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Abstract—Secure two-party computation (2PC) in the RAM
model has attracted huge attention in recent years. Most
existing results only support semi-honest security, with the
exception of Keller and Yanai (Eurocrypt 2018) with very high
cost. In this paper, we propose an efficient RAM-based 2PC
protocol with active security and one-bit leakage.
1) We propose an actively secure protocol for distributed point

function (DPF), with one-bit leakage, that is essentially
as efficient as the state-of-the-art semi-honest protocol.
Compared with previous work, our protocol takes about
50⇥ less communication for a domain with 220 entries,
and no longer requires actively secure generic 2PC.

2) We extend the dual-execution protocol to allow reactive
computation, and then build a RAM-based 2PC protocol
with active security on top of our new building blocks. The
protocol follows the paradigm of Doerner and shelat (CCS
2017). We are able to prove that the protocol has end-to-end
one-bit leakage.

3) Our implementation shows that our protocol is almost as
efficient as the state-of-the-art semi-honest RAM-based 2PC
protocol, and is at least two orders of magnitude faster
than prior actively secure RAM-based 2PC without leakage,
providing a realistic trade-off in practice.

1. Introduction
Secure two-party computation (2PC) protocols [54] al-

low two parties each with a private input x, y respec-
tively, to obtain f(x, y) for some public function f but
nothing else. There has been a huge amount of work to
build efficient protocols and tools when f can be efficiently
represented as a circuit; however, not all functions can be
converted to a compact circuit since normal programs are
in the random-access machine (RAM) model. To address
this, secure 2PC in the RAM model [23] was proposed to
support private accesses in 2PC protocols. It has found a lot
of applications for building efficient and secure protocols

⇤Corresponding authors

for database queries [2], stable matching [15] and various
graph algorithms [39].

The high-level approach of RAM-based 2PC is to com-
bine oblivious RAMs (ORAMs) [22] and 2PC protocols.
In more detail, one can use a 2PC protocol to emulate an
ORAM client securely while having the parties act as the
ORAM server(s): since the ORAM ensures that the server
does not learn the private accesses, the parties cannot learn
the accesses either. Although there has been huge progress
in pushing the efficiency of RAM-based 2PC by means of
optimized ORAM for secure computation [19], [23], [34],
[50], [46], [56] and customized protocols leveraging the
fact that there are two non-colluding ORAM servers with
computational resources [24], [1], [16], [17], [40], [45],
[28], all of them are in the semi-honest setting. The only
exception is the work of Keller and Yanai [35] (dubbed
KY18), where they proposed an optimized protocol based on
the Circuit ORAM [46] and the SPDZ-BMR protocol [37].
When comparing its performance with state-of-the-art semi-
honest protocols [16], we observe a huge gap of at least
two orders of magnitude slowdowns, making it essentially
infeasible to run any RAM-based 2PC applications in the
malicious setting. When diving into the details, there are
two main sources of slowdown.

1) Actively secure circuit-based 2PC has a high over-
head. The generic approach of RAM-based 2PC can be
done with malicious security by emulating the ORAM
client in a reactive 2PC with malicious security. Indeed,
this is the approach that KY18 took. However, due to the
high depth of circuits needed to emulate ORAM circuits,
a constant-round malicious 2PC is the only option. KY18
used the SPDZ-BMR protocol, which allows identifica-
tion in the event of abort; this feature is crucial to enable
their efficient representation of the server verifiable secret
sharing, which can lead to two orders of magnitude im-
provements in memory usage. KY18 also posted an open
problem on how to make it compatible with more effi-
cient authenticated garbling [48] approach, which is still
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open to this date. Regardless, constant-round maliciously
secure 2PC generally incurs a significant performance
slowdown and this overhead will be amplified in a RAM
protocol when emulating the ORAM algorithm in 2PC.

2) Tricks in semi-honest protocols no longer work
directly. State-of-the-art RAM-based 2PC protocols
use a crucial tool, namely distributed point function
(DPF) [20], [8], which allows two parties with secret
shares of ↵ and � to homomorphically evaluate the
point function f(↵,�)(x), that evaluates to � only when
x equals ↵ and 0 otherwise; recent DPFs [16], [27] let
parties obtain secret shares of the output with commu-
nication sublinear to the number of evaluations. This
implies an efficient protocol to read or write an array
but not both at the same time. Doerner and shelat [16]
first proposed a protocol, namely Floram, using DPF on
top of the square-root ORAM, which was later improved
in a sequence of works [28], [45]. However, bringing the
same trick to malicious security is challenging: 1) it is
not clear how to efficiently distribute DPF keys based on
shares of ↵ and � with malicious security; 2) it is unclear
how to ensure the correctness of the local computation,
an important feature of DPF-based ORAMs.

Contribution. In this paper, we design and implement a
maliciously secure RAM-based 2PC protocol with high
concrete performance. The protocol would leak one bit
of information to the adversary but enjoys performance
essentially the same as state-of-the-art semi-honest RAM
2PC protocols.
1) We design an efficient and maliciously secure proto-

col for distributed point functions (DPFs). Compared
to previous malicious protocols, our protocol follows a
different route in generating the DPF correlation and no
longer needs generic malicious 2PC. As a result, our
protocol improves the communication by a factor of 50⇥.
What’s more, the cost of this protocol is almost the same
as the state-of-the-art semi-honest DPF protocols [27]. It
also has huge applications beyond RAM-based 2PC, e.g.,
in malicious pseudorandom correlation generators.

2) We extend the normal dual-execution with one-bit leak-
age protocol [30] to support reactive 2PC. Then we incor-
porate both building blocks to build a malicious RAM-
based 2PC based on the blueprint of Floram. Although
DPF is invoked repeatedly, we show an optimization that
allows end-to-end leakage to be a single bit by carefully
controlling the abort event.

3) We implement all of the protocols and hook them with
generic malicious 2PC for end-to-end applications. Our
benchmark shows that the performance of our active-
secure one-bit leakage protocol is almost as fast as semi-
honest protocols in common network settings and is
two orders of magnitude faster than prior full malicious
RAM-based 2PC [35].

Paper organization. Section 2 provides an overview of our
techniques and improvements. In Section 3, we introduce
preliminaries. In Section 4, we provide details of our reactive

2PC protocol; in Section 5, we show our efficient DPF
protocol details. We combine them together to build a RAM-
based 2PC protocol in Section 6. Finally, in Section 7, we
discuss the concrete performance of our protocols.

2. Technical Overview
2.1. Recap of Floram

First, we review the high-level ideas of Floram [16],
one of the state-of-the-art semi-honest RAM-based 2PC
protocols. The protocol has a read-only memory (ROM),
a write-only memory (WOM), and a stash (S) supporting
both read and write. Suppose that the initial values are in
both the ROM and WOM; the protocol will ensure that 1)
WOM always contains the most recent data (but we cannot
read from it) and 2) ROM and S as a whole also contain
the most recent data where the version in S takes priority.
For a read operation, one just needs to query from the
ROM structure and then linearly scan all elements in S;
for a write operation, one first updates the WOM, and then
appends this update to S. Both ROM and WOM can be
efficiently built using DPFs. When S reaches � elements, a
refresh protocol will be executed that copies over the data in
WOM to ROM and clears the stash S. Due to the advances
in DPF, the communication cost of an operation on ROM
and WOM is O(log N) for an array of size N ; the stash
is instead implemented using generic 2PC protocols. Thus
the amortized communication cost is O(log N + � + N/�),
which minimizes to O(

p
N).

In order to bring this idea to malicious security, we need
to make all building blocks maliciously secure and allow
them to be composed without causing inconsistency. Below,
we discuss the details of each component.

2.2. Reactive 2PC with One-Bit Leakage
Next, we briefly discuss the intuition in our reactive

2PC protocol. Active 2PC with one-bit leakage was studied
before [30], [41], but was only assumed as two parties eval-
uate a function for one shot. Their intuition is to run Yao’s
garbled circuit protocol twice with opposite directions along
with malicious oblivious transfer and run a check protocol in
the end to ensure the consistency of two executions. Either
the output is correct, or the protocol will abort; thus the
adversary can only learn one bit of information from the
fact that the protocol aborts or proceeds. However, in our
setting, two parties need to hold a “state” (e.g., stash) that
is fed to a reactive 2PC and gets updated by the protocol.

To enable this upgrade, we hook the idea of dual ex-
ecution with BDOZ authenticated shares [4]. Recall that
to authenticate a secret sharing of a bit b as BDOZ share
(namely hhbii), party P0 holds (b0,M0[b0],K0[b1]) and P1

holds (b1,M1[b1],K1[b0]), such that M0[b0] = K1[b0]�b0�1

and M1[b1] = K0[b1]�b1�0 where �0, �1 are private MAC
keys held by P0 and P1 respectively. When P0 is the garbler,
we let it produce a garbled circuit (GC) where the free-XOR
delta is �0. For an input bit b in BDOZ share, P0 can define
a zero garbled key as L

0 = K0[b1] � b0�0 and P1 defines
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L
⇤ = M1[b1], we can see that

L
⇤ = M1[b1] = K0[b1]� (b0 � b) · �0 = L

0 � b�0.

This means that L
⇤ held by P1 as an evaluator and L

0 held
by P0 as a garbler have a correct relationship needed for
GC generation/evaluation. In summary, this is an approach
where two parties can locally convert BDOZ shares to
garbled labels compatible with dual execution. There is a
similar process making dual-execution garbled labels back
to BDOZ shares locally, although the shares may not be
valid if one of the parties cheats during GC execution. To
obtain the output with guaranteed correctness, two parties
need first to check the validity of the authenticated share
and only reveal it if it is valid. One bit of leakage is due to
the validity check.

With this intuition, two parties store any state in BDOZ
shares and convert them to garbled labels when they need
to run 2PC, where the results can be converted back to
BDOZ shares. The overhead compared to semi-honest Yao’s
protocol is exactly twice, but it can be parallelized easily.

2.3. Efficient DPF with Malicious Security
Prior protocol. Recall that in a DPF protocol, two parties
have secret sharing of ↵ 2 [n] and � 2 F and should get
secret sharings of a size-n vector x 2 Fn, which is all zeros
except that x

(↵) = �. To make the DPF protocol maliciously
secure, there are two important tasks: 1) use authenticated
sharing for the input and output of the DPF protocol, and
2) prevent the parties from cheating during the execution of
the protocol. Ensuring DPF to output authenticated sharing
can be done via appending � with � · �, where � is the
secret shared MAC key; this works as long as the DPF
scheme allows any ring element as �. However, ensuring
input authentication, consistency, and protocol security is
much more complicated, as the state-of-the-art DPF protocol
involves log N rounds and extensive local computation. The
only maliciously secure protocol was proposed by Boyle
et al. [7]. Their protocol works by first generating additive
shares of vector in the form of ([0], . . . , [0], [r], [0], . . . , [0]),
where the share of a random value r is in the ↵-th location,
following the classical semi-honest DPF protocol but replace
all joint computation using a generic malicious 2PC. Then,
two parties further expand a level to obtain shares of 2n

elements: ([0], . . . , [0], [L], [R], [0], . . . , [0]), where L, R are
random values and [L] is the 2↵-th element. Two parties then
again use generic malicious 2PC to compute authenticated
shares of L

�1 and R
�1 while only revealing R

�1. Next,
two parties pick a public random value � and compute two
linear combinations on their secret sharings which will end
up being XL = �

↵ · L and XR = �
↵ · R. Finally, they can

check whether [XL] · [L�1] = [XR] ·R�1 in malicious 2PC.
Their analysis shows that this protocol unfortunately

leaks one bit of information about ↵ to the adversary. In
terms of the cost, this protocol requires heavy use of generic
malicious 2PC and, in particular, needs to compute three
field multiplications in 2PC, which is very expensive. For
example, MASCOT [32] requires about 33,000 bytes of
communication to compute one such multiplication even

without counting the cost of underlying oblivious transfer,
while the rest part of this protocol only needs 2(log N +1)
bits of communication. This means that the cost of this field
multiplication is going to be the main bottleneck of the
whole DPF protocol for any reasonable size of N . Another
potential issue is that this malicious DPF protocol requires
� to be a field element (so that inverse exists), and thus it
is not immediately clear how to efficiently support output
authentication, where � has two field elements.
Our protocol. The prior protocol is costly and also heavily
relies on malicious generic 2PC, making it complicated to
implement. In this work, we propose a completely different
way to generate DPF with malicious security without using
generic malicious 2PC or field multiplication, while still
maintaining the same level of security. As a result, the
protocol is much easier to implement and is almost as
efficient as state-of-the-art semi-honest DPF protocols.

Different from the prior work that first generates the
whole vector of shares and then checks the relationship in
a modular way, our protocol maintains the invariance that
after each level of expansion, two parties hold authenticated
sharing of partial prefix expansion. To be more specific,
we assume that the two parties start with a SPDZ authen-
ticated share of 1, namely J1K. A SPDZ authentication is
similar to BDOZ but instead parties hold secret shares of
the value b and its MAC b · � (along with secret shares
of the MAC key), i.e., (b0, M0) and (b1, M1) such that
M1 � M0 = (b0 � b1) · (�0 � �1). See Section 3.3 for
complete details. Two parties use one level of expansion to
either get (J0K, J1K) or (J1K, J0K), depending on the most
significant bit of ↵. This process can be iteratively executed
to obtain (J0K, . . . , J0K, J1K, J0K, . . . , J0K), where J1K is at the
↵-th location. Finally, a correction word is used to correct
J1K to J�K while maintaining J0K unchanged.

Given this high-level approach, the key is to expand
one level of the tree. Our high-level idea follows a semi-
honest optimization of DPF, namely Half-Tree [27]. Suppose
two parties hold (x0, X0) and (x1, X1) respectively as their
SPDZ share of 1 at the root such that X0�X1 = �0��1

To obtain (JaK, Ja� 1K) for some private a 2 {0, 1}, with
a hash function H the correction word CW would be

CW := H(x0kX0)�H(x1kX1)� (a� 1) · (�0 ��1).

Each party can locally expand the left-child node as
(lb, Lb) := H(xbkXb) � xb · CW and the right-child node
as (rb, Rb) := H(xbkXb) � Xb � xb · CW. In addition,
computing CW boils down to compute a·� efficiently; when
a is authenticated, their shares can be used to reconstruct
shares of a · � locally; thus computing shares of CW can
all be done via local computation. Our crucial observation
is that, the adversary can only cheat by corrupting CW with
an additive value. However, if such corruption happens, the
only type of change is to make the authenticated shares
on the next level ((lb, Lb), (rb, Rb) in the above example)
invalid, which can be easily discovered by an almost-free
MAC check protocol. Unfortunately, the adversary can still
learn one-bit information since its cheat could lead to an
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abort event or not, depending on the bit a. However, it is
sufficient in our application and many other applications in
pseudorandom correlation generators. We refer to Section 5
for more details.

2.4. Putting Everything Together
Given the above two important building blocks already

optimized with high efficiency, we can now build an efficient
RAM-based 2PC protocol with active security. We follow
the blueprint of Floram [16] and use authenticated shares, ei-
ther in BDOZ or SPDZ, to connect various building blocks.
Here the main challenge is to avoid secure computation of
pseudorandom functions (PRFs) during refresh protocols,
which would be prohibitive. It is clear that for WOM, two
parties would store the authenticated shares, but the design
of ROM is more complicated (as we elaborate below). Our
final solution in the end only requires 2 PRF computations
in 2PC for each operation.
Write-only memory. Suppose elements stored in the RAM
model are represented as an array D with totally N ele-
ments. For WOM, two parties need to hold authenticated
shares of D

(i). To update the ↵-th value to D
⇤, two par-

ties first read from ROM to obtain JD(↵)K and then use
DPF to obtain an authenticated vector of field elements
(. . . , J0K, JD(↵) �D

⇤K, J0K, . . .), where the non-zero ele-
ment is at location ↵, and then locally XOR each element
in the list to the authenticated shares of D

(0)
, . . . , D

(N�1)

corresponding. Although this version requires two separate
DPFs, one can apply the optimization in Floram to reduce it
to call the DPF protocol only once. We provide full details
in Section 6.
Read-only memory: First attempt. Two parties hold au-
thenticated sharing of two PRF keys Jk0K and Jk1K. For
ROM, we can think of a scheme where the i-th data block
D

(i) is encrypted as E
(i) = PRF(k0, i)� PRF(k1, i)�D

(i)

and is public to both parties. For a read operation at ↵, two
parties would use the above malicious DPF protocol to ob-
tain a unit vector (. . . , J0K, J1K, J0K, . . .), where J1K is speci-
fied by ↵. Then two parties can compute JE(↵)K by comput-
ing the inner product between the vector E and the authenti-
cated unit vector, and then use 2PC to decrypt it to obtain the
authenticated share JD(↵)K. So far, everything works great,
but the challenge appears when connecting WOM to ROM
via a refresh procedure. Essentially, the problem setup is that
two parties have Jk0K, Jk1K and JD(i)K; we need a protocol
so that they obtain E

(i) = PRF(k0, i)�PRF(k1, i)�D
(i). To

defend against a malicious adversary, the values held by the
honest party should be correct even if the adversary cheats
in some way. One way to ensure this property is to mask
all PRFs in a 2PC protocol, but this would require 2N PRF
computation in 2PC. This computation would blow up the
cost since it can only cover about

p
N writes efficiently,

leading to perform PRF computation O(
p

N) times in 2PC
per access. Alternatively, two parties can compute PRF
locally, supply them to 2PC to compute the masking step,
and then reveal the result; however, this approach would
allow parties to change the value as the adversary can claim

any value as their PRF evaluation. In summary, it is not
clear how to ensure consistency between WOM and ROM.
Read-only memory: Our approach. Our alternative
method is to put the value and its SPDZ MAC together into
the ROM. Since data are doubly encrypted by both parties,
no information can be revealed. Furthermore, the additional
MAC allows us to ensure consistency. In more detail, we
now have E

(i) = PRF(k0, i)�PRF(k1, i)� (D(i)
, D

(i) ·�),
where � = �0 � �1 is the SPDZ MAC key and the
output length of PRF is sufficient for two elements. To
read the ↵-th element from the array, two parties first
compute [PRF(k0, ↵)� PRF(k1, ↵)] in 2PC, and use ma-
licious DPF to obtain XOR-secret sharing of a unit vector
[u] = (. . . , [0], [1], [0], . . .), where the non-zero value is at
index ↵. Two parties locally compute

�L
i [u

(i)] · E
(i)
�
�

[PRF(k0, ↵)� PRF(k1, ↵)] = [(D(↵)
, D

(↵) · �)], which is
essentially the SPDZ authenticated sharing JD(↵)K. Here
we no longer need MACs on the output of DPF as long
as DPF is maliciously secure: if any party cheats in any
way, SPDZ shares as the output will be invalid independent
of the underlying data.

Back to refresh procedure: now two parties have
sharings Jk0K, Jk1K, JD(i)K and need to obtain E

(i) =
PRF(k0, i) � PRF(k1, i) � (D(i)

, D
(i) · �). Two parties

can treat the SPDZ sharing JD(i)K as additive sharing
[(D(i)

, D
(i) · �)]. Since P0 can compute PRF(k0, i) while

P1 can compute PRF(k1, i), they effectively have addi-
tive shares [PRF(k0, i)� PRF(k1, i)� (D(i)

, D
(i) · �)]. To

reveal the underlying value, we can just allow them to
exchange the shares. Since the public values themselves will
eventually be used as authenticated values, any change of
values will cause abort.
Bounding the leakage. With the above changes, the pro-
tocol is essentially as cheap as its semi-honest counterpart.
However, a naive argument would lead to an amount of
leakage linear to the number of RAM access operations,
since every operation requires outputting some value, where
checks are needed, leaving an opportunity to leak a bit.
To reduce the amount of leakage, we batch all checks
since they all verify consistency between values and their
MACs, and defer these checks right before revealing the
designated output (i.e., f(x, y) where f is the function in the
RAM model to be evaluated). For any intermediate values,
we will open them without a check. This will not leak
any information because all opened intermediate values are
masked by authenticated shares of random values as how
we design the protocol. This way, all intermediate values
can be simulated while the only abort end is in the end.

3. Preliminaries
3.1. Notation

We use  to denote the computational security param-
eter. We denote by log(·) the logarithm in base 2. We
write x  S to denote sampling x uniformly at random
from a set S. We define [a, b) := {a, . . . , b � 1} and
[a, b] := {a, . . . , b}. For an n-bit integer x, we denote
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Functionality FaBit

Initialize: This command is called only once. Upon receiving
(init,�0) from P0 and (init,�1) from P1, where �0,�1 2

F2 , abort if lsb(�0 ��1) 6= 1; otherwise store (�0,�1).

Authenticate bits: This command can be called multiple
times. For b 2 {0, 1}, upon receiving (auth, b,x, `) from Pb

and (auth, b, `) from P1�b, where x 2 F`
2, do the following:

• Sample K1�b[x]  F`
2 . If P1�b is corrupted, instead

receive K1�b[x] 2 F`
2 from the adversary.

• Compute Mb[x] := K1�b[x] + x · �1�b 2 F`
2 . If Pb is

corrupted, receive Mb[x] 2 F`
2 from the adversary, and

then recompute K1�b[x] := Mb[x] + x ·�1�b 2 F`
2 .

• Output Mb[x] to Pb and K1�b[x] to P1�b.

Figure 1: Functionality for authenticated bits.

by (x(0)
, . . . , x

(n�1)) its bit decomposition, that is, x
(i) 2

{0, 1} for i 2 [0, n) and x =
P

i2[0,n) x
(i) · 2i. We use bold

lower-case letters like x to denote a vector and x
(i) to denote

the i-th component of x with x
(0) the first component. We

use lsb(x) to denote the least significant bit (LSB) of a string
x (i.e., x

(0)). We write F2
⇠= F2[X]/f(X) for a monic

irreducible polynomial f(X) of degree . We use X 2 F2

to denote the element corresponding to X 2 F2[X]/f(X).
Depending on the context, we use {0, 1}, F

2 and F2 in-
terchangeably, and thus addition in F

2 and F2 corresponds
to XOR in {0, 1}. We use unit(N, ↵) 2 FN

2 for a vector
with exact one non-zero entry 1 at position ↵ 2 [0, N).

3.2. Security Model and Ideal Functionalities
We use the standard ideal/real paradigm [10], [21] to

prove security of our two-party protocols in the presence of
a malicious, static adversary. In the ideal-world execution,
two parties P0 and P1 interact with an ideal functionality
F, and one of them may be corrupted by an ideal-world
adversary (a.k.a., simulator) S. In the real-world execution,
P0 interacts with P1 via executing a protocol ⇧, and one
of them may be corrupted by a real-world adversary A.
We say that a protocol ⇧ securely realizes an ideal func-
tionality F, if the real-world execution is computationally
indistinguishable from the ideal-world execution.

Our protocols call the standard two-party functionalities:
the coin-tossing functionality Fcoin and the commitment
functionality Fcom, which can be securely realized using
a random oracle [12].

3.3. Authenticated Secret Sharings
We consider two kinds of authenticated secret sharings

in the two-party setting, i.e., SPDZ style [13], [12] and
BDOZ style [4]. Suppose that P0 (resp., P1) holds a global
key �0 2 F2 (resp., �1 2 F2 ).

We use JxK to denote a SPDZ-style authenticated se-
cret sharing on x 2 F2 . In particular, we have JxK =
(JxK0, JxK1) and, for each b 2 {0, 1}, Pb holds

JxKb := (xb,Mb[x]) 2 F2
2

such that x = x0+x1 and M0[x]+M1[x] = x ·(�0+�1) 2
F2 . We use [x] = ([x]0, [x]1) to denote an unauthenticated

additive sharing, i.e., [x]0 + [x]1 = x. So, we have JxK =
([x], [x · �]) with � = �0 + �1. Note that SPDZ-style
authenticated sharings are additively homomorphic, i.e., two
parties can locally compute Ja · x + b · yK = a · JxK+ b · JyK
for any public constants a, b 2 F2 . Besides, for any public
constant c, both parties can locally compute JcK by setting
x0 := c, x1 := 0, M0[x] := c · �0 and M1[x] := c · �1. For
a vector x 2 F`

2 , we write JxK = (Jx(0)K, . . . , Jx(`�1)K). In
Figure 2, we describe the batch-check protocol with essen-
tially no communication, which can verify the correctness
of multiple values opened in a batch.

For a bit x 2 F2, we write hhxii to denote a BDOZ-style
authenticated secret sharing. In particular, we have hhxii :=
(hhxii0, hhxii1) and, for each b 2 {0, 1}, Pb holds

hhxiib = (xb,Kb[x1�b],Mb[xb]) 2 F2 ⇥ F2
2

such that secret bit x = x0 � x1 and MAC tag Mb[xb] =
K1�b[xb] + xb · �1�b 2 F2 . The BDOZ-style authen-
ticated sharings can be generated by calling the func-
tionality FaBit (shown in Figure 1). In this figure, for
the sake of simplicity, we write x = (x(0)

, . . . , x
(`�1)),

K1�b[x] = (K1�b[x(0)], . . . ,K1�b[x(`�1)]) and Mb[x] =
(Mb[x(0)], . . . ,Mb[x(`�1)]). This functionality has been used
in previous works [48], [49], [29], [52]. Functionality FaBit

can be securely realized against malicious adversaries by ex-
ecuting a correlated oblivious transfer (COT) protocol [31],
[6], [53], [51], [44], [5], [27]. To guarantee lsb(�0��1) =
1, the consistency check in [11] can be adopted (particularly,
 random authenticated sharings need to be sacrificed). It
is clear that BDOZ-style authenticated sharings are also
additively homomorphic. For a bit vector x 2 F`

2, we write
hhxii = (hhx(0)ii, hhx(1)ii, . . . , hhx(`�1)ii).

Both parties can locally compute an authenticated shar-
ing on a field element x 2 F2 from  authenticated
sharings hhx(0)ii, . . . , hhx(�1)ii where x

(i) 2 {0, 1} for
each i 2 [0, ). In particular, both parties are able to
locally compute hhxii :=

P
i2[0,) hhx(i)ii · Xi. We denote

by hhxii := B2F(hhx(0)ii, . . . , hhx(�1)ii) this local com-
putation. Besides, we can transform a BDOZ-style au-
thenticated sharing to a SPDZ-style authenticated sharing
without any interaction [9]. Specifically, given hhxii =
(hhxii0, hhxii1), both parties locally compute JxK by setting
JxKb := (xb,Kb[x1�b]�Mb[xb]�xb�b) for each b 2 {0, 1}.
We write JxK := Convert(hhxii) for this computation.

3.4. Garbling Scheme
Following the previous work [3], we give the definition

of garbling schemes, which is specified for our usage. For
a bit x 2 {0, 1}, we use K[x] 2 {0, 1} to denote the 0-
label and M[x] 2 {0, 1} to denote the garbled label on bit
x. We always consider that the free-XOR technique [36] is
adopted, which is the case for the state-of-the-art garbling
schemes [55], [43]. In this case, a random global key � 2
{0, 1} is sampled, and M[x] = K[x]� x� for any bit x 2
{0, 1}. We observe that garbled labels have the same form
of BDOZ-style authenticated bits (modeled in functionality
FaBit). In our 2PC protocol shown in Section 4, we will
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Protocol ⇧BatchCheck

Input: Two parties P0 and P1 hold ` SPDZ-style authenti-
cated sharings Jy(0)K, . . . , Jy(`�1)K along with their opened
values y(i)

2 F2 for each i 2 [0, `).
Batch check: Two parties do the following.
1) Two parties call Fcoin to sample a random � 2 F2 .
2) Two parties locally compute JzK :=

P
i2[0,`) �

i
· Jy(i)K

and z :=
P

i2[0,`) �
i
· y(i)

2 F2 .
3) For each b 2 F2, Pb computes Vb := Mb[z] + z ·�b and

calls Fcom to commit to Vb.
4) For each b 2 F2, Pb calls Fcom to open Vb. Then, two

parties check V0 = V1 and abort if the check fails.

Figure 2: Protocol for batch-checking the values authenticated by
SPDZ-style MACs in the (Fcoin,Fcom)-hybrid model.

call functionality FaBit to generate garbled labels on input
wires. Thus, � and 0-labels corresponding to input bits have
been defined by the BDOZ-style authenticated bits, and are
able to be used as the input of garbling algorithm Garble.
Similarly, the garbled labels on input bits are defined by the
MAC tags in the authenticated bits, and can be used as the
input of evaluation algorithm Eval. We will transform the
garbled labels on output bits into authenticated bits, instead
of decoding them to obtain the output bits. Overall, our 2PC
protocol only needs two algorithms Garble and Eval, where
the encoding and decoding algorithms are not required.

Definition 1. A garbling scheme GS = (Garble,Eval),
which is specific to our application, consists of the following
two algorithms.
• (GC ,K[y])  Garble(K[x], �, C): Given a vector of 0-

labels K[x] on input wires, a global key � and a Boolean
circuit C : {0, 1}n ! {0, 1}m, this algorithm outputs a
garbled circuit GC along with a vector of 0-labels K[y]
on output wires.

• M[y]  Eval(GC ,M[x]): Given a garbled circuit GC
and a vector of garbled labels M[x] on input vector x,
this algorithm outputs a vector of garbled labels M[y] on
output vector y.

For security, we assume that the garbling scheme sat-
isfies obliviousness [3]. That is, there exists a simulator S,
given a circuit C, that can simulate a garbled circuit GC and
a vector of garbled labels M[x], which are computationally
indistinguishable from the real values.

4. Constant-Round 2PC with Active Security
In Figure 3, we give a 2PC functionality F2PC in the

active setting. This functionality allows two parties to input
bits via the (input) command and generate random elements
in F2 via the (rand). By calling the (eval), two parties
can compute any Boolean circuit. Two parties are able to
call the (open) command to open some elements in F2 to
both of them. We do not consider the (output) command to
output values to only one party, as it is not required for our
RAM-based 2PC protocol (shown in Section 6). In addition,
we define the (pack) and (unpack) commands to realize the
conversion between  bits and one element in F2 . Finally, a

Functionality F2PC

This functionality initializes two identifier-value lists Bit and
Val, where each value in Bit (resp., Val) is an element in F2

(resp., F2 ). It interacts with two parties P0 and P1.

Input: Upon receiving (input, id, b, x) from Pb and
(input, id, b) from P1�b, where b, x 2 F2, set Bit[id] := x.

Eval: Upon receiving (eval, {id(xi)}i2[0,n), {id
(yi)}i2[0,m), C)

from both parties, where C : Fn
2 ! Fm

2 is a boolean circuit,
compute (Bit[id(y0)],Bit[id(y1)], . . . ,Bit[id(ym�1)]) :=
C(Bit[id(x0)],Bit[id(x1)], . . . ,Bit[id(xn�1)]).

Rand: Upon receiving (rand, id) from both parties, sample
Val[id] F2 .

Pack: Upon receiving (pack, {id(i)}i2[0,), id) from both
parties, compute Val[id] :=

P
i2[0,) Bit[id

(i)] ·Xi
2 F2 .

Unpack: Upon receiving (unpack, id, {id(i)}i2[0,)) from
both parties, decompose Val[id] :=

P
i2[0,) x

(i)
·Xi

2 F2

and define Bit[id(i)] := x(i)
2 F2 for each i 2 [0,).

Open: Upon receiving (open, id) from both parties, send
Val[id] 2 F2 to the adversary, wait for x 2 F2 from the
adversary, and send x to both parties. If x 6= Val[id], set a
cheat flag.

Check: This command is allowed to be called only once.
Upon receiving (check) from both parties, do the following:
1) Wait for a predicate P : F|I|

2 ⇥ F|J |
2 ! F2 from the

adversary, where I (resp., J ) is the set of all available
identifiers in list Bit (resp., Val).

2) If P ({Bit[id]}id2I , {Val[id]}id2J ) = 0 or a cheat flag is
set, abort.

Figure 3: Functionality for secure two-party computation with
one-bit leakage.

malicious adversary, who corrupts either P0 or P1, can leak
at most one-bit information on secret elements by inputting
a predicate P only once.

Based on a garbling scheme and functionality FaBit,
we present an efficient 2PC protocol ⇧2PC with active
security in Figure 4. This protocol adopts the dual-execution
framework [41], and securely realizes functionality F2PC

(Figure 3). Note that the check procedure works as the batch
check of SPDZ-style authenticated sharings, where BDOZ-
style authenticated sharings are converted into SPDZ-style
ones. The checking result allows a malicious adversary to
make a selective-failure attack, i.e., an incorrect guess on the
secret values will lead to the protocol aborts, and a correct
guess will make the honest party accept. All the checks are
done at the end of protocol execution, and thus the adversary
can reveal at most one-bit information.

We use the Yao’s 2PC protocol [54] based on garbling
schemes to securely compute any Boolean circuit, and adopt
dual execution to achieve active security with one-bit leak-
age. In the original dual execution [41], [30], each of two
parties first acts as a garbler and then acts as an evaluator,
and then both parties execute an equality check immediately
after the circuit was computed. Different from the original
dual execution, we defer the check to the open phase, and
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Protocol ⇧2PC

This protocol invokes ⇧BatchCheck (Figure 2) as a sub-protocol, and adopts a garbling scheme GS = (Garble,Eval).

Initialize: For each b 2 F2, Pb samples �b  F2 such that lsb(�b) = b, and sends (init, b,�b) to FaBit.

Input: For each b 2 F2, for each input bit x 2 F2 held by Pb, two parties P0 and P1 do the following:
1) Pb and P1�b call FaBit on respective inputs (auth, b, x, 1) and (auth, b, 1) to obtain respective outputs Mb[x] and K1�b[x]. Then,

P1�b samples r  F2 and send r to Pb. Next, P1�b updates K1�b[x] := K1�b[x]� r, and Pb updates Mb[x] := Mb[x]� r.
2) Pb defines Kb[0] = s and P1�b sets M1�b[0] = s by letting Pb sample s F2 and send s to P1�b.
3) Both parties define hhxii = (hhxiib, hhxii1�b), where hhxiib := (x,Kb[0],Mb[x]) and hhxii1�b := (0,K1�b[x],M1�b[0]).

Eval: To compute (y(0), . . . , y(m�1))  C(x(0), . . . , x(n�1)), two parties P0 and P1 use BDOZ-style authenticated sharings
{hhx(i)

ii}i2[0,n) to compute {hhy(i)
ii}i2[0,m) as follows, where hhx(i)

iib = (x(i)
b ,Kb[x

(i)
1�b],Mb[x

(i)
b ]) for each b 2 F2 and i 2 [0, n).

1) For each b 2 F2, Pb computes Kb[x
(i)] := Kb[x

(i)
1�b] � x(i)

b · �b and P1�b computes M1�b[x
(i)] := M1�b[x

(i)
1�b] such that

M1�b[x
(i)] = Kb[x

(i)]� x(i)
·�b for each i 2 [0, n).

2) As a garbler, for each b 2 F2, Pb runs (GC b, {Kb[y
(i)]}i2[0,m)) Garble({Kb[x

(i)]}i2[0,n),�b, C), and sends GC b to P1�b.
3) As an evaluator, for each b 2 F2, P1�b runs {M1�b[y

(i)]}i2[0,m)  Eval({M1�b[x
(i)]}i2[0,n),GC b).

4) For each b 2 F2, Pb computes y(i)
b := lsb(Kb[y

(i)] �Mb[y
(i)]) 2 F2 and hhy(i)

iib := (y(i)
b ,Kb[y

(i)] � y(i)
b · �b,Mb[y

(i)]) for
each i 2 [0,m). As a result, both parties hold BDOZ-style authenticated sharing hhy(i)

ii for each i 2 [0,m).

Rand: To compute SPDZ-style authenticated sharing JrK for a random r  F2 , two parties P0 and P1 do the following:
1) For each b 2 F2, Pb samples rb  F

2 , and then Pb and P1�b call functionality FaBit on respective inputs (auth, b, rb,) and
(auth, b,) to obtain respective outputs Mb[rb] and K1�b[rb].

2) Two parties define hhrii = (hhrii0, hhrii1), where hhriib := (rb,Kb[r1�b],Mb[rb]) for each b 2 F2, and run hhrii := B2F(hhrii)
and JrK := Convert(hhrii).

Pack: To pack BDOZ-style authenticated sharings {hhx(i)
ii}i2[0,) into one SPDZ-style authenticated sharing JxK such that x =P

i2[0,) x
(i)

· Xi
2 F2 , both parties run hhxii := B2F(hhx(0)

ii, . . . , hhx(�1)
ii) and JxK := Convert(hhxii).

Unpack: To unpack JxK into {hhx(i)
ii}i2[0,) such that x =

P
i2[0,) x

(i)
· Xi
2 F2 , two parties P0 and P1 do the following:

1) For each b 2 F2, Pb decomposes xb 2 F2 in JxKb as xb = (x(0)
b , . . . , x(�1)

b ) 2 F
2 such that xb =

P
i2[0,) x

(i)
b · Xi, and then

Pb and P1�b call FaBit on respective inputs (auth, b,xb,) and (auth, b,) to obtain respective outputs Mb[xb] and K1�b[xb].
2) Both parties define (hhx(0)

ii, . . . , hhx(�1)
ii) = hhxii := (hhxii0, hhxii1), where hhxiib := (xb,Kb[x1�b],Mb[xb]) for each b 2 F2.

3) Both parties run hhx̃ii := B2F(hhxii) and Jx̃K := Convert(hhx̃ii),
4) Both parties locally compute JyK := JxK� Jx̃K, and run sub-protocol ⇧BatchCheck (Figure 2) on input (JyK, 0) to check y = 0.

Open: To open x 2 F2 in JxK, where JxKb = (xb,Mb[x]) for each b 2 F2, P0 sends x0 2 F2 to P1, and P1 sends x1 2 F2 to
P0 in parallel. Two parties output x̃ := x0 � x1, and run sub-protocol ⇧BatchCheck (Figure 2) on input (JxK, x̃) to check x = x̃.

Check: The consistency of values, sent to FaBit or two parties, has been checked by running sub-protocol ⇧BatchCheck. All these
checks are done in a batch at the end of protocol execution.

Figure 4: Actively secure constant-round 2PC protocol with one-bit leakage in the (FaBit,Fcoin,Fcom)-hybrid model.

use sub-protocol ⇧BatchCheck to perform the verification of
dual execution, where garbled labels in the dual execu-
tion are transformed into BDOZ-style authenticated sharings
which are in turn converted into SPDZ-style ones.

Our 2PC protocol requires a garbling scheme (e.g., half-
gates [55]) to be compatible with free XOR [36]. In this
case, we can set the global key in authenticated sharings as
the global offset in free XOR. As a result, garbled labels
can be converted to BDOZ-style authenticated sharings. To
obtain garbled labels to evaluate a garbled circuit, the two
parties maintain the invariant that, for each wire carrying
bit x, they hold a BDOZ-style authenticated sharing hhxii.
Such a sharing can be obtained from (i) calling FaBit to
authenticate an input bit, or (ii) computing it from garbled
labels on the wire. Functionality FaBit allows the corrupted
party to choose its output, and thus it fails to comply with
the uniform distribution of 0-labels on input wires. Thus,
we randomize each 0-label with a public randomness r.

The correctness of garbling scheme gives M1�b[y(i)] =
Kb[y(i)]� y

(i) · �b for each b 2 {0, 1} and output bit y
(i).

From lsb(�0 ��1) = 1, we have

y
(i)
b � y

(i)
1�b = lsb(Kb[y

(i)]�Mb[y
(i)])� lsb(K1�b[y

(i)]

�M1�b[y
(i)]) = y

(i) · lsb(�b ��1�b) = y
(i)

.

Reactive 2PC. For the sake of simplicity, we describe
the protocol ⇧2PC (Figure 4) to securely compute a single
Boolean circuit. Nevertheless, protocol ⇧2PC is natural to
support reactive computation, as the state information can be
transferred via BDOZ-style authenticated sharings, and this
protocol realizes the efficient conversion between BDOZ-
style authenticated sharings and garbled labels in the dual
execution. Specifically, a reactive computation consists of a
series of circuits (C0, . . . , C`), and each circuit Cj takes as
input a state �j�1 and a bit string xj 2 {0, 1}n, and outputs
an updated state �j and a bit string yj 2 {0, 1}m. For each
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Boolean circuit Cj , our protocol ⇧2PC is able to take as input
hh�j�1ii and hhxjii and then output hh�jii and hhyjii. When
computing circuit Cj+1, ⇧2PC can use hh�jii and hhxj+1ii to
compute hh�j+1ii and hhyj+1ii. In this way, protocol ⇧2PC is
able to securely perform the whole reactive computation.
Security. The active security of protocol ⇧2PC is stated in
Theorem 1, and we give its proof in Appendix A.

Theorem 1. Let GS be a garbling scheme with oblivi-
ousness. Then, protocol ⇧2PC (Figure 4) securely realizes
functionality F2PC (Figure 3) against malicious adversaries
in the (FaBit, Fcoin, Fcom)-hybrid model.

5. Actively Secure Distributed Point Function
In Figure 6, we define an ideal functionality FDPF for

distributed point function in the active setting. Similarly, it
allows the adversary to make a single selective-failure query
by inputting a predicate. Then, we present an actively secure
two-party protocol ⇧DPF (shown in Figure 5) to instantiate
FDPF. In this protocol, we suppose that the BDOZ-style and
SPDZ-style authenticated sharings input by two parties have
been generated by executing the Input and Pack of protocol
⇧2PC. Our actively secure DPF protocol builds upon the
semi-honest DPF protocol [27], which is based on circular
correlation robust (CCR) hash functions [26], [25].

Definition 2. Let H : {0, 1} ! {0, 1}, � be a distribution
on {0, 1}, F+1, be a family of functions with (+1)-bit
input and -bit output, and Occr

H,�(x, b) := H(x��)�b ·�
be an oracle for x, � 2 {0, 1} and b 2 {0, 1}.

We say that H is (t, q, ⇢, ✏)-CCR if for any distinguisher
D running in time at most t and making at most q queries to
Occr

H,�(·, ·), and any � with min-entropy at least ⇢, it holds
���� Pr
� �

h
DOccr

H,�(·,·)(1) = 1
i
� Pr

f F+1,

h
Df(·,·)(1) = 1

i����

is at most ✏, where D cannot query both (x, 0) and (x, 1)
for any x 2 {0, 1}.

Compared to the prior semi-honest DPF protocol [27],
our actively secure protocol ⇧DPF performs a consistency
check on all leaf nodes. If a corrupted party sends an
incorrect share of a correction word and makes a wrong
guess on some prefix of ↵ to remove this error, then the
error will propagate in the tree expansion of ⇧DPF and fail
the check. Allowing the adversary to guess a prefix of ↵

leads to one-bit leakage.
Through a simple induction, protocol ⇧DPF ensures that,

for i 2 [0, n] and j 2 [0, 2i),

(s(i,j)b k t
(i,j)
b )�(s(i,j)1�b k t

(i,j)
1�b ) =

⇢
0, j 6= ↵

(0)
, . . . , ↵

(i�1)

�b ��1�b, otherwise

As lsb(�0 � �1) = 1, one can check that JuK is a vector
of SDPZ-style authenticated sharings on u = unit(N, ↵).
Moreover, given the above equality, v

(j) := v
(j)
b � v

(j)
1�b =

� 2 F2 and Mb[v(j)] � M1�b[v(j)] = Mb[�] � M1�b[�]
if and only if j = ↵. Thus, JvK is a vector of SPDZ-style
authenticated sharings on v = unit(N, ↵) · �.

Security. We state the security of our DPF protocol ⇧DPF

in Theorem 2, and provide its proof in Appendix B.

Theorem 2. Let H0 be a CCR hash function. Then,
protocol ⇧DPF (Figure 5) securely realizes functionality
FDPF (Figure 6) against malicious adversaries in the
(FaBit, Fcoin, Fcom)-hybrid model.

6. RAM-based 2PC with Active Security
We present our RAM-based two-party computation func-

tionality FRAM2PC in Figure 7, along with its instantiation
⇧RAM2PC in Figure 8. As discussed in Section 2, we follow
the blueprint in Floram [16], which was designed for the
semi-honest setting. We use a Read-Only Memory (ROM),
a Write-Only Memory (WOM), a refresh procedure syn-
chronizing these two types of memory, and a linear-scan
stash to store updates between two refresh procedures. For
readers who are familiar with Floram, we note that the main
difference is in the structure of ROM and WOM, which now
needs to store authenticated shares to prevent active attacks.
ROM and WOM structure. Consider an N -element mem-
ory D. In our protocol, two parties construct a WOM W
from D with each holding JW (i)K := JD(i)K for every
i 2 [0, N). They also build a ROM R where each has the
same value R

(i) := (D(i) kD
(i) · �) � F (k0, i) � F (k1, i)

for every i 2 [0, N), with k0, k1 2 F2 held by P0 and P1

respectively. Here, F : F2 ⇥ [0, N)! F2
2 is a PRF.

To realize a read operation on position ↵ from ROM,
two parties input hh↵ii and a dummy J�K (e.g., J�K = J0K)
to ⇧DPF. Then, JD(↵)K can be computed from using in-
ner product hR, {[u(i)]}i2[0,N)i to select its masked entry
[R(↵)] and removing mask [F (k0, ↵)� F (k1, ↵)], which is
computed using 2PC.

To implement a write operation from WOM such that
JD(↵)K is updated to JD(↵) � ✏K, two parties input hh↵ii and
a random J�K to ⇧DPF to obtain JuK and JvK. Then, they
open J✏� �K to obtain ✏ � � and compute the difference
J�K = JuK · (✏ � �) � JvK with � = unit(N, ↵) · ✏ 2 FN

2 .
Two parties update WOM JW K := JW K� J�K.
Stash-based lookup. After a write operation, the data in
ROM will no longer be current. we implement a linear-
scan stash, hhSii, in secure computation with maximum size
�. It is a temporary storage for all WOM updates that
have not yet been applied to ROM. Each element in hhSii
includes BDOZ-style authenticated sharings of an index and
the updated value at this index. The two parties use hhSii
with our ROM and WOM structures as follows:
• For a read operation, the two parties also search for a

valid value in hhSii with the index they intend to read. If
found, this value, rather than the value from ROM, will
returned as the output.

• For a write operation, the two parties clear all values in
hhSii with the same index in the current operation. Then,
they append this new updated value to hhSii.

Refresh procedure. Every write operation updates the
authenticated shares in WOM to reflect the most recent
content. However, as the stash grows, the cost to access
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Protocol ⇧DPF

This protocol invokes ⇧BatchCheck (Figure 2) as a sub-protocol.

Initialize: For each b 2 F2, Pb samples �b  F2 such that lsb(�b) = b, and sends (init, b,�b) to FaBit.

Protocol inputs: Two parties P0 and P1 hold n BDOZ-style authenticated sharings hh↵(i)
ii = (hh↵(i)

ii0, hh↵
(i)
ii1) for all i 2 [0, n)

as well as a SPDZ-style authenticated sharing J�K = (J�K0, J�K1). Let N = 2n for some n 2 N. Let H0 : {0, 1} ! {0, 1} be a
CCR hash function and H1 : {0, 1} ! {0, 1}2 such that H1(x) := H0(x) kH0(x� 1).

Generate SPDZ-style authenticated sharings of DPF outputs: Let hh↵(i)
iib = (↵(i)

b ,Kb[↵
(i)
1�b],Mb[↵

(i)
b ]) and J�Kb = (�b,Mb[�])

for each b 2 {0, 1}. The parties P0 and P1 do the following.
1) Both parties call Fcoin to sample a public randomness W 2 F2 . Each party Pb sets (s(0,0)b k t(0,0)b ) := �b �W 2 {0, 1}.
2) For each b 2 {0, 1}, for each i 2 [0, n), Pb computes the following:

CW(i)
b :=

⇣L
j2[0,2i) H0(s

(i,j)
b k t(i,j)b )

⌘
��b �

⇣
↵(i)
b ·�b � Kb[↵

(i)
1�b]�Mb[↵

(i)
b ]

⌘
2 {0, 1},

and sends CW(i)
b to P1�b. For each i 2 [0, n), both parties compute CW(i) := CW(i)

0 � CW(i)
1 , and each party Pb computes:

⇣
s(i+1,2j)
b k t(i+1,2j)

b

⌘
:= H0

⇣
s(i,j)b k t(i,j)b

⌘
� t(i,j)b · CW(i) for each j 2 [0, 2i),

⇣
s(i+1,2j+1)
b k t(i+1,2j+1)

b

⌘
:= H0

⇣
s(i,j)b k t(i,j)b

⌘
�

⇣
s(i,j)b k t(i,j)b

⌘
� t(i,j)b · CW(i) for each j 2 [0, 2i).

3) For each b 2 {0, 1}, Pb computes

CW(n)
b :=

⇣L
j2[0,N) H1(s

(n,j)
b k t(n,j)

b )
⌘
� (�b kMb[�]) 2 {0, 1}2,

and sends CW(n)
b to P1�b. Then, both parties compute CW(n) := CW(n)

0 � CW(n)
1 . For each b 2 {0, 1}, Pb computes

Ju(j)Kb :=
⇣
u(j)
b = t(n,j)

b ,Mb[u
(j)] = (s(n,j)

b k t(n,j)
b )

⌘
for each j 2 [0, N),

Jv(j)Kb =
⇣
v(j)b kMb[v

(j)]
⌘
:= H1

⇣
s(n,j)
b k t(n,j)

b

⌘
� t(n,j)

b · CW(n) for each j 2 [0, N).

4) As in the Rand process of protocol ⇧2PC (Figure 4), both parties call functionality FaBit to generate JrK with a random r 2 F2 .
Then, both parties call functionality Fcoin to sample a random challenge � 2 F2 , and locally compute

JaK :=
P

j2[0,N) �
j
· Ju(j)K +

P
j2[0,N) �

N+j
· Jv(j)K + JrK.

5) As in the Open process of protocol ⇧2PC, both parties open JaK to obtain ã = a0 + a1 2 F2 by letting P0 send a0 to P1 and
P1 send a1 to P0 in parallel. Then, both parties run sub-protocol ⇧BatchCheck (Figure 2) on input (JaK, ã) to check a = ã.

6) For each j 2 [0, N), both parties obtain Ju(j)K = (Ju(j)K0, Ju(j)K1) and Jv(j)K = (Jv(j)K0, Jv(j)K1).

Figure 5: Actively secure two-party protocol for DPF with one-bit leakage in the (FaBit,Fcoin,Fcom)-hybrid model.

it will grow; thus we need a refresh procedure to update
the content of ROM so that hhSii can be emptied. In this
procedure, each party Pb samples an secret key kb to mask
their authenticated shares for every i 2 [0, N) to obtain
R

(i)
b := (W (i)

b kMb[W (i)]) � F (kb, i). Then, it sends this
masked value to P1�b and computes R := Rb � R1�b.
Finally, each party inputs its secret key kb to the secure
computation to allow read operations. Note that a refresh
procedure requires no secure computation due to the ROM
and WOM structure.

Similar to Floram, a refresh procedure is invoked after �

write operations, and the stash-based lookup incurs an O(�)
overhead for both read and write operations. So, setting �

to O(
p

N) can achieve the best in the overall complexity.
Full private access. Similar to Floram, protocol ⇧RAM2PC

considers full private access to RAM. A full private access
refers to the functionality that, on input an oblivious function
F , an element D

(↵) in the memory, and auxiliary input aux,
update (D(↵)

, aux) := F (D(↵)
, aux).

We follow the blueprint of Floram to implement full

private accesses from our ROM and WOM structure and
stash. More specifically, the two parties do:
1) Perform a read operation to retrieve D

(↵).
2) Run 2PC protocol to compute F (D(↵)

, aux).
3) Perform a write operation to update D

(↵).

Optimization on read operations. In read operations of our
protocol, we only utilize {[u(i)]}i2[0,N) from ⇧DPF, which
is independent of �. We use a technique called tree-trimming
optimization [8], to avoid the expansion of last log  levels
of the tree in our DPF protocol and set � = 2(↵ mod ). We
note that J�K can be computed from secure computation,
and the bit decomposition of the only non-zero position in
{[v(i)]}i2[0,N/2) corresponds to that in the above utilized
{[u(i)]}i2[0,N). This optimization significantly improves the
efficiency of read operations for a large RAM size.
Achieving overall one-bit leakage. Note that our RAM-
based 2PC protocol ⇧RAM2PC calls the interfaces of ⇧2PC

and ⇧DPF, each of which invokes a consistency check that
leads to 1-bit leakage therein. Since the two checks follow
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Functionality FDPF

This functionality initializes two identifier-value lists Bit and
Val, where each value in Bit (resp., Val) is an element in F2

(resp., F2 ). It interacts with two parties P0 and P1.

Input: For b 2 {0, 1}, upon receiving (input, id, b, x) from
Pb and (input, id, b) from P1�b, where either x 2 F2 or
x 2 F2 , set either Bit[id] := x or Val[id] := x depending
on whether x is a bit or not.

Gen: Upon receiving (gen, {id(↵i)}i2[0,n), id, {id
(i)
}i2[0,2N))

from P0 and P1 where N = 2n, do the following:
1) Compute ↵ :=

P
i2[0,n) Bit[id

(↵i)] · 2i 2 [0, N) and set
� := Val[id] 2 F2 .

2) Perform the following:
(Val[id(0)], . . . ,Val[id(N�1)]) := unit(N,↵) 2 FN

2 ,

(Val[id(N)], . . . ,Val[id(2N�1)]) := unit(N,↵) · � 2 FN
2 .

Check: This command is allowed to be called only once.
Upon receiving (check) from both parties, do the following:
1) Wait for a predicate P : F|I|

2 ⇥ F|J |
2 ! F2 from the

adversary, where I (resp., J ) is the set of all available
identifiers in list Bit (resp., Val).

2) If P ({Bit[id]}id2I , {Val[id]}id2J ) = 0, abort.

Figure 6: Functionality for DPF with one-bit leakage.

Functionality FRAM2PC

This functionality initialize an identifier-value array Bit,
where each entry in Bit is an element in F2. It interacts with
two parties P0 and P1.

Initialize: Upon receiving (init, N) from both parties where
N = 2n, initialize a memory list D := (D(0), ..., D(N�1)) =
(0, . . . , 0) 2 FN

2 .

Input: For b 2 {0, 1}, upon receiving (input, id, b, x) from
Pb and (input, id, b) from P1�b with x 2 F2, set Bit[id] := x.

Private RAM read/write access: Upon receiving (access, F,
{id(↵,i)

}i2[0,n), {id
(aux,i)

}i2[0,`), {id
(aux0,i)

}i2[0,`)) from P0

and P1, where ` 2 N and F : {0, 1}⇥{0, 1}` ! {0, 1}⇥
{0, 1}` is a Boolean circuit, do the following:
1) Compute ↵ :=

P
i2[0,n) Bit[id

(↵,i)] · 2i 2 [0, N) and

aux :=
⇣
Bit[id(aux,0)], . . . ,Bit[id(aux,`�1)]

⌘
2 {0, 1}`.

2) Compute (D0(↵), aux0) := F (D(↵), aux).
3) Update D(↵) := D0(↵).
4) Set

⇣
Bit[id(aux

0,0)], . . . ,Bit[id(aux
0,`�1)]

⌘
:= aux0.

Check: This command is allowed to be called only once.
Upon receiving (check) from both parties, do the following:
1) Wait for a predicate P : F|I|

2 ⇥ FN
2 ! F2 from the

adversary, where I is the set of all identifiers in Bit.
2) If P ({Bit[id]}id2I ,D) = 0, abort.

Figure 7: Functionality for RAM-based 2PC with one-bit leakage.

the same form (i.e., calling sub-protocol ⇧BatchCheck), they
can be merged at the end of protocol ⇧RAM2PC. Intuitively,
this merged consistency check is performed only once so
that the adversary can only learn a one-bit predicate of all
inputs of the honest party and intermediate results from
whether the check passes or not. Meanwhile, all intermediate

transcripts exchanged by the two parties are indistinguish-
able from truly random values.
Security. We present our main theorem in Theorem 3. A
critical aspect of our protocol ⇧RAM2PC is its non-black-
box utilization of authenticated secret sharings generated in
our DPF protocol ⇧DPF. Thus, it will invoke ⇧DPF directly
instead of FDPF in a hybrid model. We provide a sketched
proof of this theorem in Appendix C.

Theorem 3. Let H0 be a CCR hash function and GS
be a garbling scheme whose obliviousness can be based
on CCR H0. Then, protocol ⇧RAM2PC (Figure 8) securely
realizes functionality FRAM2PC (Figure 7) against malicious
adversaries in the (FaBit, Fcoin, Fcom)-hybrid model.

7. Evaluation
We would like to study the performance of our protocol

in the following four aspects.
Q1 What is the cost of our actively secure protocol compared

to the state-of-the-art semi-honest ones?
Q2 How many improvements in efficiency are there when

comparing our protocol to state-of-the-art maliciously
secure ones?

Q3 What is the bottleneck of our protocol in different sce-
narios and array sizes?

Q4 What is the practical performance when putting our
protocol in end-to-end applications?

To answer these questions, we implement our protocol
and made code available in EMP [47]. Below, we provide
implementation details and setup, with the answers to all
questions.

7.1. Experimental Setup
We implement all of our protocol in C++ based on EMP

toolkit [47]. We instantiate FCOT using Ferret OT [53] and
instantiate PRFs using AES-128. All code is compiled using
gcc version 11.4.0, with -O3 optimization flag enabled.

Our benchmark is performed on a pair of AWS
R5.8xlarge instances, each with 32 vCPUs and 256
GB memory. To simulate a LAN network, we use two
instances in the same availability zone, and manually limit
the network bandwidth to 2 Gbps; the round-trip time (RTT)
between two instances is roughly 0.1 ms. To simulate a
WAN network, we limit the bandwidth to 100 Mbps and
set RTT to 60 ms using tc command. These settings are
similar to related prior works [45].

If not specified otherwise, we vary the number of ele-
ments in the array from 212 to 229, and use an element size
of 8 bytes, corresponding to up to 4 GiB of data. Read-only
operations refer to reading an element in the array without
any modification, and full-access operations support both
reading an element from the array and writing a new value
back. Our implementation of the dual-execution-based 2PC
is always single-threaded; other parts of our protocol are
multi-threaded when possible. We use 16 threads by default.
We set the stash size � of our protocol to

p
N/T/20 in the

LAN setting, and � :=
p

N/16 in the WAN setting, where
N is the size of RAM and T is the number of threads.
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Protocol ⇧RAM2PC

This protocol invokes ⇧2PC (Figure 4) and ⇧DPF (Figure 5) as two sub-protocols, and maintains three memories: the ROM R, WOM
JW K and stash hhSii. Let PRF : {0, 1} ⇥ [0, N)! {0, 1}2 be a pseudo-random function (PRF) and � 2 N denote the maximum
number of entries in a stash.

Initialize: Two parties P0 and P1 execute Initialize of sub-protocol ⇧2PC to initialize two global keys �0 2 F2 and �1 2 F2 .
Then, both parties execute as follows:
1) Both parties set JW (i)K := J0K for each i 2 [0, N) to initialize WOM JWK, and initialize stash hhSii := ;.
2) Both parties run the following Refresh procedure to initialize ROM R 2 FN

2 .
3) For an initial auxiliary input aux, both parties execute Input of sub-protocol ⇧2PC to generate hhauxii.
Full private access: To obliviously read or write an entry in the ↵-th position with ↵ 2 [0, N) and N = 2n, P0 and P1 hold
hh↵ii = (hh↵(0)

ii, . . . , hh↵(n�1)
ii) such that ↵(i)

2 {0, 1} for i 2 [0, n) and
P

i2[0,n) ↵
(i)

· 2i = ↵, and then do the following:
1) Both parties execute Rand of sub-protocol ⇧2PC to generate J�K with a random element � 2 F2 .
2) Both parties execute sub-protocol ⇧DPF on the input {hh↵(i)

ii}i2[0,n) and J�K to obtain JuK and JvK such that u (resp., v) is an
unit vector with exactly one nonzero entry u(↵) = 1 (resp., v(↵) = �).

3) Both parties locally compute a pair of unauthenticated additive sharings ([c], [d]) :=
P

i2[0,N)(R
(i)[0], R(i)[1]) · [u(i)], where

R(i) = (R(i)[0], R(i)[1]) 2 {0, 1}2 for i 2 [0, N), and [u(i)] for all i 2 [0, N) are the additive secret sharings defined in JuK.
4) P0 and P1 execute Eval of sub-protocol ⇧2PC on the input (hhk0ii, hhk1ii, hh↵ii, hhauxii) to perform the following computation:

a) If there exists an entry (hh↵ii, hhxii) in hhSii, set hhyii := hhxii. Otherwise, compute ([y], [y · �]) := PRF(hhk0ii, hh↵ii) �
PRF(hhk1ii, hh↵ii)� ([c]0, [d]0)� ([c]1, [d]1), set JyK = ([y], [y ·�]) and unpack JyK as hhyii. (Note that both parties can run
Unpack of sub-protocol ⇧2PC on the input JyK to generate hhyii.)

b) Compute (hhy0
ii, hhaux0ii) := F (hhyii, hhauxii).

c) If there exists an entry (hh↵ii, hhxii) in hhSii, set the entry as (?,?) and add (hh↵ii, hhy0
ii) to hhSii.

5) Both parties update hhauxii as hhaux0ii, and run Pack of sub-protocol ⇧2PC on the input hhyii to generate JyK.
6) P0 and P1 run Jy0K := Convert(hhy0

ii), and then locally compute J�K := J�K� JyK� Jy0K. Then, both parties execute Open of
sub-protocol ⇧2PC open J�K to obtain � 2 {0, 1}.

7) For i 2 [0, N), both parties locally compute and update JW (i)K := JW (i)K� � · Ju(i)K� Jv(i)K, meaning that JW K is updated.
8) If the number of entries in stash hhSii is identical to �, both parties run the following Refresh procedure.
Refresh: Both parties clear the stash, i.e., set hhSii := ;, and then do the following:
1) For each b 2 {0, 1}, Pb samples kb = (k(0)

b , . . . , k(�1)
b )  {0, 1}, which is used as a PRF key, and both parties execute

Input of sub-protocol ⇧2PC on the input bits k(i)
b for i 2 [0,) to generate hhkbii.

2) For each b 2 {0, 1}, for each i 2 [0, N), Pb computes R(i)
b = (R(i)

b [0], R(i)
b [1]) := JW (i)Kb � PRF(kb, i) 2 {0, 1}2 and sends

R(i)
b to P1�b.

3) Both parties compute R by setting R(i) := R(i)
0 �R(i)

1 2 {0, 1}2 for each i 2 [0, N), and also obtain hhk0ii and hhk1ii.

Figure 8: Actively secure protocol for RAM-based 2PC with one-bit leakage.
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Figure 9: Wall-clock time of an access operation using our protocol, Floram and Duoram in LAN and WAN settings. Solid lines
are for full-access operations, which support both read and write operations; dashed lines are for read-only operations. Each entry in the
array has 8 bytes. All timings are average of a sufficiently large number of accesses.

7.2. Overhead Compared to Semi-Honest Protocols

Floram [16] and Duoram [45] are the state-of-the-art
RAM-based 2PC protocols secure against semi-honest ad-

versaries in the LAN and WAN settings, respectively. To
understand the overhead of our protocol, we compare our
cost with the cost of Floram and Duoram in both network
settings and on both read-only and full-access operations.
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Since some protocols need cost amortization, we run a
sufficient number of accesses and report the average wall-
clock time across all operations.

We show the result in Figure 9. In the LAN setting,
Floram is approximately 2⇥ faster than our protocol on both
read-only and full-access operations. On the other hand,
our protocol is about 1 � 2 orders of magnitude faster
than Duoram on both operations. In the WAN setting, our
protocol, interestingly, is roughly 2⇥ faster than Floram on
full-access operations and has an advantage on read-only
operations. Compared with Duoram, it is slower when the
array size is less than 221 elements. Regarding the impact of
access operation types, full-access operations require about
a 50% extra cost compared to read-only operations in the
WAN setting and incur a five-fold overhead in the LAN
setting in our protocol and Floram. For Duoram, their read-
only and full access have similar performance.

Our protocol only imposes a constant overhead on top
of Floram; thus its performance is similar to Floram’s. In
particular, we need roughly 2⇥ overhead in both secure
computation and local expansion of trees needed in DPF. At
the same time, since our underlying malicious secure DPF
protocol integrates optimizations shown in Half-Tree [27],
our protocol shows nearly no overhead for active security
compared to Floram. When compared to Duoram, our pro-
tocol needs O(log N) rounds for an access operation to an
array of size N , but Duoram has an amortized constant
roundtrips by performing an offline phase for log N opera-
tions together. As a result, our protocol performs worse than
Duoram when the array size is small in the WAN setting.
However, when the array size is sufficiently large or in the
LAN setting, our protocol still outperforms Duoram because
computation is the bottleneck, not the roundtrip. Regardless,
one can conclude that our active protocol is competitive with
state-of-the-art semi-honest protocols.

7.3. Comparison to SOTA Active Protocols
The state-of-the-art maliciously secure protocol is

KY18 [35]. As mentioned before, this protocol uses a
generic compilation from malicious MPC [37], [38], [32]
and ORAM protocol [46] to RAM-based MPC. Their ac-
tively secure MPC is instantiated by a SPDZ protocol with
an offline and an online phase. We contacted the authors and
utilized their script to obtain an accurate estimation of the
cost of KY18. We first calculate the number of field multi-
plication triples for an access operation from the number of
AND gates required; then we estimate the wall-clock time
based on the state-of-the-art triple generation protocol [33]
instead of MASCOT used in KY18 for the most up-to-date
estimation. We also compare against a possible combination
by using the authenticated garbling [48] (dubbed KY18-
AGC) instead of SPDZ-BMR. KY18 noted that such a
combination might not be compatible with their memory
optimizations and put it an open problem; nevertheless, it
represents a hypothetical best possible solution. Since KY18
has the same complexity on read and write operations, we
compare one full-access operation of our protocol (which
supports both), and one write operation of KY18 and KY18-
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Figure 10: Wall-clock time of a full-access operation using our
protocol, KY18 and KY18-AGC in both network settings. Solid
lines are in LAN settings; dashed lines are in WAN settings.

AGC. Note that the results for KY18 and KY18-AGC are
depicted for array sizes ranging from 29 to 224 8-byte
elements; this is because KY18 only provides the number
of AND gates required for these array sizes.

We report the comparison result in Figure 10 and can
observe that our protocol consistently outperforms KY18
by about two orders of magnitude in both network settings.
It is also nearly one order of magnitude faster than the
hypothetical result KY18-AGC. However, it’s important to
mention that our protocol has a one-bit leakage to the overall
protocol (not each access operation); thus it presents a trade-
off between security and efficiency. Additionally, we observe
a trend that the performance gap of our protocol between
LAN and WAN settings narrows as the array size increases
due to the increasing cost of computation. This does not
happen for KY18, as their computation complexity is also
sublinear. So, for the commonly used array size in MPC
applications, our protocol provides a much better trade-off
and enables efficient access with just one-bit leakage.

7.4. Microbenchmarks
We delve into our protocol and analyze the cost of

each part of an access operation. We divide the cost of
an access operation into six steps: 1) DPF generation; 2)
memory access to read secret shares from public encrypted
ROM; 3) secure evaluation of PRFs; 4) secure linear scan of
stash; 5) memory access to write authenticated secret shares
to WOM; 6) refresh cost amortized over each full-access
operation. Note that a full-access operation has all these 6
steps while a read-only operation only has the first 4 steps.

We record the average wall-clock time of each part for
a full-access operation as well as a read-only operation for
array of size 224, 226, and 228 in different network settings.

Figure 11a presents the cost breakdown of an access
operation in different scenarios with LAN settings. In a
full-access operation, the cost of securely computing PRF
remains constant, but other costs increase as the array size
increases. Notably, the cost of computing PRF becomes the
bottleneck with small array sizes, but it is minor when
the size is sufficiently large. Refresh and stash scanning
costs take an insignificant portion of the total costs across
all scenarios. Conversely, the costs of DPF generation and
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Figure 11: Cost breakdown of an access operation in different scenarios. N is the size of an array and T is the maximum
number of threads used. Op=R denotes a read-only operation, and Op=W denotes a full-access operation. Elements in the
array have a size of 8 bytes. The wall-clock time of each part is averaged from a number of access operations, which is
multiple of the refresh period.

memory access increase approximately linearly with the
array size, becoming the primary expense when the array
size is sufficiently large. Applying parallelization can effi-
ciently mitigate it, and our protocol with 16 threads performs
approximately twice as fast as using only one thread by
utilizing multithreading in local computation. We also notice
the bottleneck in a read-only operation differs from that in a
full-access operation, where scanning ROM memory rather
than DPF generation becomes the primary cost in read-only
operations since our protocol requires a relatively small DPF
tree with tree-trimming optimization in Section 6.

In WAN settings, as illustrated in Figure 11b, the cost
distribution significantly differs. Local memory access takes
a minor fraction of the total cost of an access operation,
thus multithreading has a minor effect on mitigating the
overall costs. Meanwhile, 2PC (including PRF and stash
scanning) along with the refresh procedure incur a con-
siderably higher cost due to bandwidth limitations, and
become the bottlenecks of an access operation for large
array sizes. While DPF generation remains the principal
cost factor, unlike in LAN settings, it does not increase
linearly with the array size. This is because the latency from
round complexity contributes significantly to the cost since
there is an O(log N) round complexity on DPF generation.
Compared to a full-access operation, DPF generation in a
read-only operation is faster since roughly log  rounds are
eliminated from tree-trimming optimization.

7.5. RAM Applications
To benchmark the performance of our protocol in real-

world scenarios, we extend our protocol to several RAM
applications: oblivious binary search, stable matching and
the scrypt function. We report all the results in Table 1 and
present our experiments in detail below.
Binary search. RAM-based MPC protocols can obliviously
execute binary searches on an array with a few access

Benchmark Parameters LAN (sec) WAN (sec)

Binary Search
1 search 81.68 185.2

25 searches 120.42 1118.7
210 searches 1894.23 30989.6

Gale-Shapley
23 pairs 9.2 268.7
26 pairs 670.3 19975.0
29 pairs 44476.1 about 19 days

Scrypt
N = 25, r = 8 42.1 1159.1
N = 210, r = 1 167.6 4721.4
N = 210, r = 8 1396.4 41022.7

TABLE 1: Summary of benchmark results. All results are
wall-clock time in seconds if not specified. The array con-
tains 225 8-byte elements for all binary search benchmarks.

operations. The performance of such searches in an array
has been benchmarked in various protocols [23], [56], [16].

We extend our protocol and implement an oblivious
binary search. It needs O(log N) read-only operations for
each search on an array of N elements. To evaluate it, we set
the array size of 225 8-byte elements, and record the wall-
clock time of executing 1, 25, and 210 searches on both
network settings. This time is composed of initialization of
RAM structure and performing read-only operations.
Stable matching. Gale-Shapley algorithm [18] is a typical
solution to the stable matching problem. We extend our
RAM-based 2PC protocol to implement an oblivious ver-
sion of the Gale-Shapley algorithm, aimed at benchmarking
performance in a complex, end-to-end application.

Our implementation closely follows the origin Gale-
Shapley algorithm, and it requires O(n2) access operations
of arrays size of up to n

2 elements for matching n pairs.
We evaluate the wall-clock time for full protocol exe-

cution, including tests with 8, 64 and 512 pairs in LAN
settings and 8 and 64 pairs in WAN settings. We also
estimate the wall-clock time for 512 pairs in WAN settings
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based on the microbenchmark results mentioned above. We
notice since the array size is not sufficiently large, securely
computing PRF is the primary overhead for access oper-
ations. Consequently, our protocol shows a relatively poor
performance when the number of pairs is small, but becomes
efficient as the pair count increases. Doerner et al. [15]
proposed serveral optimzied algorithms for stable matching,
all of which can be implemented using the building blocks
proposed in this paper as well.
Scrypt. Scrypt is a key derivation function intended to
provide resistance against parallelized brute-force attacks
by using a large amount of memory. We implement an
oblivious scrypt function to enable securely executing some
cryptographic functions using RAM-based 2PC.

We denote the cost factor of a scrypt function by N , the
parallelization factor by p, and the block size factor by r.
Our implementation requires O(Nr) read-only operations
of an array size of Nr 1Kbit elements for computing a
function. We select three representative parameters [42] and
benchmark each of them in both network settings.

8. Future Work
Castro and Polychroniadou [14] proposed a malicious

DPF protocol in a weaker model with two servers and one
client where at most one party can be corrupted. It is a
future work to apply our optimizations to their model. It
would also be interesting to apply this protocol to improve
the concrete efficiency of slient correlation generation.
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Appendix A.
Proof of Theorem 1

Theorem 1. Let GS be a garbling scheme with oblivi-
ousness. Then, protocol ⇧2PC (Figure 4) securely realizes
functionality F2PC (Figure 3) against malicious adversaries
in the (FaBit, Fcoin, Fcom)-hybrid model.

Proof (Sketch). As the two parties are symmetric in ⇧2PC,
we w.l.o.g. assume that Pb is corrupted and P1�b is honest
for some fixed b 2 {0, 1}. Simulator S2PC extracts �b 2
F2 from emulated FaBit (and aborts if lsb(�b) 6= b) and
maintains the secret share of corrupted Pb for each BDOZ-
or SPDZ-style authenticated sharing.

In particular, maintaining such shares is straightforward
for all input bits (in Input), random values (in Rand) and
unpacked bits (in Unpack) since S2PC emulates FaBit. In
Eval, S2PC sends a uniformly random GC 1�b (which is
indistinguishable from a real one due to obliviousness) to
corrupted Pb, and uses �b and the extracted secret shares
of Pb to evaluate garbled circuit GC 1�b to compute Pb’s
secret shares of the BDOZ-style authenticated sharings of
circuit outputs. As Pack only includes local computation,
S2PC follows the same computation to maintain shares.

Given the extracted secret shares of corrupted Pb, S2PC

works as follows. In Input, S2PC extracts all input bits of
corrupted Pb from emulated FaBit and sends them to F2PC.
In Open, S2PC receives x 2 F2 from F2PC and sends
x1�b := x � xb to Pb, where xb is given by the extracted
Pb’s secret share of SPDZ-style authenticated sharing JxK.
In Check, S2PC emulates Fcoin to get � 2 F2 and extracts
Vb 2 F2 from emulated Fcom. Moreover, S2PC constructs
a predicate (i.e., a mixed circuit) P such that, on input all
values authenticated in BDOZ or SPDZ style in ⇧2PC (or
equivalently, all values stored in F2PC), it uses these inputs,
the extracted inputs and secret shares of Pb, and the public
random coins to define V1�b 2 F2 in an equivalent way
and outputs 1 if and only if V1�b = Vb.

The two worlds are indistinguishable unless the adver-
sary breaks the obliviousness of garbling schemes or leads
to a non-negligible difference in abort probability. Note that
the latter difference is negligible given uniform �.

Appendix B.
Proof of Theorem 2
Theorem 2. Let H0 be a CCR hash function. Then,
protocol ⇧DPF (Figure 5) securely realizes functionality
FDPF (Figure 6) against malicious adversaries in the
(FaBit, Fcoin, Fcom)-hybrid model.

Proof (Sketch). As the two parties are symmetric in ⇧DPF,
we w.l.o.g. assume that Pb is corrupted and P1�b is hon-
est for some fixed b 2 {0, 1}. Simulator SDPF extracts
�b 2 F2 from emulated FaBit (and aborts if lsb(�b) 6= b)
and maintains all secret shares held by corrupted Pb. These
shares can be computed from public randomness W and the
extracted �b, each hh↵(i)iib, and J�Kb.

SDPF sends a uniformly sampled CW(i)
1�b to corrupted Pb

for each i 2 [0, n]. This is indistinguishable from the real-
world execution, where CW(i)

1�b = CW(i) � CW(i)
b , since

CW(i) is pseudorandom given a CCR hash function H0 and
the entropy of �1�b. SDPF also receives CW(i)

b
0 from cor-

rupted Pb to extracts additive noise �
(i) := CW(i)

b
0 �CW(i)

b
for each i 2 [0, n].

To simulate batch check, SDPF sends a uniformly ran-
dom a1�b to corrupted Pb. Then, it constructs a predicate
P such that, on input all values authenticated in BDOZ or
SPDZ style in ⇧DPF (or equivalently, all values stored in
FDPF), it uses a prefix ↵

(0)
, . . . , ↵

(`�1) for some maximal
` 2 [0, n] such that �

(`) 6= 0, the extracted secret shares
of corrupted Pb, and the public random coins to (i) remove
additive noises on the prefix path per level, and (ii) follow
the protocol specification of Pb to compute V

0
b 2 F2 . This

predicate outputs 1 if and only if V
0
b = Vb, which is extracted

from emulated Fcom.
The two worlds are indistinguishable unless the adver-

sary breaks the CCR security of H0 or leads to a non-
negligible difference in abort probability. Note that the latter
difference is negligible given uniform �.

Appendix C.
Proof of Theorem 3
Theorem 3. Let H0 be a CCR hash function and GS
be a garbling scheme whose obliviousness can be based
on CCR H0. Then, protocol ⇧RAM2PC (Figure 8) securely
realizes functionality FRAM2PC (Figure 7) against malicious
adversaries in the (FaBit, Fcoin, Fcom)-hybrid model.

Proof (Sketch). Since the two parties are symmetric in
⇧RAM2PC, we w.l.o.g. assume that Pb is corrupted and P1�b
is honest for some fixed b 2 {0, 1}. Note that protocol
⇧RAM2PC invokes two sub-protocols ⇧2PC and ⇧DPF as sub-
routines. Simulator SRAM2PC can invoke simulator S2PC and
SDPF to simulate the transcripts of the two sub-protocols.
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A subtle issue is that, since ⇧2PC and ⇧DPF share the same
global authentication keys �0 and �1, the indistinguisha-
bility between these transcripts and truly random values
sampled in SRAM2PC (as per invoked S2PC and SDPF) cannot
be reduced to the obliviousness of garbling schemes or
the CCR security of H0 in a black-box way. However, we
note that the obliviousness of garbling schemes can also be
based on CCR [55], [43]. So, we can use a CCR-based
garbling scheme in a non-black-box way and prove the
above indistinguishability using CCR.

Except the transcripts sent in the two sub-protocols, the
only additional transcript exchanged between the two parties
is in Refresh procedure. This transcript is indistinguishable
from a truly random value, which is sampled by SRAM2PC,
due to the PRF security.

To incur abort in the ideal world with nearly the same
probability in the real world, SRAM2PC constructs a predicate
P in Check such that it “stacks” the predicates in S2PC

and SDPF according to how the real execution of ⇧RAM2PC

invokes the commands in ⇧2PC and ⇧DPF. The abort prob-
ability can have negligible difference in the two worlds due
the uniformness of �.

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary of Paper
The paper introduces cryptographic constructions for

enhancing the efficiency of actively secure two-party com-
putation (2PC) RAM programs, providing security against
static malicious adversaries. The authors propose an efficient
protocol for distributed point function (DPF) as a key com-
ponent, employing a dual execution strategy to enhance the
security from semi-honest to malicious corruption. Despite
incurring a one-bit leakage as a trade-off, empirical eval-
uations showcase the protocol’s effectiveness over existing
semi-honest protocols in achieving malicious security while
minimizing overhead.

D.2. Scientific Contributions
Provides a Valuable Step Forward in an Established Field

D.3. Reasons for Acceptance
• Proposes an efficient actively secure Distributed Point

Function (DPF) construction.
• Introduces a novel approach for malicious security in

RAM-based two-party computation (2PC), incorporating
a single bit of leakage.

• Achieves up to two-order-of-magnitude improvement in
performance over existing malicious RAM-based 2PC.

• Open sourced benchmarking code for the proposed pro-
tocol.

D.4. Noteworthy Concerns
• The current version exclusively supports Boolean com-

putations, lacking discussion on extending support for
arithmetic computations.

• The paper’s current writing style is dense, potentially
hindering accessibility for non-experts.

• There’s a need for improved clarity in distinguishing
existing ideas from the new techniques proposed in the
paper.

• The paper lacks a comparison with the related work
“Lightweight, Maliciously Secure Verifiable Function Se-
cret Sharing. EUROCRYPT’22,” which could provide
valuable insights and context.

• The authors implemented a non-optimized version of
Gale-Shapley, despite asserting that all required building
blocks are present in the paper.
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