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Abstract

The Streaming Unmixing and Recognition Transducer (SURT)
has recently become a popular framework for continuous,
streaming, multi-talker speech recognition (ASR). With ad-
vances in architecture, objectives, and mixture simulation meth-
ods, it was demonstrated that SURT can be an efficient stream-
ing method for speaker-agnostic transcription of real meet-
ings. In this work, we push this framework further by propos-
ing methods to perform speaker-attributed transcription with
SURT, for both short mixtures and long recordings. We
achieve this by adding an auxiliary speaker branch to SURT,
and synchronizing its label prediction with ASR token predic-
tion through HAT-style blank factorization. In order to ensure
consistency in relative speaker labels across different utterance
groups in a recording, we propose “speaker prefixing” — ap-
pending each chunk with high-confidence frames of speakers
identified in previous chunks, to establish the relative order.
We perform extensive ablation experiments on synthetic Lib-
riSpeech mixtures to validate our design choices, and demon-
strate the efficacy of our final model on the AMI corpus.

Index Terms: multi-talker ASR, SURT, speaker attribution,
meeting transcription.

1. Introduction

Speaker-attributed multi-talker speech recognition (ASR), or
“who spoke what”, is the task of transcribing all the speech
in a multi-talker conversation along with relative speaker at-
tribution. This task has several applications such as meeting
transcription and summarization, collaborative learning, and
dinner-party conversations [1, 2, 3]. Due to the presence of
overlapping speech, turn-taking, and far-field audio, it often re-
quires special modeling techniques [4, 5, 6]. Researchers have
worked on speaker-attributed transcription from modular (i.e.,
pipeline-based) and end-to-end perspectives. In the former, it
is decomposed into speaker diarization and ASR sub-tasks and
addressed independently, leveraging advances in each of these
fields [7, 8, 9]. However, this approach may be sub-optimal
since the components are independently optimized leading to
error propagation, and may also require greater engineering ef-
forts for maintenance [10].

Due to these limitations with modular systems, researchers
have proposed jointly optimized models that combine diariza-
tion and ASR to directly solve for speaker-attributed transcrip-
tion. The most popular of these is speaker-attributed ASR (SA-
ASR) based on attention-based encoder-decoders (AEDs) [11].
It uses serialized output training (SOT) to handle overlapped
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Figure 1: An overview of SURT 2.0, as described in [23]. It
consists of a masking network and a transducer-based ASR.

speech and registered speaker profiles (called a speaker inven-
tory) to handle speaker attribution [12, 13]. Several modi-
fications to this model have leveraged transformer-based en-
coders [14] and large-scale pre-training [15], and have pro-
posed methods for inference on long recordings [16] without
the dependence on speaker inventory [17]. There have been
further investigations on methods for speaker attribution within
SA-ASR, and its extension to multi-channel and contextual-
ized ASR [18, 19, 20]. By modifying SOT to be performed
at the token-level (known as t-SOT), Kanda et al. [21] per-
formed streaming transcription of overlapping speech, which
was not feasible with utterance-level serialization. Enforcing
monotonicity in this manner also allows these models to be built
upon neural transducers [22] instead of AEDs. Nevertheless, t-
SOT requires complicated interleaving/deserialization of tokens
based on timestamps to accommodate overlapping speech on a
single output channel, and the use of “channel change” tokens
may impact ASR training adversely.

An alternative approach for continuous, streaming, multi-
talker ASR involves transcribing overlapping utterances on par-
allel output channels by unmixing them inside the model. This
two-branch strategy is exemplified by models such as Streaming
Unmixing and Recognition Transducer (SURT) [24] and multi-
turn RNN-T (MT-RNNT) [25], but we will refer to them as
SURT in this paper without loss of generality. SURT has been
extended to handle long-form multi-turn recordings [26, 25],
and to jointly perform endpointing and segmentation [27, 28].
Lu et al. [29] also proposed joint speaker identification with
SURT, but their model relied on a speaker inventory and was
only used for single-turn synthetic mixtures. As shown in Fig. 1,
the SURT model consists of an “unmixing” component that
separates the mixed audio into non-overlapping streams, and a
“recognition” component that transcribes each of these streams.
Since there is no explicit emission of speaker labels in this
modeling scheme, SURT has thus far been limited to speaker-
agnostic transcription. In this paper, our objective is to extend
the SURT model for speaker-attributed transcription of an arbi-
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trary number of speakers without any speaker inventory.

We achieve this by adding an auxiliary speaker transducer
to the recognition module of SURT. We constrain this branch to
emit a speaker label corresponding to each ASR token predicted
by using blank factorization of the output logits, similar to the
hybrid autoregressive transducer (HAT) model [30]. We also
propose a novel “speaker prefixing” method to ensure that the
speaker labels are consistent across different utterance groups in
the recording. We validate our methods through ablation experi-
ments on LibriSpeech mixtures, and finally demonstrate stream-
ing speaker-attributed transcription on real meetings from the
AMI corpus. Code is released through the open-source icefall
toolkit: https://github.com/k2-fsa/icefall.

2. Preliminary: SURT

2.1. Speech recognition with neural transducers

In single-talker ASR, audio features for a segmented utterance
X € RT*F (T and F denote the number of time frames and
the input feature dimension, respectively) are provided as input,
and the system predicts the transcripty = (y1, ..., yuv), Where
Yu € V are output units such as graphemes or word-pieces, and
U is the length of the label sequence. For discriminative train-
ing, we achieve this by minimizing the negative conditional log-
likelihood, £ = —log P(y|X). Since the alignment between
X and y is not known, transducers compute £ by marginalizing
over the set of all alignments a € V7Y, where V = V U {¢}
and ¢ is called the blank label. Formally,

PylX)= Y  P(aX),
aeB~1(y)

where B is a deterministic mapping from an alignment a to an
output sequence y that removes the blank labels. Transducers
parameterize P(a|X) with an encoder, a prediction network,
and a joiner (see “recognition” component in Fig. 1). The en-
coder maps X into hidden representations fi.7, while the pre-
diction network auto-regressively maps y into g1.7. The joiner
combines the outputs from the encoder and the prediction net-
work to compute logits Z € RT*U*IVI which are fed to a soft-
max function to produce a posterior distribution over V for each
(t, ). Under the assumption of a streaming encoder, we can ex-
pand (1) as

)]

T+U
P(y|X) = Z H P(a¢fie, 1.u—1)) @)
acB~1(y) t=1
T+U
= Z H Softmax(zy (1)), 3)

aeB~1(y) t=1

where u(t) € {1,...,U} denotes the index in the label se-
quence at time ¢, and z;,,, denotes the logits over V' for each
(t,u). The negative log of this expression is known as the
RNN-T or transducer loss. In practice, to make training more
memory-efficient, we often approximate the full sum, for exam-
ple using the pruned transducer loss [31]. We will denote this
loss as Ly for the remainder of this paper.

2.2. Multi-talker ASR with SURT

In multi-talker ASR, the input X € R”*¥ is an unsegmented
mixture containing N utterances from K speakers, i.e., X =
Zf:[:l Xn, Where x,, is the n-th utterance ordered by start time,
shifted and zero-padded to the length of X. The desired out-
putisY = {y, : 1 < n < N}, where y, is the reference
corresponding to x,. Assuming at most two-speaker overlap,
the heuristic error assignment training (HEAT) paradigm [24]
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Figure 2: Auxiliary speaker transducer (red box) with shared
blank label. The auxiliary encoder takes as input a hidden layer
representation from the main encoder (i.e., h§"* = h,), and
generates 7. The blank logit Z,—4 from the main joiner is
shared with the speaker branch to compute the HAT loss. Note
that here we show only one of the two branches/channels of the

SURT recognition module.

is used to create channel-wise references Y1 and Y by assign-
ing y»’s to the first available channel, in order of start time.
SURT estimates Y = [Y1,Ya] = fun(X) as follows. First,
an unmixing module computes H; and H> as

H; =M; «X, H>=M-;x*X, where
[M1, Ms]" = MaskNet(X),

M. € RT*F is a soft mask per channel and * is Hadamard
product. H; and H are fed into a transducer-based ASR, pro-
ducing logits Z; and Z». Finally,

£hcal = ,C(X, Yl, Zl) + L’(X, Yv27 ZQ), where

L= Lmnt + )\ctcL"ctc + )\maskl:masky
where Lge and Lmasc denote auxiliary CTC loss on the en-
coder [32] and mean-squared error loss on the masking network,
respectively, and A\’s are hyperparameters. In the original for-
mulation, SURT only performs speaker-agnostic transcription,
and is evaluated using ORC-WER (Section 4.4) [25].

3. Methodology

For speaker-attributed ASR, the desired output is Y =
{(yn,sn) : 1 <n < N,s, € [1, K]}, where K is the num-
ber of speakers in the mixture. SURT estimates y, by map-
ping the utterances to two channels Y1 and Y, as described in
Section 2.2. A popular method for speaker attribution in multi-
talker settings is to predict speaker change tokens that segment
the output into speaker-specific regions, followed by speaker la-
bel assignment to each segment. However, this kind of training
is prone to over-estimate the speaker change tokens, and may
also adversely affect the ASR performance. Instead, we want to
perform speaker attribution without affecting the output of the
ASR branch, for example by predicting a speaker label for each
ASR token emitted.

In order to perform such a streaming speaker attribution
jointly with the transcription, the following questions arise: (i)
How do we deal with overlapping speech? (ii) How do we syn-
chronize speaker label prediction with ASR token prediction?
(iii) How to reconcile relative speaker labels across utterance
groups in a long recording? We will answer each of these ques-
tions in the following subsections.

@

(&)

3.1. Auxiliary speaker transducer
We map speaker labels s,, to two channels according to the
HEAT strategy, obtaining S; and S. During training, we
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Figure 3: Projections of auxiliary encoder representations for a subset of LSMix dev.

Each point denotes the representation of one

speaker in a mixture, averaged over the frames on which the model emits a non-blank label. (a) and (b) denote UMAP projection, and

(c) shows LDA projection using absolute speaker classes.

repeat s, as many times as there are tokens in y,, i.e., we
want to predict a speaker label for each ASR token. There-
after, we use the non-overlapping streams H. to estimate S.
in the same two-branch approach as the ASR transducer. For
this, we add an auxiliary speaker transducer to each of the two
branches in the recognition module, as shown in Fig. 2. In-
termediate representations h,, from the n™ layer of the main
encoder are fed into an auxiliary encoder, producing 7. An
auxiliary joiner combines {77 with g1.¢7 to produce auxiliary
logits Z*"™ € RT*UX(E+1) "which are used to obtain a distri-
bution over the speaker labels and the blank label. Combining
the auxiliary encoder representation with representations from
the ASR prediction network allows the speaker branch to lever-
age lexical content for predicting speaker labels. Such a use of
lexical information has been shown to be beneficial for speaker
diarization using clustering-based [33, 34] or end-to-end neural
approaches [35].

3.2. Synchronizing speaker labels with ASR tokens

Since transducers perform frame-synchronous decoding with
the blank label, the above formulation has several jssues. First,
we cannot ensure that the number of ASR tokens |Y | predicted
on branch c is equal to the the number of speaker labels |Sc|
Even if we can ensure this, assigning speaker labels to ASR
tokens can be hard, as evident from the following example con-
taining two speakers saying the words “hello” and “hi”:
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Even though we predicted the correct speaker labels, it is
hard to assign them to the corresponding ASR tokens since they
are not synchronized by frame. To solve these problems, we
need to ensure that SURT emits blank labels on the same frames
for both the ASR and speaker branches. We achieve this by
factoring out the blank label separately in the style of the hybrid
auto-regressive transducer (HAT) model [30], i.e., we replace

the alignment posterior P(a; | f{, gf(t)_l) in (3) with

bt#, lf at = ¢, (6)
(1 — be,u) Softmax(z¢ [l :]), otherwise,

where b; ., = o(z¢,4[0]), and o denotes the sigmoid function.
Such factorization of the blank label has also been used for effi-
cient language model adaptation in the factorized neural trans-
ducer model [36]. By setting Z3X, = Z,=¢, i.e., by sharing
the blank logit for the ASR and speaker outputs, we ensure that
blank emission is synchronized between the two branches. The

speaker branch is trained with a similar HAT loss, i.e.,

Laux = Ehat(Hl, Zéllux) + Ehat (H27 Zgux)- (7)
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Such a synchronization strategy has also recently been proposed
for performing word-level diarization using transducers [37].
For both ASR and speaker branches, we use a pruned version
of the HAT loss similar to pruned RNNT [31].

3.3. Maintaining state across utterance groups

A common approach for inference of long-form audio is by
chunking in some way (e.g., at silences or fixed-length chunks),
processing each chunk separately, and then combining the out-
puts. For SURT, we assume that the recording has been chun-
ked at silences to create utterance groups, which are sets of
utterances connected by speaker overlaps. For multi-talker
ASR methods such as SA-ASR (discussed in Section 1) which
predict absolute speaker identities using external speaker pro-
files, combining chunk-wise outputs is relatively straightfor-
ward since there is no issue of speaker label permutation. How-
ever, the auxiliary speaker branch in SURT is trained to pre-
dict relative speaker labels in FIFO order within that chunk,
and these labels must be reconciled across all chunks within
a recording in order to obtain the final speaker-attributed tran-
script.

3.3.1. What does the auxiliary encoder encode?

Speaker label reconciliation across different chunks for long-
form diarization or speaker-attributed ASR is often done
through clustering of speaker embeddings estimated from the
chunks. For example, the EEND-VC model for speaker di-
arization extends EEND for diarization of long-recordings by
applying clustering over chunk-wise speaker vectors [38]. This
method delays the output prediction at least until the end of
the chunk so that the re-clustering may be done. To remedy
this issue, SA-ASR based on t-SOT estimates speaker change
based on cosine similarity between consecutive speaker vec-
tors, and applies re-clustering of all vectors every time a speaker
change is detected [21]. Nevertheless, solving label permutation
through such clustering requires that the chunk-wise speaker
vectors should represent absolute speaker identities. This re-
quirement may not be satisfied in the SURT model since the
auxiliary speaker branch is trained to predict relative speaker
labels in their order of appearance in the mixture.

To verify this, we applied SURT with the auxiliary speaker
branch on synthetic mixtures of LibriSpeech utterances called
LSMix (described in Section 4.2) consisting of 2 or 3 speakers
per mixture. We collected the 256-dimensional encoder rep-
resentations for the frames where the auxiliary branch predicts
a speaker label, and averaged each speaker’s embeddings over
the mixture. In Fig. 3, we show UMAP and LDA projections of
these embeddings for 15 different speakers in the LSMix dev
set. In Fig. 3(a), the three colors denote the relative speaker
label assigned to the speaker during SURT inference and the



markers denote absolute speaker identities. Fig. 3(b) shows the
same plot, but in this case colors denote absolute speaker iden-
tities and markers denote relative order within the chunk. It is
easy to see that the embeddings cluster by relative speaker labels
instead of absolute speaker identities, validating our conjecture
that the auxiliary encoder extracts relative speaker position in
the chunk. Even when LDA using absolute speaker labels is
used for the low-dimensional projection (as shown in Fig. 3(c)),
we did not find clusters of absolute speaker labels. Interestingly,
the embeddings did retain information about the speaker’s gen-
der. In the figure, the points with and without a black border
denote female and male speakers, respectively, and they appear
well-separated into gender-based clusters.

3.3.2. The speaker prefixing method

Inspired by the use of a speaker tracing buffer in the EEND
model for online diarization [39], we propose a novel speaker
prefixing strategy to solve the problem of speaker label permu-
tation across utterance groups. The idea of speaker prefixing is
to append high-confidence frames for speakers we have seen so
far in the recording, before the chunk’s input features, in the
order of their predicted label. Formally, let {Xi,..., X}
be the input features corresponding to M utterance groups in
a recording, such that X,, € RT»*¥ " For some chunk m,
let K., € [0, K] be the number of speakers seen so far in the
recording. We define some function . which selects frames of
a given speaker in the previous chunks, i.e.,

y(Xh...,Xm_l,k):Bk, (8)
where k is one of the K, speakers and B, € R™* F for some T
(which is a hyperparameter), is analogous to a speaker “buffer.”
Then, the speaker-prefixed input for chunk m is given as

- T
X = [Bli B, XT] ©)
where - denotes transpose. We use X, instead of X, as in-
put for this chunk with the conjecture that the speaker buffers
would enforce a relative ordering among speakers in the current
chunk. At the output of the main and auxiliary encoders, we
remove the representation corresponding to the prefix, which is
of length % where s is the subsampling factor of the en-
coder. During inference, we set .% to select a sequence of 7
frames (from the previous chunks) with the largest sum of con-
fidence value, as predicted by its logit z***[k]. During training,
we randomly select x speakers to prefix from all speakers in
the batch. Such a strategy mimics the expected inference time
scenario, where not all prefixed speakers will be seen in every
chunk. For each selected speaker, we randomly sample a range
of 7 frames from all the segments of that speaker.

4. Experimental Setup

4.1. Network architecture

The main SURT model follows earlier work [23]. The mask-
ing network comprises four 256-dim DP-LSTM layers [40].
Masked features are reduced to half the original length through
a convolutional layer, and the subsampled features are fed into
a zipformer encoder [41]. The ASR encoder consists of 6 zip-
former blocks subsampled at different frame rates (up to 8x
in the middle). The encoder output is further down-sampled
such that the overall subsampling factor is 4x. The representa-
tions from an intermediate layer of the ASR encoder are passed
to the auxiliary encoder. This is another zipformer compris-
ing 3 blocks with smaller attention and feed-forward dimen-
sions. Branch tying is used at the output of both encoders us-
ing unidirectional LSTM layers [23]. The ASR prediction net-
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Table 1: Statistics of datasets used for evaluations. The overlap
durations are in terms of fraction of total speaking time.

LSMix AMI
Train Dev Train Dev Test
Duration (h:m) 2193:57 4:19 79:23 9:40 9:03
Num. sessions 486440 897 133 18 16
Silence (%) 34 32 181 21.5 19.6
Overlap (%) 284 26.0 245 257 27.0
100
" 80
j:é é 60
:_c: "; 40
> & 20
0 0

2 3 4 0 T 4
#speakers in this group #speakers before this group
Figure 4: Utterance group statistics of the AMI meeting cor-
pus: (a) number of speakers in the group, and (b) number of
speakers seen before the group. An utterance group is defined
as a set of overlapping segments, and different utterance groups
are separated by a pause.

1

work contains a single 512-dim Conv1D layer. The complete
SURT model contains 38.0M parameters, divided up into 6.0M,
23.6M, and 8.4M for the masking network, the ASR branch,
and the speaker branch, respectively. The chunk size for the
intra-LSTM and the zipformer is set to 32 frames, resulting in a
modeling latency of 320 ms.

4.2. Data

We conducted our experiments on synthetically mixed Lib-
riSpeech utterances (called LSMix) and the AMI meeting cor-
pus, and their statistics are shown in Table 1. To create LSMikx,
we first cut LibriSpeech utterances at 0.2 second pauses, and
then mixed speed-perturbed versions of these segments using
the algorithm described in [23]. The resulting mixtures were
17s long on average, and contain 2-3 speakers and up to 9 turns
of conversation. We created train and dev splits of LSMix
using the corresponding LibriSpeech partitions. We used this
evaluation data to perform ablations for developing the auxil-
iary speaker branch in SURT.

AMI consists of 100 hours of recorded meetings contain-
ing 4 or 5 speakers per session [4]. Sessions were recorded
on close-talk (headset and lapel) microphones, as well as 2 lin-
ear arrays each containing 8 mics. We used three different mic
settings for our experiments: ITHM-Mix (digitally mixed indi-
vidual headset mics), SDM (first channel of array-1), and MDM
(beamformed array-1), where the last setting uses officially pro-
vided beamformed recordings [42]. To train SURT models for
AMI, we used synthetic mixtures of AMI and ICSI [43] utter-
ances (known as AIMix) as described in [23]. We first trained
the models on 1841h of the AIMix data, and then adapted them
on real train sessions. For training with the speaker buffer, we
fixed 7 as 128 frames for each speaker, and chose K, from [0,
4] with probabilities [0.05, 0.05, 0.1, 0.2, 0.6]. This is because
during inference, most chunks will be processed with 4 speaker
buffers, as seen in Fig. 4.

4.3. Training details

The auxiliary loss scales in (5), Acc and Amask, Were set to
0.2 each. We trained the models with the ScaledAdam op-
timizer following the standard zipformer-transducer recipes in



Table 2: Comparison of different training strategies for SURT
with auxiliary speaker branch.

Strategy ORC-WER WDER cpWER
Sequential 8.53 3.99 14.96
Joint 8.43 4.46 14.95
Seq. + Joint 9.17 4.25 15.33

icefall [41]. This is a variant of Adam where each parameter’s
update is scaled proportional to the norm of that parameter. The
learning rate was warmed up to 0.004 for 5000 iterations, and
decayed exponentially thereafter. As described in Section 5.2,
we tried sequential and joint training strategies. For the for-
mer, the SURT model was trained for 40 epochs. For the lat-
ter, the ASR branch was first trained for 30 epochs; it was then
frozen and the speaker branch was trained for 20 epochs. In
all cases, the ASR transducer was initialized from a pre-trained
transducer model, trained for 10 epochs on LibriSpeech, since
this has been found useful for fast convergence [23]. We aver-
aged model checkpoints from the last 5 epochs for inference,
and used greedy decoding for reporting all results. For evalua-
tion on AMI, we initialized the masking network and the ASR
branch using the parameters from the SURT model trained on
LSMix. We then trained this model in a sequential process, i.e.,
ASR branch followed by speaker branch, on AIMix followed
by adaptation on real AMI training sessions.

4.4. Evaluation

For speaker-agnostic transcription, SURT was evaluated using
the optimal reference combination word error rate (ORC-WER)
metric, proposed independently in [25] and [26]. ORC-WER
computes the minimum total WER obtained using the optimal
assignment of reference utterances to the output channels. In
this paper, since we have extended SURT to perform speaker-
attributed transcription, we measure its performance using the
concatenated minimum-permutation WER (cpWER) [3]. This
metric finds the best permutation of reference and hypothesis
speakers which minimizes the total WER across all speakers.

We also want to measure speaker attribution errors indepen-
dently of transcription errors. The conventional metric for this
is known as diarization error rate (DER), and measures the du-
ration ratio of speaking time for which the predicted speakers
do not match the reference speakers. However, since SURT is a
streaming model, the ASR tokens and the respective speaker
labels may be emitted with some latency compared to their
actual reference time-stamp. This can artificially escalate the
DER even when there are few speaker attribution errors. To
circumvent this issue, we report a word-level diarization error
rate (WDER) inspired by [44]. Originally, WDER was defined
as the fraction of correctly recognized words which have in-
correct speaker tags. We modify the metric for SURT by us-
ing the ORC-WER reference assignment to identify the correct
words and the speaker mapping from the cpWER computation
to check for speaker equivalence.'

5. Results & Discussion
5.1. RNN-T vs. HAT for speaker-agnostic ASR

Since our formulation requires replacing the conventional
RNN-T loss, i.e. (3), with the HAT loss given by (6), we want to

'We use ORC-WER instead of cpWER to find word alignment to be
as close as possible to the original WDER metric, which first obtains
an alignment without the knowledge of speaker labels, and thereafter
computes the speaker confusion error.
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Table 3: Speaker-attributed ASR performance on LSMix dev
for different positions of the auxiliary encoder. h; denotes the
hidden representation at the I*® block of the main zipformer

encoder, and h§"™ is the input to the auxiliary encoder.

hi"™ Ins. Del. Sub. cpWER WDER
=ho 3.34 6.04 7.28 16.66 5.36
=h; 291 520 6.85 14.96 3.99
=hy 458 6.77 8.24 19.59 6.73
=hs 595 823 941 23.59 8.35

ensure that the speaker-agnostic ASR performance of the model
does not degrade. To verify this, we trained SURT (without an
auxiliary branch) using Lynnt and Lyat on the LSMix train set,
and evaluated the resulting models on the dev set. We found
that the HAT model obtained 8.53% ORC-WER, compared
to 8.59% using regular RNN-T. The error breakdown showed
marginally higher insertions but fewer deletions, which may be
due to explicit modeling of the blank token.

5.2. Sequential vs. joint training

The auxiliary speaker branch of the SURT model can be trained
in several ways, as shown in Table 2. In “sequential” train-
ing, the main SURT model is first trained using (5) and then
frozen while the auxiliary branch is trained using (7). In “joint”
training, the full model is trained from scratch with the multi-
task objective. Finally, we can combine the above approaches
by first training the branches sequentially and then fine-tuning
them jointly. We found that both sequential and joint training
resulted in similar cpWER performance, but joint training
degrades WDER. Furthermore, joint fine-tuning after sequen-
tial training degraded performance on both ASR metrics. Since
sequential training allows decoupling of ASR and speaker attri-
bution performance, we used this strategy for the experiments
in the remainder of this paper.

5.3. Auxiliary encoder position

The input h§™ to the auxiliary encoder is obtained from an
intermediate representation of the main encoder. We trained
several SURT models with different positions for the auxiliary
input, in order to find the optimal representation for the speaker
branch, and the results are shown in Table 3. The models were
trained sequentially and the ORC-WER was 8.53% (same as
earlier). We found that both cpWER and WDER get progres-
sively worse if we used representations from deeper layers, pos-
sibly because of loss in speaker information through the main
encoder. Interestingly, h; (i.e. output of the first zipformer
block) showed better performance than hy (output from con-
volutional embedding layer). We conjecture that the input to
the auxiliary encoder needs contextualized representations
since speaker labels need to be synchronized across the two
branches. These findings mirror recent studies showing that in-
termediate layers of the acoustic model are most suitable for ex-
tracting speaker information [37]. Such analysis has also moti-
vated “tandem” multi-task learning of ASR and speaker diariza-
tion using self-supervised encoders such as Wav2Vec 2.0 [45].

5.4. Effect of left context

The ASR encoder of the SURT model uses limited left context
(Cleft=128 frames) in the self-attention computation during in-
ference. While ASR token prediction is usually a local decision,
speaker label prediction requires looking at the full history in
order to synchronize the relative FIFO labels. We experimented
with training and decoding with different histories, and the re-
sults are shown in Fig. 5. For a model trained with infinite Cleft



Table 4: Performance of SURT models (with and without speaker prefixing) for dif-
ferent conditions on AMI test set, evaluated on utterance groups. “ORC” denotes the

ORC-WER metric, and is the same for all models.

Table 5: Breakdown of model (A)’s perfor-
mance on IHM-Mix test set by number of
speakers in the utterance group.

Prefix THM-Mix SDM MDM
#spk 1 2 3 4 Avg.
ID Train/Decode ORC WDER cpWER ORC WDER cpWER ORC WDER cpWER
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Figure 5: Effect of auxiliary encoder left context on (a) WDER
and (b) cpWER. Dotted lines show best performance using co
left context.
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Figure 6: Average per-frame entropy for utterance groups with
different number of speakers.

(solid blue line), limiting it during inference quickly degraded
WDER and cpWER performance. When the model was trained
with randomized Cleg, sampled uniformly from {64, 96, 128}
(solid green line), the degradation was less evident. However,
it was unable to make full use of infinite history at inference
time, and only obtained a WDER of 6.12%, versus 3.99% for
the model trained with infinite Cleg;. This indicates that using
infinite left context during training and inference is impor-
tant for the auxiliary speaker encoder.

5.5. Utterance-group evaluation on AMI

We evaluated the SURT model on different microphone settings
of the AMI meeting corpus in the utterance-group scenario,
and the results are shown in Table 4 in terms of ORC-WER,
WDER, and cpWER. Across the board, performance degraded
from IHM-Mix to SDM settings, which is expected since SDM
contains far-field artifacts in addition to overlaps. Beamform-
ing with multiple microphones partially removes background
noise and reverberations, thus providing a slightly easier condi-
tion than SDM. For system A, which was trained and decoded
without speaker prefixing, we obtained a cpWER of 46.8%, on
average across the three conditions. When we used the same
model for decoding with speaker prefixes (system B), the cp-
WER performance degraded by 38.2% relative to the former.
Since the model has not seen short speaker buffers at train time,
the auxiliary encoder is not adept at using these for generating
the contextualized representations.

Next, we trained the same SURT model using speaker pre-
fixing as described in Sections 3.3.2 and 4.2, and found that it
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improved performance significantly due to matched train and
test conditions. Nevertheless, this model was 7-8 % worse than
the original model in terms of absolute cpWER performance.
To investigate this further, we computed the average framewise
entropy over speaker labels for all utterance groups in the IHM-
Mix test set, and grouped them by number of speakers in the
group. Fig. 6 shows the distribution of these entropies for the
SURT model with and without speaker prefixing. We found
that for the model without prefixing, the entropy was very
low for utterance groups with a single speaker, and gradu-
ally increased with the number of speakers. This indicates that
the model was very confident in its prediction for few speaker
cases. The opposite trend was seen for the model with speaker
prefixing, where the entropy was highest for the single-speaker
case. This is because for each frame, the model needs to decide
which of the 4 prefixed speakers the frame should be assigned
to, which may result in low confidence of prediction.

In general, we found that the performance of all models
gets progressively worse as the number of speakers in the
group increases, as shown in Table 5 for system A. Interest-
ingly, the degradation in WDER was small compared to that in
the speaker counting accuracy. This may be because of several
utterance groups where some speakers participate with just a
few words, which may be hard for the system to identify, but do
not contribute much in overall speaker attribution error.

5.6. Full-session evaluation on AMI

Finally, we performed inference on full AMI test sessions and
the corresponding cpWERSs are reported n Table 6. Comput-
ing the ORC-WER and WDER for this case was not feasible
since their computational complexity depends on the number of
segments in the reference. First, we see that the model without
speaker prefixing obtained very high error rates, since it failed
at correctly reconciling speaker labels across different utterance
groups. With speaker prefixing, we obtained 15.1% relative
cpWER improvement on average across the mic settings. For
the speaker prefixing, we trained and evaluated the model using
7 of 128 frames or 1.28s per speaker.

In a meeting transcription setup, since the participants are
known before-hand, we can usually obtain an enrollment ut-
terance for each speaker. Instead of selecting speaker prefixes
from previous chunks, if we select them from these enrollment
utterances, we obtain a further relative cpWER improvement
of 29.2%, on average. We conjecture that when enrollment ut-
terances are not used, speaker attribution errors in earlier chunks
can adversely impact performance on the current chunk, since
the buffer frames are used to guide the relative order. Nev-



ertheless, there still exists a significant gap of about 10-12%
absolute cpWER between full session evaluation and utterance
group evaluation (shown in Table 4).

6. Conclusion

The SURT framework allows continuous, streaming recogni-
tion of multi-talker conversations, but it could only be used for
speaker-agnostic transcription. In this paper, we showed how
to perform streaming word-level speaker labeling with SURT,
thus enabling speaker-attributed transcription using the same
model. We achieved this by adding an auxiliary speaker encoder
to the recognition component of the model, and used the same
two-branch strategy to handle overlapping speech. We solved
the problem of synchronization between the ASR and speaker
branch outputs by factoring out the blank logit and sharing it be-
tween the branches. Since the model predicts relative speaker
labels in FIFO order, reconciling the labels across utterance
groups in a recording becomes a challenge. We showed that
a simple strategy of prefixing high-confidence speaker frames
for the recognized speakers can partially alleviate this problem,
but it would require further investigation to bring session-level
error rates closer to those for utterance groups.
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