
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Countermeasuring Aggressors via Intelligent
Adaptation of Contention Window in CSMA/CA
Systems
Amir-Hossein Yazdani-Abyaneh1, Mohammed Hirzallah1, and Marwan Krunz1
1Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA. An abridged version of this paper was presented at the
IEEE DySPAN ’19 Conference, Nov. 11 - Nov. 14, 2019, NJ, USA.

Corresponding author: Amir-Hossein Yazdani-Abyaneh (email:yazdaniabyaneh@arizona.edu).

This research was supported in part by NSF (grants # 2229386 and 1822071) and by the Broadband Wireless Access & Applications
Center (BWAC). Any opinions, findings, conclusions, or recommendations expressed in this paper are those of the author(s) and do not
necessarily reflect the views of NSF. .

ABSTRACT To coordinate channel access and reduce collisions over unlicensed bands, wireless technolo-
gies implement a listen-before-talk (LBT) strategy, a variant of Carrier Sense Multiple Access (CSMA)
with Collision Avoidance (CA). In LBT, a node backs off for a randomly selected amount of time, upper-
bounded by the minimum contention window (CWmin) which is specified by standard settings. However,
an aggressive node can choose a lower CWmin value, deviating from standards settings, to gain an unfair
throughput advantage at the cost of compliant nodes performance. To address this problem, we propose a
framework called Intelligent Contention Window (ICW) that allows compliant nodes to adapt their CWmin

values to counter aggressive nodes and achieve their fair share of the channel’s airtime. The adaptation
process is based on a random forest, a machine learning model that includes a large number of decision
trees. We train the random forest in a supervised manner to recommend the possible best CWmin over a large
number of spectrum sharing scenarios. Our results show high generalization performance of the random
forest for diverse aggressive spectrum sharing settings. We validate our design using over-the-air hardware
experiments as well as simulations. Our results suggest that under ICW, nodes receive their fair shares of
the channel airtime and achieve multi-fold boosting in throughput and reduction in latency in both static
and dynamic aggression settings. Our SDR experiments show 5.62× throughput improvement when ICW
is used relative to the Wi-Fi protocol.

INDEX TERMS Aggressive behavior, CSMA/CA, CWmin, distributed MAC, fairness, machine learning,
random forest.

I. INTRODUCTION
The number of Wi-Fi access points (APs) has quadrupled
between 2018 and 2023 [1]. Besides Wi-Fi systems, new
wireless technologies, such as 5G New Radio Unlicensed
(5G NR-U) and LTE Licensed Assisted Access (LTE-LAA),
also operate over the unlicensed 5 and 6 GHz bands, sup-
plementing licensed cellular services [2]. Unlicensed-band
technologies use channel access protocols that are fundamen-
tally based on Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) and exponential backoff. Devices
that utilize these technologies have specific System-on-Chip
(SoC) modules or Network Interface Cards (NICs), in which
time-critical MAC and PHY functionalities are executed.
SoC’s and NIC’s run specific tasks based on their installed
firmware. Research has shown that it is possible to tamper

with such firmware and modify the operating behavior of the
modules [3], [4]. In this work, we focus on the challenges
related to aggressive channel access behavior. In particular,
we consider a scenario where one or more coexisting devices
manipulate their channel access parameters, specifically their
CWmin values, to gain unfair advantage in the channel’s
airtime.
Under CSMA/CA, a node that wants to transmit a packet must
first sense the channel for a fixed Inter-Frame Space (IFS)
interval. During this interval, if the channel remains idle, the
node will proceed with a packet transmission; if not, the node
defers its transmission and waits for a random backoff du-
ration. The backoff duration consists of k randomly selected
slots, uniformly sampled from the set {0, 1, ...,W−1}, where
W is called the contention window. Starting with an initial

VOLUME 11, 2023 1

value of W = CWmin, W is doubled after each collision
until it reaches a maximum value of CWmax. Thus, after j
successive collisions, the backoff timer k is selected randomly
from {0, 1, ...,min(2jCWmin,CWmax)−1}. After a successful
transmission,W is set back to CWmin.
If all nodes that share a channel comply with their respective
standards, CSMA/CA is proven to be fair. However, in the
presence of aggressive nodes that select lower CWmin values
than the standard setting, the throughput of compliant nodes
degrades and CSMA/CA can no longer guarantee fairness.
Due to the distributed nature of the channel access, it is
difficult to identify nodes with non-compliant CWmin values.
Compliant nodes need a way to detect whether or not they
are getting their fair share of the airtime, and accordingly
adapt their CWmin to not fall behind in their throughput
performance.
To cast more light on this issue, we conduct a simple simula-
tion in which three Wi-Fi nodes that operate according to the
IEEE 802.11ac standard with an access category AC3 share
the same unlicensed channel. All three nodes are backlogged
(saturated traffic) and have a fixed transmission rate of 12.79
Mbps. All three nodes are in each other’s sensing ranges,
and their relative locations with respect to the AP ensure all
packet transmissions are successful. Two nodes, say N2 and
N3, are configured to act aggressively by setting their initial
CWmin values to 4. We consider two cases for the setting
of N1’s CWmin. In Case (a), N1 chooses CWmin = 16 (the
standardized setting [5]), while in Case (b), N1 randomly
chooses its CWmin between 2 and 16. The throughput for
the three individual nodes is shown in Figure 1. For Case
(a), N2’s and N3’s throughputs account for 91.26% of the
total network throughput. In contrast, for Case (b) the random
assignment of CWmin value partially alleviates the unfairness
issue and improves the relative throughput of N1 to 22.69%.
Rather than randomizing the selection of CWmin, in this paper,
we exploit Machine Learning (ML) techniques to bring N1’s
relative throughput close to its fair share of 33%. Achieving
this fair allocation is challenging because the CWmin values
of N2 and N3 are not known to N1.

(a) (b)

FIGURE 1: Relative per-node throughput for a network of
three nodes. Nodes N2 and N3 are aggressive with CWmin set
to 4: (a) N1’s CWmin is set to 16, (b) N1 randomly selects its
CWmin between 2 and 16.

In Figure 2, we show the throughput ratio of an aggressive
node over a compliant node’s throughput, where there is only
one compliant node and the number of aggressive nodes are
varied from 0 to 100. Results are gathered through numerical
analysis of the Markov Chain of the DCF protocol under
aggressive settings (see Section III). It can be seen that the
unfairness issue is present even for high number of nodes in
the network. It can also be concluded that a lower CWmin will
cause more unfairness i.e., higher throughput ratio.

0 20 40 60 80 100
0

5

10

15

Number of aggressive nodes.
T
hr
ou

gh
pu

tR
at
io

Aggressors’ CWmin = 2
Aggressors’ CWmin = 4

FIGURE 2: Average throughput ratio of an aggressive node
over a compliant node (CWmin = 16) vs. number of aggres-
sive nodes in the network.

Modifying the CSMA/CA protocol and adapting some of
its parameters, such as CWmin, CWmax, etc., using classical
techniques have been extensively investigated in the litera-
ture. However, employingML techniques is still in its infancy.
We introduce a framework called Intelligent Contention Win-
dow (ICW), which allows a node to adapt its CWmin value
to alleviate the effect of low CWmin settings by aggressive
nodes. We refer to such an adapting node as intelligent node.
This work presents two options that an intelligent node can
take to adapt its CWmin. The first option requires the intel-
ligent node to know the CWmin values of all its neighbors
– a CWmin estimation technique is presented in [6] – and
accordingly calculate its expected airtime using Markovian
analysis. The intelligent node can then choose the CWmin that
results in the fairest expected airtime (see Section III). The
second option, the former knowledge constraint on CWmin

settings of neighboring nodes is relaxed, instead the intelli-
gent node can monitor the channel and obtain the statistics
of neighboring nodes’ channel access behavior. Using these
statistics along with a trained ML algorithm, e.g., a random
forest, the intelligent node can then determine an appropriate
CWmin value (see Section IV). The second option avoids
computationally intensive numerical calculations associated
with Markovian analysis. The choice of selecting random
forest stems from the fact that it is trained faster and run
with lower computational complexity compared to other deep
learning models (e.g., deep feed-forward neural networks and
convolution neural networks [7], [8]).

2

The CWmin adaptation is formulated as an optimization
problem in which intelligent nodes maximize their fair share
of the airtime. Our fairness criterion captures the channel
idle duration, where idle time is equally divided between
active nodes. We analyze the Markov chain of the CSMA/CA
mechanism in the presence of aggressive nodes, derive the
channel access and collision probabilities for well-behaving
and aggressive nodes, and formulate the objective function of
fair sharing of the airtime. We discuss the challenges asso-
ciated with solving the problem using classical optimization
techniques and show how the problem can be modeled using
empirical estimates and solved using ML techniques. Input
features used by the ML module for CWmin adaptation are
selected to indirectly characterize the state of the wireless
channel. Intelligent nodes build features by observing the
channel for a monitoring period and gathering empirical esti-
mates of channel occupancy, busy, and idle times.

The main contributions of this paper are summarized as
follows:

• We model the problem of optimizing the fair share of
airtime in CSMA/CA channel access under aggressive
settings and discuss related challenges for solving the
problem using classical approach. We introduce empiri-
cal modeling of the problem and show how ML can be
used to learn solutions of the problem under different
aggression settings. Our ML solution, based on random
forests, lets intelligent nodes optimize their CWmin such
that they receive their fair share of channel airtime in
the presence of aggressors. Intelligent nodes are self-
enforcing, meaning they only adapt their windows when
aggressors are present and fallback to regular CWmin

settings when aggressors retreat. Our solution works in
a distributed fashion and requires no communication
overhead between intelligent nodes, making it appealing
for real-world deployments.

• We develop over-the-air (OTA) testbed using USRP-
based software defined radios (SDRs) to validate the
generalization of our ML model. We also develop
a discrete-event simulation framework for generating
training data and deriving optimum CWmin settings un-
der diverse network conditions. The simulator helps with
considering a large set of aggressive scenarios and obtain
excellent generalization performance. We conduct ex-
tensive optimization and ablation studies to optimize the
hyper parameters of the random forest. We also evaluate
feature importance and determine which features have
the highest impact on generalization performance.

• We define different aggressive behaviors, including
static as well as slow and fast dynamics, and show
the effect of these dynamics on the intelligent nodes’
CWmin adaptation process. Intelligent nodes can always
track an aggressor’s dynamics and maintain their fair
share of the airtime. Simulation results show that under
static aggressive scenarios, where an aggressor uses a
fixed CWmin value below the default one, fairness is im-

proved by 36.4% compared to the DCF protocol adopted
by 802.11 systems. This is thanks to the adaptation
of CWmin at the intelligent nodes. Consequently, these
nodes improve their throughput by 5.96× and decrease
their frame delivery latency by 87.11%. Furthermore,
under dynamic aggression scenarios, where aggressors
change their CWmin’s, intelligent nodes improve their
throughput by 58.6% compared to standard techniques.
Our OTA USRP experimental results suggest that by
adopting ICW, intelligent nodes achieve 5.62× improve-
ment in throughput compared to the standard DCF pro-
tocol.

The rest of the paper is organized as follows. Section II
surveys related work. The ICW framework is introduced in
Section III. We present our ML solution and its optimization
in Sections IV and V, respectively. Evaluation results are
provided in Section VI. Finally, we conclude the paper in
Section VII.

II. RELATED WORKS
Standard MAC settings could be tampered to gain advantage
over or degrade the performance of compliant stations [3],
[4]. By reverse engineering chips and their firmwares, aggres-
sive users can modify the firmware and change lower-MAC
functionalities. Shulz et al. [9] developedNexmon, a firmware
patching framework for Broadcom/Cypress chips [10], where
modifications to the CSMA/CA mechanism can be done,
e.g., by changing the CWmin value. New functionalities, such
as CSI measurements from commodity devices can also be
enabled by firmware modification [11], [12]. In [13], authors
used the Nexmon framework to define new functionalities
in the programmable state machine of the D11 core, which
drives all low-level and time-criticalMAC operations, and de-
veloped a reactive jammer on a Nexus 5 smartphone. In [14],
the authors modified the firmware of Qualcomm Atheros
AR7010 AR9271 SoC’s used in off-the-shelf Wi-Fi dongles
to perform jamming attacks. The authors located special-
purpose registers that define the channel access settings, such
as CWmin and CWmax. Furthermore, they found that the orig-
inal driver divided CWmin by two, which caused unfairness
to other devices with a standard CWmin value. In [15], the
authors modified the microcode of the Network Interface
Card (NIC) of off-the-shelf IEEE 802.11 access points to
perform reactive jamming functionalities, facilitated by the
OpenFWWF project [16]. A high-level reactive programming
language was presented in [17] to program Wi-Fi chips on
mobile-consumer devices and extend or mend PHY, MAC, or
IP layer mechanisms. These tools can help researchers evalu-
ate different alterations of MAC and PHY functionalities, but
pose potential adversarial threats.
Heusse et al. [18] showed the negative impact of the ex-
ponential backoff mechanism of the CSMA/CA scheme on
WLAN performance. To overcome this negative impact and
enhance both throughput and fairness, the authors in [19]
introduced a scheme where each node is provided with a
set of backoff windows. Instead of following the CSMA/CA

3

protocol, nodes select one of the backoff windows based on
observed downlink throughput. Ksentini et al. [20] proposed a
deterministic algorithm to decrease the number of collisions
and retransmissions. Rather than doubling the W value af-
ter each collision, their algorithm modifies both lower and
upper ends of the randomly selected backoff interval based
on the current and previous traffic loads. Their results show
improved fairness and throughput. To maximize channel uti-
lization, Xia et al. [21] equipped nodes with a proportional-
derivative (PD) controller, which adjusts W based on the
average number of consecutive idle slots between two trans-
missions. The authors in [22] proposed a measurement-based
scheme to adapt CWmin and CWmax so as to meet some QoS
requirements. Chen et al. [23] introduced a game theory-
based model to control contention. The equilibrium point was
achieved by applying a distributed update algorithm, resulting
in short-term fairness, low collision, and high throughput.
To enhance both throughput and delay, the authors in [24]
proposed an estimation-based algorithm that produces a new
W value after each successful transmission or collision. This
value is obtained by using the estimates of network load
variations and the number of active nodes. The authors in [25]
designed a proportional-integral (PI) controller for adapting
CWmin based on the rates of retransmissions and successful
transmissions. To increase network throughput and improve
short-term fairness in saturated scenarios, Chun et al. [26]
developed an algorithm that forecasts the number of active
nodes. Using this information, they derived the optimalW set-
tings for all nodes in the network. To guarantee low latency for
real-time applications, Wang et al. [27] introduced an adapta-
tion scheme based on deep neural networks. This scheme sets
the Arbitrary Inter-Frame Space (AIFS) and CWmin values for
all nodes based on the number of active nodes and changes in
channel conditions. Theoretical analysis of the DCF protocol
under both saturated and unsaturated settings where all nodes
adopt the same CWmin have been studied in [28]. The former
theoretical model has been adopted by Gao et al. to maximize
network throughput in DCF [29] and EDCA [30] networks.
Sun et al. presented an extension of the network throughput
maximization problem by adopting a distributed parametric
update of the contention window via estimation of channel
occupancy times [31]. A trade-off analysis of throughput and
channel access delay is presented in [32]. However, in the
former works, the authors did not consider the presence of
aggressive nodes in the network and the unfairness caused by
such deviant players. To achieve high fairness and maximize
the total network throughput, Syed et al. [33] introduced an
adaptive backoff algorithm that computes a new W value
based on channel state probabilities and the estimated number
of active nodes. A modified DCF backoff process was pro-
posed byKaraca et al. [34], in which the backoff counter is de-
creased based on the number of active nodes and channel idle
periods. In [35], the collision rate between duty-cycled LTE-
unlicensed (LTE-U) and WLANs transmission was reduced
by using AI-based techniques. Their technique allows nodes
to adapt the communication direction and transmission rates

depending on LTE-U interference. To provide harmonious
coexistence between Wi-Fi and LTE-LAA networks, authors
in [36] Han et al. proposed a multi armed bandit solution
to jointly select the contention window size in Wi-Fi AP
and LTE BS networks, where they studied both cooperative
and non cooperative variants. Compared to others, our work
has no communication overhead between nodes due to its
distributed nature, is technology agnostic, and generalizes
well to diverse spectrum sharing scenarios.
ICW concept has also been applied by Kumar et al. [37],
where a Reinforcement Learning (RL) module based on deep
q-learning [38] is chosen for CWmin adaptation. They show
throughput improvement for the intelligent node when all the
other nodes adopt the same aggressive CWmin setting. Their
assumption may not hold in most practical settings where
each node is operating independently, hence may adopt to
different CWmin settings. We show comparison results with
this RL scheme in Section VI.

III. INTELLIGENT CONTENTION WINDOW (ICW)
FRAMEWORK
Our goal is to adapt CWmin to achieve fair sharing of an
unlicensed channel in the presence of aggressive nodes that
manipulate their CWmin values. To reach this goal, nodes
that decide to adapt their CWmin’s (intelligent nodes) may
choose two approaches for their adaptation mechanism. For
the first approach, they could estimate the CWmin of all their
neighboring nodes (as done in [6]) and calculate the channel
access and collision probabilities for all nodes by solving a
set of nonlinear equations derived from Markovian analysis
of the CSMA/CA protocol. The former probabilities are then
used to calculate intelligent nodes’ expected airtime based on
their selected CWmin. Next, the CWmin’s that bring intelli-
gent nodes their fair expected channel airtime – this would
have been generically achieved if all nodes were standard
compliant – are selected for CSMA/CA. Alternatively, as for
the second approach, the intelligent nodes could monitor the
wireless channel and obtain statistics of the occupied channel
airtime of all nodes. Using these statistics, intelligent nodes
can determine whether they are getting their fair shares of
the channel airtime based on a defined fairness criterion and
adapt their CWmin’s accordingly. In the second approach,
an intelligent node does not need to estimate the CWmin of
any other node and is not required to solve any nonlinear
equations, rather, this node uses a heuristic machine learning
approach, namely a random forest, to adapt its CWmin value.

A. SYSTEM MODEL
Our system model incorporates arbitrary numbers of intelli-
gent, aggressive, and standard-compliant nodes. We charac-
terize the state of the wireless channel by the CWmin values
of all nodes sharing the unlicensed spectrum. We consider a
spectrum sharing scenario of L nodes that share a wireless
channel. Let N = {N1, · · · ,NL} denote the set of nodes.
Nodes access the channel using CSMA/CA with exponential
backoff. Let wj be the CWmin used by node Nj ∈ N . Depend-

4

ing on wj, N includes three types of nodes: Well-behaving,
aggressive, and intelligent. The well-behaving nodes select
a default CWmin value (i.e., the standard value), while ag-
gressive nodes select a small CWmin value to increase their
airtime. We study how intelligent nodes should optimize their
CWmin value to secure their fair share of airtime without caus-
ing significant impact on well-behaving nodes. To optimize
the minimum size of contention window for intelligent nodes,
we first need to characterize and formulate the utility achieved
by each node in N . The contention behavior in CSMA/CA
makes it hard to characterize such utility using deterministic
formulation. Therefore, we rely on the stochastic formulation
andMarkovian analysis, as discussed in [39]–[41]. Such anal-
ysis can be used to derive the occupied airtime as well as busy
and idle time observed by each node in N . Node Nj in N
backs off for a random time that is capped by a value that
is relevant to wj. After each collision, the node enters a new
backoff stage in which the upper cap of contention window is
doubled, whereby the node has higher likelihood to backoff
for a longer duration. Once the maximum retransmission at-
tempt, sayM , is reached, the upper cap of contention window
is reset to wj.

The backoff behavior can be modeled by a two-
dimensional Markov process. The first dimension indicates
the retransmission attempt, while the second dimension in-
dicates the remaining backoff time, i.e., countdown process.
Let Bj(t) = {sj(t), bj(t)} be the two-dimensional Markov
process that models the backoff behavior of node Nj ∈ N ,
where sj(t) ∈ {0, 1, ...,M} denotes the backoff stage at time
t , i.e., retransmission attempt, and bj(t) denotes the remaining
time before accessing the channel; and it can take a value from
Kj(ι) = {0, 1, ...,W (ι)

j − 1}, where ι is the retransmission
attempt. When bj(t) becomes zero, the node can access the
channel. Let τj be the probability that bj(t) becomes zero,
i.e., the probability of a channel access attempt. The channel
becomes busy when one or more nodes attempt to access the
channel. Let pj be the probability of observing a busy channel
by node Nj, which can be expressed as follows:

pj = 1−
∏

{Nk∈N\Nj}
(1− τk). (1)

To determine τj, we consider the Markov Chain (MC) that
corresponds to the process Bj(t), as shown in Figure 3. Let
Prj[ι

′
, k

′ |ι, k] be the transition probability of this MC from
state (ι, k) to state (ι′, k ′). In line with [41], we can formulate
the transition probabilities of Bj(t) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Prj[0, k|ι, 0] = 1−pj
wj

, ι ∈ {0, · · · ,M − 1}, k ∈ Kj(0)

Prj[0, k|ι, 0] = 1
wj
, ι = M , k ∈ Kj(0)

Prj[ι, k|ι, k] = pj, ι ∈ {0, · · · ,M}, k ∈ Kj(ι)\{0}
Prj[ι, k|ι, k + 1] = 1− pj, ι ∈ {0, · · · ,M}, k ∈ Kj(ι)\{2ιwj − 1}
Prj[ι, k|ι− 1, 0] =

pj
2ιwj

, ι ∈ {1, · · · ,M}, k ∈ Kj(ι).
(2)

FIGURE 3: Markov chain transition state diagram for node
Nj.

Let πj(ι, k) be the steady-state probability of state (ι, k). By
chain regularity, we can trace the steady-state probabilities of
states in limt→∞ Bj(t) back to the steady state probability of
state (0, 0), i.e., πj(0, 0), as follows:{

πj(ι, 0) = pιjπj(0, 0) ι ∈ {0, · · · ,M},
πj(ι, k) =

2ιwj−k
2ιwj(1−pj)

πj(ι, 0) ι ∈ {0, · · · ,M}, k ∈ Kj(ι).
(3)

By substituting (3) in
∑M

ι=0

∑
k∈Kj(ι) πj(ι, k) = 1, we obtain

an expression for πj(0, 0):

πj(0, 0) =

[M∑
ι=0

pιj (1 +
1

1− pj

∑
{k∈Kj(ι)\0}

2ιwj − k
2ιwj

)

]−1

.

(4)
Finally, we can formulate the channel access attempt proba-
bility, τj, by adding the steady-state probabilities of states that
have zero backoff value:

τj =
M∑
ι=0

πj(ι, 0) =
1− pM+1

j

1− pj
πj(0, 0). (5)

B. OPTIMIZATION OF CWmin

To formulate the utility of fair airtime for intelligent nodes
over a fairly long time window T , we need to consider three
quantities of interest for a contending node during T : Ex-
pected channel occupancy time T̄ (o), expected channel busy
time T̄ (b), and expected channel idle time T̄ (i). The first
quantity can be expressed as follows:

T̄ (o)
j = τjT . (6)

Let p(b)j be the probability that node Nj freezes its backoff

counter. Then, p(b)j = (1 − τj)pj. We can find the expected
time that the channel is sensed to be occupied by nodes, other
than Nj, T̄

(b)
j as:

T̄ (b)
j = p(b)j T = (1− τj)

[
1−

∏
{Nk∈N\Nj}

(1− τk)
]
T . (7)

5

The channel remains idle when all nodes in N have a non-
zero backoff counter or have an empty transmission buffer,
and this happens with probability p(i) =

∏
{k∈N}(1 − τk).

Therefore, the expected time the channel is sensed to be idle
T̄ (i) by any node in N can be expressed as:

T̄ (i) = p(i)T = T
∏

{Nk∈N}
(1− τk). (8)

We define the utility Ūj for node Nj to be its expected
normalized channel occupancy, which can be expressed as:

Ūj =
T̄ (o)
j

T̄ (o)
j + T̄ (b)

j + T̄ (i)
= τj. (9)

Our goal is to let each intelligent node achieve its fair share
of channel airtime. Hence, we define the fair-optimal utility
Ū∗ for a node in N as:

Ū∗ =
1

L
+

T̄ (i)

L(T̄ (o)
j + T̄ (b)

j + T̄ (i))
=

1

L

⎛⎝1 +
∏

{Nk∈N}
(1− τk)

⎞⎠ .

(10)
The first term in (10) represents the fair portion of nor-

malized channel airtime that a node should achieve when
nodes have saturated traffic loads, whereas the second term
corresponds to additional occupancy time that can be al-
located to a node under unsaturated traffic scenarios. This
improves network utilization by allocating idle channel time
to intelligent nodes without harming the performance of other
nodes. Thus, we can formulate the objective function for node
Nj as the absolute difference between its utility and the fair-
optimal utility:

Fj =
∣∣∣Ūj − Ū∗

∣∣∣ = ∣∣∣τj − 1

L

∏
{Nk∈N}

(1− τk)− 1

L

∣∣∣. (11)

Our goal is to find the optimal setting of CWmin that mini-
mizes the objective functions of intelligent nodes. This can be
obtained by minimizing the sum of their objective functions,
i.e.,

∑
{Nj∈Ne} Fj, as follows:

P1 :argmin
We

∑
{Nj∈Ne}

∣∣∣τj − 1

L

∏
{Nk∈N}

(1− τk)− 1

L

∣∣∣,
s.t. wj ∈ Ω (12)

whereNe ⊂ N is the set of Le intelligent nodes andWe =
{w1, · · · ,wLe} is the set of decision variables, i.e., CWmin’s,
that can take values inΩ = {w(min),w(min)+1, · · · ,w(max)}.
The above optimization problem is an integer nonlinear pro-
gram. In principle, it can be solved by relaxing decision
variables and applying nonlinear programming techniques.
However, such an approach is challenging due to the follow-
ing reasons:
1. Obtaining the global solution requires strict coordination

and synchronization among intelligent nodes. Even if

such coordination were to be achieved through protocol
design, it still incurs communication overhead among
intelligent nodes.

2. To compute the objective function, one must have global
knowledge of aggressive and well-behaving nodes, in-
cluding their CWmin values and traffic loads. Obtaining
such global knowledge is hard to achieve in practice.

3. The optimization problem needs to be resolved repeat-
edly whenever changes in the wireless environment or
the CWmin settings of aggressive and well-behaving
nodes occur.

Analytical solution to such a problem is difficult. Instead,
we employ machine learning to address this problem for a
large number of settings and scenarios. AnMLmodule can be
trained to map existing solutions of this problem and ensure
they generalize to obtain solutions under new settings. This
allows for solving the problem in a distributed fashion where
intelligent nodes can act independently.

IV. MACHINE LEARNING SOLUTION
To obtain an ML solution to (12), each intelligent node needs
to empirically estimate its objective function. To do so, intel-
ligent nodes independently gather empirical observations of
channel occupancy and idle times.

A. EMPIRICAL MODELING OF THE OBJECTIVE FUNCTION
To estimate the quantities in (9), each intelligent node can
monitor the channel and build sufficient statistics to estimate
the activities of neighboring nodes. Let T̃ (o)

j be the empir-
ical estimation of normalized channel occupancy for node
Nj ∈ Ne, and let t

(o)
q be the duration of its channel occupancy

time during the qth channel access attempt, q = 1, 2, · · · . For
n(o) channel access attempts during T , we can express T̃ (o)

j as
follows:

T̃ (o)
j = 1/T

n(o)∑
q=1

t(o)q . (13)

Similarly, let t(b)q be the qth busy channel duration sensed
by Nj. For n(b) channel busy events during T , we can write
the empirical estimation of the normalized channel busy time
T̃ (b)
j :

T̃ (b)
j = 1/T

n(b)∑
q=1

t(b)q . (14)

The empirically estimated normalized channel idle time
T̃ (i)
j , Nj ∈ N can be expressed as:

T̃ (i) = 1−
(
T̃ (b)
j + T̃ (o)

j

)
. (15)

Similarly, we can express the empirical version of the
utility in (9), Ũj, as:

Ũj = T̃ (o)
j , (16)

6

and the fair-optimal utility of (10) can be empirically ex-
pressed as:

Ũ∗ =
1

L
+
T̃ (i)

L
. (17)

From node a fairness perspective, CWmin should be set
such that Nj receives 1

L fraction of T plus 1
L portion of the

time it senses the channel to be idle, i.e., ˜T (i)/L. This way,
an intelligent node is motivated to exploit the idle time and
access the channel more frequently when the network is
unsaturated. Accordingly, the empirical objective function F̃j
of node Nj can be expressed as:

F̃j =
∣∣∣Ũj − Ũ∗

∣∣∣. (18)

For node Nj, we can exhaustively test all possible wj values
in Ω and select the one that minimizes (18). Next, we explain
how we can take advantage of previous empirical estimations
to construct features and use them to learn solutions of differ-
ent instances of (12) and (18).

B. CHANNEL STATE MODELING AND FEATURE DESIGN
Depending on CWmin values used by neighboring nodes, we
have different instances of problem (12). We characterize
each instance by a channel state, S, where the space of
channel states includes all possible CWmin combinations used
by neighboring nodes:

S = {wk |Nk ∈ N\Nj}. (19)

It should be noted that the state of channel is not fully ob-
servable by the intelligent node Nj, but it can still acquire
partial knowledge about it; thanks to empirical estimations in
(13), (14), and (15). Thus, the intelligent node can construct
a feature that indirectly characterizes the unique state of the
channel. Let vj be the feature vector constructed by node Nj
over time window T , where:

vj = 〈T̃ (o)
j , T̃ (b)

j , T̃ (i), L,wj〉. (20)

We can assign to each feature the recommended CWmin value
w∗
j that minimizes the value in (18), and consider w∗

j to be
the assigned label. Then, we train an ML module, e.g., a
random forest, to learn the mapping of the feature vector vj
and label w∗

j . However, after training, the ML module will
not necessarily output exact optimal labels w∗

j ’s, we denote
the recommended CWmin by node Nj’s ML module after
training by ŵj. It should be noted that vj works as a proxy to
characterize the instance of problem (18) to be solved, while
ŵj works as the recommended solution to this instance. We
next explain how we can construct features and labels for
learning solutions of problem (18). The set of best CWmin

values (ω∗) are the labels that are used for supervised training.
A key concept to keep in mind is that there is no need to
train the random forest for all possible channel states (S);
instead, training offline over a small well-representing subset
of the whole possible channel states is sufficient for obtaining
generalized solution to (18) over new untrained/unobserved
channel states. We next discuss how such well-representing
training dataset can be constructed.

C. TRAINING DATA CONSTRUCTION
Going forward, without loss of generality, we drop the j sub-
script used to denote parameters associated to an intelligent
node Nj ∈ Ne, and bring it back whenever it is needed. We
develop a discrete-event simulator to model the CSMA/CA
channel access and generate data for training the solution
of problem (18) using a C++ library called CSIM [42]. The
dataset corresponds to a large set of feature vectors and their
optimal CWmin values, i.e., labels (w∗’s). After training, we
expect the ML module to output ŵ that is as close as possible
to w∗. The feature vector includes the set of observations that
Nj monitors, during an observational window of length T ,
along with the channel access parameters it uses during the
monitoring period. To obtain the label for a particular state
S, we gradually increase the CWmin value that node Nj uses,
i.e., w, in Ω, and monitor the observations needed to compute
the empirical utility in (16). We then select w∗ value that
minimizes F̃ as a label. For each w ∈ Ω, we also keep track
of features in (20) and save them in feature set V .
Algorithm 1 explains how a feature set V and optimal labels
w∗ can be constructed for a given wireless channel state S, Ω,
and a monitoring window T . For each setting of S and Ω, a
set V and a label w∗ will be created by Algorithm 1. We run
the algorithm for different settings of S and gather different
V’s and w∗’s, and include them all in a training set denoted
byR.

Algorithm 1 Dataset construction for S, Ω, and T

1: Input S, Ω, and T ;
Variables: w← w(min),w∗ ← w(min), F̃∗ ← 1, V = {};
Outputs: V and w∗;

2: while w ≤ w(max) do
3: Run the CSMA/CA simulator for T seconds, and

gather statistics as observed by node Nj:
4: v← 〈T̃ (o), T̃ (b), T̃ (i), L,w〉;
5: Ũ ← T̃ (o);
6: Ũ∗ ← 1

L +
˜T (i)

L ;

7: F̃ ←
∣∣∣Ũ − Ũ∗

∣∣∣;
8: if F̃ ≤ F̃∗ then
9: w∗ ← w;

10: F̃∗ ← F̃ ;
11: end if
12: w← w+ 1;
13: Add v to V;
14: end while
15: Return V and w∗;

D. EXAMPLE OF TRAINING DATA GENERATION
We provide an example that shows the observations made by
N1 when it shares the channel with two other nodes, N2 and
N3, as shown in Figure 4. During T ,N1 finds L = 3, n(o)1 = 2,
and n(b)1 = 3. It calculates the first three elements of v1 based
on (13), (14), and (15).

7

’s TX or ’s TX

time (s)

FIGURE 4: Example of monitoring the channel over a period
of T seconds (network of three nodes, where N1 is an intelli-
gent node).

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

w1

Ũ
1
an
d
F̃
1

Ũ∗

Ũ1

F̃1

FIGURE 5: Ũ1 and F̃1 as observed by node N1 vs. CWmin for
N1 (L = 3, S = {9, 4}, and saturated traffic).

Figure 5 depicts the process of obtaining best CWmin value
to be used by N1 (i.e., the label) when N2 has w2 = 9 and N3

has w3 = 4. We set the traffic intensity of all nodes to 300
frames/sec (fps), which results in heavy loaded buffers at all
three nodes, i.e., T̃ (i) ≈ 0, hence the optimal empirical utility
Ũ∗ is 1

3 (shown by the dashed red line in Figure 5). We vary
w1 from 2 to 16 and monitor Ũ1. As it can be observed in
Figure 5, F̃1 has its lowest value at w1 = 6, hence w∗

1 = 6.
Accordingly, w∗

1 = 6 is the label for the state S = {9, 4}.
Different states can have differentw∗

1 values, as shown in [43].

V. ML MODULE DESIGN
A. CONSTRUCTING A DECISION TREE AND A RANDOM
FOREST
As discussed in Section IV-C,R is the set of training samples.
A decision tree of depth dT divides the feature space into 2dT

distinct and non-overlapping regions,O1,O2, ...,O2dT , where
each region corresponds to a particular class. Each class
represents the set of all feature vectors, as in (20), that are
associated with the same labelw∗. Samples of one class could
be part of multiple regions, since the total number of regions,
2dT , could be larger than the total number of classes. These
regions are the leaves of the decision tree. In order to have

a fast training phase, we use recursive binary splitting (RBS)
algorithm to build the decision trees [44]. Before explaining
RBS, first we introduce the Gini index. Consider an arbitrary
set r of samples that potentially belong to different classes,
i.e., r ⊂ R. The Gini indexG(r) of the set r can be expressed
as:

G(r) =
C∑
k=1

ρk,r(1− ρk,r), (21)

where C is the number of classes to which samples in the set
r belong, and ρk,r is the proportion of training samples that
belong to class k and are also in the r set. Gini index measures
the dispersion (impurity) of the samples in the set r . A low
G(r) value indicates that the samples in r are more likely to
belong to the same class.
To build a decision tree, we start with the root of the tree and
look for a feature v[j], where v[j] is the jth feature in the feature
vector v, and a cut-point value φj that splitsR into two subsets
r1 = {v : v[j] ≤ φj, v ∈ R} and r2 = {v : v[j] > φj, v ∈ R}
such that the valueG(r1)+G(r2) is minimized. Each of these
subsets is represented by an internal node below the root. The
splitting process is recursively repeated for each subset, i.e.,
splitting them into two new subsets, such that the sum of the
Gini indices over them is minimized. This way, internal nodes
become parents to new nodes beneath them. For instance, we
can split r1 into two new subsets r11 = {v : v[i] ≤ φi, v ∈ r1}
and r12 = {v : v[i] > φi, v ∈ r1}, where the feature
v[i] and cut-point value φi are selected to minimize the sum
G(r11) + G(r12). The splitting process is continued until the
depth of the decision tree is dT .
A random forest of depth dF consists of dF decision trees.
These trees are constructed as explained before, but for each
split we only consider 	√Nf
 random features, where Nf is
the number of features in v. In our case, 	√Nf
 = 	√5
 = 2.
After training, feature classification is done by feeding the
features in (20) to each tree and obtaining d classification
results. The final classification result of the random forest is
the mode of the d individual classifications.
To train our ML module, we construct multiple datasets for
large number of states and different number of nodes. We
gather simulation observations for the former settings us-
ing our developed discrete-event-based simulator that uses
classes and functions for synchronizing and generating
process-oriented events. Table 1 shows the configuration for
each of our simulated datasets. Ω is set to {2, · · · , 16} for
all the datasets. In some of our training tasks, we use a
combination of datasets, e.g., we denote the composite dataset
from D1, D3 and D5 by D1|3|5.

B. HYPERPARAMETER SETTINGS
The depth of the random forest dF , depth of each tree dT ,
and the observation window T duration are hyperparameter
settings that influence the random forest’s prediction accuracy
of the optimal labels (w∗). In this section, we discuss the
appropriate settings of these values. Moreover, our results in-
dicate that the throughput performance is not much impacted

8

TABLE 1: Generated datasets using Algorithm 1.

Dataset L T (sec) # Unique S’s # Possible S’s
D1 3 5 300 152

D2 3 10 300 152

D3 6 5 300 155

D4 9 5 300 158

D5 10 5 1216 159

by small deviations from w∗. A misclassification of optimal
w∗ by one or two drifts, i.e., |ŵ − w∗| ≤ 2, results in near-
optimal performance. We take advantage of this and relax
the prediction accuracy requirement by considering CWmin

values that are 1 or 2 apart from w∗ to be sufficiently accu-
rate. Formally, we define the Acceptable Drift (AD) as the
largest deviation that a recommended ŵ can have from its true
label w∗ to be considered as an accurate prediction. To find
the classification accuracy of a model trained on a specific
dataset, Dj, we consider 67% and 33% of the states for train-
ing and testing, respectively. This makes sure that we only
test the performance of the model on observations collected
from states that the model was not trained on, which gives a
more accurate estimate of the generalization performance for
unobserved states.

1) Random Forest Design
To design the architecture of the ML module, we need to find
the values of dF and dT for the random forest that are as small
as possible. This ensures that our model has low computa-
tional complexity, and high desirable prediction accuracy. We
present the accuracy of random forest vs. dF and dT , when
trained and tested on D1|3|5 for AD values of 0, 1, and 2, as
shown in Figure 6. It can be seen that by setting dF = 20 and
dT = 20, random forest’s classification accuracy is 69.24%,
96.8%, and 99.61%, when AD is 0, 1, and 2, respectively.

2) Selection of Observation Window T
The ML module uses current window statistics (channel ob-
servations) to produce a CWmin value for the next window.
This process is valid if the state of the wireless channel (S)
stays fixed during consecutivemonitoringwindows; however,
when the network is dynamic (dynamic S), it is important
to have a small monitoring window T to track the dynamics
appropriately (see evaluation results for dynamic aggression
scenarios in Section VI-C2). Nonetheless, the value of T also
needs to be set large enough to gather sufficient statistics to
produce appropriate CWmin’s. We consider a random forest
with dF = dT = 20, and train it on D2. In Figure 7, we plot
prediction accuracy of the ML module for T values ranging
from 0.5 to 10 sec1 while having AD of 0, 1, and 2. From this
figure, we see that when T = 5 sec the prediction accuracy for
ADs of 1 and 2 are 91.12% and 98.71%, respectively. Thus,
we choose T = 5 sec throughout our evaluations, meaning

1D2 corresponds to observations gathered through 10 sec, but for lower
observational windows, we gather observations and construct data-subsets
from D2 depending on the value of T .

TABLE 2: Feature importance measures.

Feature DC AD = 0 (%) MID (%)
˜T (o) 0.02 22.03
˜T (b) 0.34 24
˜T (i) 0.7 22.35
L 2.88 4.78
w 22.28 26.84

that all intelligent nodes will predict their CWmin values based
on the observed statistics that they have monitored during the
prior 5 sec. Figure 8 depicts the histogram of the deviation
of CWmin predictions from their w∗ labels, when T = 5 sec.
This figure shows that by setting AD to 2, 98.71% of CWmin

predictions are accurate.

C. FEATURE IMPORTANCE
To bring some insight into our ML module’s prediction logic,
we introduce twomeasures to evaluate the importance of each
feature for optimal CWmin estimation. These findings help
relax the number of statistics that a node needs to observe
during T . The first importance measure is called the Drop
Column (DC) measure, which requires retraining the model
from scratch for importance evaluation of each feature. To
evaluate the importance of a feature in v, we drop that feature
from the feature vectors and retrain themodel and calculate its
classification accuracy. The features are ranked based on the
performance drop that they cause when they are dropped from
v. The second measure is called theMean Impurity Decrease
(MID), which does not require the model to be retrained
for each feature evaluation, rather, MID is calculated during
one training phase, for all features in v. This measure is the
decrease in average impurity (e.g., Gini Index, see Section
V-A) of a feature over all the internal node splits during the
construction of the random forest. The most important feature
gives the most mean decrease in impurity. We evaluate MID
and DC importance of all features used by the random forest
trained on D1|3|5, as shown in Table 2.
MID favors features that take continuous real values, i.e.,

T̃ (o), T̃ (b), and T̃ (i). DC is a more representative importance
measure than MID, but requires retraining for each impor-
tance evaluation. Based on DC measures it can be seen that
w is the most important feature followed by L. We can drop
either of T̃ (o), T̃ (b) , or T̃ (i) from our feature vector and expect
the random forest to perform as well as before, and reduce
processing overhead and ML module complexity. In section
VI, the intelligent nodes do not use T̃ (i) as one of their features
in theirMLmodule, which is also trained on the set of features
that do not include T̃ (i).

VI. PERFORMANCE EVALUATION
In this section, we conduct extensive evaluations under both
simulated and real-world scenarios. We use OTA experiments
to validate our simulation findings and rely on simulations
to conduct extensive evaluations. Our OTA experiments are
based on Software Defined Radios (SDRs). We use National
Instruments (NI) SDRs NI-USRP 2944r, 2942r, and Flexrio

9

1 20 40 60 80

120406080
0

20

40

60

80

100

dFdT

C
la
ss
ifi
ca
tio

n
A
cc
ur
ac
y
(%

)

(a) AD = 0

1 20 40 60 80

120406080
0

20

40

60

80

100

dFdT

C
la
ss
ifi
ca
tio

n
A
cc
ur
ac
y
(%

)
(b) AD = 1

1 20 40 60 80

120406080
0

20

40

60

80

100

dFdT

C
la
ss
ifi
ca
tio

n
A
cc
ur
ac
y
(%

)

(c) AD = 2

FIGURE 6: Random forest classification accuracy vs. dF and dT , when (a) AD = 0, (b) AD = 1, and (c) AD = 2.

0.5 2 4 6 8 10
0

20

40

60

80

100

T (s)

Pr
ed
ic
tio

n
A
cc
ur
ac
y
(%

)

AD = 0
AD = 1
AD = 2

FIGURE 7: Prediction accuracy of the ML module vs. the
monitoring period, T .

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

|ŵ− w∗|

Pr
ob

ab
ili
ty

FIGURE 8: Histogram of the deviation of CWmin predictions
from their w∗ labels.

5791, alongwith NI LabVIEW802.11 application framework
[45]. For our simulation setups, we run simulations using
the same simulator used in Section IV-C. We first present
our evaluations for a single intelligent node and later present

multiple intelligent node scenarios operating under both static
and dynamic aggressive settings. We also show multiple ag-
gressor scenarios. In all OTA and simulation experiments, the
intelligent nodes utilize a random forest that is trained on 67%
of states in D1|2|5, which is a simulated dataset. We compare
ICW with two other mechanisms for controlling CWmin. One
is the standard DCF, where a node fixes its CWmin value to
16. In the second mechanism, intelligent nodes will use the
RL module presented in [37] to adapt their CWmin. The RL
module is also trained on the same dataset as our random
forest module, i.e., 67% of states in D1|2|5.

A. SINGLE INTELLIGENT NODE (OTA USRP EXPERIMENTS)

To evaluate the performance of ICW in practice, we conduct a
set of experiments using NI-USRP 2944r, 2942r, and FlexRio
5791. To modify the CWmin value of a radio, we change the
MAC layer FPGA code of the LabVIEW 802.11 Application
Framework. Due to our hardware limitations, we consider
three stations sending traffic to a common AP. Figure 9
shows our experimental setup. N2 chooses its CWmin from
{4, 8, 16}, and can act aggressively. N3 is a well-behaving
node and fixes its CWmin to 16. All three stations are approxi-
mately 2meters away from the AP. In Figure 10, we show per-
node uplink throughput vs. CWmin of N1 for all three possible
CWmin settings of N2. Over all scenarios, it can be seen
that low CWmin improves aggressive node’s throughput but
harms the performance of other nodes. Thus, it is important
to choose a CWmin that obtains a fair throughput share and
is considerate of the number of nodes sharing the wireless
channel.

To compare ICWwith DCF and RLCWmin selectionmech-
anisms, we select N1 as an intelligent node, while keeping
the former configurations for N2 and N3. Figure 11 shows
per-node uplink throughput for ICW, DCF, and RL CWmin

selection mechanisms under different CWmin settings of N2.
It can be observed that ICW helps N1 always get its fair
share of throughput (∼ 35.59%), increasing its throughput
by 5.62× compared to the DCF mechanism, when w2 = 4
or w2 = 8. On the other hand, the RL mechanism provides

10

NI 2944r

NI 2944r NI 2942r

AP

NI 5791

FIGURE 9: USRP experimental setup.

an unfair boost in throughput for N1 (∼ 87.68% of available
throughput). We can also conclude that when both N2 and N3

abide by the standard settings, choosing a CWmin of 16, N1

under ICW behaves as a standard node and provides simi-
lar performance as the DCF mechanism, whereas under the
RL scheme, N1 behaves aggressively and degrades fairness.
These experiments used ML models that were trained on
simulated datasets and they support the feasibility claim of
deploying ICW modules in real-world applications that are
trained on simulated datasets, which are prepared offline.

To evaluate multiple aggressors and multiple intelligent
nodes, and due to hardware constraints, we continue our
evaluations based on datasets generated using our CSMA/CA
discrete event simulator.

B. MULTIPLE AGGRESSORS
1) L = 3 with two aggressive nodes
We select N1 as our single intelligent node. Figures 12 and 13
depict the per-node uplink throughput and per-frame latency,
respectively, for S = {2, 2}, {4, 2}, and {16, 2} under the
three CWmin selection mechanisms, i.e., ICW, DCF, and RL.
On average, under ICW, node N1 achieves 594% throughput
gain over what it gets under DCF and RL mechanisms. In
Table 3, we present the corresponding Jain’s index [46],
calculated over throughput, under the threemechanisms. ICW
improves fairness by 43.32% compared to DCF and RL.
Moreover, under ICW, node N1’s latency is 87.11% less than
its latency under DCF and RL2. It can be noted that the RL
results are identical to the DCF’s, which is inconsistent with
the results in Section VI-A.Whereas, ICWmaintains fairness
in booth simulation and real-world scenarios when trained on
simulated data.

2) L = 10 with varying number of aggressive nodes
We evaluate the effect of multiple aggressive nodes in dense
scenarios. Consider L = 10 with one intelligent node N1. We
consider up to three aggressive nodes, setting their CWmin to
2, while the remaining nodes select CWmin = 16. Throughout

2Going forward, we will show only the throughput performance results,
since the per-frame latency is inversely proportional to the uplink throughput
when nodes have saturated transmission buffers.

TABLE 3: Jain’s index for different S values over different
CWmin selection mechanisms.

S {2, 2} {4, 2} {16, 2}
ICW’s Jain’s Index 0.99 0.82 0.66
DCF’s Jain’s Index 0.72 0.59 0.43
RL’s Jain’s Index 0.72 0.59 0.43

our evaluations, we observe that nodes with same CWmin

value have similar throughput performance, therefore, we
choose to show the average throughput value for these nodes.
We denote the average performance of aggressive and stan-
dard nodes by NA and NS , respectively. Figure 14 shows the
average uplink throughput results when node N1 selects ICW,
DCF, and RL as its CWmin adaptation mechanism. Under
ICW, on average, when aggressive nodes exist, the intelligent
node’s throughput is increased 6.69× compared to DCF. On
average, under ICW and RLN1 achieves 11.57% and 37.75%
of total throughput, which indicates ICW as a fairer mecha-
nism than RL.

C. MULTIPLE INTELLIGENT NODES
Our model accounts for multiple intelligent nodes. We study
the performance of two intelligent nodes for two types of
aggressive behavior: Static Aggression (SA) and Dynamic
Aggression (DA). For SA, the aggressor sets its CWmin to a
fixed value from the set {2, 8, 12} during the simulation ex-
periment. For DA, the aggressor randomly selects its CWmin

from {2, 8, 12}, while it can change its CWmin slowly or fast
relative to the monitoring period T . Due to inconsistent and
unfair results that were provided by the RL CWmin selection
mechanism in the previous sections, we continue the perfor-
mance comparison of ICWwith the benchmark DCF scheme,
only.

1) L = 3 – Static Aggression
We consider two intelligent nodes (N1 and N2) and one ag-
gressive node (N3). Initially, the CWmin value of intelligent
nodes is set to 16. N1 and N2 sequentially update their CWmin

values each 10 seconds based on their latest 5 seconds of
monitored observations. In Figures 15(a), 15(b), and 15(c),
we plot CWmin for nodes N1 and N2 vs. time, when N3

has a CWmin value of 2, 8, and 12, respectively. In Figures
15(d), 15(e), and 15(f), we plot the respective per-node uplink
throughput vs. time. From these figures, we observe that each
node achieves its equal share of the total network throughput
of about 4.2 Mbps. Table 4, presents the averaged Jain’s
index for the three CWmin selections of node N3 under the
two mechanisms. When N3 chooses a CWmin of 2, DCF
mechanism falls short in providing good fairness; on the other
hand, ICW maintains a Jain’s index of 0.99 for all cases and
improves the throughput of intelligent nodes by 4.9×.

2) L = 6 – dynamic aggression
We set nodes N1 and N2 as intelligent nodes and N3 as an
aggressive node, while nodes N4, N5, and N6 fix their CWmin

11

2 4 6 8 10 12 14 16
0
2

4

6

8

10
12

14

CWmin value of N1

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

(a) N2’s CWmin = 4

2 4 6 8 10 12 14 16
0
2

4

6

8

10
12

14

CWmin value of N1

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

(b) N2’s CWmin = 8

2 4 6 8 10 12 14 16
0
2

4

6

8

10
12

14

CWmin value of N1

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

(c) N2’s CWmin = 16

FIGURE 10: Per-node uplink throughput vs. N1’s CWmin when N2 has a CWmin value of (a) 4, (b) 8, and (c) 16.

ICW DCF RL
0

5

10

15

CWmin selection mechanism

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

(a) N2’s CWmin = 4

ICW DCF RL
0

5

10

15

CWmin selection mechanism

N1

N2

N3

(b) N2’s CWmin = 8

ICW DCF RL
0

5

10

15

CWmin selection mechanism

N1

N2

N3

(c) N2’s CWmin = 16

FIGURE 11: Per-node uplink throughput under three mechanisms for setting CWmin at N1 , when N2 sets its CWmin to (a) 4, (b)
8, and (c) 16.

{2 2} {4 2} {16 2}0

2

4

6

8

10

12

S

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

0 1 2 3
0

2

4

6

8

10

12

Number of aggressive nodes

T
hr
ou

gh
pu

t(
M
bp

s)

N1

NA

NS

0 20 40 60 80 100

2
4
6
8
10
12
14
16

Time (s)

C
W

m
in

N1

N2

N3

(a) N3’s CWmin = 2

0 20 40 60 80 100

2
4
6
8

10
12
14
16

Time (s)

C
W

m
in

N1

N2

N3

(b) N3’s CWmin = 8

0 20 40 60 80 100

2
4
6
8

10
12
14
16

Time (s)

C
W

m
in

N1

N2

N3

(c) N3’s CWmin = 12

0 20 40 60 80 100
0

2

4

6

8

10

12

Time (s)

T
hr
ou

gh
pu

t(
M
bp

s) N1

N2

N3

(d) N3’s CWmin = 2

0 20 40 60 80 100
0

2

4

6

8

10

12

Time (s)

T
hr
ou

gh
pu

t(
M
bp

s) N1

N2

N3

(e) N3’s CWmin = 8

0 10 20 30 40 50
0

2

4

6

8

10

12

Time (s)

T
hr
ou

gh
pu

t(
M
bp

s) N1

N2

N3

(f) N3’s CWmin = 12

FIGURE 15: CWmin value of all nodes vs. time, when N3 is having CWmin values of (a) 2, (b) 8, and (c) 12, and their respective
uplink throughput in (d), (e), and (f), respectively (L = 3).

[21] Q. Xia and M. Hamdi, ‘‘Contention window adjustment for IEEE 802.11
WLANs: a control-theoretic approach,’’ in Proc. of the IEEE ICC, vol. 9,
2006, pp. 3923–3928.

[22] R. Pries, S. Menth, D. Staehle, M. Menth, and P. Tran-Gia, ‘‘Dynamic
contention window adaptation (DCWA) in IEEE 802.11e wireless local
area networks,’’ in Proc. of the IEEE ICCES, 2008, pp. 92–97.

[23] L. Chen, S. H. Low, and J. C. Doyle, ‘‘Random access game and medium
access control design,’’ IEEE/ACM Transactions on Networking (TON),
vol. 18, no. 4, pp. 1303–1316, 2010.

[24] S.-W. Kang, J.-R. Cha, and J.-H. Kim, ‘‘A novel estimation-based backoff
algorithm in the IEEE 802.11 basedwireless network,’’ inProc. of the IEEE
CCNC, 2010, pp. 1–5.

[25] P. Patras, A. Banchs, P. Serrano, and A. Azcorra, ‘‘A control-theoretic
approach to distributed optimal configuration of 802.11 WLANs,’’ IEEE
Transactions on Mobile Computing, vol. 10, no. 6, pp. 897–910, 2011.

[26] S. Chun, D. Xianhua, L. Pingyuan, and Z. Han, ‘‘Adaptive access mech-
anism with optimal contention window based on node number estimation
using multiple thresholds,’’ IEEE Transactions on Wireless Communica-
tions, vol. 11, no. 6, pp. 2046–2055, 2012.

[27] C. Wang and W.-H. Kuo, ‘‘A utility-based resource allocation scheme
for IEEE 802.11 WLANs via a machine-learning approach,’’ Wireless
networks, vol. 20, no. 7, pp. 1743–1758, 2014.

[28] L. Dai and X. Sun, ‘‘A unified analysis of IEEE 802.11 DCF networks: Sta-
bility, throughput, and delay,’’ IEEE Transactions on Mobile Computing,
vol. 12, no. 8, pp. 1558–1572, 2013.

[29] Y. Gao, X. Sun, and L. Dai, ‘‘Throughput optimization of heterogeneous
IEEE 802.11 DCF networks,’’ IEEE Transactions on Wireless Communi-
cations, vol. 12, no. 1, pp. 398–411, 2013.

[30] ——, ‘‘IEEE 802.11e edca networks: Modeling, differentiation and opti-
mization,’’ IEEE Transactions on Wireless Communications, vol. 13, no. 7,
pp. 3863–3879, 2014.

[31] X. Sun and Y. Gao, ‘‘Distributed throughput optimization for heteroge-
neous IEEE 802.11 dcf networks,’’ Wireless Networks, vol. 24, pp. 1205–
1215, 2018.

[32] X. Sun and L. Dai, ‘‘Backoff design for IEEE 802.11 dcf networks:
Fundamental tradeoff and design criterion,’’ IEEE/ACM Transactions on
Networking, vol. 23, no. 1, pp. 300–316, 2015.

[33] I. Syed and B.-h. Roh, ‘‘Adaptive backoff algorithm for contention window
for dense IEEE 802.11 WLANs,’’Mobile Information Systems, 2016.

[34] M. Karaca, S. Bastani, and B. Landfeldt, ‘‘Modifying backoff freezing
mechanism to optimize dense IEEE 802.11 networks,’’ IEEE Transactions
on Vehicular Technology, vol. 66, no. 10, pp. 9470–9482, 2017.

[35] M. Hirzallah, W. Afifi, and M. Krunz, ‘‘Full-duplex-based rate/mode
adaptation strategies for Wi-Fi/LTE-U coexistence: A POMDP approach,’’
IEEE Journal on Selected Areas in Communications, vol. 35, no. 1, pp.
20–29, Jan 2017.

[36] M. Han, S. Khairy, L. X. Cai, Y. Cheng, and R. Zhang, ‘‘Reinforcement
learning for efficient and fair coexistence between lte-laa and wi-fi,’’ IEEE
Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8764–8776, 2020.

[37] A. Kumar, G. Verma, C. Rao, A. Swami, and S. Segarra, ‘‘Adaptive con-
tention window design using deep q-learning,’’ in Proc. of IEEE ICASSP,
2021, pp. 4950–4954.

[38] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, ‘‘Rainbow: Combining
improvements in deep reinforcement learning,’’ inProceedings of the AAAI
conference on artificial intelligence, vol. 32, no. 1, 2018.

[39] M. Hirzallah, M. Krunz, and Y. Xiao, ‘‘Harmonious cross-technology
coexistence with heterogeneous traffic in unlicensed bands: Analysis and
approximations,’’ IEEE Transactions on Cognitive Communications and
Networking, vol. 5, no. 3, pp. 690–701, Sep. 2019.

[40] G. Bianchi, ‘‘Performance analysis of the IEEE 802.11 distributed coor-
dination function,’’ IEEE Journal on Selected Areas in Communications,
vol. 18, no. 3, pp. 535–547, 2000.

[41] Y. Xiao, ‘‘Performance analysis of priority schemes for IEEE 802.11 and
IEEE 802.11e wireless LANs,’’ IEEE Transactions on Wireless Communi-
cations, vol. 4, no. 4, pp. 1506–1515, 2005.

[42] ‘‘Csim20,’’ [http://www.mesquite.com], accessed: 4/18/2022.
[43] A. H. Y. Abyaneh, M. Hirzallah, andM. Krunz, ‘‘Intelligent-CW: AI-based

Framework for Controlling Contention Window in WLANs,’’ in in Proc.
of the IEEE DySPAN, 2019, pp. 1–10.

[44] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

[45] ‘‘LabVIEW communications 802.11 application framework
v2.1,’’ https://www.ni.com/en-us/support/downloads/software-
products/download.labview-communications-802-11-application-
framework.html, accessed: 2021-12-08.

[46] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, ‘‘A quantitative measure

14

0 100 200 300 400 500

2
4
6
8

10
12
14
16

Time (s)

C
W

m
in

N1

N2

N3

(a) Slow DA

100 200 300 400 500
0

2

4

6

8

Time (s)

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

Ns

(b) ICW (slow DA)

100 200 300 400 500
0

2

4

6

8

Time (s)

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

Ns

(c) DCF (slow DA)

0 100 200 300 400 500

2
4
6
8

10
12
14

Time (s)

C
W

m
in

N1

N2

N3

(d) Fast DA

100 200 300 400 500
0

2

4

6

8

Time (s)

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

Ns

(e) ICW (fast DA)

100 200 300 400 500
0

2

4

6

8

Time (s)

T
hr
ou

gh
pu

t(
M
bp

s)

N1

N2

N3

Ns

(f) DCF (fast DA)

FIGURE 16: Per-node CWmin selection and uplink throughput vs. time (L = 6).

of fairness and discrimination,’’ Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984.

AMIR-HOSSEIN YAZDANI-ABYANEH is cur-
rently a Software Engineer at CelPlan Technolo-
gies, Inc. He received the MSc degree in electrical
and computer engineering from the University of
Arizona. He has worked with ED2 corporation on
5G mmWave systems and protocols as a system
engineer intern. He also joined DOCOMO Inno-
vations Inc. in the Summer of 2022 as a research
engineer intern, where he worked on reinforce-
ment learning solutions for joint communication

and sensing in mobile mmWave systems. His research interests are mainly
focused on machine learning and deep learning algorithms for spectrum
sharing, wireless communication, and sensing.

MOHAMMED HIRZALLAH is currently a Senior
Engineer at Qualcomm, Inc. He received the Ph.D.
degree in electrical and computer engineering from
the University of Arizona. In 2018, he joined Ca-
bleLabs as a Wireless Research Intern, where he
conducted research on NR-U and application of AI
to wired/wireless communications. His research
interests are mainly focused on wireless communi-
cations and protocols, machine learning for wire-
less communications, spectrum sharing, radar, re-

mote sensing, and localization.

MARWAN KRUNZ is a Regents Professor at the
University of Arizona. He holds the Kenneth Von-
Behren Endowed Professorship in ECE and is also
a professor of computer science. He directs the
BroadbandWireless Access andApplications Cen-
ter (BWAC). Dr. Krunz’s research is on resource
management, network protocols, and security for
wireless systems. He is an IEEE Fellow, an Ari-
zona Engineering Faculty Fellow, and an IEEE
Communications. He served as the Editor-in-Chief

for the IEEE Transactions on Mobile Computing. Dr. Krunz served as chief
scientist for two startup companies that focus on 5G and beyond systems and
machine learning for wireless communications.

15

