log=
� 40 log(2=) .

By the same reasoning 3'avg � 40 log(2=). To bound 2 , note that deleting edges can
only decrease degree and therefore

max
02!

deg⌧8,9
(0)

3!avg
 max

02!

deg⌧ 0 (0)
(48�1/(4 log(=)))


48

(48�1/(4 · log=))
= 44 log= .

Since by symmetry the same bound holds for ', the desired bound for 2 holds.
(Vertex Bound): Note that a vertex can appear in at most : di�erent ⌧8, 9 . Conse-

quently, the result follows by Lemma 3.12 and Lemma 3.14.
First note that by Lemma 3.12 we have Vol(⌧ 0) � (1/2)Vol(⌧) and 3min (⌧ 0) �

(1/2)3avg (⌧).
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(Volume Bound): Note that by Lemma 3.12 we have Vol(⌧ 0) � (1/2)Vol(⌧). Further,
de�ne the set % B {(8, 9) 2 [:] ⇥ [:] | 8  9} and let

%� B {(8, 9) 2 % | Vol(⌧8, 9 ) � Vol⌧ 0 ((8 )/(2 log=) and Vol(⌧8, 9 ) � Vol⌧ 0 (( 9 )/(2 log=)} .

Note that % contains the indices for every ⌧8, 9 considered and that %� denotes the
subset of them for which the volume of ⌧8, 9 is large enough that Line 7 is true. By
design, ’

(8, 9 )2%\%�

Vol(⌧8, 9 ) <
’

(8, 9 )2%

✓
max

⇢
Vol(⌧ 0 (( 9 ))

2 log=
,
Vol(⌧ 0 ((8 ))

2 log=

�◆


:

2 log=

’
82 [: ]

Vol(⌧ 0 (( 9 )) 
1
2
Vol(⌧ 0) .

Since every edge 4 2 ⇢0 is in some ⌧8, 9 this then implies that’
(8, 9 )2%�

Vol(⌧8, 9 ) =
’

(8, 9 )2%

Vol(⌧8, 9 )�
’

(8, 9 )2%\%�

Vol(⌧8, 9 ) � Vol(⌧ 0)�
1
2
Vol(⌧ 0) �

1
4
Vol(⌧) .

Since our output is simply the result of invoking DegreeLowerbound and
BipartiteDecomp on these graphs and by Lemma 3.12 and Lemma 3.14 and these
procedures decrease the volume by at most a factor of 8, the result follows.
(Degree Regularity Bound): For graph ⌧8, 9 with 8 < 9 this follows from the bound

on 2  44 log= given in the �rst paragraph of this proof, Lemma 3.14, and that
16 · 44 log=  1000 log(2=). For graph ⌧8, 9 with 8 = 9 , the same reasoning implies the
ratio of the maximum degree to the average degree is at most 2 and the result follows
by Lemma 3.12, which shows that DegreeLowerbound(⌧8, 9 , 1/2) only decreases the
maximum degree and makes the minimum degree is at least half the average degree.

(Minimum Degree Bound): By the reasoning of the �rst paragraph of this section we
know that whenever BipartiteDecomp(⌧) is invoked by the algorithm in Line 9 on
⌧8, 9 then

3!avg �
Vol⌧ 0 ((8 )
|(8 | · 2 log=

�
3min (⌧ 0)

4 log=
�
3avg (⌧)

8 log=
where in the last step we used that the average degree in ⌧ 0 is at least the average
degree in ⌧ by Lemma 3.12. Consequently, the result follows again by Lemma 3.12,
Lemma 3.14, and the fact that 16 · 8  250. ⇤

3.4 Pu�ing it All Together
Here we show how to put together all the results of the previous subsection to prove
Theorem 1.9. Our algorithm, PathSparsify (Algorithm 9) simply performs a regular
decomposition of the input graph by Algorithm 8 (Theorem 3.11) of Section 3.3 and
then performs of partial path sparsi�cation of each of these graphs by Algorithm 4
(Theorem 3.8) of Section 3.2. In the remainder of this section we provide and analyze
PathSparsify (Algorithm 9) to prove Theorem 1.9 (restated below for convenience).

T������ 1.9 (E�������� P��� S�������������). Given any =-node,<-edge graph
and parameter : � 1 the procedure, PathSparsify(⌧,:) (Algorithm 9) outputs w.h.p.
� ✓ ⇢ with |� | = $ (=: log3 (=)) such that ⌧ [� ] is a (:,$ (log5 =))-path-sparsi�er of ⌧
in expected time $ (< + =: log13 (=)).
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Algorithm 9: � = PathSparsify(⌧,: � 1)
Input: ⌧ = (+ , ⇢) simple input graph with degrees between 3min and 3max
Output: � ✓ ⇢ with |� | = $ (=: log3 (=)) such that ⌧ [� ] is a

(:,$ (log5 =))-path-sparsi�er of ⌧
1 :partial = ⇥(log3 =) ; // For constants in :partial see Theorem 1.9 proof
2 ⇢remain  ⇢, �  ;;
3 while 3avg (⌧ (⇢remain)) � 2000(log(2=))2 do
4 {�8 = (+8 , ⇢8 )}82 [✓ ]  RegularDecomposition(⌧) ; // Algorithm 8

(Theorem 3.11)
5 for 8 2 [✓] do
6 (� (8 ) , ⇢ (8 )

cut)  PartialPathSparsify(�8 ,:partial) ; // Algorithm 4
(Theorem 3.8)

7 end
8 �  [82 [✓ ]� (8 ) and ⇢remain  [82 [✓ ]⇢

(8 )
cut ;

9 end
10 �  � [ ⇢remain;
11 return � ;

P���� �� T������ 1.9. We �rst consider the execution of a single loop of Algo-
rithm 9, i.e. Line 3 to Line 9. Since 3avg (⌧ (⇢remain)) � 2000(log(2=))2 we can apply
Lemma 3.12 to analyze the execution of RegularDecomp. Lemma 3.12 implies that
this line takes expected $ ( |⇢remain |) time and outputs {�8 = (+8 , ⇢8 )}82 [✓ ] such that at
least constant fraction of the edges of ⇢remain are in the ⇢8 ,

Õ
82✓ |+ (�8 ) | = $ (= log2 =),

3ratio (�8 )) = ⌦(log(2=)), and 3min (�8 ) = ⌦(3avg (⌧)/log=) for all 8 2 [✓] (where we
used that the number of vertices in |⇢remain | is at most =). Consequently, in a single
execution of the while loop, Theorem 3.8 shows that Line 6 takes time

$
©≠
´
’
82 [✓ ]

|⇢8 | + |+8 |:partial3ratio (�8 ) log8 (=)
™Æ
¨
= $

�
|⇢remain | + =:partial log9 (=)

�
(8)

and w.h.p. in = outputs {(� (8 ) , ⇢ (8 )
cut)}82 [✓ ] such that

’
82 [✓ ]

|� (8 )
| = $ ©≠

´
’
82 [✓ ]

|+8 |:partial · 3ratio (�8 ) log(=)
™Æ
¨
= $

�
=:partial log2 (=)

�

each �8 (� ) is a (⌦(:partial/log3 (=)),$ (log5 =))-path sparsi�er of (+8 , ⇢8 \ ⇢ (8 )
cut) andÕ

82 [✓ ] |⇢
(8 )
cut |  2 |⇢remain | for some constant 2 2 (0, 1).

The preceding paragraph ultimately shows that w.h.p. each iteration of the loop,
i.e. Line 3 to Line 9, takes expected time $ ( |⇢remain | + =:partial log9 (=)) to output a
(⌦(:partial/log3 (=)),$ (log5 =))-path sparsi�er on a constant fraction of the edges.
Consequently, the loop terminates in $ (log |⇢ |) = $ (log=) iterations. Note that
when the loop terminates 3avg (⌧ (⇢remain)) < 2000(log(2=))2 and therefore |⇢remain | =
$ (= log2 (=)) = $ (=:partial log2 (=)). Consequently, � returned by the algorithm has size
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Algorithm 10: Z = Sample({Y1, ...,Y<},X, g, X) (from [CKM+])
Input: Y8 = E8E>8 are rank one matrices, g8 are upper bounds of leverage scores,

i.e. g8 � tr[Y8X†
] for all 8 , and X < 1 is an arbitrary parameter.

Output:Matrix X satisfying conditions of Lemma 4.1.
1 Z X, B =

Õ
82 [<] g8 , C = X�1B

2 A  randomly chosen integer in [C, 2C � 1]
3 for 9 = 1, 2 . . . A do
4 Pick index 8 with probability proportional to g8
5 Z Z +

X
g8
Y8

6 end
7 return Z

at most$ (=:partial log3 =). Further, note that if for any edge-disjoint graphs ⌧̄8 = (+ , ⇢̄8 )
for 8 2 [:] and �̄8 ✓ ⇢̄8 it is the case that each ⌧̄ [�̄8 ] is an (U, V)-path sparsi�er of
⌧̄8 then ⌧̄ [[82 [: ] �̄8 ] is an (U, V)-path sparsi�er of ⌧̄ = (+ ,[82 [: ] ⇢̄8 ). Consequently,
⌧ [� ] is an (⌦(:partial/log3 (=)),$ (log5 =))-path-sparsi�er of⌧ . By choice of constants
in the setting of :partial = ⇥(: log3 =) we have that the output of the algorithm is as
desired. Further, the run time follows from the reasoning in the preceding paragraph
about the runtime of a single loop (i.e. (8)) and that the number of edges in ⇢remain
decrease by a constant in each iteration.

⇤

4 LAPLACIAN SOLVERS WITH LOW-STRETCH SUBGRAPHS
In this section, we prove our main theorem regarding algorithms with improved
running times for solving Laplacian linear systems. We show how to use the low
distortion spectral subgraphs developed in Section 2.2 to prove the following theorem.

T������ 1.6 ($̃ (<)�L�������� S����� S�����). There is a randomized algorithm
which is an n-approximate Laplacian system solver for any input =-vertex<-edge graph
with polynomially-bounded edge weights (see De�nition 1.2) and n 2 (0, 1) and has the
following runtime for any j > 0

$ (<(log log=)6+2
p
10+j log(1/n)) .

Our proof is based on an analogous claim in [CKM+] regarding di�erent spectral
subgraph guarantees. Several proofs in this section are adaptations of lemmas from
[CKM+] to our setting. We provide the proof in full here both for completeness and
because the speci�c guarantees of [CKM+] do not tolerate the extra edges in our
preconditioners coming from our path sparsi�ers. In addition our analysis based on
noisy accelerated gradient descent is slightly tighter than that of [CKM+], enabling us
to obtain an improved guarantee.
A key matrix fact we apply in this section is a slight extension of a claim from

[CKM+] regarding Sample (Algorithm 10), a matrix sampling procedure from [CKM+].

Lemma 4.1 (Adaptation of Lemma 2.3 from [CKP+14]). Suppose X and Y =
Õ
82 [<] Y8

are symmetric matrices with the same null space such that X � Y, 1 = YḠ , and G is
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an arbitrary vector. Let the Y8 matrices be rank-one, and let g 2 R⇢
�0 be leverage score

overestimates in that they satisfy g8 � tr[Y8X†
]. Let Z = Sample({Y1, ...Y<},X, g, 1

10 ),
and de�ne G 0 as

G 0 = G �
1
10

Z†
(YG � 1).

Then

EA ,81,82,...8A
⇥
kG 0 � Ḡ k2Y

⇤


✓
1 �

1
40

◆
kG � Ḡ k2Y . (9)

Further, Z can be computed in $ (< + kg k1) time, and each matrix Y8 is added at least
once to Z with probability at most min{1, 20g8 }. Finally, for some �xed constant 2B with
high probability in = we have

1
2B log=

Y � Z � 2B log=Y.

P����. Equation 9 and the bound on the algorithm’s runtime are directly copied
from Lemma 2.3 from [CKP+14]. For the bound on the probability Y8 is added to Z,
we look at each execution of line 5 of the algorithm. For iteration 9 , we pick Y8 with
probability g8

B . Thus, we pick Y8 at most A g8B 
2B
X
g8
B = 20g8 times in expectation. The

conclusion follows by Markov’s inequality. The �nal claim follows immediately from
Lemma C.2 from [CKP+14]. ⇤

We additionally employ a partial Cholesky factorization lemma from [CKM+] which
enables us to reduce solving ultrasparse graph Laplacians to solving Laplacians with a
much smaller number of edges.

Lemma 4.2. Let⌧ be a weighted graph on = vertices and = +<0 edges. There is a routine
EliminateAndSolve(⌧, Solve,1) which computes a vector G satisfying���G � L†

⌧1
���2
L⌧

 n
���L†

⌧1
���2
L⌧

using $ (= +<0) time plus one call to Solve, which is an n-approximate solve for graphs
with at most $ (<0) nodes and edges.

Variants of this result are used in many prior Laplacian system solvers, e.g. [ST,
KMP, KMP14]. For a detailed proof of this lemma with �oating-point error analysis
see Appendix C of [Pen13].

We now assemble these pieces to give an algorithm for solving Laplacians in graphs
which contain ultrasparse low-stretch subgraphs:

Lemma 4.3. Let ⌧ be a weighted =-node<-edge graph and let ⌧ 0 be a subgraph of
⌧ with = +<0 edges. Let g1, . . . g<R⇢ be values satisfying g4 � F4R

4 5 5
⌧ 0 (D, E) for any

4 = (D, E). Let 1 be a vector, and let Ḡ = L
†

⌧1. Then if Solve is a (160022B log
2 =)�1-

Laplacian solver (De�nition 1.2)’, Algorithm PreconRichardson(⌧,⌧ 0, g,1, n) computes
a vector G satisfying

E
⇥
kG � Ḡ k2

L⌧

⇤
 n kḠ k2

L⌧

using $ (log 1/n) iterations. Each iteration consists of $ (< + kg k1) work plus one call to
Solve on a graph with $ (kg k1 +<

0
) edges.
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Algorithm 11: Z = PreconRichardson(⌧,⌧ 0, g,1, n, Solve)
Input: ⌧ graph, ⌧ 0 subgraph, g8 are upper bounds of leverage scores through

⌧ 0, 1 vector, n error tolerance.
Output: G approximately satisfying L⌧G = 1.

1 G1  0
2 for 8  1 to 200 log 1/n do
3 �8  Sample(⌧,⌧ 0, g, 1

10 )

4 if |⇢ (�8 ) |  1600 kg k1 + |⇢ (⌧ 0) | then
5 A8  L⌧G8 � 1
6 ~8  EliminateAndSolve(�8 , Solve, A8 )
7 G8+1  G8 �

1
10~8

8 end
9 else
10 G8+1  G8
11 end
12 end
13 return G8

P����. We bound the expected decrease of kG8 � Ḡ k2L⌧
in an iteration. We �rst

show the condition on Line 4 holds with large probability. By Lemma 4.1 the expected
number of edges added to ⌧ 0 when forming � is at most 20 kg k1. Thus by Markov’s
inequality � contains fewer than |⇢ (⌧ 0) | + 1600 kg k1 edges with probability at least
1 � 1

80 . If we call this event d , by Markov’s inequality we have

E

"����Ḡ �
✓
G8 �

1
10

L
†

�8
(L⌧G8 � 1)

◆����
2

L⌧

��� d
#


✓
1 �

1
80

◆
kḠ � G8 k

2
L⌧

where the expectation is over the randomness within a single iteration of the while
loop. Now by the guarantees of Solve and Lemma 4.1 we know that in each iteration
with high probability

E

���~8 � L†

�8
A8
���2
L⌧

�
 (2B log=)E

���~8 � L†

�8
A8
���2
L�8

�


2B log=
160022B log2 =

���L†

�8
A8
���2
L�8


1

16002B log=
kL⌧ (Ḡ � G8 )k

2
L

†

�8


2B log=

16002B log=
kL⌧ (Ḡ � G8 )k

2
L

†

⌧

=
1

1600
kḠ � G8 k

2
L⌧

.

Now, note that for any two vectors D, E and any Euclidean norm we have

kD + E k2 = kDk2 + kE k2 + 2D>E  (1 + U) kDk2 + (1 + U�1) kE k2
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for any U > 0 by the Cauchy-Schwarz inequality and the AM-GM inequality. With
this, we obtain for any U > 0

kḠ � G8+1k
2
L⌧

=
����Ḡ �

✓
G8 �

1
10
~8 +

1
10

L
†

�8
A8 �

1
10

L
†

�8
A8

◆����
2

L⌧

 (1 + U)
����Ḡ �

✓
G8 �

1
10

L
†

�8
A8

◆����
2

L⌧

+
1
100

�
1 + U�1

� ���~8 � L†

�8
A8
���2
L⌧

.

Choosing U = 1
400 , we thus obtain

E
⇥
kḠ � G8+1k

2
L⌧

|d
⇤


✓
1 +

1
400

◆ ✓
1 �

1
80

◆
kḠ � G8 k

2
L⌧

+
1
100

✓
401
1600

◆
kḠ � G8 k

2
L⌧



✓
1 �

1
160

◆
kḠ � G8 k

2
L⌧

.

Therefore we obtain
E

⇥
kḠ � G8+1k

2
L⌧

⇤
 Pr(d)E

⇥
kḠ � G8+1k

2
L⌧

|d
⇤
+ %A (¬d)E

⇥
kḠ � G8+1k

2
L⌧

|¬d
⇤



✓
1 �

1
80

◆ ✓
1 �

1
160

◆
kḠ � G8 k

2
L⌧

+
1
80
kḠ � G8 k

2
L⌧



✓
1 �

1
200

◆
kḠ � G8 k

2
L⌧

.

As we perform 200 log 1/n iterations, this error decrease guarantee implies the output
G satis�es the desired bound of

E
⇥
kḠ � G k2

L⌧

⇤


✓
1 �

1
200

◆200 log 1/n
kḠ � G1k

2
L⌧
 n kḠ k2

L⌧
= n

���L†

⌧1
���2
L⌧

.

We now bound the runtime per iteration. In each iteration we make 1 call to Sample,
which by Lemma 4.1 requires$ (< + kg k1) time. Now if the sampled subgraph �8 does
not satisfy the condition on line 4 of the algorithm, we conclude the iteration. If we
instead have |⇢ (�8 ) |  3200 kg k1 + |⇢ (⌧ 0) |, the call to EliminateAndSolve on line 6
requires $ (<) work plus a single call to Solve on a graph with $ (kg k1 +<) edges.
The claim follows. ⇤

Finally, we apply this primitive recursively to precondition an accelerated gradient
descent algorithm with guarantees given by the following theorem.

T������ 4.4 (R��������� P������������� AGD). Let A,B 2 R=⇥= be symmetric
PSD matrices with A � B � ^A for ^ � 1, let 1 2 im(A), let n 2 (0, 1) and let SolveB
be a 1

10^ -approximate solver for B. Then PreconditionedNoisyAGD(A,1, n,^, SolveB)
(Algorithm 13) is an n-approximate solver for A and its runtime is the runtime of
$ (
p
^ log(1/n)) iterations each of which consist of applying A to a vector, invoking

SolveB, and additional $ (=) time operations.

While related theorems are standard to the literature and a deterministic variant
analyzing Chebyshev iteration appears in [CKM+], we provide this theorem both for
completeness and to simplify and improve our analysis. The theorem is discused in
greater detail and proved in Appendix C. With this, we have the pieces to give our
�nal algorithm for solving Laplacian linear systems:
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Algorithm 12: Z = RecursiveSolver(⌧,1, n, X, LowStretch)
Input: ⌧ graph,1 vector, LowStretch oracle that returns low-stretch subgraphs,

n 2 (0, 1/2] error tolerance, X 2 (0, 1)
Output: G approximately satisfying L⌧G = 1.

1 Let I denote the solution of 5 (I) + 2 + X = I, where 5 is de�ned in Theorem 4.5
2 W = ⇠ (log log=)I , for su�ciently large constant ⇠
3 {� , g} LowStretch(⌧, I)
4 ^  an overestimate of kg k1 output by LowStretch,[  W^

<
5 ⌧ 0 = ⌧ + ([ � 1)� , g 0  g

[

6 RecSolver RecursiveSolver(·, ·, 1
160022B log2 =

, LowStretch)

7 RichardsonSolver⌧ 0 = PreconRichardson(⌧ 0,[� , g 0, ·, 1
10[ ,RecSolver)

8 G  PreconNoisyAGD(⌧,1, n,[,RichardsonSolver⌧ 0 )
9 return G

T������ 4.5. Let⌧ = (+ , ⇢,F) be a =-node<-edge graph and let LowStretch by an
algorithm which takes as input an =0-node<0-edge graph ⌧ 0 and parameters ⇠, 2 > 0
and returns a ^-distortion subgraph of ⌧ with at most =0 + <0

(⇠ log log=0 )2 edges and a
corresponding vector of leverage score overestimates in $ (< log log=) time, where

^ = $
⇣
< (log log=0) 5 (2 )

⌘
for some concave, monotone increasing function 5 with 5 (0) > 0. Let X > 0 be a
parameter, and let I denote the (unique) solution to the equation 5 (I) + 2 + X = I. Then
for all su�ciently large = RecursiveSolver is an n-approximate Laplacian solver for⌧
with running time

$
�
<(log log=)I�1 log(1/n)

�
.

P����. We �rst prove the algorithm is an n-approximate Laplacian solver. We
proceed by strong induction on<, the number of edges in the input graph⌧ . Assume
that RecursiveSolver’s output is correct for all graphs with fewer than< edges. In one
level of recursion, we construct a subgraph � with associated stretch overestimates g
with = + W�1< edges that achieves ^-spectral distortion for

^  Z<(log log=) 5 (I ) ,

where Z is an absolute constant. We use this to form a graph ⌧ 0 with stretch overesti-
mates g 0 = g

[ . We observe that

[� � ⌧ 0 and ⌧ � ⌧ 0 = ([ � 1)� +⌧ � [⌧

since � is a subgraph of⌧ : thus we conclude that g 0 are valid stretch overestimates of
the edges in⌧ 0. Further, the choice of parameters[,^,W implies thatPreconRichardson⌧ 0
on line 7 applies RecursiveSolver to graphs with $ (W�1< + [�1^) = $ (W�1<) edges:
for su�ciently large constant ⇠ we see that this is less than <. Thus the calls to
RecursiveSolver are correct by induction, and by Lemma 4.3 RichardsonSolver⌧ 0
is a 1

10[ -solver for ⌧ 0. Finally since ⌧ 0 ⇡[ ⌧ we conclude by Theorem 4.4 that
PreconNoisyAGD is an n-appoximate Laplacian solver: this completes the induction.

, Vol. 1, No. 1, Article . Publication date: January 2023.



40 Arun Jambulapati and Aaron Sidford

We now bound the running time of the algorithm. Fix a constant value<0, and
note that RecursiveSolver runs in $ (1) time for all graphs with fewer than<0 edges
since the proof of correctness implies that the algorithm runs in �nite time. Let
T (<, n) denote the running time of our algorithm on a graph with< � <0 edges with
error parameter n . In one level of recursion, we �rst perform one call to LowStretch–
this requires $ (< log log=) time. All remaining steps in our recursive algorithm are
trivially $ (<) time except for the call to PreconNoisyAGD on line 8. We recall L⌧ �
L⌧ 0 � [L⌧ : by Theorem 4.4 the call to PreconNoisyAGD performs $ (

p
[ log(1/n))

iterations, each of which performs$ (<) work plus one call toRichardsonSolver⌧ 0 with
error parameter 1

10[ . Observing that kg
0
k1  [

�1^ = W�1<  <, by Lemma 4.3 each
of these calls to PreconRichardson runs in time $ (< log([)) plus the time needed for
$ (log([)) calls to RecursiveSolver on graphs with$ (W�1<) edges and error parameter
YB>;E4 = 1

160022B log2 =
. Thus, one recursive loop of the algorithm performs

$ (< log log=) +$
�
<
p
[ log(1/n) log[

�
work plus the cost of $

�p
[ log(1/n) log[

�
calls to RecursiveSolver on graphs with at

most VW�1< edges (where V is the constant hidden in the big-$ notation) and error
parameter YB>;E4 . This implies the recurrence

T (<, n)  k
�
log log= +

p
[ log(1/n) log[

� �
< + T

�
VW�1<, YB>;E4

� �
for some explicit constantk . De�ne eT (<) = T (<, YB>;E4 ). We �rst establish and solve
a recurrence for eT (<): we will use this to prove the full runtime claim. Since VW�1< <
< we may apply our induction hypothesis: further as [ � 1 and log(1/YB>;E4 ) 
2 log log= +$ (1)  3 log log= for = su�ciently large we have

eT (<)  4k
�p
[ log[ log log=

� ⇣
< + eT (VW�1<)

⌘
.

We will show that
4k

�p
[ log[ log log=

�
VW�1 

3
4

for the appropriate choice of constant⇠ : this will allow us to apply the master theorem
for this recurrence. Observe

[ =
W^

<
 Z (log log=) 5 (I ) W = Z (log log=)I�2�X W = Z⇠�1W2 (log log=)�2�X . (10)

Thus
4k

�p
[ log[ log log=

�
VW�1  4kZ 1/2⇠�1/2V log[ (log log=)�X/2 .

As log[  2 logW +$ (1) = $ (log log log=) and< � <0, we choose<0 su�ciently
large and conclude

4k
�p
[ log[ log log=

�
VW�1  4kZ 1/2⇠�1/2 

3
4

for a su�ciently large choice of ⇠ . Thus for any< � <0 we have

eT (<) 
3
4
U�1

⇣
< + eT (U<)

⌘

for U = VW�1. The master theorem thus implies
eT (<)  $ (U<) = $ (< (log log=)I)
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for all<. Applying this to the recurrence for T (<, n), we obtain

T (<, n)  k
�
log log= +

p
[ log(1/n) log[

� ⇣
< + eT �

VW�1<
� ⌘

 $
�
< log log= +<

p
[ log(1/n) log[

�
since eT (VW�1<) = $ (<). We note by (10) that

p
[  $

⇣
W (log log=)�1�X/2

⌘
= $

⇣
(log log=)I�1�X/2

⌘
.

We now observe log[  (log log=)X/2 for large enough = and I = 2 + X + 5 (I) > 2:
these together imply

T (<, n)  $
�
< log log= +< (log log=)I�1 log(1/n)

�
= $

�
< (log log=)I�1 log(1/n)

�
as desired.

⇤

Finally, we apply the ^-distortion subgraphs computed in Theorem 1.5 to obtain
our main result:

T������ 1.6 ($̃ (<)�L�������� S����� S�����). There is a randomized algorithm
which is an n-approximate Laplacian system solver for any input =-vertex<-edge graph
with polynomially-bounded edge weights (see De�nition 1.2) and n 2 (0, 1) and has the
following runtime for any j > 0

$ (<(log log=)6+2
p
10+j log(1/n)) .

P����. We observe that the procedure given in Theorem 1.5 yields ^-distortion
subgraphs with = + <

⇠ (log log=)2 edges, for

^ = $
⇣
< (log log=)1+

p
82+> (1)

⌘
.

For su�ciently large = and constant in the big-$ notation, this satis�es the conditions
of Theorem 4.5 for function 5 (G) = 1 +

p
8G + X for any X > 0. Theorem 1.5 constructs

such subgraphs in $ (<) time which is su�cient for our guarantee. Substituting these
into the guarantee of Theorem 12 gives an n-approximate solver running in time

$
�
<(log log=)I�1 log(1/n)

�
,

where I is the solution to
p
8I + 3 + 2X = I for any X � 0. Solving this equation reveals

I = 7 +
p
40 + 8X + 2X : by choosing X su�ciently small this gives an exponent of

6 +
p
40 + j for any j � 0. We remark that 6 +

p
40 ⇡ 12.324. ⇤

We made only limited attempts to optimize the loglog dependence of this algorithm.
We believe this dependence may be improved and here describe possible improvements.
First, our method of analyzing the recursion is in some sense, weaker than that of
[CKM+]. In their setting the low stretch subgraph is a tree: in that case the recursively
generated subproblems natively contain a low-distortion subgraph with ^ = $ (<).
This observation enables them to make di�erent choices for the recursion parameter [.
Although this observation is key to ensure their algorithm runs in $̃ (<

p
log=) time

and not $̃ (< log=), in our case the only e�ect is to reduce the polynomial dependence
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on log log=. By carefully applying this technique to our setting we believe our runtime
can be improved.
A larger obstruction in obtaining a better runtime is the use of a “bottom-up"

recursion based on [AKPW95] in our construction of ^-distortion subgraphs. While
this su�ces to obtain our claim, our running time would be much improved by using
a “top-down" graph decomposition more closely resembing [CKM+]. We leave it as an
interesting problem for future work.
As an additional remark we observe that we can convert the expected-decrease

guarantee of Theorem 1.6 to a high-probability bound, provided that we allow our
runtime bound to hold in expectation and with an extra $ (log log=) factor. To obtain
this, we use Lemmas 4.5 and 4.9 from [CKP+14], which allow us to construct a linear
operator Z satisfying L

†
� Z � log4 =L† which can be computed and applied

in $ (< log log=) time.7 With this, we simply apply Theorem 1.6 with n  n
2 log4 = :

Markov’s inequality implies the output G has kLG � 1k2
L† =

��G � L†1
��2
L


n
log4 = k1k

2
L

with probability 1/2. If this holds, we may use Z to verify in $ (< log log<) time
whether

��G � L†1
��2
L
 n k1k2

L
. The claim follows by repeating this procedure until a

desired solution is found.
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A ULTRASPARSIFIERS BY SPECTRAL GRAPH THEORY
In this section, we prove our two main results regarding ultrasparsi�ers. We begin by
proving the existence of ultrasparsi�ers for sums of arbitrary rank-1 matrices.
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T������ 1.3 (U�������������� E��������). Let E1, . . . E< 2 R= andA B
Õ
82 [<] E8E

>

8 .

For any integer : � 2, there exists ( ✓ [<] with |( | = = +$
⇣
=
p
:

⌘
andF 2 R<

�0 where

A �
’
82(

F8E8E
>

8 � :A.

To obtain this result we �rst give the following Theorem A.1 regarding spectral
properties of subsets of sums of rank one matrices and then we use it to prove Theo-
rem 1.3.

T������ A.1. Let E1 ...E< 2 R= and let A =
Õ
82 [<] E8E

>

8 be full rank. For any : � 1
there exists ( ⇢ [<] with |( |  = + =

: such that B B
Õ
82( E8E

>

8 has tr[B�1A]  <: .

P����. We start with ( = [<] and greedily remove elements from ( to minimize
the increase in tr[B�1A]. Observe that the initial value of this trace is = since B = A.
By the Sherman-Morrison formula for rank 1 matrix updates, for any invertible matrix
M and vector E with E>M�1E < 1

�
M � EE>

��1 = M�1 + M�1EE>M�1

1 � E>M�1E
and is invertible .

With this, we analyze the change to tr[B�1A] after one element is removed from ( .
For any 8 2 ( ,

tr
h �
B � E8E>8

��1 Ai
= tr[B�1A] +

E>8 B�1AB�1E8
1 � E>8 B�1E8

We consider randomly sampling 8 to remove from ( with probability ?8 / 1�E>8 B�1E8 .
We will show the increase to the trace is bounded in expectation. Since for 8 2 ( ,
E8E>8 � B, all the ?8 are all nonnegative and non-zero only when 1 � E>8 B�1E8 > 0.
Selecting 8 in this way yields

E
h
tr

h �
B � E8E>8

��1 Ai i
= tr[B�1A] +

’
82(

?8
E>8 B�1AB�1E8
1 � E>8 B�1E8

= tr[B�1A] +
Õ
82( E

>

8 B�1AB�1E8Õ
82( 1 � E>8 B�1E8

.

By the cyclic property of trace, we observe
Õ
82( E

>

8 B�1AB�1E8 = tr[BB�1AB�1] =
tr[B�1A] and

Õ
82( 1 � E>8 B�1E8 = |( | � =. Applying these equations yields

E
h
tr

h �
B � E8E>8

��1 Ai i
= tr[B�1A]

✓
1 +

1
|( | � =

◆

and therefore whenever |( | > =, there exists some 8 2 ( satisfying

tr
h �
B � E8E>8

��1 Ai
 tr[B�1A]

✓
1 +

1
|( | � =

◆
= tr[B�1A]

✓
|( | � = + 1
|( | � =

◆
.

By repeatedly applying this bound from |( | =< to |( | = = + d=: e, we remove all but
= + =

: elements from ( and end up with B satisfying the desired bound of

tr
⇥
B�1A

⇤
 =

<÷
B==+d =: e

✓
B � = + 1
B � =

◆
= =

✓
< � = + 1
=/:

◆
 <: .
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⇤

We now show a modi�cation of [BSS14] which allows us to convert the output of
Theorem A.1 into an ultrasparsi�er.

T������ A.2. Let E1, E2, ..., E< 2 R= be vectors such that
Õ
8 E8E

>

8 = I. Let A 2 R=⇥=
be a matrix satisfying A � I and tr[A�1] = ^ . Then for any @ � 0 with d(^ + 2=)@e  =,
there exists ( ✓ [<] with |( | = d(^ + 2=)@e with corresponding weightsF8 > 0 such that

@I � A +

’
82(

F8E8E
>

8 � 3I.

Our proof of this result is as a consequence of technical lemmas from [BSS14]
restated below.

Lemma A.3 (Combination of Lemmas 3.3, 3.4, 3.5 from [BSS14]). Let E1, E2, ...E< 2 R=
be vectors such that

Õ
8 E8E

>

8 = I. De�ne the functions �D (M) B tr[(DI � M)
�1
] and

�; (M) B tr[(M � ;I)�1]. Let A be a matrix satisfying ;I � A � DI as well as

�D (A)  W* and �; (A)  W! .

Then for X* , X! satisfying 1/X* + W*  1/X! � W! there exists 8 2 [<] and C > 0 such
that (; + X!)I � A + CE8E>8 � (D + X* )I as well as

�D+X*
�
A + CE8E

>

8

�
 W* and �;+X!

�
A + CE8E

>

8

�
 W! .

Our use of Lemma A.3 mirrors its use in [KMST]: we iteratively add vectors to
the output of Theorem A.1 to increase the spectral upper and lower bounds on A
appropriately. After a small number of iterations, we certify that A is appropriately
spectrally bounded and terminate.

P���� �� T������ A.2. We letA(0) B A and for 9 � 0 iteratively de�neA( 9+1) B
A( 9 )

+ CE8E>8 for some C � 0 and 8 2 [<] (each depending on 9 ). Further, we set W* = =,
W! = ^, D0 = 2, ;0 = 0, X* = 1

= , X! = 1
2=+: . Observe that

�D0
⇣
A(0)

⌘
= tr (2I � A)�1  tr (I)  = = W*

and
�;0

⇣
A(0)

⌘
= tr

�
A�1

�
= ^ = W! .

Further, the choice of parameters ensures 1/X* + W*  1/X! � W! . Thus, inductively
applying Lemma A.3 yields that for each 9 > 1 there exists C > 0, and 8 2 [(] where
A( 9 ) = A( 9�1)

+ CE8E>8 satis�es

�D0+9X*
⇣
A( 9 )

⌘
 W* and �;0+9X!

⇣
A( 9 )

⌘
 W! .

Therefore A(B ) for B = d(^ + 2=)@e satis�es the desired bound of

@I � (;0 + BX!) I � A(B )
� (D0 + BX* ) I � 3I

where in the last inequality we used the upper bound on B . ⇤
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Finally, we combine Theorem A.1 and Theorem A.2 and give the proof of Theo-
rem 1.3.

P���� �� T������ 1.3. We note that we may assume A =
Õ
82 [<] E8E

>

8 is full-rank:
otherwise we may add D 9 2 ker(A) to make the result full rank, run the rest of the
proof, and remove the addedD 9 before returning the output. Since theD 9 are orthogonal
to the E8 , removing them cannot a�ect the space spanned by A’s eigenvectors.
By applying [BSS14], we can �nd a collection of 34= vectors E 01, E

0

2, . . . , E
0

34= which
are reweighted copies of the E8 and satisfy A �

Õ
82 [16=] E

0

8

�
E 08

�>
� 2A. We assume

: > 1000 in the rest of the argument: the E 08 immediately satisfy our requirements
otherwise as : was assumed to be at least 2.
Given the vectors E 01, E

0

2, . . . , E
0

34= , de�ne C =
Õ
82 [34=] E

0

8

�
E 08

�>: note that A
�
C � 2A.

As C is therefore full-rank, we apply Theorem A.1 and thus obtain a set ( of = +
=
:

vectors such that

tr ©≠
´
C

 ’
82(

E8E
>

8

!�1™Æ
¨
 34=: .

Thus, B = C�1/2
�Õ

82( E8E
>

8

�
C�1/2 has B � I (as it is formed from an unweighted

subset of the vectors that form C) and tr(B�1)  34=: . Applying Theorem A.2 with
^ = 34=: and @ = 1

36:2 , we observe that there exists a set ) of (^ + 2=)@  =
: vectors

with corresponding weightsF8 � 0 such that

1
36:2

C � C1/2BC1/2
+

’
82)

F8E8E
>

8 � 3C.

Using the de�nition of B and rearranging, we obtain

1
36:2

A � 1
36:2

C �
’
82([)

F8E8E
>

8 � 3C � 6A

Finally, |( [) |  |( | + |) |  = + =
: +

=
: = = + 2=

: : the output is a sum of outer products
of at most = + 2=

: vectors. The claim follows by choosing :  216:2 and scaling the
output. ⇤

We made no attempt to optimize the constants in the above proof. We additionally
remark that Theorem 1.3 immediately implies the existence of :-ultrasparsi�ers with
= + $

⇣
=
p
:�1

⌘
edges: we simply apply it to a graph Laplacian written in the formÕ

42⇢ (⌧ )

�p
F414

� �p
F414

�>. We now construct ultrasparsi�ers for graphs with im-
proved guarantees by combining our ^-distortion subgraph construction with this
BSS-derived framework. We begin with the general claim of our construction: we
specialize it to several interesting parameter regimes as a corollary.

T������ A.4 (P����������T��� U�������������� C����������� �� G�����).
Let ⌧ be any =-vertex graph with polynomially-bounded edge weights. There exists a
polynomial time algorithm which constructs a reweighted subgraph � with = +$

⇣
=
W

⌘
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edges such that L� � L⌧ � UL� for

U = $

 
W exp

 r
8 logW · log

⇣
48 log

�
W log10 =

� p
logW

⌘!
log

�
W log10 =

� p
logW

!

P����. We note that by preprocessing the graph with [BSS14], we may assume that
the graph has$ (=) edges with at most a constant factor loss in the �nal approximation
error. We employ Theorem 2.5 with : = W log10 = and path sparsi�cation algorithm
given by Theorem 1.9. By the theorem’s guarantee, this returns a subgraph ⌧ 0 in
polynomial time with

= +$

✓
= log10 =

:
+
= logW
:2

+
=

W

◆
= = +$

✓
= log10 =
W log10 =

+
=

W

◆
= = +$

✓
=

W

◆

edges. Further, the output subgraph is a ^-distortion subgraph with

^ = $

 
=W exp

 r
8 logW · log

⇣
48 log

�
W log10 =

� p
logW

⌘!
log

�
W log10 =

� p
logW

!
.

We note that tr
h
L

1/2
⌧ L

†

⌧ 0L
1/2
⌧

i
 ^ by de�nition of ^-distortion, and that the col-

lection of rank-1 matrices F4L�1/2⌧ 141>4 L
�1/2
⌧ , 4 2 ⌧ sums to I. If 141>4 are the edge

Laplacian matrices that form L⌧ , applying Theorem A.2 with U B 3 =
^W yields a set (

of d(^ + 2=)Ue = $
⇣
=
W

⌘
edges with corresponding weightsF 08 > 0 such that

3UI � L
�1/2
⌧ L⌧ 0L

�1/2
⌧ +

’
42(

F 04L
�1/2
⌧ 141

>

4 L
�1/2
⌧ � 3I.

Scaling down the resulting matrix and multiplying both sides of the matrices by
L

1/2
⌧ gives a reweighted subgraph � with = +$

⇣
=
W

⌘
such that UL⌧ � L� � L⌧ as

desired. ⇤

As a corollary of this result, we prove Theorem 1.7, which we now recall.

T������ 1.7 (I������� U���������������). There exists a polynomial time al-
gorithm which given an input graph ⌧ with polynomially-bounded edge weights can
compute a reweighted subgraph � with either of the following guarantees:

• For any constant 2 , � has = + =
(log log=)2 edges and satis�es

L⌧ � L� � $ ((log log=)2+
p
82+1+> (1)

)L⌧ .

• For any constant X > 0 and U = l (logX =), � has = + =
U edges and satis�es

L⌧ � L� � U
1+> (1)

L⌧ .

P����. We employ Theorem A.4 with di�erent values of W . For the �rst claim, we
choose W = (log log=)2 , and note that Theorem A.4 yields U-ultrasparsi�ers, with

U = $

 
W exp

 r
8 logW · log

⇣
48 log

�
W log10 =

� p
logW

⌘!
log

�
W log10 =

� p
logW

!

= $
⇣
(log log=)2+

p
82+1+> (1)

⌘
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by applying the de�nition of W . For the second claim, we choose W = U in Theorem A.4:
we obtain an ultrasparsi�er of quality

$

 
U exp

 r
8 logU · log

⇣
48 log

�
U log10 =

� p
logU

⌘!
log

�
U log10 =

� p
logU

!
.

Since U = l (logX =) for some �xed constant X > 0, we have log
�
U log10 =

�


log
�
U1+10/X

�
+ $ (1) =

�
1 + 10

X

�
logU + $ (1) 

�
2 + 20

X

�
logU for su�ciently large

=. Substituting this in, we obtain

$

 
U exp

 r
8 logU · log

⇣
48 log

�
U log10 =

� p
logU

⌘!
log

�
U log10 =

� p
logU

!

 $
©≠
´
U exp ©≠

´

s
8 logU · log

✓✓
96 +

960
X

◆
log3/2 U

◆™Æ
¨
log3/2 U™Æ

¨
= $ ©≠

´
U exp ©≠

´

s
8 logU ·

✓
3
2
log logU +$ (1)

◆™Æ
¨
log3/2 U™Æ

¨
= U1+> (1)

as claimed. ⇤

B PRIMAL DUAL CHARACTERIZATION OF SHORTEST FLOW
Here we prove our primal-dual characterization of minimum cost �ow that we use to
reason about vertex disjoint paths in expanders. Though this is fairly standard and
straightforward, we include a brief derivation here for completeness.

Lemma 3.6 (Dual Characterization of Shortest Flow). For directed graph ⌧ = (+ , ⇢)
and vertices B, C 2 + if there are at most � edge-disjoint paths from B to C then there is
an integral B-C �ow 5 2 {0, 1}⇢ corresponding to � edge-disjoint paths from B to C using
a minimum number of edges and E 2 R+ such that for every (0,1) 2 4 if 54 = 1 then
E0 � E1 � 1 and if 54 = 0 then E0 � E1  1.

P���� �� L���� 3.6. For all 0,1 2 + let 10,1 B 10 � 11 where for all 2 2 + we et
12 2 R+ denote the indicator vector for 2 , i.e. the vector that is a zero in all coordinates
except for 2 where it has value 1. Further, let B 2 R⇢⇥+ denote the edge-vertex
incidence matrix of graph where for each edge 4 = (0,1) 2 ⇢ row 4 of B is X0,1 .
Leveraging this notation, we consider the following minimum cost �ow problem

of computing the �ow of minimum total length that sends � units of �ow from B to C
and puts at most one unit of non-negative �ow is put on each edge:

min
5 2R⇢ :54 2 [0,1] for all 42⇢ and B> 5 =� ·XB,C

5 >Æ1 (11)

To see that (11) corresponds to the desired �ow problem, note that for all 0 2 + and
5 2 R⇢ , [B> 5 ]0 = 1>0

Õ
4=(0,1 )2⇢ X0,1 54 =

Õ
4=(0,1 )2⇢ 54 �

Õ
4=(1,0) 54 , i.e. the net �ow

leaving leaving vertex 0 through 5 in the graph.
There is always an integral minimizer for this problem and it corresponds to �

disjoint paths from B to C using a minimum number of edges.8 Letting, 0⇢, I⇢ 2 R⇢⇥⇢
8This is a standard result regarding minimum cost �ow. One way to see this is to note that given any
solution 5 to (11) if the edges 4 with 54 8 {0, 1} form a cycle (viewing each directed edge (0,1 ) as an
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denote the all zero matrix and identity matrix respectively, letting Æ0⇢, Æ1⇢ 2 R⇢ denote
the all zero vector and all ones vector respectively, and letting

A =
✓
B I⇢
0⇢ I⇢

◆
, 1 =

✓
Æ1<
Æ0<

◆
, and 2 =

✓
� · XB,C
Æ1<

◆

we can write this problem equivalently as

(%) = min
G2R⇢+⇢

�0 : A>G=1
1>G and (⇡) = max

~2R+ +⇢ ,B2R⇢+⇢
�0 : AG�B=1

2>~ (12)

where we use R⇢+⇢ and R++⇢ denote concatenations of two R⇢ vectors and concate-
nation of a R+ vector with a R⇢ vector, respectively. That (%) is equivalent to the
original minimum cost �ow problem follows from the fact that 5  Æ1 entrywise if and
only if 5 + G = Æ1 for some G 2 R⇢

�0 and that (⇡) = (%) follows from standard strong
duality of linear programs.
Now, let G 2 R⇢+⇢

�0 and (~, B) 2 R++⇢
⇥ R⇢⇥⇢

�0 be optimal solutions ot (%) and (⇡)
respectively in (12). Further, let without loss of generality 5 be the concatenation of
5 2 R⇢

�0 and Æ1 � 5 2 R
⇢
�0, let ~ be the concatenation of E 2 R+ and I 2 R⇢ , and let B

be the concatenation of B1 2 R⇢
�0 and B

2
2 R⇢

�0. Further, let 5 be an integral minimizer
and note that it corresponds to � disjoint paths, and either 54 = 0 or 1 � 54 = 0 for all
4 2 ⇢.

Now, by optimality of G and B we know that G>B = 0 and therefore 54 · B14 = 0 for all
4 2 ⇢ and (1 � 54 ) · B24 = 0 for all 4 2 ⇢. Further, for all edges 4 2 (0,1) feasibility of
(~, B) for (⇡) implies

E0 � E1 + I4 � B
1
4 = 1 and I4 � B24 = 0 .

Consequently, if 54 = 1 then B14 = 0 and we have B14 = 0, I4 = B24 and E0 � E1 = 1� B24 , i.e.
E0�E1  1. Further, if 54 = 0 then B24 = 0, I4 = 0, and E0�E1 = 1+B14 , i.e. E0�E1 � 1. ⇤

C RANDOMIZED PRECONDITIONED ACCELERATED GRADIENT
DESCENT

In this section we prove the following Theorem 4.4 regarding preconditioned accel-
erated gradient descent (AGD) for solving linear systems with random error in the
preconditioner. That this accelerated preconditioned linear system solver handles
randomized error aids our analysis in Section 4.

T������ 4.4 (R��������� P������������� AGD). Let A,B 2 R=⇥= be symmetric
PSD matrices with A � B � ^A for ^ � 1, let 1 2 im(A), let n 2 (0, 1) and let SolveB
be a 1

10^ -approximate solver for B. Then PreconditionedNoisyAGD(A,1, n,^, SolveB)
(Algorithm 13) is an n-approximate solver for A and its runtime is the runtime of

undirected edges {0,1}) then �ow can be sent in one direction of the cycle without increasing 5 >Æ1 while
preserving feasibility until at least one less edge has 54 8 {0, 1}. Consequently, there is an optimal solution
to (11) where the edges with 54 8 {0, 1} are acyclic (when viewed as undirected edges). However, by the
constraint B> 5 = � · XB,C this implies that all edges have 54 2 {0, 1} in this case. Consequently, there is an
optimal integral �ow 5 . (This holds more generally, see e.g. [DS, Sch03].) Further, if there is a directed cycle
in⌧ with a positive value of 54 on each edge, a feasible 5 with decreased 5 >Æ1 can be found by sending
�ow in the reverse of each cycle. Consequently, there is an optimal integral acyclic �ow and again by the
the constraints this implies that 5 corresponds to � disjoint paths from B to C .
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$ (
p
^ log(1/n)) iterations each of which consist of applying A to a vector, invoking

SolveB, and additional $ (=) time operations.

The robustness of accelerated methods to error has been studied in a variety of
contexts (see e.g. [LS, MS13, DGN14, BJL+]).We provide the proof in this section for
completeness and to obtain a statement tailored to our particular setting. Limited
attempts were made to optimize for the parameters and error tolerance for the pre-
conditioner in the method.

We remark that this theorem is similar to one in [CKM+] which analyzed precondi-
tioned Chebyshev iteration with bounded solving error. Interestingly, a similar result
as to Theorem 4.4 can be achieved by analyzing the method of that paper with ran-
domized error in the solver. Straightforward modi�cation of their analysis yields a
variant of Theorem 4.4 where Equation (1) in the de�nition of a solver is replaced with
E

��G � A†1
��
A 
p
n k1k and the accuracy required for the solver for B scales with

n . We chose to provide the analysis of AGD as it provides an interesting alternative
to preconditioned Chebyshev and naturally supported analysis of expected squared
errors and preconditoners with accuracy that does not scale with n .

In the remainder of this sectionwe providePreconditionedNoisyAGD (Algorithm 13)
and prove Theorem 4.4. Our notation and analysis are similar to [HSS] and [CKM+]
in places and specialized to our setting in others.

Algorithm 13: � = PreconditionedNoisyAGD(A,1, n,^, SolveB)
Input: Symmetric PSD A 2 R=⇥= , vector 1 2 R= , and accuracy n 2 (0, 1)
Input: Condition number bound ^, 1

10^ -solver, SolveB, for symmetric PSD
B 2 R=⇥= with A � B � ^A

Output: A vector such that algorithm is an n-approximate solver for A
1 G0 := 0 2 R= , E0 := 0 2 R= , and ) := d4

p
^ log(2/n)e ;

2 for C = 0 to ) � 1 do
3 ~C := UGC + (1 � U)EC where U B

2
p
^

1+2
p
^
;

4 GC+1 := ~C � 6C where 6C := SolveB (A~C � 1) ;
5 EC+1 := VEC + (1 � V) [~C � [6C ] where [ B 2^ and V B 1 � 1

2
p
^
;

6 end
7 return GC ;

To analyze PreconditionedNoisyAGD (Algorithm 13) we �rst provide the following
lemma for bounding the error from an approximate solve.

Lemma C.1. Let A,B 2 R=⇥= be symmetric PSD matrices with A � B � ^A and let
1 2 im(A). If 6 = SolveB (AG � 1) where SolveB is an n-approximate solver for B then,
G⇤ B A†1 and

� B 6 � B†
(AG � 1) = 6 � B†A(G � G⇤) (13)

satis�es

E k�k2B  n kG � G⇤k
2
AB†A  n kG � G⇤k

2
A and E k6k2B  (1+

p
n)2 kG � G⇤k

2
AB†A . (14)
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P����. Note that 1 = AG⇤ by the assumption that 1 2 im(A) thereby proving (13).
Further, by de�nition of an n-approximate solver and � we have

E k�k2B  n
��B†

(AG � 1)
��2
B = n kG � G⇤k2AB†A  n kG � G⇤k

2
A (15)

where in the last step we used that since A � B we have B†
� A† and AB†A � A.

Further, since E k�kB 
q
E k�k2B by concavity of

p
· we have

E k6k2B = E
��� + B†A(G � G⇤)

��2
B = E

h
k�k2B + 2

⇥
�>BB†A(G � G⇤)

⇤
+

��B†A(G � G⇤)
��2
B

i
 E k�k2B + 2E k�kB kG � G⇤kAB†A + kG � G⇤k

2
AB†A


⇥
n + 2
p
n + 1

⇤
kG � G⇤k

2
AB†A

where we used Cauchy Schwarz for Euclidean semi-norms, i.e. 0>B1  k0kB k1kB
and (15). ⇤

Next we analyze the residual error decrease, i.e. change in kG � G⇤kA, from taking a
single gradient step using Solve. We will use this to analyze the error in computing
GC+1 from ~C using PreconditionedNoisyAGD (Algorithm 13).

Lemma C.2. Let A,B 2 R=⇥= be symmetric PSD matrices with A � B � ^A and for
arbitrary G and 1 2 im(A) let ~ = G � 6 where 6 = SolveB (AG � 1) and SolveB is an
n-approximate linear system solver for B. G⇤ B A†1 satis�es

E k~ � G⇤k
2
A  kG � G⇤k

2
A � (1 � n) kG � G⇤k2AB†A 

✓
1 �

1 � n
^

◆
kG � G⇤k

2
A .

P����. Let G⇤ B A†1 and � B 6 � B†
(AG � 1). By Lemma C.1 we have

~ = G �
⇣
B†A(G � G⇤) + �

⌘
and E k�k2B  n kG � G⇤k

2
AB†A .

Consequently,

k~ � G⇤k
2
A = kG � G⇤k2A � 2(G � G⇤)

>A
⇥
B†A(G � G⇤) + �

⇤
+

��B†A(G � G⇤) + �
��2
A .

Since A � B,��B†A(G � G⇤) + �
��2
A 

��B†A(G � G⇤) + �
��2
B = kG � G⇤k2AB†A + 2(G �G⇤)>A�+ k�k2B .

Now B � ^A and therefore B†
⌫ ^�1A† and AB†A ⌫ ^�1A. Combining the above

inequalities yields

E k~ � G⇤k
2
A  kG � G⇤k

2
A � kG � G⇤k

2
AB†A + E k�k2B

 kG � G⇤k
2
A � (1 � n) kG � G⇤k2AB†A 

✓
1 �

1 � n
^

◆
kG � G⇤k

2
A .

⇤

Lemma C.3 (Single Step Analysis). In the setting of Theorem 4.4 let nC B kGC � G⇤k2A
and AC B kEC � G⇤k2B for G⇤ B A†1. Conditioned on the value of GC and EC and considering
the randomness in 6C we have

E


nC+1 +

1
2^
AC+1

�


✓
1 �

1
4
p
^

◆ 
nC +

1
2^
AC

�
.
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P����. Throughout we let IC B VEC + (1 � V)~C , n
~
C B k~C � G⇤k

2
A and A ~C B

k~C � G⇤k
2
B. Note that kIC � G⇤k

2
B  VAC + (1 � V)A ~C by the convexity of k·k2B and the

de�nition of IC . Consequently, expanding the de�nition of EC+1 and applying that
[ (1 � V) =

p
^ yields

AC+1 = kIC � G⇤ � (1 � V)[6C k2B
= kIC � G⇤k2B + (1 � V)[

⇥
�26>C B(IC � G⇤) + [ (1 � V) k6C k2B

⇤
 VAC + (1 � V)A ~C +

p
^

⇥
�26>C B(IC � G⇤) +

p
^ k6C k

2
B
⇤

Now Lemma C.1 implies that

6C = B†A(~C � G⇤) + �C and E k�C k2B  n k~C � G⇤k
2
A = n · n~C ,

and the formulas for ~C and IC imply that

IC =
V

1 � U
(~C � UGC ) + (1 � V)~C = ~C +

UV

1 � U
(~C � GC ) .

Combining yields that

6>C B(IC � G⇤) =
⇣
B†A(~C � G⇤)

⌘>
B

✓
~C � G⇤ +

UV

1 � U
(~C � GC )

◆
+ �>C B(IC � G⇤)

= k~C � G⇤k2A + �>C B(IC � G⇤) +
UV

1 � U
⇥
(~C � G⇤)

>A(~C � GC )
⇤
.

Further, since

kGC � G⇤k
2
A = k~C � G⇤k2A + 2(~C � G⇤)>A(GC � ~C ) + k~C � GC k

2
A .

we have that

�26>C B(IC � G⇤)  �2n
~
C � 2�

>

C B(IC � G⇤) +
VU

1 � U
⇥
nC � n

~
C

⇤
Now since E k�C k2B  n · n

~
C , the concavity of

p
· yields

E
⇥
��>C B(IC � G⇤)

⇤
 E k�C kB kIC � G⇤kB 

q
E k�C k

2
B kIC � G⇤kB



q
n · n~C

�
V kEC � G⇤kB + (1 � V) k~C � G⇤kB

�


q
n · n~C AC +

p
n · ^ (1 � V)n~C


AC
2

r
n

^
+

p
n

2

⇣p
^ + 1

⌘
n~C 

AC
2

r
n

^
+
1
4
n~C .

where in the second to last line we used that A ~C  ^n
~
C and V  1 and in the last

line we used that
p
01  0

2? +
1?
2 for all 0,1 2 R and ? > 0, that

p
^ (1 � V) = 1

2 , and
p
n (
p
^ + 1)  1

2 . Combining, and again using that A ~C  ^n
~
C yields

E


(1 � V)
p
^

· A ~C � 26
>

C B(IC � G⇤)
�

^

2^
· n~C � 2n

~
C +


AC

r
n

^
+
1
2
n~C

�
+

VU

1 � U
[nC � n

~
C ]

 �n~C +
VU

1 � U
[nC � n

~
C ] + AC

r
n

^
.
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Further, by Lemma C.1 and Lemma C.2 and that (1 +
p
n)2/(1 � n)  2 for n  1/10

E k6C k
2
B  (1 +

p
n)2 k~C � G⇤k

2
AB†A 

(1 +
p
n)2

1 � n
⇥
n~C � EnC+1

⇤
 2[n~C � EnC+1]

Combining then yields that

EAC+1  VAC +
p
^


AC

r
n

^
� n~C +

VU

1 � U
[nC � n

~
C ] + 2

p
^ [n~C � nC+1]

�



⇣
V +
p
n
⌘
AC +
p
^

⇥
�n~C + 2V

p
^ [nC � n

~
C ] + 2

p
^ [n~C � EnC+1]

⇤
=

⇣
V +
p
n
⌘
AC + 2^ [VnC � EnC+1] :

in the second line we used that U was chosen so that U
1�U = 2

p
^ , and in the third line

we used that V = 1 � 1
2
p
^
implying �1 � 2V

p
^ + 2
p
^ = 0. Since V  V +

p
n  1 � 1

4
p
^

rearranging yields the desired bound. ⇤

Leveraging the preceding analysis we can now prove the theorem.

P���� �� T������ 4.4. Applying Lemma C.3 repeatedly we have that for G⇤ = A†1

E kG) � G⇤k
2
A 

✓
1 �

1
4
p
^

◆) 
kG0 � G⇤k

2
A +

1
2^
kG0 � G⇤k

2
B

�

However, since G0 = 0 and B � ^A we have

kG0 � G⇤k
2
A +

1
2^
kG0 � G⇤k

2
B 

3
2
��A†1

��2
A =

3
2
k1k2A† .

Further, by choice of ) we have✓
1 �

1
4
p
^

◆)
 exp

✓
�)

4
p
^

◆

n

2
.

The result follows by combining these inequalities and applying the de�nition of an
n-solver and noticing that the iterations consist only of standard arithmetic operations
of vector and applying SolveB and applying A to a vector. ⇤

D EFFECTIVE RESISTANCE FACTS
Here we give a variety of facts about e�ective resistance that we use throughout the
paper. First, in the following claim we collect a variety of well known facts about
e�ective resistance that we use throughout the paper and then we give additional
technical lemmas we use throughout the paper.

Claim D.1 (E�ective Resistance Properties). For any connected graph ⌧ = (+ , ⇢) with
positive edge weightsF 2 R⇢ and all 0,1, 2 2 + it is the case that

• Flow Characterization: Re�
⌧ (0,1) = minunit 0,1 �ow 5 2R⇢

Õ
42⇢ 5

2
4 /F4 .

• Triangle Inequality: Re�
⌧ (0, 2)  R

e�
⌧ (0,1) + R

e�
⌧ (1, 2).

• Monotonicity: If� is an connected edge subgraph of⌧ thenRe�
⌧ (0,1)  R

e�
� (0,1).

It is a well known fact that the e�ective resistance between two vertices B and C in a
graph consisting : edge-disjoint parallel paths between B and C of length at most ✓ is
✓/: . Here we give a slight generalization of this fact to bound the e�ective resistance
of two vertices in low-depth trees connected by many short edge-disjoint paths.
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Lemma D.2 (E�ective Resistance in Well-connected Trees). Let ⌧ = (+ , ⇢,F) be a
weighted unweighted graph which contains two edge disjoint trees )1,)2 ✓ ⇢ each of
which has e�ective resistance diameter at most 3 , i.e. the e�ective resistance between any
pair of vertices in a tree is at most 3 . Further suppose that there are at least : edge-disjoint
paths between )1 and )2 each of which have e�ective resistance length at most ✓ , i.e.
for path % ✓ ⇢ we have

Õ
42% (1/F4 )  ✓ . Then for all 0 2 )1 and 1 2 )2 we have

R
e�
⌧ (0,1)  23 + ✓/: .

P����. For each of the : edge-disjoint path %8 ✓ R⇢ let 58 denote a �ow that send
unit from the path’s start in )1, denoted 08 , to the path’s end in)2, denoted 18 . Further,
for all 8 2 [:] let 68 denote the unique unit �ow from 0 to 08 using only edges of )1
and let ⌘8 denote the unique unit �ow from 18 to 1 using only edges of )2. Note, that
for all 8 2 [:] we have that A8 B 58 +68 +⌘8 is a unit 0 to 1 �ow in⌧ and consequently,
5⇤ B 1

:

Õ
82 [: ] A8 , is a unit 0 to 1 �ow in ⌧ .

Now, 5⇤ restricted to )1 is the unique �ow 51 on )1 that sends one unit from 0 to the
uniform distribution over the 08 . Since )1 has e�ective resistance diameter at most 3 ,
by the �ow characterization of e�ective resistance (Lemma D.2) we can decompose
this �ow into a distribution over paths of e�ective resistance length at most 3 , i.e.
51 =

Õ
8 U8C8 where each U8 � 0,

Õ
8 U8 = 1, and each C8 is a unit �ow corresponding to a

path % of e�ective resistance length at most 3 . Therefore, by convexity of G2 we have

’
42)1

1
F4

[51]
2
4 =

’
42)1

1
F4

"’
8

U8 [C8 ]4

#2


’
42)1

1
F4

’
8

U8 [C8 ]
2
4

=
’
8

U8
’
42)1

1
F4

[C8 ]
2
4 

’
8

U3 = 3 .

By symmetric reasoning, 5⇤ restricted to )2, denoted 52 has
Õ
42)2 [52]

2
4/F4  3 .

Since)1,)2, and the %8 are edge disjoint, are the only edges with non-zero �ow, and
have e�ective resistance length at most ✓ we have’

42⇢

1
F4

[5⇤]
2
4 =

’
42)1

1
F4

[51]
2
4 +

’
42)2

1
F4

[52]
2
4 +

’
82 [: ]

’
42%8

1
F4

[5⇤]
2
4

 23 +

’
82 [: ]

’
42%8

1
F4

·
1
:2
 23 + ✓/: .

The result follows asRe�
⌧ (0,1) 

Õ
42⇢

1
F4

[5⇤]24 by the �ow characterization of e�ective
resistances, Claim D.1. ⇤
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