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1 INTRODUCTION

Data technologies have the potential to completely transform how we address global issues by providing insights that
could help us make better, more informed decisions in fields like environmental sustainability and public health, which
are vital to our future as a society. This promise is not without challenges, requiring an examination of the causality

and the dynamic interconnections that exist throughout our natural and socioeconomic systems:

e (Water Sustainability) Natural infrastructure tends to be built in a haphazard, yet highly interconnected,
way. Natural water infrastructure, for example, can include (a) a network of wetlands, (b) healthy soils, (c)
forest ecosystems, and (d) snowpack, and this infrastructure provides services that include flood protection,
erosion control, water storage, and purification. Built water infrastructure that complements natural water
infrastructures comprises two entire sectors: (e) the dams sector and (f) the water and wastewater systems
sector. Management of this causally-interlinked, yet spatio-temporally distributed, water infrastructure is a
pressing contemporary challenge given a changing climate and increasing water demand for agriculture and
human consumption [4, 21, 36, 103, 118, 125].

e (Epidemics and Pandemics) The emergence and propagation of an epidemic involves a causally complex
interplay of spatio-temporally distributed entities in a multi-layer network, including (a) spatially distributed
individuals and their social-interactions, (b) physical short-range and long-range networks of mobility, (c)
parameters of disease models (such as infection rate, average length of recovery, and impact of treatment),
and (d) intervention decisions (such as school closures or restrictions on mobility) by independent decision
makers (city, state, national governments and international agencies, as well as various local and global
corporations) [9, 10, 22, 27, 39, 47, 51, 65, 89, 112, 117, 127, 176-178].

Both human decision-making and model discovery in such applications can be significantly improved if these data
sets are analyzed for key causal features to discover the underlying latent structures and spatio-temporal dependencies
critical for modeling, situation-awareness, forecasting, optimization, and control. In addition, causal learning may
take advantage of physically based models’ advantages, and causal knowledge may help make data-driven learning
more generalizable across different but similar spatio-temporal contexts. Yet, while the promise of a causally-grounded
approach to these challenges is apparent, the core data technologies needed to achieve these are in the early stages and

lack a framework to help realize their potential.

1.1 Challenges — A Case for "Spatio-Causal" Research

As detailed in our report titled “Data Integration in the Service of Synthetic Research” [88], research of the scale that
grand challenges require, demands for the ability to explore complex sets of primary data and models to discover impor-
tant cross-dataset and cross-community patterns that could never be seen when comparing higher-level interpretations.

Indeed, natural and built systems consist of complex physical processes operating at varying spatial and temporal scales.

They involve heterogeneous multi-modal (temporal, spatial, networked) data and models, 100s of inter-dependent
parameters, spanning multiple layers and geo-spatial frames, affected by complex dynamic processes operating at
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different scales and resolutions. Many of these dynamically evolve due to how the underlying systems and ecosys-
tems develop and due to the preventive and reactive actions taken by individuals and public interventions, requiring
continuous adaptation and remodeling. Note that, in addition to their benefits, the available intervention options (lock-
downs, travel controls, vaccination programs) can have significant negative socioeconomic impacts, raise health
concerns, and may require behavioral changes incompatible with a population’s belief systems or may allocate
limited resources unevenly across populations, which may be competing for those resources. These increase the
importance of situational awareness and increase pressure to conduct research that supports fair, bias-free, and ex-

plainable predictions and decisions. In particular, given the unpredictability of the natural and human factors and the

complex trade-offs among system-level and human-centered objectives, decision makers often need to generate many

thousands of simulations, each with different parameters corresponding to different, but plausible scenarios. Running
and interpreting such spatio-temporal simulation results to generate timely actionable results are computationally
costly and, consequently, data and simulations are inherently sparse.

Given these, in this paper, we argue that to effectively support critical decision-making in complex and dynamic
human-centered environments, a novel paradigm of spatio-causal research, built on computational advances in spatio-
temporal data and model integration, causal learning and discovery, large-scale data- and model-driven simulations,
emulations, and forecasting, spatio-temporal data-driven, and model-centric operational recommendations, and causally-
driven visualization and explanation are needed. For example, detecting and correcting inefficiencies in a water system
may require causal impact analysis and fault prioritizing/ranking that consider complex causal relationships among
spatio-temporally networked natural and built entities. Similarly, in emergency response and pandemic scenarios,
we need spatio-temporal models that can generalize across time and space among many variables in changing and
complex situations through causal discovery. In order to tackle these application challenges, the proposed spatio-causal
research paradigm must synergistically integrate data-driven and physically-based techniques in the presence of the

following core data challenges:

e (Challenge 1 - spatio-temporal complexity and heterogeneity) Decision makers often face multi-scale, multi-layer,

and heterogeneous spatio-temporal processes and spatio-temporally distributed observations and data. However,
effective decision-making involves more than integrating heterogeneous data and models. It involves taking into
account software and human agents with different (and possibly contradictory) objectives/reward functions.

o (Challenge 2 - Dynamicity and context-sensitivity) The world is not static: a disease evolves, and interventions (e.g.,

school closures) change the way humans interact in space. Causality may be context-dependent, and the contexts
themselves may be dynamic and/or have emergent properties of the spatio-temporal system. Moreover, two or
more entities in one spatio-temporal context may interact collectively to impact other entities, possibly in other
spatio-temporal contexts.

e (Challenge 3 - Computational challenges) The above challenges are complicated by the fact that situation awareness,

forecasting, and planning need to address the computational challenges arising from the need to acquire, clean, analyze,
index, and search, in a scalable manner, large volumes of spatiotemporal, multi-variate, multilayer, multi-resolution,
interconnected, and often incomplete/imprecise data. Causal analysis algorithms themselves are computationally
expensive and fine-grain spatio-temporal systems may be expensive to causally analyze. Moreover, traditional causal
discovery algorithms may confront issues, such as unobserved variables, and often rely on strong assumptions,
such as faithfulness [170], which may need re-interpreted in the spatio-temporal context, taking into accont the

spatio-temporal structure of the complex system.
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Service #3: spatio-temporal and network analytics
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Fig. 1. Key data services for supporting water sustainability (US Army Corps of Engineers Engineering With Nature Initiative,
Cooperative Ecosystem Studies#W912HZ-21-2-0040): spatio-temporal causal knowledge is critical in effectively delivering these
services

1.2 Outline of this Vision Paper

In this paper, we provide a vision and a road-map for spatio-causal awareness algorithms and applications. In Section 2,
we provide an overview of our two motivating applications: (a) hydrology and water sustainability and (b) epidemics and
pandemics. We follow this with a brief discussion of the critical concepts in the causality of Section 3 and, subsequently,
in Section 4, we introduce the components of a novel framework for describing spatio-temporal causal knowledge. We
then discuss research directions toward spatio-temporal causal learning (including models for discovery and inference)
in Section 5. In Section 6, we outline how spatio-temporal causal knowledge can be leveraged for effective spatial data

structures, models, and algorithms. We conclude the paper in Section 7.

2 MOTIVATING APPLICATIONS

In this paper, we consider two motivating applications, water sustainability and pandemics/epidemics, because these
applications urgently need advances in spatial-causal research. In particular, we highlight the need for organically-
integrated support for causality in spatio-temporal learning and inference and for effectively considering spatio-temporal

relationships in causality learning in these two representative application domains.

2.1 Motivating Application #1: Hydrology and Water Sustainability

As we discussed in the introduction, managing water infrastructure is a pressing contemporary challenge given the
changing climate and increasing water demand for agriculture and human consumption. Computational models have the
potential to inform the operation of built and natural infrastructure to increase the resiliency of a water infrastructure
network and support the design of operational plans to mitigate the negative impacts of adverse events (Figure 1). To
achieve this potential, however, underlying models integrating spatio-temporally distributed yet causally-interlinked
components, including levees, dams, reservoirs, wetlands, and agricultural lands upstream or adjacent to these, among
other infrastructure, must provide accurate operational plans and recommend holistic mitigation actions against
droughts and floods.
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Wetlands and watersheds are critical natural assets to mitigate the effects of climate change [45]. Optimal location and
restoration of wetland infrastructure is a high-dimensional, complex multi-objective problem. Moreover, water quality
is a spatio-temporally complex outcome, with multiple causal drivers and potential control points, beginning with the
sources in uplands, transport across the landscape and stream networks, and finally, reservoirs. Conventional physically
based models have long yielded promising results, as they have been the primary tool to depict the underpinnings of
the physics governing the hydrological events. While physically based models can help, applications of these physically
based models to operational decision-making have been limited by substantial efforts needed to set up and calibrate the
models for a given study area and high computational expense. Causal learning, including deep learning-based methods,
is well suited to develop fast surrogates to enable decision-speed analytics [37, 38, 63, 90, 103, 106, 107, 173, 174, 187]. In
addition, when trained using data representing a wide range of variability, causally-informed models can be generalizable
and transferable to new locations and scenarios [120]. As exemplified with sample results presented in Section 5,
the development of native spatio-causal models, combined with rapid increases in computational abilities (graphics
processing units, computer clusters. etc.), has the potential to enable hydrologists to utilize data-driven models in
tandem with the well-established hydrological models to simulate miscellaneous environmental processes nimbly, and
therefore circumvent the conundrums associated with the purely data-driven and purely physically based models.
More specifically, intermediate variables of physically based models (e.g., hydrological variables) can train machine
learning models that are interpretable and robust against spurious correlations via spatio-causal research that answers
the following questions: (1) what types of intermediate spatial variables should be intervened such that we can avoid
spurious correlations, and (2) what proper values or distributions would be used to create the interventions? We can
augment the original data to train interpretable and causally-robust spatio-temporal models with interventional data

from the physically based models.

2.2 Motivating Application #2: Epidemics and Pandemics

Today, experts agree that transformative impact in the effective management of future pandemic threats will arise only
through information-driven planning and decision-making for prevention, preparedness, response, and recovery [179].
Casualties and damages could be substantially decreased by proactively responding to an epidemic before (e.g., by
pre-positioning response units and supply and service systems), during (e.g., by managing the scheduling and delivery
of essential supplies and services while minimizing the unintended consequences of recommended responses), and
after (e.g., by the quick implementation of supply-chain networks) the epidemic [62, 150, 151].

Epidemics are the result of complex interplay of spatio-temporal processes (Figures 3). The emergence of novel
zoonotic diseases over the last century is primarily a function of environmental and land use changes that affect spatio-
temporal interplay among humans, vectors, and wildlife reservoirs [40, 85, 92, 93, 110, 152, 198]. Spread, furthermore,
is determined by the spatio-temporally based socio-economically constrained networks that bring susceptible and
infected individuals together, including social contact, trade, supply, and transportation networks [68, 126] — human and
goods travel provides a pathway for disease movement; yet, travel patterns themselves can be significantly affected by
epidemic dynamics, and changes in these patterns can indicate other behavioral shifts that are critical in understanding
the epidemic evolution. In short, the emergence and propagation of an epidemic involves a causally complex interplay
of entities in a multi-layer network, including (a) individuals and their social interactions, (b) physical short-range and
long-range networks of mobility, (c) parameters of disease models (such as infection rate, average length of recovery, and
impact of treatment), and (d) intervention decisions (such as school closures or restrictions on mobility) by independent

decision makers (e.g., city, state, national governments). Consequently, a better understanding of the networks over
Manuscript submitted to ACM
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Fig. 2. Elements of data- and model-driven approaches to planning and response to epidemics and pandemics (NSF2125246 "PanCom-
munity: Leveraging Data and Models for Understanding and Improving Community Response in Pandemics", NSF2200140 "Predicting
Emergence in Multidisciplinary Pandemic Tipping-points (PREEMPT)"): spatio-temporal causal knowledge is critical in effectively

leveraging data for effective decision making

Fig. 3. Multi-layered spatio-temporal epidemic data (interconnections between network layers are denoted with dotted lines; time

series corresponding to the various network nodes are denoted with bars)

which disease spread occurs has the potential to improve our ability to generate epidemic predictions [31, 186] and
data-driven large-scale computational models of infectious disease emergence and spread are increasingly becoming
part of the toolkit to prepare for and manage health emergencies through pharmaceutical and non-pharmaceutical
control measures. These include (a) improving our ability to forecast infectious disease emergence and identifying root
causes and drivers of disease outbreaks in any region along with community-specific disease transmission vectors,
(b) capturing emergent properties and spread characteristics of epidemics [2, 6, 41, 122] within particular network
structures derived from network models and real-world networks [2, 6, 41, 122, 175], (c) forecasting the effects of
interventions [25, 52, 55, 64, 194], and (d) identifying the effects of private responses to evolving disease threats [49, 50].
The potential for pandemics to rapidly generate mortality [35, 82] and economic impact [84, 123, 146, 169] highlights
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Fig. 4. Spatio-causal interplay among various factors impacting pandemic evolution over time

the need to develop new computational frameworks for supporting the science of epidemics and public health, that
take into account geospatial context- and network-coupled, dynamic disease emergence and spread models, including
evolving transmission patterns, local social and demographic variables, and evolving intervention strategies (including
cost and constraints on the interventions) and their side effects. Unfortunately, silo-based modeling, where disease,
population dynamics, transportation, and resource models are not integrated, fail to provide an end-to-end view with
useful causally-informed predictions for the changing situations, infrastructure conditions, and demands [9, 13, 14].
Existing solutions often rely on hard-coded models, which makes it difficult to integrate new data and models. What is
needed instead is the ability to causally stitch together multiple, potentially independently developed, off-the-shelf,
component models/simulators, each capturing a different natural, human, or built component of the epidemic in space
and time.

To summarize, achieving the aforementioned integration of the multitude aspects of epidemics and pandemics, for
predicting their emergence and spatio-temporal dynamics and for planning effective intervention and response strategies
in space and time, requires spatio-causal research that natively captures the underlying spatio-causal interplay among
the disease, humans agents (carriers, patients, and decision makers), mobility networks, and disaster response networks
(Figure 4). While a dynamic multiplex network (mathematically a tensor) can naturally represent the epidemiological
data (including spatial network, mobility network, demographic network, and social contact network) to help capture
the inherent dynamic interactions between different layers, identifying high-risk groups and developing targeted
interventions to control the spread of the disease, requires the ability to trace spatio-causal diffusion patterns and

disaggregate various cause-effect structures [161].

3 PRELIMINARIES
3.1 Cause and Effect

Causality is a relationship between an effect and the cause that gives rise to it and causal effect is defined by the
strength of the causal relationship ( e.g. "if she gets in contact with a person infected with COVID-19, she will get infected").
Study of causality has a long history, yet defining what a causal relationship (let alone discovering causal relationships
from data) has been a challenge that has not yet been satisfactorily achieved [69]. Most of the early attempts have
been statistical in nature. Commonly used Granger causality [8, 104], for example, is statistical in nature. Fisher [54]
and followers advocated a statistical approach to causality, rooted in randomized controlled trials (or at least quasi-
randomized experiments [34]) to eliminate confounders in the data. Example applications of these include regression
discontinuity design (as in [5, 24]) and instrumental variable methods (such as those used in estimating the causal
effect of social contagion on exercise [7] and that of policies on economics and political outcomes [44]). Yet, these
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Fig. 6. Basic causal structures: Mediator, fork, collider, and confounder sub-structures describe how causes and effects interact
and how causal impact diffuses within a causal system; causal graph based approaches to decision support leverages these local
sub-structures as well as global properties (such as d-separation) of the causal graph to determine causal effect — a shortcoming of
the existing models for causal representation is that they do not take into account the overlaying of causal and spatial diffusion in

spatial systems

approaches rely on certain strong assumptions, which result in paradoxical outcomes when violated. Rubin popularized
the idea of “potential outcomes” and the use of counterfactuals in the definition of causality [153]; and deemed causal
inference as a missing-data problem and imputation as a valid approach to tackle this challenge. While this led to major
breakthroughs in data-driven causal investigations, including the structural equation models [76, 131], its error-free
application relies on the applicability of an “ignorability” assumption, which implies that the underlying process is
free of unobserved confounders [132-134]. Many studies rely on this strong assumption [58—61, 97]. Unfortunately,
strong ignorability and various other commonly used assumptions are not testable and may not be satisfied in the
vast majority of datasets [75, 108, 115, 132-134, 142, 145, 149, 192]. In a recent work [147], for example, we proposed to
replace the strong ignorability assumption with weaker and testable assumptions which are learned from data.
Unlike these statistics based approaches, others, such as Wright [193], argued that one cannot draw causal conclusions
from data, without some causal hypotheses. This line of thought led itself to very successful practical approaches,
including path analysis [43, 56, 193], structural equation modeling (SEM [76, 131]), and Bayesian Networks [128], each
of which representing contextual knowledge in the form of directed graphs. In its most basic form, a causal graph
G = (V,E) is a directed graph that describes the causal effects between variables, where V is the node set and E the
edge set. In a causal graph, each node represents a random variable (including the treatment, the outcome, and other
observed or unobserved variables in the application domain) and a directed edge x — y denotes a causal effect of x
on y. For example, a causal graph in the context of epidemics and pandemics, can describe that deaths from epidemic
reported in media and social-media can contribute to awareness as well as fear and anxiety, which may have positive or
negative impact on social distancing and PPE usage, which may in turn impact the evolution of the epidemic (Figure 5).
More recently, Pearl introduced structural causal models (SCMs [130, 139]) that use directed graphs to explicitly capture
causal background knowledge to be enforced or causal hypothesis to be verified or rejected. Pearl and his colleagues
have shown that analysis of causal graphs in terms of the underlying causal structures (Figure 6) can be used to avoid

many of the common fallacies faced by most purely statistical approaches to causal analysis and that these graph-based
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techniques offer a principled solution to the treatment of colliders, confounders, and other sources of faulty causal
reasoning [131, 132]. Colliders, for example, are related to the explaining away effect [86] and, in epidemiology, they
are associated with a type of selection bias (also known as the Berkson’s paradox [16]). Confounders also result in
many paradoxical scenarios, including the well-known Simpson’s paradox [168, 172]. Common applications of this
causal graph based approach include the d-separation property, which can be used to determine which independencies
should hold in the data [19, 66, 73, 129, 137, 138, 185], front-door and back-door adjustments against confounders [67],
c-decomposition technique for finding minimal separating sets [180, 181], and the do-calculus for calculating the effect
of an intervention [167]. These have been successfully leveraged for tackling various data challenges including sampling

bias [11] and missing data imputation [114].

3.2 Alternative Models for Representing Causal Knowledge

Over the years, there have been various attempts to capture and represent causal knowledge [19, 71, 133, 144]. In this
section, we briefly discuss some of the major alternative causal models and if and how they represent the key causal
properties, such as causal strength and time lag.

Neuron diagrams: Neuron diagrams [71, 72, 95] represent a causal relationship using a set of neurons with two phases,
active and inactive; connections between neurons can be inhibitive or stimulative. Neurons provide a basis for causality
that allows some of the plural cause-effect relationships. However, their plural cause structure does not distinguish
between AND or OR relationships between two causes. Moreover, they do not represent time and, consequently,
self-causation.

Boolean functions: A series of logic gates and variables may also be used to model a cause-effect relationship graph.
Similar to neuron diagrams, each cause A may take 0 (absent) or 1 (present) values and these may influence (1) the
effect B, or not (0). While the Boolean function model answers the plural-cause ambiguity seen in neuron based
representations, this formalism also does not account for time and limits the interactions between causes-effects to
Boolean values, ignoring varying strengths of causes [17].

Petri nets: Petri nets are dynamic modeling systems [144]. A simple Petri net structure is defined by N = (P, T, F),
with a set of places P (commonly represented as circles), transitions T (represented as rectangles), and flow relations
F between places and transitions (represented by arcs), sometimes divided into two separate functions (I, O), input
functions I that define arcs from a place to a transition, and output functions O that define arcs from a transition to its
destination places. Places represent both causes and effects. However, unlike the other alternative models, places are
not directly connected by arcs; instead there is a transition between every place-place connection.

Transitions allow more than single input or output arcs, which allows concurrency of several causes or effects. Arcs
can be inhibitive or stimulative. Petri nets share some characteristics with neuron diagrams; however, Petri nets allow
extensions, increasing their applicative range. Colored Petri nets [81], for example, introduce classes and the ability
to assign specific values to tokens; timed Petri nets allow timed transitions [202], allowing for causal relationships
with different lags. The original Petri net model supports plural-causes/effects or concurrency, strength, and feedback
properties of a causal system, and its extensions allow richer causal structures.

Structural equation models: Introduced by Wright [193], Structural Equation Modeling (SEM) refers to a large set
of methods to represent relationships among variables in a system. Within the context of causal models, SEMs are
approached by several authors including Hall and Pearl [19, 71]. These are similar to Petri Nets in terms of flexibility and

adaptability as they leverage both latent and known variables and allow differentiating between weak and strong causal
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assumptions. However, this adaptability also brings ambiguity as the representation (strong causal assumptions require
rationale [20]) and formulation of the relationships and assumptions often are not based on well-defined principles.
Bayesian networks: Bayesian networks [136] provide a probability-based representation of a set of causal relationships.
Differently from Boolean/binary values, these utilize Bayesian inference to associate a probability to an effect happening
given the occurrence of a set of causes; more specifically, unlike neurons diagrams and Petri Nets, causal Bayesian
Networks use the conditional probability P(B|Aj,...,Ap) to capture the causal relationship between a set of causes
Aj,..., A, and an effect B. Bayesian networks are often represented by directed acyclic causal graphs (DAG), where
each edge indicates existence of a conditional probability relationship between two variables.

Causal graphs: Causal graphs, where each edge denotes a causal relationship between a pair of variables, have been
popularized by Pearl [133]. While they are similar to Bayesian networks, they are less expressive in that they do
not capture joint causal relationships and cannot represent plural-causes. Nevertheless, they are one of the widely
used models for representing causal knowledge, as they enable efficient algorithms for checking causal independence
relationships among a given set of variables. However, since they are often constrained to DAGs, they cannot directly
represent feedback (loops, self-causation).

(Fuzzy) cognitive maps: Cognitive maps [183] are similar to causal graphs, but are often enriched with more complex
causal relationships, including positive (+), negative (—), neutral (0), causal effects [140]. Fuzzy cognitive maps (FCM)
further introduce the concept of fuzziness factor to account for uncertainty and imprecision in causal relationships.
One advantage of fuzzy cognitive maps is that, while being similar to Bayesian networks, they are not limited with
probabilistic semantics: for example, fuzzy cognitive maps can be used to create multiple types of influence categories
(e.g. positive influence (0,1], negative influence [-1,0), and neutral/no influence [0]). While FCMs allow negative causation,
like causal graphs, they do not directly represent plural causes.

We note that, while there are multiple alternative causal frameworks, each providing different expressive powers
(including the ability to represent temporal causal relationships in some cases), none of the existing frameworks have
been designed with spatial causal relationships and we argue, in this paper, that this requires a new research agenda
centered around space, time, and causal knowledge. In the next section, we start with the outlines of a spatio-temporal

causal knowledge representation framework that overlays causal and spatial diffusion processes.

3.3 Causal Learning

Research on causal learning includes (1) leveraging of machine learning models to address fundamental causal inference
tasks such as treatment effect estimation [105] and (2) causal discovery [166] as well as (3) leveraging of causality for
improving machine learning tasks, such as interpretability [116] and fairness [143]. A consolidated summary of these
causal learning tasks and the corresponding evaluation metrics are presented in Table 1 (more details are available

in [30]). Below, we provide an overview of the major causal learning tasks:

o Causal effect estimation is the task of assessing the impact of an intervention (or treatment) on an outcome. Consider

a medical study evaluating the effect of a vaccine on an epidemic causing virus. Patients are divided into two groups:
one receiving the drug (treatment group) and one receiving a placebo (control group). Using metrics, such as Mean
Absolute Error (MAE, Table 1), we can quantify how accurately we can estimate the vaccines effect on lowering
transmission rate of the virus compared to the placebo. In this context, causality helps isolating the effect of the drug
from other confounding factors, allowing us to attribute changes in transmission rate directly to the vaccine rather
than other confounding variables. In the context of spatial data, however, the procedures and metrics in Table 1 need
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Causal Effect Estimation Causal Structure Learning Causal Intelipretablhty
and Fairness
Sparsity,
Standard MAE, MSE, Counterfactual Interpretability,
§ Effect RMSE, PEHE, SHD, SID, Explanation Speed, Proximity,
3:-)' Metrics Policy Risk Frobenius Norm, P Diversity,
= Precision, Recall, F1, Visual Linguistic
Heterogenous Uplift TPR, FPR, MSE, AUC,
Effect Sini Coef> Precision-Recall Curve, Fairness FACE, FACT,
Metrics Coef FPR-TPR Curve, Counterfactual Fairness,
Time Series Standard and Heterogeneous TVD, KL-Divergence, PC-Fairness,
Metrics Effect Metrics, F-Test, T-Test F-test Ctf-DE, Ctf-IE, Ctf-SE
Observational data with
With known effect; observatlor'xal Training on a regular dataset
» and experimental data pairs; . . ;
5 Ground . . A transductive Transductive | and testing on generated
=t sampling from observational .
< Truth ) . setting where we have the counterfactuals
54 data; sampling from synthetic
3 . ground-truth causal
o data; sampling from RCTs ranh and estimated eraph
] Without - ap s grap grap Generating counterfactual
Evaluation is possible if . .
Ground . Inductive explanations for an unseen
subset of the data is from RCTs .
Truth instance

Table 1. An overview of causal learning tasks and metrics [30]

to be revised to account with causal effects across space and time (e.g. effect of school closures in one neighborhood

542 to infection rates in others).

543 e While causal effect estimation focuses on a pair of treatment and intervention variables, causal structure learning (or
54% causal discovery) is the process of identifying the causal structure underlying a complex system from observational
:z data. Researchers for example might use historical public health data to determine if certain interventions, like
547 masking, may reduce the rate of the epidemic growth. By applying causal discovery methods and metrics, such as
>48 the Structural Hamming Distance (SHD, Table 1), they can infer the directionality of the relationship (does masking
540 lead to reduction in epidemics or do higher rates epidemics lead to increased mask usage?). While procedures and
;;T metrics in Table 1 focuses on more conventional causal discovery problems, in the context of spatio-causal settings,
552 the discovered causal structures need to overlay on the underlying spatial system.

553 o Causal interpretability is the goal of providing explanations for predictions that consider the underlying causal
o relationships. Consider a public health decision support system which recommends vaccination of a sub-population.
:: In this case, we may use a method like FACE (Fact-Counterfactual Fairness, Table 1) to explain this recommendation to
557 the decision makers. The explanation could reveal that if this sub-population had a lesser baseline hospitalization rate,
558 vaccination would not have been recommended, suggesting that the comorbidities suffered by this sub-population are
> a causal factor in the decision process. In this context, causality helps explore hypothetical scenarios and understand
zz(j which factors are truly influencing the model’s decisions and can improve fairness. Here, causal fairness refers to a
562 set of techniques that aim to ensure that machine learning models make fair decisions. A vaccine recommendation
563 system may potentially be biased against a certain population. Using techniques, such as counterfactual fairness, we
%4 can assess if an individual would receive the same healthcare resources if they belonged to a different population.
;Z: Causality can assist in understanding and correcting for the biases present in the training data, aiming for consistent
567 performance across different conditions. In spatio-causal settings, this can enable us to identify and correct biases in
568 complex spatio-temporal systems.

:(: In this paper, we argue that, in the context of spatio-temporal applications, research on causality has to start with the
571 introduction of a spatio-causal framework as the current models for representing causal knowledge (briefly described

572 Manuscript submitted to ACM



580

592

594
595

597
598

600
601
602
603
604
605
606
607
608
609
610
611
612
613

614

616
617
618
619
620
621
622
623

624

12 Azad, et al.

next) are not expressive enough to effectively capture the various nuances and complexities introduced by causal

inter-play between entities that are spatially distributed.

4 TOWARDS A SPATIO-TEMPORAL CAUSAL KNOWLEDGE REPRESENTATION FRAMEWORK

Integrating the physical and causal mechanisms impacting observed events and the interactions among system players
is crucial when dealing with complicated real-world systems. It is imperative to have a thorough causal description
framework. To handle uncertainty and bias, this framework needs to be able to capture socio-physical and spatio-
temporal causal information while being domain-agnostic to support a variety of theories from the behavioral sciences
to physics. The intricate spatio-temporal dynamics of complex systems are not well captured by existing approaches,
such as causal graphs and structural equations [133, 134, 141]. Emergent behaviors, such the propagation of epidemics
impacted by disease characteristics and therapies, are driven by the interactions and context-dependent causalities of
interdependent entities found in these systems. In order to overcome these drawbacks, we provide a brand-new causal
learning framework that is intended to faithfully replicate the complex physical processes found in real-world systems,
enabling efficient data-driven forecasting and inference.

In particular, we define a complex system € = {S, G, C} as a triple consisting of a spatial context, S, a global context,

G, and a causal context, C.

4.1 Spatial and Global Contexts

Definition 4.1 (Spatial Context). We define the spatial context, S = {S, E, II5, II,, A}, as a 5-tuple, where

e S is a set of spatial nodes,

e II; is the set of node properties — let 71']’.’ € II; be a node property; then nl.s,j = 7[; (s;) denotes the corresponding
property for the spatial node s; € S,

o The set E of edges defined on the nodes in S describe a directed, edge labeled neighborhood graph, where II, is
the set of edge properties. Let ﬂj‘f € II, be an edge property and let e; = sz — s; be an edge in E. Given these,
nﬁ f (also written as nj‘f(ei)) denotes the property ﬂ; of the edge e;, and

e A is a set of distance functions — let §; € A be a distance function; then &y ; ; is the distance, under some
distance concept, between any given pairs of nodes, sz, s; € S (note that we allow for multiple distance functions
be defined over the same set of spatial nodes, each possibly governing the properties of the system based on

different socio/physical processes). &

Intuitively, the spatial context of the complex system describes the spatial topology (described in terms of nodes,

edges, and distance functions), along with the causally relevant node and edge properties.

Example 4.2. The following is a (simplified) example of a spatial context:

S = {s1,s2,s3}, where s1 = Mesa, s2 = Phoenix, s3 = Tempe;
Iy = {Location, Altitude, Rain, Flood, Movement};

o E = {el,e2,e3,e4}, where el = Phoenix — Tempe,e2 = Tempe — Phoenix,e3 = Tempe — Mesa,e4 =
Mesa — Tempe;
I, = {Flow, Alt_dif f}; and

o A= {Sguc Spop - f
Manuscript submitted to ACM
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In the above definition, a property, p, is a variable that takes values from a corresponding domain Dj,. A(p, x), then,
indicates a value assignment of the form p = x for the parameter p where x € D, U {L}. Here, L indicates a null valued

assignment (or lack of assignment) for that property.

Example 4.3. Let annual_rain be a property (or a variable) with domain R*. A(annual_rain, 2.35) is a possible value

assignment. T

Given a spatial context, we further define a variable as a property whose value can potentially vary or be altered. In
the rest of the paper, for simplicity, we will consider all properties as variables.

Spatial variables can be either spatially instantiated, meaning that they are specific to a particular node or edge, or
not. Note that those variables that are not spatially instantiated can potentially refer to properties of any node or edge.
The value that such a variable takes can be determined only after the variable is associated to a specific node or edge;

i.e., after it gets spatially instantiated.

Definition 4.4 (Spatial Variables). Given a spatial context, S = {S, E, II;, II¢, A}, the corresponding set, Vs, of spatial

variables is defined as V5 = VS® U VS6 , where VS® is the set of spatially instantiated node, edge, and distance variables

® _ ® ® ®
Vg = Vno de Y Ve dge U le.s » such that
® _ s ® _ e ® _
Vaode = U i j> Vedge - U i j> Vaise = U Skl
;rj.ens/\s,»es n]?el'[e/\e,»eE 8 E€ANASE,S1€S
whereas VSe =V® uV® UVY  isthe set of node, edge, and distance variables that are not spatially instantiated:
node edge dist
© — s _ o  _ e _ e _ . —
Vnode - U Tj = s, Vedge - U Toj = ILe, Vdist - U Ojmr = A
7:]5.61'[3 n']‘fel'le §;eN
&
Example 4.5. The following is a set, Vs of spatial variables for the previous example:
r;e;de ={ Mesa.Location, Mesa.Altitude, Mesa.Rain, Mesa.Flood, Mesa.Movement,
Phoenix.Location, Phoenix.Altitude, Phoenix.Rain, Phoenix.Flood, Phoenix.Movement,
Tempe.Location, Tempe. Altitude, Tempe.Rain, Tempe.Flood, Tempe.Movement },
Ve%ge ={ ej1.Flow,ey.Flow,es.Flow,e; Alt_dif f,e;.Alt_dif f,e3.Alt_dif f },
Vﬁst ={ Oguc(Mesa, Phoenix), Oy, (Phoenix, Mesa), S, (Tempe, Phoenix),
8Euc (Phoenix, Tempe), 5y, (Mesa, Tempe), gy, (Tempe, Mesa)  },
ve ={ Location, Altitude, Rain, Flood },
node
<} .
Vedge ={ Flow,Alt_diff },
V(?ist ={ OJEuc ahop 3
T

A global context, G, is defined as a set, V3, of global properties and variables not associated to any spatial nodes or

properties of a given spatial context S.
Example 4.6. For our running example, let the global context be defined based on the set

Vi = {Season, News, Regional_damage}.
Manuscript submitted to ACM
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Fig. 7. Causally relevant nodes, in the context of a stream-flow estimation task, selected by the STREAMS [164] algorithm for
a target (shown in black). The highlighted regions indicate the watersheds upstream from the target, according to the HAWQS
model [1], employed by the EPA and USDA. In this example, the amount of water at a particular watershed has a diffusing impact
on downstream watersheds, as a function on the watershed network / river connectivity as well as hydrological properties of the
connecting watersheds

4.2 Causal Context

The causal context of the complex system describes the causal constraints that apply on the variables of its spatial and
global contexts. These causal constraints themselves can have properties, or causal attributes that are distinct from the
spatial and global properties and quantify various aspects of the corresponding causal relationships. Examples include
causal strength, o (indicating the severity of an effect), causal lag A (indicating the time difference between a cause and
the resulting effect), and causal likelihood, w (indicating the probability of observing an effect given the cause).

Let the set, I1¢, be the set of of causal attributes.

As before, A(Il¢, X) denotes an assignment for those causal properties from a value within their respective domains
or L (signifying the lack of an assignment for that particular causal property) — X denotes the corresponding assignment
values The causal context then includes a set of causal statements of different types: (a) statements with node centric
effects; (b) statements with edge centric effects, (c) statements with global effects, and (d) statements with effects on
causal attributes, such as strength and lag, associated with other causal statements. We formally define these statements

below.

4.2.1 Causal Statements with Node Centric Effect. Causal statements with node centric effect are causal statements
which describe cause-effect relationships where the effect is on a node property. We define two types of causal statements
with node-centric effect: spatially focused and spatially diffused. Intuitively, a focused causal statement with node-
centric effect indicates that the effect is limited to the property of a single node. A diffused spatial causal statement on
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the other hand, indicates that the causal impact is not limited to a single node, but may spread to other nodes on the

underlying spatial network, following the outgoing spatial edges (see Figure 7 for an example).

Definition 4.7 (Causal Statement with a Node-Centric Effect). Let v; € Vs and letv; € Vf;de U V:?ode. A focused causal

statement with node-centric effect from v; to v; is denoted as

A(ITe,X)

e =0j - uj,
S

whereas a diffused causal statement with node-centric effect is denoted as

A(ITe,X)

e =uvj vj.

sd

Here v; is a spatial (node or edge) or global variable that causes an effect on the node variable v;. The cause-effect
relationship is regulated by the specified assignment A(II¢, X) for the relevant causal attributes.
3%

For simplicity of discussion, in the rest of this section, we will ignore the concept of causal likelihood — therefore

each edge will be associated with a single lag and a single strength. In reality though, each causal statement would be

associated with a set of lag/strength pairs, each with a different likelihood.

Example 4.8. The following is a spatially focused causal statement with node-centric effect:

A=2,0=1
c1: rain v flood
S

In this example, the causal effect described by this causal statement is spatially focused in that the rain causes flood in

the spatial location where it is recorded — the o of the causal relationship has not been specified. T

Note that, as we see in the next example, if only the source or the destination spatial location is specified, it is

assumed to denote both the source and destination of the causal statement.

Example 4.9. The following is a spatially focused causal statement with node-centric effect:

A=1,0=1
c2: @ ; Mesa.flood
S

In this example, the causal effect described by this causal statement is spatially focused in that the rain in Mesa causes

flood in the same location and the A and o of the causal relationship have not been specified. T

Example 4.10. The following is a spatially diffused causal statement with node-centric effect:

- A=1l,0=1
c3: @ y Tempe.flood
N

In this example, the causal effect is spatially instantiated in that the rain in "Mesa" would cause flood in "Tempe" with an

unspecified lag. However, the specified causal effect is spatially transitive, meaning that any spatial node downstream
from "Tempe" can potentially be causally effected from the rain in "Mesa". T
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Example 4.11. Consider a scenario where occurrence of a flood causes population movement in the spatial location

where it is recorded as well as nearby locations. We would represent this with the following spatially diffused causal

A=1l,0=1
S

statement:

Example 4.12. The following is a spatially focused causal statement with node-centric effect:

A=1l,0=1
Cs: ( season ) @
sf

In this example, season (which is a global variable) impacts the amount of rain with an unspecified lag and strength.

Note that, in this example, we use a thick border to visually indicate a global property/variable. T

Example 4.13. The following is a spatially focused causal statement with node-centric effect:

A=1l,0=1

In this example, waterflow on a spatial edge causes flood on the destination location, with an unspecified lag and

strength. Here, we use an ellipse with a double-border to visually indicate an edge variable. T

4.2.2 Causal Statements with Edge Centric Effect. Causal statements with edge centric effect are causal statements
which describe cause-effect relationships where the effect is on an edge property. We again define two types of causal
statements with edge-centric effect: spatially focused and spatially diffused: a focused causal statement with edge-
centric effect indicates that the effect is limited to the property of a single edge. A diffused spatial causal statement on
the other hand, indicates that the causal impact is not limited to a single edge, but may spread to other downstream

edges on the underlying spatial network.

Definition 4.14 (Causal Statement with Edge-Centric Effect). A causal statement with edge-centric effect is defined

similarly to a node-centric causal statements, except that v; € Ve uve | o
edge edge

Example 4.15. The following is a spatially focused causal statement with edge-centric effect:

A=0,0=L1
S

In this example, the causal effect described by this causal statement is spatially focused in that the rain causes waterflow

on the edges that are outgoing from the node where it has been recorded with 0 lag; the strength of the causal relationship

has not been specified. T

Example 4.16. The following is a spatially diffused causal statement with edge-centric effect:

- A=lo=1
N

In this example, the rain recorded in Mesa causes waterflow on the edge e4 (which is from Mesa to Tempe) as well as all

downstream edges; the lag and the strength of the causal relationship have not been specified. T
Manuscript submitted to ACM
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Example 4.17. The following is a spatially diffused causal statement with edge-centric effect:

A=1l,0=1
C9: <e1 .flow ” e34flow>
N

In this example, the waterflow on edge e1 (which is from Phoenix to Tempe) impacts waterflow on edge e3 (which is

from Tempe to Mesa) as well as all downstream edges. The A and o of the causal relationship have not been specified. ¥

Example 4.18. The following is a spatially focused causal statement with edge-centric effect:

- A=1l,0=1
cio: Qlt_dlff @
sf

This causal statement specifies that the altitude difference between two locations (recorded in the Alt_dif f property

on the edge from one location to the other) causally impacts the water flow from the source location to the destination

location. +

4.2.3 Causal Statements with Global Effect. Causal statements with global effect are causal statements which describe
cause-effect relationships where the effect is on a global property. Note that since these statements apply globally they

are not delineated as spatially focused or spatially diffused.

Definition 4.19 (Causal Statement with Global Effect). These are defined similarly to node- and edge-centric causal

statements, except that v; € V; and causal statements are not delineated as being spatially focused or diffused. o

Example 4.20. The following is a causal statement with global effect:

A=1l,0=1 "
C11: @ regional_damage

This causal statement specifies that any flood at any spatial location contributes to the overall regional damage. T

4.2.4 Causal Statements with Effect on Causal Attributes of Other Causal Statements. The causal statements we have
considered so far, all, describe effects on spatial or global properties in the complex system. These type of statements
alone, however, fail to capture causality that is context dependent. For instance, consider a scenario, where the lag with
which the flood propagates over an edge is determined by the soil properties. Here, the soil property does not directly
act on the flood at the destination node, but acts on the lag attribute of the causal statement that describes the flood
process. We, therefore, also need causal statements whose effects are causal attributes of other causal statements in the

causal context.

Definition 4.21 (Causal Attribute Variables). Let C be a set of causal statements. We define the corresponding set, V¢

of Causal Attribute Variables as follows:
Ve = {ﬁjc-(ci) | 71']9 €llc Ac; € C},
where ﬁ;(ci) denotes the causal attribute 71'}9 of causal statement c;. o

Causal statements with effect on causal attributes of other causal statements then act on the causal attribute variables
of causal statements that have been already specified.
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Definition 4.22 (Causal Statement with Effect on a Causal Attribute). A causal statement with effect on a causal attribute
is defined similarly to node- and edge-centric causal statements, except that

o; € VO uve uve®

spec
node edge dist UVguv where

spec — . ©
v = {n_spec:oy | n_spec € NSpec Avp € V", } U

{e_spec : v, | e_spec € ESpec Av,, € V.

©
edge} v

{n_specy : n_specy : v, | n_speci # n_specy € NSpec A vy, € Vdeist}'

and vj € Vc. Above, NSpec and ESpec are node and edge specifiers that help resolve ambiguities in the specification,

when there are multiple nodes or edges in the causal statement. More specifically, the spatial node specifiers in the set
NSpec ={c,e,c:s,e:s,c:de:d}

help distinguish among nodes referred to in the cause (c) or effect (e) clause of the target causal statement; when the
causal statement include edges, however, the node specifiers help distinguish among source node of a cause or effect

(c : s or e : s) and destination node of a cause or effect (c : d or e : d). The spatial edge specifiers in
ESpec = {c, e}

on the other hand help distinguish among edges referred in the cause (c) or effect (e) clause of the target causal statement.
<o

As with the causal statements with global effect, these causal statements are not delineated as being spatially focused
or diffused.

Example 4.23. Consider a scenario where occurrence of a flood at a particular location causes movement of people in
the spatial location where it is recorded and nearby nodes. The population movement in the event of a hurricane is (not
caused, but) influenced by the distance between the locations and the nature of news carried by the media.

Conventional causal graphs cannot adequately capture scenarios where floods cause population movements, in-
fluenced by factors like the distance between locations and media influence. They fall short in representing spatial
diffusion, the network’s topology effects, and the nuanced influences on causal relationships, such as how news and
distances between nodes modify the impact of a flood on population movement. In the proposed formulation, however,

this would be represented as

A=1l,0=1
sd
- A=l,0=1 -7 T =~
c13: @ «__cq.strength >

A=1l,0=1 LemTT T =~
C14: news (_ Cg.strength

T

As can be seen above, the framework allows a richer expression of the scenario which cannot be formulated using the

existing causal representations that are uniformed by the spatial processes and cannot accurately distinguish causes
Manuscript submitted to ACM
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from influencers. A particular advantage of the proposed causal statements with effects on a causal attributes is the
definition of inhibitors, where the effect of a particular global or spatial property may be the inhibition of a particular
cause-effect relationship by adjusting its strength (or likelihood) to 0. For example, in the above example, a particularly
close distance between a pair of nodes may have an encouraging whereas a particularly large distance between a pair
of nodes may have an inhibiting effect on the population movement.

Below, we include several additional examples to highlight this important class of causal statements.

Example 4.24. The following is a causal statement with effect on a causal attribute:

A=1l,0=1 PESEEN
C15: C season ) ‘L c3d )

This causal statement specifies that seasonal conditions may impact the lag of the causal statement cs; i.e., lag with

which rain in "Mesa" may cause flood in "Tempe" (and transitively on reachable locations from "Tempe"). T

Example 4.25. The following is a causal statement with effect on a causal attribute:

JENE A=1l,0=1 RN
C16: OEuc - ¢ )

\

This causal statement specifies that Euclidean distance between the two nodes involved in the causal statement c;
may impact the lag of that causal statement; i.e., the lag would depend on the Euclidean distance between the spatial

location at which rain is recorded and the location where the flood occurs). T
In this figure, we use a dotted borderline to visually mark distance variables.
Example 4.26. The following is a causal statement with effect on a causal attribute:

A=1l,0=1 P
€17: flow v C6.0 )

This causal statement specifies that the amount of flow involved in the causal statement c¢ also impacts the corresponding

causal strength. T

Example 4.27. The following is a causal statement with effect on a causal attribute:

- A=1l,0=1 P
€18: rain v 7.0 )

This causal statement specifies that the amount of rain recorded at a location also impacts the causal strength of the

causal statement ¢y (which states that rain at a given location and outgoing flow are causally related. T

Example 4.28. The following is a causal statement with effect on a causal attribute:

- A=1l,0=1 LT TN
€19t c:sirain . €10.0 )

This causal statement specifies that the amount of rain recorded at the source location of the spatial edge referred to as

the cause of c9 also impacts the causal strength of the causal statement. i

Example 4.29. The following is a causal statement with effect on a causal attribute:

A=l,o=1 LT
€20° e:d:flood L €100 )
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This causal statement specifies that the amount of flood already recorded at the destination location of the spatial edge

referred to as the effect of c1 also impacts the causal strength of the causal statement. T

Definition 4.30 (Causal Context). Given a spatial context, S = {S, E, II5, II,, A}, a global context G(= V), and a set I1,
of causal attributes, a causal context, C, is defined as a set of causal statements with respect to the given spatial/global

context. o

Example 4.31. The following is a causal context in our running example.

C= {Cl, €2, €3, C4, C5, C6, €7, €8, €9, €10, C11, €12, €13, €14, €15, €165 €17, €18 €19, c20}~

Note that, above, we intentionally use a simplified formulation of a causal context, where each causal statement de-
scribes a socio/physical process that independently acts on its effect (but possibly regulated by other causal statements
with effects on its causal attributes). In reality, though, certain effects may appear only when multiple spatial causes
co-exist or other effects may appear if and only if one or the other potential causes exist, but not if both exist simultane-
ously. Therefore, unlike basic causal graphs which have binary edges, the causal context will also need to account for
conjunctive and disjunctive statements (such as rain A sur face_conditions — flood vs. rain V surge — flood). In this
paper, we ignore these more complex spatio-causal relationships and leave them for further work that will study them
in greater detail. Note that the proposed formalism, nevertheless, is richer in its expressive power than conventional
causal graphs as it overlays a causal graph over a dynamic spatio-temporal network and its statements operate not only
on variates in the system, but also on other causal statements. This richer language will, therefore, require investigation
and re-definition of key causal concepts (such as mediators and confounders, foreward and backwards paths, Markov
blankets, and d-separation), as well as decounfounding algorithms critical for causal discovery, data imputation, and

forecasting (see Section 3).

4.3 Complex Spatial System and spatio-temporal Observations
A complex spatial system, € = {S, G, C} consists of a

e a spatial context, S,
o a global context, G, and

e a causal context, C.

Given a complex spatial system, € = {S,G,C}, an observation instance, O, of € is a multi variate time series,
T(tstarts tena), Where for each observable property, p € Pp = sz’ U Pg, Ti € T(tstartstenq) is a time series start-
ing at ts¢qr+ and ending at t,,4 such that, for all t € [tsart, tengl, we have p[t] € Dp U {1}, where L indicates the lack
of an observation for the property, p, at the given time ¢. Note that some of the properties may be subject to additional
set, A, of assumptions/constraints. For example, let € = {S, G, C} be a complex spatial system and let p € Pp = P? UPg
be an observable property. The temporal immutability constraint, I, on p would impose that, if observed, the value of

p[t] is constant across all values of t.

4.3.1 Causal Consistency of a Complex Spatial System with a Set of Observations. We say that a complex spatial
systems and observations are consistent if there are no causal fallacies or violations of the spatio-temporal assump-
tions/constraints. Let us be given
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e a complex spatial system, € = {S, G, C},
e subject to a set, A, of assumptions/constraints, and

e aset, O, of observation instances.
We say that the triple (€, A, O) is consistent (i.e., (€, A, O) = true) iff the following conditions hold:

e The causal context, C, does not include any causal fallacies! (such as causal cycles).
o The triple, (€, A, O), does not include any temporal inconsistencies: in other words, for all p; in the spatial or

global context and for all ¢ with a non-null observation p;[f] = x,

(€A,0\{pilt]}) = pilt] = y,

where y # x. In cases where the triple (€, A, O \ {p;[t]}) could imply multiple alternative values for p;[¢], we
would seek to maximize the likelihood of p;[t] being equal to x (ideally, prob(p;[t] = x) = 1).
o The triple, (€, A, 0), does not include any inconsistencies violating assumptions in the set A: in other words, for

all p; in the spatial or global context and for all ¢ without an observation or with a null observation (p;[t] = L),
(€A,0) = pilt] =y,

where p;[t] = y and observation instances O, together, would violate the given set of assumptions/constraints.
In cases where the triple (€, A, O) could imply multiple alternative values for p;[t], it should be that for any

assumption/constraint on the property p;,

3eep, | | probpilt] =x) > 0.
t

4.3.2  Causal Compatibility of a Causal Statement with a Complex Spatial System under a Given set of Observations.
Given this, we then define causal compatibility of a causal statement with a complex spatial system in terms of the
causal compatibility of the extended causal context under a given set of observations and spatio-temporal assump-
tions/constraints, Let us be given a complex spatial system, € = {S, G, C}, subject to a set, A, of assumptions/constraints,
and a set, O, of observation instances. Let us assume that the triple (€, A, O) is consistent. Let us further be given a
causal statement
A(II°,X)
N ardarna
and let € = {S, G, C} be the extended complex spatial system, where

C=Cu{e}.
We say that e is compatible with the triple, (€, A, O) iff the triple (@, A, O) is causally consistent:

compatible(e, (€, A,Q)) = consistent(@, A, 0).

4.4 Spatio-Causal Inference and Discovery

Given a complex spatial system € = {S, G, C} and a set of observation instances, O, with possibly null values, or values

that represent ranges or probability distributions, along with additional assumptions, A (such as temporal immutability

Note that checking for causal fallacies requires a framework in which causal contexts can be interpreted. Examples include Bayesian [136] and Petri Net
based [144] definitions of causal consistency.
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constraints on a subset of the variables), we can then define various socio/spatio-temporal imputation and forecasting

problems as well as spatio-temporal causal discovery tasks.

4.4.1 Spatio-Causal Inference Tasks.

Problem 4.32 (spatio-temporal Imputation Problem). Let us be given a complex spatial system, € = {S, G, C}, subject
to a set, A, of assumptions/constraints, a set, O, of observation instances, and a definition of causal consistency. Let
O; € O be an observation instance and for some t € [ts¢are,is teng,i] let p[t] = L for some observable property p. The
corresponding imputation problem aims to recover the value of p[t]; i.e., the task is to identify and return the value y,
s.t.

(€, A,0) = plt] =v.
In other words, the triple (€, A, O) would imply that the value of the property p at time ¢ is equal to y. In cases where the
triple (€, A, O) could imply multiple alternative values for p[¢], we would aim to return either a probability distribution

for the values of y, or the most likely value 7 given the underlying probability distribution. i

Problem 4.33 (spatio-temporal Forecasting Problem). Let us be given a complex spatial system, € = {S, G, C}, subject
to a set, A, of assumptions/constraints, a set, O, of observation instances, and a definition of causal consistency. Let
O; € O be an observation instance. The forecasting problem aims to predict the value of p[t], for some observable

property p, for some target t > t,,4;; i.e., the task is to identify and return the value y, s.t.
(€, A,0) = plt] =v.

As in the case of the imputation problem, in cases where the triple (€, A, O) could imply multiple alternative values for
plt], we would aim to return either a probability distribution for the values of y or the most likely value § given the

underlying probability distribution. i

4.4.2 Spatio-Causal Discovery Task. In order to formalize the spatio-temporal discovery task, we first need to introduce

a parametrized causal statement that will serve as the blueprint for the discovery tasks.

Definition 4.34 (Parametrized Causal Statement). Let us be given a complex spatial system, € = {S, G, C}, subject to a
set, A, of assumptions/constraints, and a set, O, of observation instances. A parametrized causal statement, statement(0),

is of the form

qc_prop

statement(©) = _— )
(®) = qcause o or d or NA 9effect

and uses the symbol "?" to indicate free parameters. More specifically, statement(®), is

e cither a parametrized causal statement with node or edge centric effect (with free node or edge parameters in
its cause and/or effect clause); i.e., both gequse and gef fec; are in

{?} v U U 50t |0 U ol U 5l
(=nv(xdeng) (=7 (5 er)n ((J=)V (s ells))A ((J=2)V (xS elle)) A
’ (kD e (2N V (sg51€5)) ((ie{x?})V(s;€5)) ((ie{x?})V(e;€E))
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e or a parametrized causal statement with effect on a causal attribute (with free node or edge parameters in its
cause clause); i.e., gcquse 1S in

{?} v U

=)V (ndeng)

ST I VR ¥ &
(j:?)\/(n;.eﬂs) (j:?)\/(n;eHe) ((J=2)Vv(5j€n))

X:”f,j V) U x:JrfJ. U U x:y:ﬁjﬁ*)*
(xeNSpec)A (xeESpec)A (x,yeNSpec)A
(=) V(x3els) (=) V(rEeTle)) (=1)V(5;e8))

while geffecs is in

7 (c)

((nCEHC)A(CEC)
Above, the symbol “?” indicates a free parameter without a bound value and dc_prop is a set of free/bound value

assignments for the corresponding causal properties, such that for p € I, we have p = x where x € D U {1, ?}. If the
statement has no free variables, i.e., ® = (), then the statement is referred to as a bound statement.
Note that the specification for the parametrized causal statement with effect on a causal attribute is more complex as,

per Definition 4.22, the cause clause of such a statement may contain node or edge specifiers, which may themselves be

parametrized.
o
Example 4.35. The following is a parametrized causal statement:
A= l,o=1 PAEEEENEN
statementy: ? X c3.A )
This statement states that a parametrized global parameter may impact the lag of the causal statement cs.
T

Example 4.36. The following is a spatially focused causal statement with node-centric effect:

A=?oc=1
statementy: @ @
sf

In this example, waterflow on a graph edge causes a spatially focused impact on some parametrized property of the

destination location, with a parametrized lag and an unspecified strength. T

Example 4.37. The following is a spatially transitive causal statement with node-centric effect:

A=1l,0=1
statements: @ y Tempe.flood
S

In this example, rain at a parametrized node causes flood in Tempe (and potentially other cities reachable from Tempe).

T

Problem 4.38 (Spatio-Causal Learning Task or Spatio-Causal Query). Let us be given a complex spatial system,
€ = {S, G, C}, subject to a set, A, of assumptions/constraints, and a set, O, of observation instances. Let us assume that

the triple (€, A, Q) is consistent.
Manuscript submitted to ACM
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A spatio-causal query, qspatio_causal(©) = statement(®), seeks a set of assignments, §, to the free parameters of
a given parametric causal statement that collectively render the corresponding bound statement, statement(© = ¢),
compatible with the given complex spatial system (including the underlying, partial, causal context C), temporal
immutability constraints, and the observation instances. In cases where there are multiple sets of assignments to the
free parameters of a given parametric causal statement that collectively render the corresponding bound statement
compatible with the given complex spatial system, we would aim to return either a probability distribution for the
assignments, or the most likely assignment, g{;, given the underlying probability distribution.

%

Given the key concepts introduced above, in the next section, we will start discussing approaches to various

spatio-temporal causal learning (inference and/or discovery) problems.

5 SPATIO-TEMPORAL CAUSAL LEARNING

Humans undergo a complex process known as causal learning to comprehend the effects within a system, a concept
similarly applied in machine learning to enhance model performance through causality, with applications from
recommender systems [162] to autonomous driving [157]. Causal research in machine learning is divided into causal

discovery [171] and causal inference [135]:

e To enhance the understanding of causal concepts, it is essential for the models to discover which variables
follow a causal relationship amongst themselves. The task of discovering causal relationships from any form of
data is known as causal discovery.

e Once we identify the causal relationships, the next step is to understand how these relationships are affected

and estimate the effect of different interventions. The task of estimating the effects is known as causal inference.

We emphasize the need for spatio-temporal causal models in diverse fields like sustainability, public health, climate
science, and social sciences, to understand causal linkages in space and time. These models are crucial for analyzing
regionally dispersed variables in time series data, recognizing causative variables, and determining causation directions,

considering spatial and temporal dependencies.

5.1 An Example: Water Runoff Rate Prediction

The comprehension of the fluctuation in causal connections throughout various times and geographical locations,
particularly in relation to external occurrences, presents a notable obstacle. Consider, for instance, the endeavor of
forecasting runoff rates to improve water sustainability, as previously said. The process of runoff rate prediction entails
the estimation of the quantity of surface water runoff originating from a designated region over a given period, usually
subsequent to precipitation events. The management of water resources in regions experiencing scarcity or where
demand exceeds supply is of utmost importance. The ability to make precise forecasts empowers water resource
managers to efficiently allocate and distribute resources, adopt flood control strategies, and mitigate the potential for
resource scarcity.

The concept of spatio-temporal causality is of utmost importance in the prediction of runoff rates in different
geographical areas. It involves identifying the causative elements that contribute to variations in runoff rates throughout
different time periods and spatial locations. By doing spatio-temporal causal analysis, it is possible to determine
the direction and magnitude of causal connections between runoff rates, identify significant causal elements, and

comprehend their interaction within certain geographical regions. This observation enables the formulation of targeted
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2

CNN, || NN, .o CNN, oo

CNNy,

CNN,

CNNy,

NN,

CNN, ..-

CNNy,

Attention + Spatial Discovery

Causal Validation
Delay Discovery

Fig. 8. Overview of STCD architecture, showing the process from inputting time-series and geographical data (ST-nodes) through N
CNN:ss, to creating a causal network graph with edges indicating timestep delays. A directed edge from ST; to ST signifies a causal
relationship from ST; to STn.

actions aimed at reducing runoff rates and improving water sustainability. For example, in the event that it is determined
that alterations at location A have a substantial impact on the rates of runoff at target location C, it becomes possible to
strategically implement interventions that aim to enhance infiltration and mitigate surface runoff.

Let us be given N locations and let X; = (x;1, X2, ..., x;T) represents the readings for the ith location over the past
T units of time. Let D represent the spatial distance matrix, where D; j represents the distance between location i and
J» where the sign of D; j is positive if location i is geographically higher than location j and negative otherwise. The
objective is to reconstruct the input based on the previous readings of each location and to infer a causal graph G of
size N X N, taking into account the underlying spatial diffusion process. Inferring the underlying causal graph can aid
in identifying the crucial locations that affect the runoff at a target location and lead to better generalizability across

time and better interpretability.

5.2 Data Structures, Models, and Algorithms for Causal Discovery

spatio-temporal causal discovery aims to identify causal relationships among geographically dispersed variables over
time. By analyzing spatial and temporal data relationships, these models reveal causal mechanisms influencing variables’
behaviors. For instance, they enable the identification of key geographic factors affecting runoff rates at specific locations
through the analysis of topography and geographical data across different regions and timeframes. This knowledge
assists in refining predictive models and formulating strategies for water sustainability.

STCD employs an architecture of n-CNNs, processing each sensor’s data with attention mechanisms to discern
temporally and spatially significant features. Unlike temporal methods that rely solely on event sequences, STCD
integrates spatial dimensions, essential for understanding causality in settings where geographical relationships affect
outcomes. This approach overcomes limitations of previous methods by considering the directional and magnitude
aspects of spatial relationships, essential in contexts like hydrology where the spatial arrangement of causes relative to
their effects significantly influences causal inference.

Prior research has established foundational models for causal discovery in static and temporal settings. However,
these models often fall short in spatio-temporal contexts, where the interplay between space and time complicates causal
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No. of Year Year Year
Model feat;lres 2006 | 2007 2008 | 2006 2007 2008 | 2006 2007 2008

RAE SMAPE MSE
TCDF 1,356 0.99 0.97 1.07 1.69 1.37 1.49 0.15 0.09 0.21
All Features 3,128 1.10 1.03 1.29 1.72 1.42 1.58 0.18 0.11 0.24
Random Features LSTM 1,248 1.02 1.07 113 1.76 1.48 1.54 0.16 0.13 0.26
Remaining features 1,880 1.04 1.05 1.10 1.74 1.46 1.52 0.17 0.11 0.29
STCD 1,248 095 091 102 | 1.66 131 143 | 0.12 0.06 0.14
TCDF 1,356 0.97 0.89 113 1.63 131 1.61 0.13 0.09 0.16
All Features 3,128 1.02 0.94 1.20 1.65 1.34 1.65 0.16 0.12 0.21
Random Features CNN 1,248 1.05 0.96 1.24 1.69 1.37 1.71 0.14 0.14 0.27
Remaining features 1,880 1.04 0.94 1.21 1.66 1.35 1.63 0.14 0.12 0.25
STCD 1,248 092 084 1.05 | 1.59 128 156 | 0.10 0.05 0.12
TCDF 1,356 1.28 1.10 1.78 1.87 1.68 1.87 0.24 0.19 0.31
All Features 3,128 1.33 1.12 1.83 1.89 1.72 1.92 0.29 0.23 0.34
Random Features SVR 1,248 138 117 186 | 1.87 177 195 | 0.26 020 0.39
Remaining features 1,880 139 115 184 | 1.88 1.74 193 | 027 022 036
STCD 1,248 120 1.07 171 | 1.84 160 181 | 0.18 0.14 0.27

Table 2. Prediction performances obtained using different combinations of the features across three different years. The results in
bold represent the best results (details of the experimental setup and the discussions are available at [166])

Model No. of Year 2000 Year 2004 Year 2008
Features RMSE MASE SMAPE RMSE MASE SMAPE RMSE MASE SMAPE

STCD 1,430 0.640 + 0.05 1584 +0.11  0.199 £0.02 | 0.694+0.04 1353+0.09 0.195+0.03 | 0.618 £0.06 1.678 +0.13 0.294 + 0.03
TCDF 1,331 0.780 % 0.06 1.817 £ 0.14 0.216 £+ 0.03 0.758 + 0.05 1.463 + 0.14 0.210 £+ 0.03 0.694 £ 0.05 1.973 +0.14 0.314 £ 0.02
Selego 1,508 0.821 + 0.10 1.892 +0.18  0.352+0.03 | 1.830 +0.11 1725+ 0.13 0310 £0.02 | 1.864 +0.06 2.237 +0.18 0.327 +0.02
All Features 3,129 0.875+0.09 1937 £0.14 0.375+0.02 | 0.894 +0.11 1818 +£0.12 0343 +£0.02 | 0.842+0.09 2.874+0.21 0.374 +0.02
Random Features 1,518 1.370 £ 0.07  2.746 £ 0.14  0.226 + 0.01 1.328 + 0.10 1712+ 0.14 0318 £0.02 | 1.267 £ 0.07 3.569 + 0.19 0.379 + 0.03
STREAMS 1,518 0.519 £ 0.03 1.328 +0.08 0.121 +0.01 | 0.465 +£0.03 1.012 +0.04 0.136 + 0.01 | 0.427 £ 0.03 0.967 + 0.06 0.149 + 0.01

Table 3. Evaluating the generalization performance over different years across three different metrics. The timespan of 1916-1926 was
used to infer the causal graph for each model and the prediction is done for the years 2000, 2004, and 2008. For each metric, a lower
value is preferred. The results in bold represent the best results (details of the experimental setup and the discussions are available
at [165])

analysis. STCD addresses this gap by incorporating spatial information into the causal discovery process, enhancing
accuracy in identifying crucial causal connections, as demonstrated in hydrological studies within the Texas river basin.

The need for more sophisticated spatio-temporal attention mechanisms is acknowledged to further the capabilities
of spatio-temporal causal discovery algorithms.

Table 2 presents the outcomes of experiments testing the spatio-temporal Causal Discovery (STCD) method’s ability
to discern causal relationships vital for understanding hydrological processes, particularly in identifying key spatial
locations for water flow prediction. Lacking a true causal graph for such physical processes, we base our evaluation on
the premise that predictions using causal features should outperform those made with features from temporal causal
discovery methods like TCDF [119], or when using all available features. This is grounded in the expectation that causal
features lead to better prediction generalization [77]. The results confirm that STCD-selected spatio-causal features
consistently enhance performance compared to non-spatio-causal features.

We note, however, that more research is needed in this space. For example, while STCD enforces spatial constraints
in causal discovery through penalizing attention scores based on spatial distances, in a follow up work, we have shown
that STREAMS [165], which leveraged a spatio-temporal autoencoder with reinforcement learning (RL) to learn the
causal relationships (where the spatial component aids in following the spatial constraint and the RL component aids
by optimizing the search space to learn the causal graph) can provide significant gains over the baseline STCD. Table 3
provides sample results. This illustrates the fact that there is significant room for research in effective spatio-causal
discovery and its application to spatial inference and forecasting tasks.
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5.3 Data Structures, Models, and Algorithms for spatio-temporal Causal Learning

Understanding the influence of causal ancestors on their descendants is vital for designing targeted interventions. For
example, the impact of vaccination programs on disease transmission involves direct and indirect effects, influenced by
various spatial variables such as population age, health, vaccine acceptance, and socio-economic factors.

Addressing spatio-temporal heterogeneity in policy interventions, [199] introduces a spatially interrupted time-series
design to analyze mobility control policies during the COVID-19 pandemic. This approach elucidates the changing
effects of policies over time and space, highlighting significant heterogeneities in causal impacts. Similarly, [32] proposes
a causal framework tailored for spatio-temporal data, incorporating models for estimating causal effects and a hypothesis
test for detecting overall causal relationships. This framework, leveraging an inverse probability weighting technique
and a nonparametric approach for error estimation, facilitates causal analysis without distributional assumptions and
accommodates potential confounders.

The authors offer a class of spatio-temporal stochastic process causal models that allow them to explicitly characterize
and quantify the causative influence of a vector of covariates X on a real-valued response Y. They characterize the
causal effect using a counterfactual paradigm, which includes comparing the result under two distinct scenarios: one
with X set to a specified value and another with X set to some other value.

The proposed technique makes no distributional assumptions about the data-generation process and allows for the
effect of an infinite number of latent confounders assuming these confounders do not alter over time. Further research
is encouraged to enhance these methodologies, especially in integrating specific spatio-temporal assumptions and
addressing confounders that vary over space and time.

As evidenced by the above discussion, studying spatio-temporal causality requires large amounts of spatio-temporal
data (such as large transportation or river networks) and learning of spatio-causal models from observational data is
expensive as identifying and assessing causality across space and time adds significant complexity to the causal learning
process. Considering that, in the most general case, each distinct point in space can be considered as a separate causal
variable, which may impact its neighbors and may, in turn, be impacted by them, the number of variables of interest in
spatio-causal discovery can grow significantly, quickly outstriping the scalabilities of the causal learning algorithms.
This necessitates research into effectively exploiting spatial data structures, network models, and multi-resolution
algorithms within a spatio-causal learning framework to tackle the underlying efficiency and scalability challenges by
effectively pruning and/or indexing the observations (and their inter-relationships) in time and space. This currently is
a largely unexplored area of research, though results from early work on leveraging available spatial and/or causal
metadata in improving efficiency, scalability, and accuracy challenges are promising [23, 99, 109, 148, 158, 182].

Due to the additional difficulty of determining causality in both dimensions, studying spatio-temporal causality
requires large amounts of spatio-temporal data, such as from transportation or river networks. As a result, learning
spatio-causal models from observational data is expensive.

As every point in space has the potential to be a distinct causal variable that influences and is influenced by its
neighbors, the number of variables in spatio-causal discovery might grow exponentially, which puts the scalability
of causal learning algorithms to the test. This scenario emphasizes the need for more study into how to manage the
observations and their temporal and spatial linkages in a spatio-causal framework to better achieve efficiency and
scalability through the use of multi-resolution algorithms, network models, and spatial data structures. Initial attempts
to use spatial and causal metadata appear promising in improving accuracy, scalability, and efficiency, despite the fact
that this is a new field of study [23, 99, 109, 148, 158, 182].
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Fig. 9. Sample events identified on a spatio-temporal data set; here, each row corresponds to a different sensor — detected spatio-
temporal events (with different temporal lengths and involving different groups of sensors) are highlighted with colored boxes on the
time series; the sensors involved in these events are also recorded with colored dots on the spatial map. Note that the sensor readings
are causally related to each other: similar changes in the same zone are likely caused by the same external cause; moreover, the
spatial connectivity between the zones may imply that events can be spatially diffused and certain events (such as the ones marked
with green color in the figure) can cover multiple spatial zones due to spatially diffused causal effects [102]

Validating spatio-causal models is further complicated by the need to assess the quality of acquired causal structures,
especially in situations when a ground truth causal network is incomplete. In order to overcome this, the STCD approach
uses generalization errors over time as a measure of accuracy to evaluate inferred causal linkages through time-series
forecasting on the target variable. While evaluating spatio-temporal causal discovery algorithms is fundamentally
hampered by the general lack of ground-truth data, this method evaluates the validity of found causal linkages in the

absence of a ground-truth causal network.

6 SPATIO-TEMPORAL CAUSAL KNOWLEDGE FOR SPATIAL DATA STRUCTURES, MODELS, AND
ALGORITHMS

Understanding spatio-causality is vital for managing and analyzing spatio-temporal data across various applications,
such as point-of-interest detection, spatio-temporal event detection, and trajectory management. Recognizing the

potential for advancement in this area, we identify key research opportunities including:

e Developing causally-aware multi-scale event extraction methods to enhance spatio-temporal search and analysis,
o Innovating causally-prioritized spatio-temporal data analysis techniques that reduce redundancy and improve
resilience to noise and data sparsity, and

o Creating new causally informed indexing and search mechanisms.

This section will explore these challenges and the potential avenues for research.

6.1 Detecting and Classifying Events with Causal Awareness in Space and Time

Decisive choices often rely on the skill to identify and categorize important occurrences in complex, time and space-
related information, with the goal of revealing hidden patterns that are not obvious at first glance. These questions are

crucial:

o Identifying significant events in spatio-temporal datasets is a complex task that requires careful analysis and
consideration.
o Can these events be categorized using current labels or by differentiating between typical and unusual activities?
o Is it possible to analyze spatio-temporal events to grasp their similarities and differences?
o Is there a way to analyze event patterns to reveal their connections?
Manuscript submitted to ACM
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[ Model [ RMSE | MAE | MAPE |
Bi-LSTM with no attention(74 epochs) 9.00 6.38 4.67
LSTM with no attention (74 epochs) 9.06 6.38 4.67
LSTM with single layer attention to input (20 epochs) 9.00 6.52 4.79
LSTM with single layer attention to output (20 epochs) 9.02 6.52 4.79
M2NN (15 epochs) 8.63 6.24 4.63

Table 4. Comparison of different architectures for a traffic prediction task; here M2NN is a multi-variate time series predictor which
leverages RMT based spatio-temporal attention to reduce prediction errors (details of the experimental setup and the discussions are
available at [148])

When dealing with spatio-temporal data, such as in water management and pandemic tracking (discussed in Sections 2.1
and 2.2), it is important to consider the specific spatio-causal features that are essential for analytical purposes (illustrated
in Figure 9). Using metadata-aware techniques Strong and resilient Utilizing multi-variate Temporal (RMT) feature
extraction methods, as discussed in [102, 189], can improve feature extraction accuracy and robustness by incorporating
variate correlations. In particular, RMT features use metadata graphs to pinpoint dependency neighborhoods, analyzing
various relationships to detect important local changes over time and space.

Recent advancements, such as the ones in [148, 182], have built upon RMT characteristics to predict intricate events in
multi-dimensional time series, demonstrating their effectiveness in various spatio-temporal scenarios, such as COVID-19
forecasting and travel analysis (Table 4).

Various techniques for analyzing spatio-temporal events are investigated in [3, 42, 91, 101, 188], mainly using GNNs
or spatio-temporal CNNs. These methods have a common approach to identifying events in spatio-temporal data

through:

o Exploring connections between data variables to establish neighborhoods,

o Identifying unique patterns, recurring patterns, or specific target configurations.

In general, though, these tasks are complicated by the facts that (a) spatio-temporal data are often of mixed quality
(and sometimes missing) due to the sensor variety and location, and measurement errors due to calibration difficulties.
Moreover, as described above, (b) confounders and colliders can introduce spurious (non-causal) correlations in the data,
which can result in noisy features/events that are not robust [29]. We therefore argue that spatio-causal knowledge can
greatly improve spatio-temporal event detection and classification performance. In particular, spatio-causal knowledge
can help improve both the effectiveness of the inter-relationships identified and leveraged across data and can help
prioritize the patterns especially when given the sought after events are constrained towards a spatio-temporal target.

Careful thought is required when integrating causal information into spatio-temporal data analysis. As an example,
in the RMT algorithm, neighborhoods are typically defined as follows: h-hop [33, 124]; reachability [18, 191, 196, 201];
cluster/partition [48, 83, 121]; and hitting distance neighborhoods [28, 111]. These definitions are based on proximity or
strong coupling between graph nodes. To meet particular analysis demands, the idea of distance among nodes can be
contextually adjusted [26, 78, 80, 87, 159, 184].

It is important to distinguish between direct causal impacts (such as the spread of a disease from one region to
another) and indirect linkages mediated by confounders or intermediaries when focusing on causally-informed traits or
events. In example, confounders can mask or dilute the true relationships in the data, which can cause errors in the
extraction of features and events and reduce the usefulness of the features that are found for tasks like classification
and similarity search.
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Fig. 10. (a) A sample epidemic scenario, with temporally evolving transmission paths and (b) a spatio-temporal tensor, where
different modes represent data of temporal and/or spatial nature; in this paper, we further argue that there can additionally be causal
connections between elements of the various modes, which may need to be taken into account for effective data analysis

This emphasizes the need for more study on spatio-causal neighborhood definitions and the advancement of spatio-
causal convolution and smoothing methods. With the goal of providing a more precise and insightful analysis of
spatio-temporal events, such techniques ought to strive to capture the complex spatio-topological and causal dynamics
found in the data.

6.2 Causally-Prioritized spatio-temporal Analysis to Eliminate Redundant Work and Providing
Robustness Against Noise and Sparsity

When applied to sparse, noisy, and inconsistent datasets, causal knowledge dramatically improves spatio-temporal
analysis through increased resilience, decreased computations, and increased accuracy [163]. It applies causally-informed
attention mechanisms, creates low-dimensional embeddings, and assists in feature selection. These contributions are
essential for managing high-dimensional, complicated data, enabling dimensionality reduction, and enhancing the
results of analyses in semi-supervised, supervised, and unsupervised contexts.

One excellent example of using causal knowledge is tensor analysis. It maps attributes to a multi-modal array enriched
with network and spatial information to facilitate sophisticated spatio-temporal analysis and embeddings. It encodes
multi-variate data over time as tensor streams (Figure 10). Using decomposition methods such as eigen-decomposition
and Tucker decomposition, spectral features can be shown by breaking down tensors into factor matrices and a core
matrix.

However, difficulties still exist and they are as follows:

e High computational costs and the intermediary data blow-up problem complicate the analysis of high-modal
datasets, especially when data are sparse.

e Sensitivity to noisy data can lead to overfitting and erroneous conclusions, a significant concern in sparse web
and social datasets.

e Recommendation tasks face inherent biases, such as popularity bias, affecting the fairness and relevance of

outcomes.

To overcome these problems, we suggest adding spatio-causal knowledge, which provides a more sophisticated and
useful method for spatio-temporal data analysis.
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Fig. 12. ci_gain vs. max_gain for 100 sample graphs per configuration (4 mode tensors, each mode with 20 distinct values). One thing
that emerges from these charts is that, especially for scenarios where the maximum possible gain is large, causally-informed tensor
train decomposition (CTT) provides close to maximum gain and the performance is approaching to that of the optimal sequence
when the TT-rank is sufficiently large (details of the experimental setup and the discussions are available at [109])
6.2.1 Managing Blowups of Intermediate Data. The curse of dimensionality impedes high-dimensional data analysis,
particularly in multi-modal datasets represented as tensors. Tensor decomposition methods such as CP and Tucker
attempt to embed data into lower-dimensional latent spaces in order to minimize dimensionality. Despite having a
dense core that makes it information-rich, Tucker decomposition has exponential memory expansion as the number of
tensor modes rises. In order to reduce both space and computing time, the Tensor Train (TT) decomposition divides the
tensor into a number of smaller 3-modal cores. Optimizing the decomposition sequence is still a difficult task, though.

TT decomposition sequence is guided by data features such as entropy, as demonstrated in recent work [96]. However,
as Pearl and colleagues [133] have shown, these approaches have limitations, and it is crucial to comprehend the
underlying causal structures. Data analysis results might be unexpectedly impacted by the introduction or elimination
of statistical dependencies during the conditioning process, which involves segmenting variable domains.

We suggest that the selection of decomposition sequences for TT can be improved by utilizing knowledge of the
causal linkages among data modes, providing a more accurate and effective representation. As shown in (Figure 12), we
may obtain optimal decomposition sequences by using algorithms that are guided by knowledge of the spatio-causal

structure, which greatly enhances the analysis of high-dimensional data.

6.2.2 Improving Robustness. Our earlier work showed that by adapting to the noise profiles inside data [98], multi-
resolution approaches can minimize time and memory utilization without affecting decomposition quality. In order to
improve the performance of incremental updates for growing tensor streams and help with noise management, we
proposed sub-tensor impact graphs (SIGs) to encode structural information of tensor sub-partitions [23]. SIGs show the
relationship between decompositions and the spread of errors by directing the division of tensors through independent
block decomposition and iterative integration of these decompositions. This method makes it easier to allocate resources
(such as update schedules or decomposition rankings) in a way that maximizes robustness against sparsity and noise
while balancing both accuracy and efficiency.
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Popularity De-Biased Test Sets

Dataset Model Popularity = 2 Popularity = 3 Popularity = 5 Popularity = 10
NDCG@10 | HR@10 | NDCG@10 | HR@10 | NDCG@10 | HR@10 | NDCG@10 | HR@10
NeuMF [74] 0.30 £0.02 | 0.65+0.02 | 0.30+0.02 | 0.65+0.02 | 0.31£0.02 | 0.67+0.01 | 0.33+0.01 | 0.70+0.01
PMF [113] 0.32+£0.02 | 0.68+£0.02 | 0.33+0.02 | 0.70£0.01 | 0.36£0.01 | 0.71+0.02 | 0.39+0.01 | 0.73£0.01

SocialMF [79] 0.31£0.02 | 0.63£0.02 | 0.33+0.01 | 0.65+0.02 | 0.34+£0.01 | 0.70+0.01 | 0.36+0.01 | 0.72+0.01
GraphRec [46] 0.23+£0.02 | 0.53£0.02 | 0.23+0.01 | 0.54+0.02 | 0.20£0.01 | 0.51+0.01 | 0.22+0.01 | 0.51£0.02
Epinions | ConsisRec [197] | 0.35+0.02 | 0.70+0.02 | 0.37+0.01 | 0.74+0.01 | 0.40£0.02 | 0.76 +0.01 | 0.42+0.01 | 0.78 +£0.01
IPS-MF [100] 0.30+£0.02 | 0.64+0.03 | 0.31+0.02 | 0.68+0.01 | 0.36+0.02 | 0.73+0.01 | 0.40+0.01 | 0.78+0.01
CIRS [190] 0.36£0.03 | 0.69+0.02 | 0.39+0.02 | 0.73+0.01 | 0.40+£0.01 | 0.73+0.02 | 0.41+0.01 | 0.80+0.01
DICE [200] 0.32£0.02 | 0.67+0.02 | 0.35+0.01 | 0.70£0.02 | 0.37+0.01 | 0.73+0.01 | 0.42+0.01 | 0.82+0.01
D2Rec (ours) 0.37+0.02 | 0.73+0.01 | 0.38+0.02 | 0.74%+0.02 | 0.40+0.01 | 0.81£0.01 | 0.43+0.02 | 0.83 +0.01
NeuMF [74] 0.24+0.03 | 0.53£0.02 | 0.26+0.02 | 0.58+0.02 | 0.30£0.01 | 0.61+0.01 | 0.32+0.01 | 0.68+0.02
PMF [113] 0.29+£0.02 | 0.60£0.01 | 0.32+0.01 | 0.66+0.02 | 0.36£0.02 | 0.72+0.03 | 0.41+0.02 | 0.81+0.01
SocialMF [79] 0.32+£0.02 | 0.59+£0.02 | 0.34+0.03 | 0.68+0.02 | 0.37+0.02 | 0.75+0.03 | 0.42+0.01 | 0.81+0.02
GraphRec [46] 0.17£0.02 | 0.35+£0.02 | 0.13+0.02 | 0.33+£0.03 | 0.14£0.02 | 0.32+0.03 | 0.15+0.02 | 0.43+£0.01
Ciao ConsisRec [197] | 0.27 £0.03 | 0.56 +0.02 | 0.33+0.02 | 0.61+0.01 | 0.32+0.02 | 0.66+0.02 | 0.36+0.01 | 0.71+0.01
IPS-MF [100] 0.24+0.03 | 0.52+0.03 | 0.31+0.02 | 0.61+0.02 | 0.39+£0.02 | 0.72+0.01 | 0.42+0.02 | 0.81+0.01
CIRS [190] 0.34+0.03 | 0.64+0.03 | 0.35+0.02 | 0.66+0.02 | 0.37+0.01 | 0.71£0.02 | 0.42+0.01 | 0.80+0.01
DICE [200] 0.26 £0.03 | 0.55+0.03 | 0.33+0.02 | 0.64+0.02 | 0.35+£0.01 | 0.70+0.02 | 0.45+0.01 | 0.81+0.01
D2Rec (ours) 0.33+0.01 | 0.61+0.02 | 0.34+0.02 | 0.68+0.02 | 0.38+0.03 | 0.78+£0.02 | 0.48 +0.02 | 0.88 £0.01

Table 5. Comparing the ranking performance of different recommender system models with D2Rec for Epinions and Ciao across
10 runs over popularity de-biased data sets (since item popularity is an aspect of confounding, by generating popularity de-biased
test sets and measuring D2Rec’s performance over them, we can verify whether D2Rec effectively adjusts for the confounding bias).
Results in bold represent the best results and the ones underlined represent the second best; note that causally informed D2Rec
consistently outperforms the competitors (details of the experimental setup and the discussions are available at [162]) - the challenge,
of course, is to build on these results in a context where causal networks are superimposed on spatial networks

Moreover, variate interdependencies provide valuable insights for variate-selection and attention tactics that improve
the resilience of forecasting algorithms. For example, because of their higher noise resilience, simpler, metadata-
supported models like CNNs can forecast more accurately than more sophisticated models like LSTMs [148, 182].

Accurately recognizing and measuring these interdependencies is the difficult part. We suggest that more accurate
and reliable results will result from decomposition strategies that incorporate spatial causality knowledge. Tensor
"slices" are often analyzed via decomposition algorithms in order to gradually improve the overall decomposition.
However, the underlying causal structure affects how well these slice-based conditioning processes work and might
induce errors in analysis or hide important information. In order to ensure that decompositions are extremely accurate
and robust to sparsity and noise, we thereby support causally informed slicing and partitioning of spatio-temporal data,

highlighting the need for additional research into causally informed tensor decomposition algorithms.

6.2.3 Improving Bias Resilience . Recommender systems, trained on user-item interactions, often grapple with biases
like selection and popularity bias due to the missing-not-at-random nature of their observational training data. The
non-random exposure mechanism, which is determined by the spatio-temporal context of the item and the interests
of the user, intensifies this bias. As a result, these algorithms may overemphasize well-liked products while ignoring
user-specific interests and creating feedback loops that reinforce prejudices.

Re-weighting techniques have been the mainstay of previous attempts to reduce these biases [100]. A more sophis-
ticated strategy, on the other hand, proposes modeling the item exposure mechanism to users and moving toward a
causal framework for suggestions. This strategy is still untested despite its potential.

Our previous work filled this gap by introducing techniques such as the Social Implicit-Disentangled Recommender
System (SIDR [161]) and the Disentangled and De-Biased Recommender (D2Rec [162]), which use auxiliary network
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information to improve de-biasing accuracy by applying causal inference techniques to disentangle factors influencing
item exposure, rating predictions, and confounders.

To produce fully de-biased suggestions, however, the integration of spatio-temporal contexts and spatio-causal
structures into recommender systems remains unexplored. This points to a major area of untapped potential for future
research: recommender systems capable of navigating the intricacies of spatio-temporal data and providing objective,

user-specific item recommendations.

6.3 Causally-Informed Indexing and Search

Spatial-causal information can be used to improve the recognition and ranking of spatio-temporal features and events. It
can also be used to create robust, efficient low-dimensional embeddings for spatio-temporal data. Using this knowledge
to improve indexing and searching operations is one immediate application.

A vast amount of research has been done on exact and approximate spatial (2D, 3D) and multi-dimensional data
structures [155, 156]. These include tree-based data structures [12, 15, 53, 70, 160], and spatial hashing algorithms [94],
as well as grid-based and Voronoi-diagram based methods [154]. While these structures are capable of handling a variety
of search operations, they frequently face difficulties with high query latency and the real-time upkeep of indices for
moving objects.

According to this paper, spatio-causal information can address these issues in two important ways:

Causally-informed characterization of query workload: Enhancing throughput is recognized to be possible through
index structure and search process optimization to handle query workloads [57, 195]. With its sophisticated compre-
hension of data dynamics, spatio-causal information provides a novel way to monitor and adjust to changes in query
workloads more successfully. In addition to workload adaptation, index structures could be created or adjusted to match
underlying causal structures, possibly by means of data/space partitions or embeddings that are causally informed,
as covered in Section 6.2. This method may also help search methods by directing the order in which partitions are
investigated according to spatio-causal correlations.

Characterizing updates with causal information: Updating index structures in real-time can be a difficult task, especially
when dealing with concurrent queries. An understanding of the causality of spatial processes such as movement patterns
may improve update scheduling and update policy formulation. The responsiveness and efficiency of the data structures
can be enhanced by implementing techniques for both eager and lazy updates more skillfully by knowing the underlying

causes of data changes.

7 CONCLUSIONS

In this paper, we have made a case for urgent effort into "spatio-causal" research, including research into (a) spatio-causal
discovery and inference, (b) causally-informed spatial data structures, models, and algorithms, and (c) new spatial
data structures, models, and algorithms to support efficient spatio-temporal causal learning. We have motivated our
vision with two urgent applications in sustainability and public health and outlined how these two applications, along
with many other socio-economically critical, human-centered application domains that share common spatio-temporal

challenges with these two, can benefit from the proposed paradigm of spatio-causal research.
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