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Abstract—Real-time machine learning (ML) has recently attracted sig-
nificant interest due to its potential to support instantaneous learning,
adaptation, and decision making in a wide range of application domains,
including self-driving vehicles, intelligent transportation, and industry
automation. In this paper, we investigate real-time ML in a federated
edge intelligence (FEI) system, an edge computing system that imple-
ments federated learning (FL) solutions based on data samples col-
lected and uploaded from decentralized data networks, e.g., Internet-of-
Things (IoT) and/or wireless sensor networks. FEI systems often exhibit
heterogenous communication and computational resource distribution,
as well as non-i.i.d. data samples arrived at different edge servers,
resulting in long model training time and inefficient resource utilization.
Motivated by this fact, we propose a time-sensitive federated learning
(TS-FL) framework to minimize the overall run-time for collaboratively
training a shared ML model with desirable accuracy. Training accel-
eration solutions for both TS-FL with synchronous coordination (TS-
FL-SC) and asynchronous coordination (TS-FL-ASC) are developed.
To address the straggler effect in TS-FL-SC, we develop an analytical
solution to characterize the impact of selecting different subsets of edge
servers on the overall model training time. A server dropping-based
solution is proposed to allow some slow-performance edge servers to
be removed from participating in the model training if their impact on
the resulting model accuracy is limited. A joint optimization algorithm is
proposed to minimize the overall time consumption of model training
by selecting participating edge servers, the local epoch number (the
number of model training iterations per coordination), and the data batch
size (the number of data samples for each model training iteration).
Motivated by the fact that data samples at the slowest edge server

Corresponding Author: Yingyu Li
Y. Xiao is with the School of Electronic Information and Communications at

the Huazhong University of Science and Technology, Wuhan 430074, China,
also with the Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China,
and also with the Pazhou Laboratory (Huangpu), Guangzhou, Guangdong
510555, China (e-mail: yongxiao@hust.edu.cn).

X. Zhang is with the School of Electronic Information and Communications
at the Huazhong University of Science and Technology, Wuhan, China 430074
(e-mail: xiaohanzhang@hust.edu.cn).

Y. Li is with the School of Mechanical Engineering and Electronic In-
formation, China University of Geosciences, Wuhan, China 430074 (e-mail:
liyingyu29@cug.edu.cn).

G. Shi is with the Peng Cheng Laboratory, Shenzhen, Guangdong
518055, China, also with the School of Artificial Intelligence, the Xid-
ian University, Xi’an, Shaanxi 710071, China, and also with the Pazhou
Laboratory (Huangpu), Guangzhou, Guangdong 510555, China (e-mail:
gmshi@xidian.edu.cn).

M. Krunz is with the Department of Electrical and Computer Engineering,
the University of Arizona, Tucson, AZ 85721 (e-mail: krunz@arizona.edu).

D. Nguyen and D. Hoang are with the School of Electrical and Data
Engineering, University of Technology Sydney Faculty of Engineering and
Information Technology, 120558 Sydney, New South Wales, Australia (e-mail:
{hoang.dinh, diep.nguyen}@uts.edu.au).

may exhibit special characteristics that cannot be removed from model
training, we develop an analytical expression to characterize the impact
of both staleness effect of asynchronous coordination and straggler
effect of FL on the time consumption of TS-FL-ASC. We propose a load
forwarding-based solution that allows a slow edge server to offload part
of its training samples to trusted edge servers with higher processing
capability. We develop a hardware prototype to evaluate the model
training time of a heterogeneous FEI system. Experimental results show
that our proposed TS-FL-SC and TS-FL-ASC can provide up to 63%
and 28% of reduction, in the overall model training time, respectively,
compared with traditional FL solutions.

Index Terms—Time-sensitive machine learning, edge intelligence, fed-
erated learning, asynchronous coordination.

1 INTRODUCTION

The proliferation of smart applications that require real-
time learning, adaptation, and decision making, such as self-
driving vehicles, intelligent transportation systems [1], and
Tactile Internet [2], has significantly increased the demand
for machine learning (ML)-enabled solutions that support
fast proactive learning and model construction based on
large datasets. The so-called real-time ML has recently at-
tracted significant interest due to its potential to quickly
solve unfamiliar problems and self-adapt to unknown sit-
uations [3]. Existing ML solutions are often computational
demanding and rely on large datasets to be collected and
pre-loaded into a centralized location, e.g., cloud data center,
and are therefore infeasible for real-time operation. Recent
concerns over data privacy further exacerbate the challenge,
as some “local” users do not wish to disclose their datasets
to the high-performance data center due to privacy concerns
or regulation restrictions.

A highly promising solution is federated learning (FL)
[4], an emerging ML framework that enables multiple
servers to jointly train a shared model without exposing
the private data owned by individual users. The key idea
is to allow edge servers to train local ML models using their
local data samples and periodically coordinate with each
other through their locally trained model parameters [5],
[6]. Federated edge intelligence (FEI) [7], [8], is an emerging
paradigm that focuses on the implementation of FL-based
solutions in edge computing systems. FEI has recently been
promoted by both industry and academia as a key candidate
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solution in the next generation mobile technologies, e.g.,
beyond 5G and 6G [9], [10].

Although FEI has the potential to protect data privacy,
enable parallel computation, and avoid the delay of trans-
porting raw data samples to the cloud data center, it brings
new challenges when applied to real-time ML applications.
First, the performance of FEI can be affected by both compu-
tation and communication-related performance metrics, in-
cluding the processing capabilities of edge servers (clients),
data collection and uploading delay of data collecting de-
vices, frequency of coordination during model training,
and communication bandwidth between edge servers and
the coordinator. These challenges significantly increase the
complexity to search for the optimal solution to minimize
the overall run-time of training the ML model. For example,
reducing the number of local training iterations between
successive coordination rounds may accelerate the conver-
gence speed. It however increases the frequency of model
coordination which will result in high communication delay.
Similarly, processing more local training samples during
each iteration reduces the required number of model coordi-
nation rounds to reach the target model accuracy. However,
it also slows down the data loading speed and increases the
computational time in each iteration. How to jointly opti-
mize computation and communication-related parameters
to minimize the overall time consumed for model training
is still an open problem. Furthermore, traditional FL, espe-
cially FL with synchronous coordination, is known to suffer
from the straggler effect [11], i.e., the overall ML model train-
ing delay is dominated by the slowest edge server. There is
still lacking a comprehensive solution that can alleviate the
straggler effect and expedite the model training speed in
FEI systems under both system heterogeneity, i.e., various
hardware and software resources available at different edge
servers, and data heterogeneity, i.e., non-i.i.d. distributions
of data samples across different edge servers. Recent studies
have investigated FL with asynchronous coordination in
which each edge server does not have to wait for other edge
servers, but can request an instantaneous model update
from the coordinator. However, previous works suggest that
the asynchronous coordination often results in degraded
convergence performance, compared to the synchronous
coordination solutions [12], due to the staleness effect, that is
the increasing difference in the model updating frequencies
between edge servers with different computational speeds
and communication bandwidths will result in out-of-date
models at some slow edge servers, especially when the total
number of model coordination rounds becomes large.

In this paper, we propose the time-sensitive FL (TS-FL)
framework, which aims at minimizing the overall runtime
for training an ML model with the guaranteed accuracy,
the percentage of the correct predictions among all the
predictions made by the trained model. In contrast to ex-
isting works that focus on reducing the required number
of stochastic gradient descent (SGD) coordination rounds
for model training [13], the overall runtime needed to con-
struct an ML model is a much more important performance
metric in many real-world applications, especially the time-
sensitive applications. We observe that, in many practical
systems, the required number of SGD coordination rounds
and the overall runtime for model training may not follow
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Fig. 1. (a) Model accuracy vs. training time, and (b) model accuracy vs.
number of coordination rounds under two FL model training schemes:
Scheme 1 (200 local epoch number, 20 mini-batch size) and Scheme 2
(200 local epoch number, 10 mini-batch size). The target accuracy of
the trained model is set to 98.5%.

the same trend, i.e, a smaller number of SGD rounds does
not always mean shorter runtime for training the model
with the same accuracy. To shed more light on this observa-
tion, we conduct experiments on a hardware prototype that
consists of 20 Raspberry Pis (version 4B) serving as edge
servers. These mini-computers are connected to a dedicated
Raspberry Pi, which serves as the coordinator, via a Wi-
Fi router. We compare the required time consumption (in
Fig. 1(a)) and the number of SGD coordination rounds (in
Fig. 1(b)) for training a shared handwritten digit recognition
model based on the MINIST dataset with the same require-
ment in terms of the model prediction accuracy (e.g., 98.5%)
under two different schemes of model training parameters,
labelled as Schemes 1 and 2, respectively. We can observe
that, although Scheme 2 requires a smaller number of SGD
coordination rounds than Scheme 1 for training the model
with the required accuracy, it consumes more time for model
training than Scheme 1. In other words, the number of SGD
rounds cannot fully characterize the overall runtime of the
learning process in a heterogeneous FEI system.

Motivated by the above observation, in this paper, we
investigate model training time-acceleration solutions for
two types of TS-FLs: TS-FL with synchronous coordination
(TS-FL-SC) and TS-FL with asynchronous coordination (TS-
FL-ASC). In TS-FL-SC, the coordinator updates the global
model when it receives the local models from all the edge
servers selected for participating in model training. To
alleviate the straggler effect of TS-FL-SC, we develop an
analytical solution that characterizes the impact of selecting
different subsets of edge servers on the overall model train-
ing time. We then develop a server dropping-based solution
in which some slow-performing edge servers are removed
from participating in model training so long as their impact
on the model accuracy is limited. A novel algorithm is
proposed to jointly optimize the selection of participating
edge servers, number of local epochs (i.e., number of model
training iterations between two successive coordination
rounds), and data batch size (data samples used for each
local model training iteration) so as to minimize the overall
time of model training. Motivated by the fact that, in some
scenarios, data samples at the slowest edge server may
exhibit special characteristics that are essential for resulting
model accuracy, we consider the TS-FL-ASC, where model
coordination among edge servers can be asynchronous. In
particular, for TS-FL-ASC, we develop an analytical ex-
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pression to characterize the staleness effect of asynchronous
coordination systems. To reduce staleness and alleviate the
straggler effect in this case, we propose a load forwarding-
based solution that allows slow edge servers to offload
part of their training datasets to other trusted edge servers
with high processing capabilities. Extensive experiments are
conducted based on a hardware prototype consisting of
different versions of Raspberry Pi mini-computers (versions
4B and 3A), which we use to simulate model training time
under various scenarios.

To the best of our knowledge, this is the first work that
investigates the time-sensitive FEI systems with precision
guarantee by jointly optimizing server dropping, multi-
variate parameter control, as well as asynchronous load
offloading under both system heterogeneity and data het-
erogeneity.

The main contributions of this paper are as follows:

(1) Time-sensitive FL for Heterogeneous FEI: We pro-
vide a unified analytical model that quantifies the
impact of different training parameters on the time
needed for different steps throughout the entire
model training process for both TS-FL-SC and TS-
FL-ASC.

(2) New Theoretical Results and an Optimization Al-
gorithms: We derive new theoretical results as well
as optimization solutions for both TS-FL-SC and TS-
FL-ASC. In particular, for TS-FL-SC, we derive an
analytical upper bound to characterize the overall
model training time under different selections of
participating edge servers as well as combinations
of their model training parameters. We also develop
an optimization algorithm that can select the optimal
subset of participating edge servers and their param-
eters so as to minimize the model training time for an
FEI system with both system and data heterogeneity.
For TS-FL-ASC, we derive a new theoretical conver-
gence result with non-independent and identically
distributed (non-i.i.d.) data samples at edge servers.
We propose a load forwarding-based solution in
which slow edge servers can offload part of their
training datasets to trusted edge servers with higher
processing capability. We prove that the training time
minimization problem based on our derived bound
is biconvex and then develop a novel algorithm to se-
lect the optimal subset of participating edge servers
as well as their model training parameters that can
minimize the overall model training time.

(3) Extensive Experiments Based on a Hardware Plat-
form: We develop a hardware platform consisting of
23 low-cost mini-edge servers (Raspberry Pi mini-
computers) with various computing capabilities. Ex-
tensive experiments are conducted to evaluate the
model training time under various setups. Experi-
mental results have shown that our proposed TS-FL-
SC and TS-FL-ASC can, respectively, provide up to
59.31% and 57.24% of reduction in the overall model
training time compared to the existing FL solutions.

The remainder of this paper is organized as follows.
Related works are reviewed in Section 2. We introduce the
system model and problem formulation in Section 3. TS-

FL-SC and TS-FL-ASC are introduced in Sections 4 and 5,
respectively. Numerical results are presented in Section 6,
and the paper is concluded in Section 7.

2 RELATED WORK

FEI in Wireless Networks: By integrating federated learn-
ing into edge intelligence, FEI enables collaborative learning
and model construction based on decentralized datasets
across a large networking system [10]. Most existing works
have focused on optimizing the allocation of communica-
tion and computational resources to improve the efficiency
of FEI systems. The authors in [14] developed algorithms
that can dynamically control the frequency of global aggre-
gation at edge servers to improve the resource utilization
and also reduce the energy consumption of a 5G-based
edge networking system. Recently, FEI has been also ex-
tended into semantic communications [15], especially the
implicit semantic-aware networks which allows the net-
working systems to automatically infer hidden information
such as hidden rules and mechanisms from the commu-
nicated messages [16]–[18]. Although these works have
shown significant progress in improving the communication
and computational efficiency of FEI networks, they mainly
focused on the impact of a single parameter, e.g., model
updating frequency, local epoch number, or the selection of
edge servers for participating model training, etc. Analytical
frameworks that can characterize the impact of various
combinations of key parameters on the performance of FEL
networking systems are still lacking.
FEI for Heterogeneous Networks: System heterogeneity
refers to differences in computation, communication, and
storage capacities among edge devices. It is one of the
major causes of the straggler effect in FEI [19], [20]. Server
(device/client) sampling [4], [21] is one approach to address
system heterogeneity in FEI. For example, the authors in
[22] adopted an active server sampling method that allows
the coordinator to aggregate as many locally trained model
parameters as possible within a predefined time window
so as to mitigate the influence of heterogeneous devices.
However, these works are under the assumption of static
system characteristics, which lacking the ability to handle
device-specific latency in many practical applications. Data
heterogeneity, which reflects the diversity of local data sam-
ples across different edge servers in terms of data type and
statistical distribution may further aggravate the complexity
of problem modeling, theoretical analysis, and evaluation
of solutions of an FEI system [23], [24]. Recent works
leveraging on meta-learning and multitask learning [25]–
[27] provide feasible solutions for modeling heterogeneous
data. For instance, the authors in [25] proposed a Bayesian
network to model the star topology of an FEI system to
mitigate the adverse effect of data heterogeneity. However,
most of these solutions are expensive to implement and of-
ten involve solving complex non-convex problems, making
them impractical for large scale FEI networks.
FL with Asynchronous Coordination: Due to the hetero-
geneity of devices and local datasets, FL with synchronous
coordination suffers from the “straggler effect” that may
deteriorate the convergence performance. There are already
some recent works trying to alleviate the straggler effect in
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FEI systems by considering the asynchronous coordination
solutions for FL. For example, the authors in [21] proposed
FedProx, a variant of FedAvg, in which a proximal term is
proposed to balance the trade-off between data and system
heterogeneity in FL [19] as well as ensure convergence for
both convex and nonconvex loss functions. The authors
in [28] proposed an asynchronous federated optimization
algorithm that could mitigate the staleness of edge servers
and guarantee near-linear convergence to a global optimal
solution. In [11], the authors proposed an asynchronous
local SGD algorithm to overcome the communication bot-
tlenecks in a large FEI system with i.i.d. distributed data
samples across edge servers.
Time-sensitive FL: With the popularity of time-sensitive
smart applications and services, acceleration solutions that
can reduce the overall model training time of FL has at-
tracted significant interest recently. Most of existing works
focus on optimizing the model parameters to accelerate
the training speed. For example, in [14], [31], the authors
optimized the number of local epochs to reduce the runtime
of model training. In [32], the authors proposed a novel
multi-armed bandit-based solution to alleviate the straggler
effect of FL by optimizing the scheduling of edge server.
In [33], the authors proposed a multi-armed bandit-based
online edge server scheduling solution that can accelerate
the raining speed without knowing the channel state infor-
mation and statistic characteristics of edge servers. In [34],
the authors jointly optimized the number of local epochs,
scheduling of edge servers, and the maximum number of
coordination rounds to minimize the energy consumption
and learning time. Different from these existing works, in
this paper, we introduce a unified framework for FL with
both synchronous coordination and asynchronous coordina-
tion. We propose a framework that can jointly optimize the
edge server selection, number of local epochs, batchsizes, as
well as training load re-distribution to address the straggler
effect for FL with synchronous coordination as well as the
staleness effect for FL with asynchronous coordination. We
have verified the effectiveness of our proposed framework
both theoretically and practically. We summarize the main
difference between the existing works and ours in Table 1.

3 SYSTEM MODEL

We first introduce the basic components and the processing
steps of an FEI system. We then discuss the possible time
consumption in each step of the training process and finally
formulate the optimization problem for time-sensitive learn-
ing of an FEI system.

3.1 FEI Model
We consider an FEI system consisting of three major com-
ponents:

(1) Data collecting network: It consists of a large number
of devices that can collect local data samples to be
uploaded to the corresponding edge servers.

(2) Edge servers: A set K = {1, 2, ...,K} of K edge
servers are deployed to store and process the data
samples uploaded from the data collecting devices.
In this paper, we assume that each edge server is

associated with an exclusive set of data collecting
devices. Let Dk be the distribution of the data sam-
ples arrived at the kth edge server for k ∈ K.
Generally speaking, data samples arrived at different
edge servers follow different distributions, i.e., we
have Dk ̸= Dj for k ̸= j and k, j ∈ K.

(3) Coordinator: It coordinates the model training be-
tween edge servers via their intermediate results. It
can be deployed at the cloud data center or one of the
edge servers. All or a subset of edge servers can be
selected to upload the intermediate model training
results, e.g., model parameters, to the coordinator
once in a while. These edge servers will wait for
the coordinator to feedback an updated result, e.g.,
aggregation of all the received result in the FedAvg
algorithm [23], before continuing with their model
training process.

We consider the standard FL-based model training pro-
cess described as follows. At the beginning of process, a
subset of edge servers can download an initial model from
the coordinator. Each edge server will then train a local
model based on its local data samples and coordinate its
local model training process with others once in a while. We
focus on the real-time data uploading and training process.
During each round of model training, an edge server first
receives a batch of data samples from its associated data
collecting devices and updates its local model based on this
batch before coordinating with other edge servers.

The main objective is to collaboratively train a shared
model that minimizes a global objective function F (w),
corresponding to the weighted sum of the local objective
functions of edge servers. Formally, we can write

min
w∈Rd

{F (w) =
∑
k∈K

pkFk(w)} (1)

where Fk(w) is the local objective function of edge server
k, w is the set of parameters of the model with dimensional
size d, and pk is the weight of edge server k, where 0 ≤
pk ≤ 1 and

∑K
k=1 pk = 1. In some settings, pk can represent

the relative portion of the local dataset of each edge server
k [4], [35].

Fk(w) corresponds to the average loss of prediction over
all data samples:

Fk(w) = Exk,j∼Dk
[lk(w;xk,j)] (2)

where lk(w;xk,j) is the loss function of edge server k with
parameters w and local data sample xk,j .

In a standard FL with synchronous coordination, prob-
lem (1) is solved by allowing each edge server k to employ
local SGDs to iteratively update its local parameters wk and
periodically upload its model to the coordinator for model
aggregation w =

∑
k∈K pkwk.

In this paper, we consider a more general setting that can
support both synchronous and asynchronous coordination.
We use subscript t to denote the tth iteration of the local
model training process at an edge server. Let Ik be the set
of iteration steps that edge server k uploads its local model
to the coordinator. Let vk,t be the updated model received
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TABLE 1
SUMMARY OF RELATED WORK IN TIME-SENSITIVE FL

Reference Model Coord. Parameter Optimization Server Drop. Client Sched.Syn. Coord. Asyn.
Coord.

# of Local
Epoch

Batchsize

[29] ✓ ✓
[30] ✓ ✓

[14], [31] ✓ ✓
[32], [33] ✓ ✓

[34] ✓ ✓ ✓
This Work ✓ ✓ ✓ ✓ ✓ ✓

by edge server k from the coordinator during iteration t,
t ∈ Ik. We can write the model updating process as follows

wk,t+1 =

{
wk,t − ηtgk,t, if t+ 1 /∈ Ik

vk,t+1, if t+ 1 ∈ Ik
(3)

where ηt is the learning rate. In this paper, we consider a
general scenario in which the learning rate ηt can be a time-
varying variable. It has already been proved that adopting
time-varying learning rate, e.g., diminishing learning rate, is
critical to ensure the convergence for most SGD-based algo-
rithmic solutions [36] [37] [38]. gk,t is the stochastic gradient,
calculated based on the locally received data samples:

gk,t =
1

nk

nk∑
j=1

∇lk(wk,t, xk,j,t), (4)

and vk,t+1 is the model aggregated by the coordinator.
In (4), we assume nk training data samples

{xk,1,t, xk,2,t, · · · , xk,nk,t} are computed by edge server k
during the tth training iteration. We follow the commonly
adopted setting [39] and assume data samples at any
edge server have unbiased independent stochastic
gradients, i.e., Exk,j,t∼Dk

[gk,t|xt−1] = ∇Fk(wk,t), where
xt−1 = ⟨xk,j,τ ⟩k∈K,j∈{1,··· ,nk},τ∈{0,··· ,t−1}.

FL with synchronous and asynchronous coordination is
illustrated in Fig. 2. With synchronous coordination, the
coordinator will periodically aggregate all local models up-
loaded by the edge servers that are participating in model
training. Let M be the subset of edge servers participating
in model training, M ⊆ K. We can write Ik = Ij = I for
k ̸= j, k, j ∈M and vk,t in (3) can be written as

vk,t =
∑
k∈M

pk(wk,t − ηtgk,t), for t ∈ I. (5)

In the asynchronous coordination case, the coordinator
will update the global model whenever it receives a local
model from any edge server. In this case, the model training
and updating speeds at different edge servers are different,
i.e., the tth iteration of model training at edge server k
may correspond to the (t + j)th iteration at edge server l.
Without loss of generality, we focus on the model updating
process of an individual edge server, i.e., edge server k. Let
Wh

k,t ⊆ {0, 1, 2, ..., T − 1} be the set of local SGD updates
of {wh,t}t≥0 that have been aggregated and integrated
into the global model during the past updating steps and
before the tth interaction of edge server k. Note that Wh

k,t

can be different from Wh
k′,t for k ̸= k′, as different edge

servers usually reach iteration t at different times. Since the
coordinator keeps aggregating more local updates into the

global model, we have Wh
k,t ⊆ Wh

k,t′ for t′ ≥ t. We use
|Wh

k,t| to represent the cardinality of Wh
k,t, i.e., the total

number of local SGD updates uploaded from edge server
h that have already been aggregated into the global model
at iteration t. We can then write the updated global model
received from the model coordination for edge server k in
its tth iteration for t ∈ Ik as

vk,t = w0 −
∑
h∈M

ph
∑

j∈Wh
k,t

ηjgk,j , for t ∈ Ik.
(6)

where w0 is the initial model distributed by the coordinator.

3.2 Problem Formulation
We investigate the time-sensitive learning of an FEI system
in which the main design objective is to learn an ML model
with a target accuracy as quickly as possible. This is different
from most existing works that mainly focus on improving
the convergence rate [13]. It has already been observed that
the overall time spent on training an ML model not only
depends on the number of global and local SGD iterations
performed by edge servers, but also on data collection,
model computation, and updating performance.

As illustrated in Fig. 3, each round of collaborative
training in an FEI system consists of four major steps: (1)
model distribution, (2) data uploading, (3) model training,
and (4) model updating and aggregation. Next, we discuss
the time consumption of each step.
Model Distribution: The coordinator updates the global
model using (3) and distributes the updated model to a
subset M of edge servers. Because in this step the coordina-
tor broadcasts the same model to all selected edge servers,
the time consumption does not scale with the number of
edge servers and can therefore be considered as a constant,
denoted by ζ .
Data Uploading: Each edge server k will update its local
model based on data samples uploaded from its associated
local data collecting network. We follow the standard FL
approach and assume that in each round of model coor-
dination, each edge server first loads the required number
of data samples from its associated data collecting network
and then randomly samples a mini-batch of the loaded
training samples at every local epoch (local model training
iteration). Let ek be the number of local epochs for each
round of model updating. Edge server k will load (nkek)
training samples in total during each round of model up-
dating. Let ak (in seconds per sample) be the sample arrival
rate at edge server k. The total time duration of the data
uploading step can be written as

qk(nk, ek) = aknkek. (7)



6

（b）
time

               

Edge server 1 

Edge server 2

Edge server K

Aggregation Model distribution

t t+e-1

Local 
SGD iterations

# of collected 
data samples

t t+e-1

t t+e-1

1n

2n
Kn

time

Model trainingData uploading Model uploading

               

Edge server 1 

Edge server 2

Edge server K

Local 
SGD iterations

# of collected 
data samples

1n

2n

（a）

1t

2t

KtKn

1 1 1t e+ −

2 2 1t e+ −

1K Kt e+ −

Fig. 2. Illustration of collaborative model training in an FEI system under: (a) synchronous coordination, and (b) asynchronous coordination.
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Fig. 3. An FEI architecture: (a) key system components, and (b) key
training procedures.

Local Model Training: Each edge server k performs ek local
SGD steps between two consecutive model updating steps.
In addition to the values of ek and nk, the time needed to
train the local model is closely related to the computational
capacity of the edge server. As observed in [40], the time
duration of model training is closely related to the type
ς (image, voice, text, etc.) of data samples, the time for
processing each data sample by edge server k, denoted as
bk,ς , and the time consumption for computing the gradient
and updating the local model weight, denoted as βk,ς . We
can therefore write the time consumption of local model
training at edge server k as νk(ek, nk, bk,ς , βk,ς , ς).
Model Uploading and Aggregation: After ek iterations of
local SGD updates, each edge server k will upload its local
model to the coordinator for global model updating. In
the synchronous coordination scenario, the coordinator will
have to wait for all the selected edge servers to upload their
updated models before performing aggregation. In this case,
the model uploading time mainly depends on the slowest
edge server selected to participate in the given round of
model coordination. Motivated by the fact that edge servers
and the coordination server are usually connected through
high-speed link (e.g., fiber) with a fixed connecting speed,

we follow a commonly adopted setup and assume the time
consumption for model uploading is a constant, denoted as
u.

Based on the above analysis, the minimization of the
model training time of an FEI system can be formulated
as follows:

(P) min
e,n,Γ,M

E[c(e,n,Γ,M)]

s.t. E[F (wM,Γ)]− F ∗ ≤ ϵ (8)
ek,Γ, nk ∈ Z+ (9)
M⊆ K (10)

where c(e,n,Γ,M) =
Γ∑

r=1
max
k∈M

[ζ + u + qk(nk, ek) +

νk(ek, nk, bk,ς , βk,ς , ς)], ϵ is the precision requirement of the
ML model, wM,Γ denotes the parameters of the global
model trained based on edge servers M after Γ rounds of
global model coordination, and F ∗ = min

w∈Rd
F (w).

We can observe from problem (P) that one of the key
issues that slows down the FL-based model training is the
so-called straggler effect, in which faster edge servers will
have to wait for stragglers, i.e., slow edge servers with lim-
ited computation and communication capabilities, to finish
each round of the global model coordination.

Solving problem (P) involves joint optimization of mul-
tiple entangled model training parameters, including e, n,
and M. The heterogeneity of the system (e.g., in terms
of the computational capacities of different edge servers)
and datasets (e.g. non-iid distributions of data samples
at different edge servers) further exacerbate the challenge.
An analytical framework for characterizing the relationship
and understanding the joint impact of these parameters is
needed. Joint optimization of all these relevant parameters
to improve the speed of model training process in the FEI
system with both system and data heterogeneity is still an
open problem.

4 TS-FL WITH SYNCHRONOUS COORDINATION

4.1 Training Time Modeling and Approximation

It is known that the model training speed of each individual
edge server is dominated by the computational capacity
of the edge server as well as the adopted model training
parameters [41]. We follow a commonly used setting and
assume the time duration of each local model training
iteration of a specific edge server is a fixed value under a
given combination of model training parameters.
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During each round of model coordination in TS-FL-
SC, the coordinator needs to wait for all the selected edge
servers to finish uploading their model before performing
model aggregation and updating. In this case, each round of
model coordination will be dominated by the slowest edge
server. Without loss of generality, we order the set M of
M servers from the fastest to the slowest based on their
computational capacity and relabel edge servers according
to their speed rankings, i.e., we abuse the notation and again
use subscript m to denote the mth fastest edge server and
therefore the set of edge servers is relabeled from the fastest
to the slowest as 1, 2, . . . ,M . The overall time consumption
during each round of model updating among setM of edge
servers is therefore dominated by the slowest edge server
M . For Γ iterations of local model training in TS-FL-SC,
the training time of the set M of edge servers then can be
written as

E[c(e, n,Γ,M)] = Γ · cM (eM , nM , bM,ς , βM,ς , ς) (11)

where cM (eM , nM , bM,ς , βM,ς , ς) is the time duration of
each iteration in the model training of the slowest edge
server M under parameters eM and nM and a given type
of data sample ς . bk,ς and βk,ς are closely related to the
computational capacity of edge server and can therefore
considered as a constant under given combination of ek and
nk.

From (11), one can envision two potential solutions to
alleviate the straggler effect for TS-FL-SC:

(1) Server Dropping, which involves directly removing
the slowest edge server as well as its corresponding
data samples from participating in the model train-
ing process, and

(2) Parameter Optimization, which focuses on optimizing
a combination of parameters, especially ek and nk, to
reduce the time consumed for each iteration and also
improve the convergence performance.

Both of the above solutions have their pros and cons. In
particular, simply removing the slowest edge server from
the model training can reduce the waiting time in each
round of coordination. It will however make the resulting
model impossible to converge to the global optimal solution
with all the data samples from all the edge servers being
included in the training process. The parameter optimiza-
tion solution is easy for implementation. However, it is
generally impossible for the coordinator or edge servers
to know the optimal combination of all the parameters.
In the rest of this section, we will develop solutions to
the above issues. In particular, we will first consider the
server dropping approach. Later on, we will investigate the
parameter optimization approach.

4.2 Server Dropping
4.2.1 Impact of Server Dropping
Even though server dropping can significantly reduce the
overall time consumed by collaborative model training and
updating process, it may bias the result and slow conver-
gence speed due to the removal of some data samples
from model training. More specifically, recent results [42]
suggest that if the data samples from all edge servers follow

the same distribution, the FL convergence speed increases
almost linearly with the number of edge servers. However,
if data samples at different servers follow different distribu-
tions (non-i.i.d.), the impact of removing some edge servers
from model training on the convergence performance will
be much more complex. In particular, it is possible that the
data samples at the slowest edge server may exhibit unique
features which, when removed from the model training pro-
cess, may prevent the resulting model from converging to
the global optimal solution. In this paper, we focus on such
scenarios. In this case, we need to first quantify the impact
of removing different subsets of edge servers from model
training on the convergence performance and then evaluate
the overall time consumption of the training process.

Suppose the optimal model parameter that minimize the
global objective function with all K available edge servers
being selected is given by w∗

K = argmin
w

∑
k∈K

pkFk(wK). To

simplify notations, we can also write F ∗
k = Fk(w

∗
K). We

then have the following definition.

Definition 1. We define the impact of server dropping as follows.
The impact of removing a subset Q ⊂ K of edge servers
and their corresponding data samples from the model
training is defined as difference between the global opti-
mal objective function with all K edge servers and that
with subsetM = K\Q of edge servers, given by

D∗
M(F ) =

∑
k∈M

pk (Fk(w
∗
M)− F ∗

k ) , (12)

where and w∗
M is the optimal models that minimize the

weighted sum of the loss functions of edge server setM,
defined as w∗

M = argmin
w

∑
k∈M

pkFk.

One of the key differences of the above definition and
the previously proposed concepts of server’ impact or con-
tribution is that, in our definition, the impact of server
dropping depends on the minimized loss functions with
the optimal model parameters. In the rest of this section,
we first quantify the gap of loss functions caused by server
dropping when a given combination of multiple relevant
model parameters. We then propose a sample-based pre-
training solution for estimating the optimal combination of
parameters under a subset of selected edge servers.

4.2.2 Theoretic Analysis and Preliminary Experiments
We can derive the following theoretical upper bound on
the difference of loss functions with and without server
dropping.
Theorem 1. Suppose the following assumptions hold: (1)

F1, F2, ..., FK are all L−smooth and µ−convex, i.e.,
µ
2 ∥w −w′∥2 ≤ Fk(w) − Fk(w

′) + (w −w′)T∇Fk(w
′)

≤ L
2 ∥w − w′∥2 for all w,w′ ∈ Rd; (2) data samples

xk are uniformly randomly sampled from Dk; and (3)
the stochastic gradient satisfies E∥∇lk(w, xk)∥2 ≤ G2

and E∥∇lk(w, xk) − ∇Fk(w)∥2 ≤ σk
2. If κ = L

µ ,
γ = max{8κ, e}, and the learning rate ηt satisfies
ηt =

2
µ(γ+t) , we have

E[F (wM,T )]− F ∗ ≤ (13)
4κ

µ(γ + T )
(
∑
k∈M

p2kσk
2

nk
+ 8e2G2 + CM) + LD∗

M(w)
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where wM,T is the model trained by edge servers in the
subset M after the T th local iteration, F ∗ =

∑
k∈K F ∗

k

is the global minimum value of objective function when
all K edge servers are selected to participate in model
training, and CM = 6LD∗

M(F ) + µ2(γ+1)
4 ∥w0 −w∗

M∥2.

Proof: See Appendix A.
Inequality (13) provides an upper bound on the gap

between the loss function trained with only a subset M of
edge servers and that with all K edge servers. This gap
characterizes the maximum bias of the model trained by
only a subset of edge servers, compared to the global op-
timal model trained with all the available edge servers. As
mentioned earlier, under the given dataset and loss function,
the value of loss can be used to characterize the prediction
accuracy of the output model. In other words, the above gap
of loss values can be used to capture the bias in the model
prediction accuracy caused by the removal of edge servers.
From inequality (13), we can observe that the gap is closely
related to a set of key parameters including the subset of
selected edge severs M, minibatch size nk, the number of
local epochs e, and the total number of local SGD iterations
T . In the rest of this section, we will try to jointly optimize
all these parameters to minimize the overall runtime of
model training when the bias of the model accuracy can
be controlled within a maximum tolerable level.

By substituting T = eΓ, we can simplify (13) into the
following form:

E[F (wM,T )]− F ∗

≤ 1

eΓ
(
∑
k∈M

A

nk
+Be2 + CM) +DM (14)

where A =
4κ max

k∈M
p2
kσ

2
k

µ , B = 32κG2

µ , CM =
24κLD∗

M(F )
µ +

µκ(γ + 1)∥w0 − w∗
M∥2) and DM = LD∗

M(w). Generally
speaking, these values cannot be known by edge servers
or by the coordinator. They are, however, important for
estimating the overall model training time. In Section 4.3.1,
we will discuss how to estimate these constants using a
sample-based pre-training approach.

Substituting (14) into (8), we obtain the following suffi-
cient condition for the convergence constraint of TS-FL-SC:

1

eΓ
(
∑
k∈M

A

nk
+Be2 + CM) +DM ≤ ϵ. (15)

The above inequality can be utilized to calculate the
possible combination of parameters that achieve a given
target of model accuracy. By substituting (15) into (11), we
can obtain the following approximated version of problem
(P):

(P1) min
e,n,M

E[c̃(e,n,M)]

s.t. DM < ϵ and e, nk ∈ Z+, forM⊆ K

where

E[c̃(e,n,M)] =
cM (eM , nM , bM,ς , βM,ς , ς)

e(ϵ−DM)(∑
k∈M

A

nk
+Be2 + CM

)
. (16)
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Fig. 4. (a) Time duration and (b) number of coordination rounds required
to train a model with a target model accuracy when different numbers of
slow edge servers have been removed from the training process. Three
model training schemes have been compared: Scheme 1 with nk = 200
and ek = 80, Scheme 2 with nk = 200 and ek = 100, and Scheme 3 with
nk = 200 and ek = 120.

By exploiting the above reformulated problem (P1), we
can calculate the optimal combination of parameters that
minimize the overall runtime for training a model with the
guaranteed output accuracy ϵ.

We can now evaluate the impact of the server dropping
on the speed of the model training. In Fig. 4, we present
the overall runtime and number of coordination rounds
required to train a model with a guaranteed accuracy when
different numbers of slowest edge servers are removed. We
observe different trends when the required runtime and
number of coordination rounds are evaluated for model
training. This once again verifies our observations that these
two performance metrics are fundamentally different in FEI
systems. In particular, in Fig. 4(b), the required number of
coordination rounds decreases when more and more edge
servers as well as their corresponding data samples have
been removed from participating in the model training. This
result is aligned with previously reported results which
suggest more data samples from edge servers can always
help improving the convergence speed of the model training
process [11]. In Fig. 4(a), however, we observe that the
overall runtime for training a model with a guaranteed
accuracy can be reduced when only a few slowest edge
servers have been removed. As more and more edge servers
have been dropped from the model training, the required
model training time will eventually start to increase. This is
because, by removing only a few slowest edge servers, the
fast edge servers do not have to wait for these slow edge
servers in each round of coordination. Therefore, despite
the increase of the total number of required coordination
rounds, the overall runtime to reach a target model accuracy
can still be reduced. However, when more edge servers
as well as their corresponding data samples have been
removed from the model training, the adverse effect such as
the slowed convergence as well as the bias in the resulting
model caused by the removal of data samples will start to
dominate the overall model training process.

4.3 Parameter Optimization
4.3.1 Sample-based Pre-training for Unknown Parameter
Estimation
As mentioned earlier, the objective function E[c̃(e,n,M)]
contains unknown constant parameters that may affect the
time consumption of model training. These unknown pa-
rameters can be estimated by using a pre-training-based
solution described as follows.
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Estimation of Parameters A, B and CM: We adopt the
sampling-based approach in [34] to estimate the unknown
parameters that affect the training time. The basic idea is
to empirically select a set of I different combinations of
parameters ⟨e(i), n(i)⟩ for i ∈ {1, ..., I} to pre-train an ML
model and use the observed convergence results to estimate
the unknown parameters including A, B and CM and
DM in the (15). We use superscript (i) to denote the i-th
model pre-training process based on a selection of empirical
parameters (e(i), n(i)) for 1 ≤ i ≤ I . In the pre-training, the
coordinator first pre-select two global loss values Fa and
Fb and then records the required numbers of coordination
rounds R

(i)
a and R

(i)
b to reach the target losses Fa and Fb

from the initial global model w0 when employing different
combinations of empirically selected parameters. To reduce
the time duration of the pre-training process, Fa and Fb can
be set to relatively high loss values.

More formally, by applying the convergence bound in
(14) to approximate the global loss value after R(i)

a and R
(i)
b

coordination rounds, we have the following results

Fa − F ∗ ≈ 1

eiR
(i)
a

(
A

n(i)
+Be(i)

2
+ CM) +DM, (17)

Fb − F ∗ ≈ 1

eiR
(i)
b

(
A

n(i)
+Be(i)

2
+ CM) +DM. (18)

Combining (17) and (18), we have

e(i)(R
(i)
b −R(i)

a ) ≈ (
1

Fb − F ∗ −DM
− 1

Fa − F ∗ −DM
)

(
A

n(i)
+Be(i)

2
+ CM). (19)

By sampling different pairs of (i, j) for i, j ∈ I and i ̸= j,
we can have

ei(R
(i)
b −R

(i)
a )

ej(R
(j)
b −R

(j)
a )

≈
A

n(i) +Be(i)
2
+ CM

A
n(j) +B(1 + 1

s(j)
)e(i)

2
+ CM

.

(20)

Reorganizing (20), we can write

A(
1

n(i)
− χi,j

1

n(j)
) +Be(i)

2
− χi,j(1 +

1

s(j)
)e(i)

2

≈ CM(χi,j − 1). (21)

where χi,j ≜
e(i)(R

(i)
b −R(i)

a )

e(j)(R
(j)
b −R

(j)
a )

. Repeating the above steps for

all the different combinations of parameters, we can eventu-
ally obtain estimated solutions for the unknown constants
A, B and CM using standard linear fitting method, e.g.,
least square method.
Estimation of Parameter DM: Based on the estimated pa-
rameters A, B and CM, we can calculate DM as follows:

DM ≈ Fb − F ∗ − 1

eiR
(i)
b

(
A

n(i)
+Be(i)2 + CM). (22)

Estimation of Parameters ζ , ak,ς , bk,ς , βk,ς , and u: To define
the local model training delay (νk(e, nk, bk,ς , βk,ς , ς) + u),
we adopt a commonly adopted setting [40] and assume the
delay under fixed hardware and software environments, can
be represented into the following form:

νk(ek, nk, bk,ς , βk,ς , ς) = ek(bk,ςnk + βk,ς). (23)

Algorithm 1 Sample-based Pre-training Algorithm
1: Input: Target loss values: Fa, Fb, and I empirically se-

lected combinations of training parameters, the subset
M of edge servers;

2: Output: A, B, CM, DM, ζ, αk, βk, and u;
3: for i = {1, ..., I} do
4: Empirically choose (e(i), n(i)) for each edge server k ∈

M;
5: Record values R

(i)
a and R

(i)
b when target loss Fa and

Fb are reached;
6: Record the average time duration c̄k(e

(i), n(i)) of edge
server k to complete each round of model coordina-
tion;

7: end for
8: Estimate the unknown parameters A, B, CM, and DM

using (21);
9: Estimate the unknown parameters ζ, αk, βk, and u using

(24);
10: Return A, B, CM, DM, ζ, αk, βk, and u;

Suppose the coordinator can record the time consump-
tion of each coordination round for each selected edge
server. We can therefore obtain the average time consump-
tion c̄k(e

(i), n(i)) under a given pair of parameters (e(i), n(i))
for i ∈ {1, 2, ..., I}. We can then have

ζ + αke
(i)n(i) + βke

(i) + u ≈ c̄k(e
(i), n(i)),

∀i ∈ {1, 2, ..., I}. (24)

By jointly solving all I equations in (24), we can obtain
estimated values of unknown parameter ζ , αk = ak,ς + bk,ς ,
βk = βk,ς , and u. The detailed procedures of the pre-training
for parameter estimation is presented in Algorithm 1.

Algorithm 2 Alternate Convex Search Algorithm
1: Input: Parameters: A, B, CM, DM, ζ , αk, βk, u;
2: Initialization: Initial model parameters z0 = (e0, n0);

Stopping criterion θ; Domains Zn and Ze; i← 0;
3: Output: Solution (e∗, n∗,M);
4: while E[c̃(zi−1,M)]− E[c̃(zi,M)] ≥ θ do
5: Find e∗of c̃(e, ni,M) in the search domain Ze when

give si and ni as well asM and perform ei+1 ← e∗;
6: Find n∗ of c̃(ei+1, n,M) in the search domain Zn

when givenM and perform ni+1 ← n∗;
7: zi+1 ← (ei+1, ni+1), i← i+ 1;
8: end while
9: Return the solution (ei, ni,M).

4.3.2 Parameter Optimization Algorithm
As mentioned earlier, the model training time duration is
closely related to the key training parameters, especially nk

and ek. Unfortunately, these two parameters are entangled
with each other in affecting the overall model training time.
For example, reducing the local epoch number ek at each
edge server k may accelerate the convergence of global
model. It will however increase the frequency of model
coordination, resulting in high communication overhead
and coordination delay. Similarly, loading more training
data samples eknk and choosing a large mini-batch size nk
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at each training iteration at an edge server k will reduce
the total number of required iterations for the model to
converge to a satisfactory result. It will however slow down
the data loading time and also extend computational time at
each iteration of the local model training process. Therefore,
it is generally difficult to jointly optimize both nk and ek
to minimize the overall time duration for training a satis-
factory model. Fortunately, we can prove that the objective
function of problem (P1) is a biconvex optimization problem
when nk = n for every k ∈ M under a given subset M
of edge servers. In particular, we can prove the following
result.
Lemma 1. Suppose nk = n for every k ∈ K and changing n

does not affects the rank of model training times among
edge servers, problem (P1) is biconvex over e and n.

Proof: See Appendix B.
Motivated by the above observation, we can adopt a

commonly adopted iterative optimization method called
alternate convex search (ACS) to calculate the optimal so-
lution of e∗ and n∗ to minimize the objective function
E[c̃(e,n,M)]. We present the detailed procedures of the
ACS approach in Algorithm 2.

5 TS-FL WITH ASYNCHRONOUS COORDINATION

As mentioned earlier, TS-FL-SC with server dropping may
result in a biased model at the end of the model training
process and therefore may not suitable for the scenarios
when the data samples at the slowest edge server possess
unique characteristics that are important for the model.
In this section, we investigate model training acceleration
solutions for TS-FL-ASC in which each edge server can
upload its local model to the coordinator right after finishing
the required number of local training iterations and can
receive an instantaneous update of the global model from
the coordinator.

5.1 Modeling the Staleness Effect
Since TS-FL-ASC allows each edge server to obtain an
instantaneous update of the global model at any time during
the training process, it will have the potential to avoid
waiting for the slow edge servers. Unfortunately, it is known
that the convergence performance of the asynchronous coor-
dination is adversely affected by the so-called staleness effect,
that is the gap between the model updating iterations at
the slowest edge server and that at the fastest edge server
increases with the total number of iterations, resulting in
slow convergence or even divergence of the global model in
each round of model aggregation.

To quantify the impact of the staleness effect on the
convergence of model training, we introduce the following
virtual global model updating sequence {w̄t}t=1,...,T as an
equivalent form of a centralized mini-batch SGD process
updated by a set of decentralized edge servers following the
asynchronous coordination as TS-FL-ASC, i.e., we define the
virtual sequence of TS-FL-ASC as follows:

w̄0 ≜ w0, (25)

w̄t ≜ w0 −
K∑

k=1

pk

t−1∑
j=0

ηjgk,j . (26)

We can observe that w̄t satisfies w̄t = 1
K

∑K
k=1 pkwk,t.

Note that the virtual sequence is only introduced for our
analysis and it does not need to be calculated explicitly.

We also define an upper bound τ of staleness as the
maximum gap between the numbers of iterations locally
performed by different edge servers, i.e., we introduce the
following constraint for TS-FL-ASC:

max
h∈K

Λ(Wh
k,t)−min

h∈K
Λ(Wh

k,t) ≤ τ (27)

where Λ(Wh
k,t) is the index of local iterations reported by

edge server h to the coordinator when edge server k uploads
its local model in the tth iteration.

We can then prove the following result.
Lemma 2. Suppose xk is data samples following distribution
Dk. We assume the following conditions hold: (1) the
stochastic gradient satisfies E∥∇lk(w, xk)∥2 ≤ G2; (2)
the staleness is upper bounded by (27); (3) learning rate
ηt is non-increasing and satisfies ηt ≤ 2ηH+τ+t for all
t > 0 where H ≜ max

k∈K
ek. The gap between the local

model trained at edge server k and the (virtual) global
model is upper bounded by

E(∥w̄t −wk,t∥2) ≤ 24η2tG
2(2τ2 + e2k). (28)

Similarly, we can write the upper bound of the gap
between weighted sum of all the local models at edge
servers and the global model as follows:

E(
K∑

k=1

pk∥w̄t −wk,t∥2) ≤ 24η2tG
2(2τ2 +

K∑
k=1

pke
2
k) (29)

where which represents the weighted average of models
of all edge servers after the tth SGD step.

Proof: See Appendix C.
We can observe from the above result that the upper

bound of the staleness effect τ directly affects the conver-
gence of the model training process.

Based on the above lemma, we can prove the following
result about the convergence of TS-FL-ASC.
Theorem 2. Suppose the following assumptions hold: (1)

F1, F2, ..., FK are all L−smooth and µ−convex, i.e.,
µ
2 ∥w −w′∥2 ≤ Fk(w) − Fk(w

′) + (w −w′)T∇Fk(w
′)

≤ L
2 ∥w − w′∥2 for all w,w′ ∈ Rd; (2) Data sample xk

is uniformly randomly sampled from Dk; and (3) the
stochastic gradient satisfies E∥∇lk(w, xk)∥2 ≤ G2 and
E∥∇lk(w, xk) − ∇Fk(w)∥2 ≤ σ2

k. By setting κ = L
µ ,

γ = max{8κ, τ +H} and ηt =
2

µ(γ+t) , we have

E[F (wT )−F ∗] ≤ κ

γ + T
(
2B

µ
+

µγ

2
E∥w0−w∗∥2) (30)

where B =
∑K

k=1
p2
kσ

2
k

nk
+ 6L(F ∗ −

∑K
k=1 pkF

∗
k ) +

48G2(2τ2+
∑K

k=1 pke
2
k), w

∗ is the global optimal model,
wT is weighted sum of all the local models trained by
edge servers after T iterations for T ∈ Ik and k ∈ K.

Proof: See Appendix D.
From the above result, we can also observe that, when

τ ≥
√
T , the upper bound of convergence result in (30)

may not converge when the number of iterations T becomes
large. This once again verifies our previous result that



11

increasing the upper bound of the staleness τ may result
in degradation of convergence speed of the model training
process.

One potential solution to alleviate the staleness effect is
to decrease the model training and updating speed of the
fast edge servers to reduce the upper bound of the staleness
within a certain limit. This however will result in more time
consumption in the model training process and therefore
may not suitable for some time-sensitive applications.

5.2 Load Forwarding
In this subsection, we propose a load forwarding-based
solution to reduce the staleness by allowing some slow edge
servers to offload part of its data samples to some trusted
edge servers with high processing capability. To simplify
our description and also due to the fact that, in many
practical systems, allowing a slow edge server to reveal its
data samples to multiple fast edge severs may raise security
concern, in the rest of this section, we mainly focus on
the load forwarding solution within a trusted edge server
pair consisting of a relatively fast edge server and a slower
edge server. This is reasonable for many practical network
systems in which, to further improve the robustness of its
networking systems, a single network operator or service
provider may sign contract with at least one other service
provider for resource sharing when necessary. For example,
major telecommunication operators in US and Europe have
already signed contract with at least one other operator for
various forms of resource sharing including infrastructure
and spectrum sharing [43]. We write an edge server pair as
⟨k, k′⟩ where, without loss of generality, we label the slow
edge server as k and fast edge server as k′. We abuse the
notation and use k to denote edge server pair ⟨k, k′⟩. Let P
be the set of edge server pairs that support load forwarding,
i.e., k ∈ P .

Note that in each edge server pair, during each round
of model coordination, the slow edge server only needs
to send a batch of its local data samples to the fast edge
server. The fast edge server k′ can then directly obtain
the updated model from the coordinator, perform model
training based on the received batch of data samples, and
finally upload the updated model to the coordinator. In
other words, the fast edge server will take over the local
training process for the slow edge servers without requiring
any model transfer within the edge server pair. We define
the data communication delay caused by forwarding a batch
of data samples from edge servers k to k′ as ok,k′ = λknkek
where λk is the data forwarding speed for sending each data
sample from edge servers k′ to k.

We write αk,k′ as the portion of model updating rounds
of the slow edge server k that are helped by the fast edge
server k′. We can then write the overall time consumption
of model training with load forwarding as

c(e,n,Γ,P,α) (31)
= max

k∈P
{Γk(1− αk,k′)ck, (Γk′ck′ + Γkαk,k′ck,k′)}

where e = ⟨ek⟩k∈K, n = ⟨nk⟩k∈K, α = ⟨αk,k′⟩k∈K, Γ =
⟨Γk⟩k∈K, ck = ζ + qk(nk, ek) + νk(ek, nk) + u is the time
required to complete each round of model updating, and
ck,k′ = (ζ + qk(nk, ek) + ok,k′(nk, ek) + νk′(ek, nk) + u) is

overall time duration for edge server k′ to help edge server
k in training its local model.

We can observe that in an ideal condition, after applying
the load forwarding, the model training time of fast and
slow edge servers in each edge server pair becomes equal,
i.e., Γk(1−αk,k′)ck = Γk′ck′ +Γkαk,k′ck,k′ . In this case, we
can write the optimal value α∗

k,k′ as

α∗
k,k′ =

Γkck − Γk′ck′

Γk(ck + ck,k′)
, ∀k ∈ P . (32)

We can therefore rewrite the original optimization prob-
lem (P) as follows:

(P2) min
e,n,Γ,P,α

E[c(e,n,Γ,P,α)]

s.t. E[F (wP,Γ)]− F ∗ ≤ ϵ, (33)
ek,Γk, nk ∈ Z+, (34)
0 ≤ αk,k′ ≤ 1. (35)

where wP,Γ is the model trained by a set P of edge server
pairs in iteration Γ.

In the rest of this section, we discuss how to solve prob-
lem (P2) using server dropping and parameter optimization.

5.3 Server Dropping
Similar to TS-FL-SC, it is also possible to further reduce
the model training time in TS-FL-ASC by removing some
slow edge servers from participating in the model training
process.

We can prove the following upper bound of the conver-
gence rate of TS-FL-ASC when a subsetM of edge servers
are selected to participate in the model training.
Theorem 3. Suppose the following assumptions hold: (1)

F1, F2, ..., FK are all L−smooth and µ−convex, i.e.,
µ
2 ∥w −w′∥2 ≤ Fk(w) − Fk(w

′) + (w −w′)T∇Fk(w
′)

≤ L
2 ∥w − w′∥2 for all w,w′ ∈ Rd; (2) data samples xk

are uniformly and randomly sampled from Dk; (3) the
stochastic gradient satisfies E∥∇lk(w, xk) − ∇Fk(w)∥2
≤ σk

2 and E∥∇lk(w, xk)∥2 ≤ G2; and (4) The staleness
is bounded by (27). If κ = L

µ , γ = max{8κ, τ +H}, and
ηt =

2
µ(γ+t) , then we have

E[F (wM,T )]− F ∗ ≤ LD∗
M(w) (36)

+
4κ

µ(γ + T )
(
∑
k∈M

p2kσ
2
k

nk
+ 48

∑
k∈M

pkek
2G2 + CM)

where CM = 96G2τ2 + 6LD∗
M(F ) + µ2γ

4 ||w0 −w∗
M||2

and D∗
M(w) is the difference of objective function be-

tween models collaboratively trained by edge server sets
K andM.

Proof: See Appendix E.
Theorem 3 characterizes the impact of both server drop-

ping and staleness bound τ on the convergence performance
of the FEI system. We can also observe that the convergence
upper bound in TS-FL-ASC is relatively more loose, com-
pared to that of TS-FL-SC presented in Theorem 1, due to
the staleness effect which is reflected by τ in the first term
of CM.

We can then follow the same line as TS-FL-SC to model
the overall time duration of training a satisfactory model
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using TS-FL-ASC as follows. We first rewrite (36) in 3 into
the following simplified form:

E[F (wM,T )]− F ∗ (37)

≤ 1

T
(
∑
k∈M

A′

nk
+B′

∑
k∈M

pke
2
k + C ′

M) +D′
M

where A′ =
4κmax

k∈K
p2
kσ

2
k

µ , B′ = 192κG2

µ , C ′
M = 384κG2τ2

µ +
24κLD∗

M(F )
µ + µκγ||w0 −w∗

M||2 and D′
M = LD∗

M(w).
By substituting (37) into constraint (33), we can obtain

the following constraint of TS-FL-ASC:

1

T
(
∑
k∈M

A′

nk
+B′

∑
k∈M

pke
2
k + C ′

M) +D′
M ≤ ϵ. (38)

By replacing the constraint (33) in Problem (P3) with (38),
we can obtain an approximated version of problem (P3) as
follows:

(P4) min
e,n

E[c̃(e,n,M,α)] (39)

s.t. D′
M < ϵ, and 0 ≤ αk,k′ ≤ 1 and ek, nk ∈ Z+,

where E[c̃(e,n,M,α)] is given by

E[c̃(e,n,M,α)] =
A′

nk
+B′∑

k∈M pke
2
k + C ′

M

ϵ−D′M
(40)

(
(1− αM,M ′)cM (eM , nM )

eM
+

αM ′,McM ′,M (eM ′ , nM ′)

eM ′
)

and M is the slowest edge server pair to finish each round
of model updating for 1 ≤M ≤ |P|.

5.4 Parameter Optimization

5.4.1 Unknown Parameter Estimation via Pre-training
To solve problem (P4), we need to first estimate the impact
of various parameters on the convergence of model training.
We follow the same line as TS-FL-SC to estimate these
parameters by pre-running model training process with
different combinations of parameters.
Estimation of Parameters A′, B′, C ′

M, D′
M: We em-

pirically select I different combinations of parameters
⟨e(i), n(i)⟩ for i ∈ {1, ..., I} to pre-train the ML model and
use the observed convergence results to estimate these pa-
rameters. Under any given training parameters ⟨e(i), n(i)⟩,
the convergence upper bound of TS-FL-ASC can be rewrite
as:

E[F (wT )]− F ∗ ≤ 1

eΓ

(
A′

n(i)
+B′e(i)2 + C ′

M

)
+D′

M (41)

where Γk = Γ =
T

e(i)
for all k ∈ M. We can observe that

the above upper bound is in the same form as (14). We
can therefore use the same parameter estimation procedures
described in Section 4.3.1 to estimate A′, B′, C ′

M, D′
M. We

omit the details due to the space limit.
Estimation of Parameters ζ , ak,ς , bk,ς , u: These parameters
are closely related to the computational and communication
capacity of edge servers and can be obtained by adopting
the same procedures discussed in Section 4.3.1 and Algo-
rithm 1. We again omit the details due to the limit of space.

5.4.2 Parameter Optimization Algorithm

Similar to the TS-FL-SC, we can again prove that the ob-
jective function of problem (40) is a biconvex optimization
problem when ek = e and nk for every server k ∈ M
and the subset M edge servers participating in the model
training is fixed. The following lemma can be proved by
following the same line as Lemma 1. We omit the proof due
to the limit of space.

Lemma 3. Suppose nk = n and ek = e for every k ∈ K and
changing n does not affects the rank of model training
times of edge servers, problem (40) is biconvex over e
and n.

We can again adopt an ACS-based approach to calculate
the optimal solution of e∗ and n∗ to minimize the overall
model training time E[c̃(e,n,M,α)] for TS-FL-ASC.

6 NUMERICAL RESULT

3 Raspberry Pis
(Version 3A)

17 Raspberry Pis
(Version 4B)

Wi-Fi Router

Coordinator

Training Process Tracking

3 Raspberry Pis
(Version 3A)

17 Raspberry Pis
(Version 4B)

Wi-Fi Router

Coordinator

Training Process Tracking

Fig. 5. Hardware platform consisting of 20 Raspberry Pis serving as
edge servers and one Raspberry Pi serving as the coordinator. Edge
servers and coordinator are connected with each other via Wi-Fi links.

6.1 Experimental Setup

TABLE 2
Experimental Setup

Architecture Setup Model Type
Multinomial Logistic Regression

Dataset MNIST Traffic
Input Size 784× 1 2500× 1
Output Size 10× 1 6× 1
Activation Function Sigmoid
Optimizer SGD, learning rate 0.01 with decay rate 0.995
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6.1.1 Hardware Platform

To evaluate the performance of our proposed solutions, we
develop a hardware platform consisting of 20 Raspberry
Pi mini-computers as edge servers, including 17 version
4B with a Quad-core Cortex-A72 (ARM V8) 64-bit SoC
operated on 1.5GHz, and 3 version 3A with a Quad-core
Cortex-A53 (ARM V8) 64-bit SoC operated on 1.4GHz, as
illustrated in Figure 5. All the edge servers are connected
to a coordinator (another Raspberry Pi version 4B) via a
TP-LINK Wi-Fi Router. To estimate the time duration of the
model training process, we installed a multi-function USB
multi-meter POWER-Z KM001C to the power port of each
edge server to measure and keep track of voltage, current,
and power during the entire model training process. We set
the sampling rate of each multi-meter to 1 kHz.

6.1.2 Experimental Setup

We conduct our experiment based on two commonly used
datasets: (1) handwritten digit dataset, called MNIST [44],
which contains 60, 000 images training data samples and
10, 000 testing data samples, and (2) real world network
traffic dataset, called ISCX VPN-nonVPN, which consists of
60, 000 traffic data samples for model training and other
12, 000 for testing [45]. To guarantee the convex property of
the classification problem, we follow a commonly adopted
setting and use multinomial logistic regression model. For
all the experiments, the global model is initialized with the
same weight w0 and the learning rate is set to η0 = 0.1
with a fixed decay 0.995 per round. To simulate the data
heterogeneity scenario, each edge server only has data sam-
ples associated with a limited number of randomly selected
labels, e.g., in MNIST dataset, each edge server only has
images of a limited number of digits, and in traffic dataset,
each edge server can only store a limited number of types
of traffic data samples. The detailed experimental setup is
listed in Table 2. In this section, we compare five different
scenarios:
Scenario (a): we consider handwritten digit dataset and
assume each edge server only has data samples associated
with a single digit and the data samples of the three low-
performance edge servers, i.e., the stragglers (Raspberry Pi
3A), are associated with non-unique digits, i.e., there exist
other edge servers (Raspberry Pi 4B) with data samples of
the same digits. Since MNIST dataset only has 10 digits 0-9
and we have 20 edge servers, at least two edge servers have
data samples associated with the same digit. In this case,
even if all three slow edge servers have been removed from
participating the model training, there are still able to find
data samples associated with the removed digits in the rest
of the high-performance edge servers.
Scenario (b): we follow the same setting as Scenario (a) but
the three low-performance edge servers (Raspberry Pi 3A)
consist of data samples associated with unique digits. In
this case, if these low-performance edge servers have been
removed from the training process, there is impossible to
find data samples with the removed digits in the rest of the
edge servers.
Scenario (c): we consider handwritten digit dataset and as-
sume each edge server has data samples randomly sampled
from any five digits and the data samples of the three low-

performance edge servers are associated with non-unique
digits.
Scenario (d): we consider traffic dataset and assume each
edge server has data samples randomly sampled from any
two types of data traffic and the data samples of the three
low-performance edge servers are associated with non-
unique types of data traffics.
Scenario (e): we consider traffic dataset and assume each
edge server has data samples randomly sampled from any
four types of data traffic and the data samples of the three
low-performance edge servers are associated with non-
unique types of data traffics.

6.2 Measuring Time Consumption of Model Training

We record data traces of the power dynamics during the
FL model training process performed at each edge server.
We can observe a clear dynamic pattern being repeated at
each round of model training. We can also observe a clear
difference in the power levels at different steps of the model
training process as illustrated in Fig. 6(a). In particular, we
can observe the four training steps in each round of model
training process which are described as follows.
Step (1)–Time duration of model distribution: The coor-
dinator broadcasts the updated global model to a selected
subset of the edge servers at the beginning of each round of
model training process. In Fig. 6(a), we can observe that the
time consumption of the model distribution through a wire-
less network (e.g. 2.4GHz WiFi in our case) is approximately
ζ = 0.2 sec.
Step (2)–Time duration of data uploading: To simulate
the delay caused by uploading of data samples from the
data collecting devices to the edge servers, we set the data
arrival rate at each high-performance edge server to 50MB/s
(the common data rate of Wi-Fi links) and that at each low-
performance edge server to 5MB/s (the common data rate
for Bluetooth connections). Since, in our experiment, all the
dataset samples have been pre-loaded to each edge server,
to simulate the data uploading delay, we set a pre-calculated
idle time at the beginning of every round of model training
process as shown in Fig. 6(a).
Step (3)–Time duration of local model training: Once edge
server k obtains the model distributed by the coordinator,
it will perform e local SGD iterations to update its model.
In our data traces in Fig. 6(a), we can observe that each
local iteration performed by an edge server corresponds to
a peak in power level. For e local iterations, we can observe
e peaks during the local model training step. The value of
nk mainly affects the duration of each local iteration (time
duration between two consecutive peaks) as shown in Fig.
6(b) and Fig. 6(c). In Table 3, we present the time duration of
local training step under different combinations of e and nk

at different edge servers (i.e. Raspberry Pi (version 4B) and
(version 3A)) based on different datasets. We can observe
that for a fixed nk, the time duration of local model training
step increases almost linearly with e. Similarly, when e is
fixed, the time consumption of each local iteration increases
almost linearly with nk. To summarize, the time duration of
local model training step can be modeled as

νk(ek, nk|ς) = ek(bk,ςnk + βk). (42)
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Fig. 6. (a) Recorded power tracking traces of an edge server (Raspberry Pi 4B) with four highlighted steps in each round of model coordination: (1)
model distribution, (2) data uploading, (3) local model training, and (4) model uploading. (b) Comparison of time duration in step (3) under training
parameters (e = 10, n = 3000), and (c) (e = 10, n = 1000).

TABLE 3
Recorded time duration (in sec) of local model training step (step (3)) under different setups

Raspberry Pi (4B)
(n, e) (400,10) (400,20) (400,30) (1000,10) (1000,20) (1000,30)

MNIST 0.0618 0.1236 0.1856 0.1472 0.2908 0.4377
Traffic 0.3700 0.7402 1.1092 0.4749 0.9473 1.4191

Raspberry Pi (3A)
(n, e) (400,10) (400,20) (400,30) (1000,10) (1000,20) (1000,30)

MNIST 0.3815 0.7615 1.1408 0.8013 1.6003 2.4014
Traffic 6.0476 12.0934 18.1386 6.5669 13.1309 19.6958

TABLE 4
Fitted parameters in the time duration model of local model training

step

Raspberry Pi (4B)
Dataset type ς bk,ς βk

MNIST 1.4 ∗ 10−5 5.2 ∗ 10−4

Traffic 1.7 ∗ 10−5 0.03

Raspberry Pi (3A)
Dataset type bk,ς βk

MNIST 7 ∗ 10−5 0.01
Traffic 8.6 ∗ 10−5 0.57

where bk,ς characterizes the time duration for edge server
k to process each training data sample and βk,ς is the time
duration for performing local SGD and updating the local
models. We present the fitted parameters of bk,ς and βk

under different setup in Table 4.
Step (4)–Time duration of model uploading: Each edge
server uploads its local model to the coordinator after e
local SGD iterations. In our experiment, all edge servers
and the coordinator are connected to a Wi-Fi router, we
can observe that the time duration of model uploading does
not affected by model training parameters such as nk or e.
We can therefore assume the time duration of this step is a
constant, i.e., u = 0.2s as observed in Fig. 6(a).

6.3 Experimental Results

As mentioned earlier, the convergence rate and time con-
sumption of model training are two different concepts. The
later is more complex and can be affected jointly by com-
putation and communication delays influenced by multiple
parameters. In Fig. 7, we compare the required number
of coordination rounds and time duration of training a
model at a target loss (π = 0.0132) (corresponding to the
model accuracy of 83.30% and 83.50% for MNIST and traffic
datasets, respectively) using TS-FL-SC and TS-FL-ASC with
and without using server dropping under scenario (a) where
the low-performance edge servers do not have any uniquely
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Fig. 7. (a) Number of coordination rounds and (b) model training time of
TS-FL-SC and TS-FL-ASC under scenario (a).
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Fig. 8. (a) Number of coordination rounds and (b) model training time of
TS-FL-SC and TS-FL-ASC under scenario (b).

labeled data samples. We can observe that the values of
the loss functions under different numbers of coordination
rounds and model training times exhibit different trends. In
particular, in terms of convergence rate as shown in Fig. 7(a),
the TS-FL-SC without server dropping has the fastest con-
vergence, followed by TS-FL-ASC without server dropping.
In other words, the server dropping cannot accelerate the
convergence rate of an FEI system when measuring based
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TABLE 5
COMPARISON OF MODEL TRAINING TIME OF SCHEDULING-BASED SOLUTION AND SERVER DROPPING

Datasets (e, n) (10, 200) (20, 200) (30, 200) (40, 200) (50, 200) (60, 200)

MNIST
Sched.-based 293.12 269.64 402.23 534.51 667.76 799.39
Server Drop. 162.67 137.58 152.12 175.38 201.13 228.13
Time Saving 130.45 132.06 250.11 359.13 466.63 571.26

Traffic
Sched.-based 1372.32 2835.49 4189.72 5550.56 6915.60 8280.64
Server Drop. 288.37 311.64 345.50 382.40 420.58 459.65
Time Saving 1083.95 2523.85 3844.22 5168.16 6495.02 7820.99
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Fig. 9. (a) Number of coordination rounds and (b) model training time of
TS-FL-SC and TS-FL-ASC under scenario (c).
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Fig. 10. (a) Number of coordination rounds and (b) model training time
of TS-FL-SC with server dropping under different local epoch numbers
e in scenario (a).
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Fig. 11. Required time consumption for training a model with target loss
(π = 0.0132) under different local epoch numbers e and a fixed mini-
batch size n = 500 based on (a) handwritten digit dataset and (b) traffic
dataset.
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Fig. 12. Required time consumption for training a model with target loss
(π = 0.0132) under different mini-batch sizes n and a fixed epoch
number e = 50 based on (a) handwritten digit dataset and (b) traffic
dataset.

on the number of coordination rounds. However, when we
consider the time duration of the model training process,
server dropping can significantly reduce the required time
duration for training a satisfactory model (with target loss
value). As observed in Fig. 7(b), the TS-FL-SC with server
dropping can reduce the overall time required for model
training almost by half, compared to TS-FL-SC without
dropping any low-performance servers. We can also observe
that TS-FL-ASC can also reduce the time duration of model
training, especially when all edge servers are selected to
participate in the model training. The performance improve-
ment provided by TS-FL-ASC, compared to TS-FL-SC, is
reduced when server dropping is enabled. This is because
the slowest edge server always dominates the overall time
consumption of the model training and therefore when
being removed from the model training process, the load
forwarding between the slow and fast edge servers will have
a limited effect in reducing the model training time.

In Fig. 8, we present the number of coordination rounds
and time consumption required for training a satisfactory
model with a target loss (π = 0.0132) under scenario
(b). Recall that in scenario (b), some low-performance edge
servers have data samples with unique labels. In this case,
we can observe that removing the low-performance edge
servers from participating in model training will slow the
convergence rate, i.e., neither TS-FL-SC nor TS-FL-ASC can
converge to the target loss within 500 rounds of coordination
and if without server dropping, both solutions can obtain
the target model after around 220 coordination rounds.
This observation becomes more noticeable if we consider
the required time for training a satisfactory model. More
specifically, in Fig. 8(b), we can observe that the TS-FL-ASC
without server dropping is the fastest solution to train the
model, followed by TS-FL-SC without server dropping. The
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later solution results in almost 40% more time consumption
for training the same model.

In Fig. 9, we evaluate the required coordination rounds
and time for reaching a target loss (π = 0.0132) under
scenario (c). In this case, we can observe that in terms
of required number of coordination rounds for training a
model, the convergence performance of different solutions
are quite similar, i.e., the difference in the required numbers
of coordination rounds for reaching the same target loss
when applying different solutions is within 2-3 coordination
rounds. However, if we consider the overall time consump-
tion for training the model, different solutions exhibits quite
different convergence performance. More specifically, server
dropping reduces the model training time in TS-FL-SC and
TS-FL-ASC by around 63% and 28%, respectively. This once
again verifies our previous observation that the model train-
ing time and convergence rate are different concepts and the
former metric provides more important insight, especially in
the smart applications and servers requiring time-sensitive
learning and model updating.

To further highlight the difference of measuring model
training convergence performance based on the required
number of coordination rounds and time consumption for
training a satisfactory model, we compare the required
number of coordination rounds and time spent on training
a model with target loss (π = 0.0132) under different local
epoch numbers in Fig. 10 where we apply TS-FL-SC in
scenario (a). We can observe that in terms of the required co-
ordination rounds, a large local epoch number means faster
convergence, less number of coordination rounds, to reach
the target model. However, when measured in terms of total
time consumption of model training, an opposite result will
be observed, i.e., TS-FL-SC with a large local epoch number
(e = 50) will result in longer time consumption for reaching
the same target model. In other words, simply calculating
the required numbers of coordination rounds cannot reflect
the real time required for training or updating a specific
model.

As mentioned earlier, the model training time is closely
related to two important model training parameters local
epoch number e and mini-batch size n. In particular, in
Sections 4 and 5, we have proved that if the overall time
required for training any desirable model can be approxi-
mated by our derived convergence bound, the model train-
ing time can be considered as biconvex over n and e. In
other words, if the approximated model training time is
convex over n (or e) under any given e (or n), we can always
find the optimal value of n (or e) that minimizes the overall
training time. Let us now verify this results by comparing
the overall time under different e and n. In particular, in
Fig. 11 and 12, we compare the real model training time
recorded in our hardware platform for reaching a target
loss value (π = 0.0132) when either e or n is fixed while
the other variables are changing into different values. In
Fig. 11, we can observe that the real model training time
verifies our theoretical results and the overall time required
for training a satisfactory model exhibits convexity in our
recorded traces. More specifically, there exists an optimal
value of e which can minimize time consumption of model
training under a given n. More specifically, the optimal
epoch number e∗ that can reach the target accuracy fastest in

scenario (a) and scenario (c) in handwritten digit dataset are
20 and 60 with the recorded total time duration for model
training at 137.58s and 27.41s, respectively. For the traffic
dataset, the minimum model training time is achieved by
selecting the smallest epoch number e∗ = 10 in scenario
(d) resulting 288.37s for training the model. In scenario (e)
however, the minimum model training time is achieved at
e∗ = 30 resulting in 49.49s. In Fig. 12, we can observe
that the required time for training the model increases
almost linearly with the mini-batch sizes n. This is because a
large mini-batch sizes not only means longer delay for data
sample uploading from data collecting devices to the edge
servers but also more time consumed for model training at
each edge server.

To compare our proposed solution with the recent state-
of-the-art, in Table 6.3, we have presented the overall time
consumption of model training process using our proposed
solution and the scheduling-based approach proposed in
[34] under two different datasets MNIST and traffic data
with target model accuracy at 83.30% and 80.43% in sce-
narios (a) and (d), respectively. Since the scheduling-based
approach in [34] is only applicable in the synchronous
coordination scenario, to make the result comparable, we
also present the model training time of server dropping
in TS-FL-SC scenario. We can observe that the proposed
server dropping solution can significantly reduce the overall
runtime when training a model with the same guaranteed
accuracy, especially when the local model training and
updating speed difference between slow and the fast edge
servers is large. In particular, our proposed server dropping
solution can reduce up to 71.43% and 94.45% model training
times in MNIST and traffic dataset, respectively, compared
to the scheduling-based approach.

7 CONCLUSION

This paper investigated the real-time learning for FEI sys-
tems with system and dataset heterogeneity. A novel frame-
work, called TS-FL, was proposed to minimize the overall
run-time for collaboratively training a shared ML model
with desirable accuracy. Training acceleration solutions for
both TS-FL-SC and TS-FL-ASC were proposed. For the TS-
FL-SC, a server dropping-based solution was proposed to
allow some slow-performance edge servers to be removed
from participating in the model training if their impact on
the resulting model accuracy is limited. A joint optimiza-
tion algorithm is proposed to minimize the overall time
consumption of model training by selecting participating
edge servers, the local epoch number (the number of model
training iterations per coordination), and the data batch size
(the number of data samples for each model training itera-
tion). For the TS-FL-ASC, a load forwarding-based solution
was proposed to allow the slow edge server to offload part
of its training samples to trusted edge servers with higher
processing capability. New theoretical convergence bound
for TS-FL-SC and TS-FL-ASC are derived for model training
based on non-i.i.d. datasets. We develop a hardware proto-
type to evaluate the model training time of a heterogeneous
FEI system. Experimental results show that our proposed
TS-FL-SC and TS-FL-ASC can provide up to 63% and 28%
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of reduction, in the overall model training time, respectively,
compared with traditional FL solutions.
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APPENDIX A
PROOF OF THEOREM 1

Let us now derive the convergence rate of TS-FL-SC with
server dropping. To facilitate our analysis, we introduce a
virtual sequence w̄M,t =

∑
k∈M pkwk,t to represent the

(virtual) sequence of equivalent global model if all the local
models at a subsetM of edge servers can be aggregated at
every local SGD iteration. Note that, after T SGD iterations,
the resulting global model aggregated by the coordinator
should be equivalent to the most updated model in the vir-
tual sequence, i.e., wM,T = w̄M,T . We can therefore focus
on deriving the convergence rate of the virtual sequence
during the rest of this proof.

Note that our proposed TS-FL-SC with server dropping
is different from the traditional FL with partial server
participation. In the latter solution, every edge server will
have equal chance of being selected to participate in the
model training process and therefore no edge servers will
be removed from the entire model training process.

One of the key issue of TS-FL-SC with server dropping is
to estimate the gap between the model w̄M,t trained with a
subsetM of edge servers and the global optimal model w∗

K
trained with the set K of all K edge servers, i.e., ∥w̄M,t −
w∗

K∥2.
In [46], it has proved the following upper bound for

model training with a set M edge server with full partic-
ipation.

Lemma 4. [46, Theorem 1] Suppose the following assump-
tions hold: (1) F1, F2, ..., FK are all L−smooth and
µ−convex, i.e., µ

2 ∥w − w′∥2 ≤ Fk(w) − Fk(w
′) +

(w − w′)T∇Fk(w
′) ≤ L

2 ∥w − w′∥2 for all w,w′ ∈
Rd; (2) data samples xk are uniformly randomly sam-
pled from Dk; and (3) the stochastic gradient satisfies
E∥∇lk(w, xk)∥2 ≤ G2 and E∥∇lk(w, xk) − ∇Fk(w)∥2
≤ σk

2. If κ = L
µ , γ = max{8κ, e}, and the learning rate

ηt satisfies ηt = 2
µ(γ+t) , we have

E(||w̄M,t −w∗
M||2) ≤ ∆ (43)

where ∆ is given by

∆ =
4

µ2(γ + t)
(
∑
k∈M

p2kσk
2

nk
+ 8e2G2 + 6LD∗

M(F )

+
µ2(γ + 1)

4
∥w0 −w∗

M∥2). (44)

Decomposing the term ||w̄M,t − w∗
M||2, and we can

write

E||w̄M,t −w∗
M||2 − E(||w̄M,t −w∗

K||2)
= 2⟨w̄M,t −w∗

M +w∗
M −w∗

K,w
∗
K −w∗

M⟩
+∥w∗

K −w∗
M∥2

= 2⟨w̄M,t −w∗
M,w∗

K −w∗
M⟩−∥w∗

K −w∗
M∥2 (45)

≥ −E||w̄M,t −w∗
M||2 − 2||w∗

K −w∗
M||2 (46)

where (45) comes from the fact that 2ab ≥ −a2 − b2.
Combining Lemma 4 and equation (46), we have

E(||w̄M,t −w∗
K||2) ≤ 2∆ + 2||w∗

K −w∗
M||2. (47)
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Combining (47) and the L-smooth property of F , we can
obtain

E(F (w̄M,t))− F ∗ ≤ L

2
E(||w̄M,t −w∗

K||2) (48)

≤ L∆+ L||w∗
K −w∗

M||2. (49)

This concludes the proof.

APPENDIX B
PROOF OF LEMMA 1
Suppose nk = n for each k ∈ K and changing n does
not affect the ranking of model training time among edge
servers, we rewrite the objective function (16) as follows:

E[c̃(e, n,M)] =
ζ + αM̃en+ βM̃e+ u

e (ϵ−DM)

(
A

n
+Be2 + CM

)
.

Let us first prove the above objective function is convex
over e for the given n andM.

We rewrite the objective function into the following
simplified form:

E[c̃(e, n,M)] = (A′ +B′e)(
C ′

e
+D′e), (50)

where A′ = ζ+u
(ϵ−DM) , B′ =

nαM̃+βM̃

(ϵ−DM) , C ′ ≜ A
n + CM, and

D′ = B can be considered as positive constants.
To prove the convexity of (50), we take the second order

derivative of E[c̃(e, n,M)] over e as follows:

∂2E[c̃(e,n,M)]

∂2e
= 2B′D′ + 2

A′C ′

e3
> 0, (51)

We can therefore claim (50) is a convex function over e.
Let us now prove the objective function in (16) is convex

over n under the given e andM. Similarly, we can rewrite
the objective function into the following form:

E[c̃(e, n,M)] = (A′′ +B′′n)

(
C ′′

n
+D′′

)
(52)

where A′′ =
ζ+βM̃e+u

e(ϵ−DM) , B′′ =
αM̃

(ϵ−DM) , C ′′ = A and D′′ =

Be2+CM can be considered as positive constants. By taking
the second derivative over (52), we can have

∂2E[c̃(e, n,M)]

∂2n
= 2

A′′C ′′

n3
> 0, (53)

which indicates the function in (52) is also convex of n.
According to the definition of biconvexity, we can claim

that the objective function (16) is biconvex over e and n. This
concludes the proof.

APPENDIX C
PROOF OF LEMMA 2
Let us first define tk ≤ t as the most recent iteration of
each edge server k that is updated by the global model
coordination, i.e., tk ∈ Ik and t− tk ≤ ek.

We can then decompose term ∥w̄t − wk,t∥2 into the
following form:

∥w̄t −wk,t∥2 ≤ 3(∥wk,t −wk,tk∥2 + ∥wk,tk − w̄tk∥2

+∥w̄tk − w̄t∥2), (54)

where w̄t ≜ w0 −
∑K

k=1 pk
∑t−1

j=0 ηjgk,j .

We first analyze the first term ∥wk,t − wk,tk∥2 on the
left-hand-side of equation (54) which characterizes the lo-
cal model training since last global model coordination
at iteration tk. We can derive the following bound for
∥wk,t −wk,tk∥2 as follows:

∥wk,t −wk,tk∥2 = ∥
t−1∑
j=tk

ηj∇gk,j∥2 (55)

≤ η2tk(t− tk)
2G2 (56)

≤ η2tke
2
kG

2 (57)

≤ 4η2t e
2
kG

2 (58)

where (55) is obtained by the model updating rule in (3),
(56) is obtained by Assumption 1, (57) comes from tha fact
that t − tk ≤ ek and ηt is non-increasing, and (58) is based
on the property of learning rate ηt ≤ 2ηH+τ+t for all t > 0.

For the second term on the left-hand-side of equation
(54), we can derive the following bound:

∥w̄t − w̄tk∥2 = ∥
K∑

h=1

ph

t−1∑
j=tk

ηjgk,j∥2 (59)

≤ η2tke
2
kG

2 (60)

≤ 4η2t e
2
kG

2 (61)

where (59) is the definition of virtual sequence, (60) and (61)
follow the same line as (57) and (58).

The third term on the left-hand-side of equation (54)
captures the divergence between the virtual sequence and
global model at the coordinator. We can write

∥wk,tk − w̄tk∥2 = ∥vk,tk − w̄tk∥2 (62)

= ∥
K∑

h=1

ph
∑

j∈Wh
k,tk

ηjgh,j −
K∑

h=1

ph

tk−1∑
j=0

ηjgh,j∥2 (63)

≤ 16η2t τ
2G2. (64)

where (62) is based on the model updating rule in (3), (63)
follows the definition of vk,tk and w̄tk , (64) is according to
constraint in (27) and the property of learning rate used in
(58).

Combining (58), (61), and (64), we have

∥w̄t −wk,t∥2 ≤ 3
(
∥wk,t −wk,tk∥2 + ∥wk,tk − w̄tk∥2

+∥w̄tk − w̄t∥2
)
≤ 8η2tG

2(2τ2 + e2k).

We can also obtain the following results:

E

[
K∑

k=1

pk∥w̄t −wk,t∥2
]
≤ 24η2tG

2

(
2τ2 +

K∑
k=1

pke
2
k

)
.

This concludes the proof.

APPENDIX D
PROOF OF THEOREM 2
To derive the convergence upper bound of TS-FL-ASC, we
derive the convergence of E

[
∥w̄t+1 −w∗

K∥2
]
.

Let us first introduce the following result which has
already been proved in [46].
Lemma 5. [46, Lemma 1, 2] Suppose the following as-

sumptions hold: (1) F1, F2, ..., FK are all L−smooth and
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µ−convex, i.e., µ
2 ∥w −w′∥2 ≤ Fk(w)− Fk(w

′) + (w −
w′)T∇Fk(w

′)≤ L
2 ∥w−w

′∥2 for all w,w′ ∈ Rd; (2) data
sample xk is uniformly randomly sampled from Dk; and
(3) the stochastic gradient satisfies E∥∇lk(w, xk)∥2 ≤ G2

and E∥∇lk(w, xk)−∇Fk(w)∥2 ≤ σ2
k. By setting κ = L

µ ,
γ = max{8κ, τ +H} and ηt =

2
µ(γ+t) , we have

E
[
∥w̄t+1 −w∗

K∥2
]
≤ (1− ηtµ)E

[
∥w̄t −w∗

K∥2
]

+η2t

K∑
k=1

p2kσ
2
k

nk
+ 6η2tLD

∗
K(F )

+2E

[
K∑

k=1

pk∥w̄t −wk,t∥2
]
,

In Lemma 2, we have derived a bound for the term
E
[∑K

k=1 pk∥w̄t −wk,t∥2
]
. Substituting (29) into Lemma 5,

we have

E∥w̄t+1 −w∗
K∥2 ≤ (1− ηtµ)E∥w̄t −w∗

K∥2 + η2tB, (65)

where

B =
K∑

k=1

p2kσ
2
k

nk
+ 6LD∗

K(F ) + 48G2(2τ2 +
K∑

k=1

pke
2
k). (66)

Let ∆t = E
[
∥w̄t −w∗

K∥2
]

and ξ = max{ 4Bµ2 , γ∥w0 −
w∗

K∥2}. Based on the definition of ξ, if t = 0, we have ∆t ≤
ξ

γ+t . We can then write ∆t+1 as the following form:

∆t+1 ≤ (1− ηtµ)∆t + η2tB (67)

≤ (1− 2

γ + t
)

ξ

γ + t
+

4B

µ2(t+ γ)2
(68)

=
(γ + t− 1)ξ

(γ + t)2
+

1

(γ + t)2
(
4B

µ2
− ξ)

≤ (γ + t− 1)ξ

(γ + t)2
(69)

<
(γ + t− 1)ξ

(γ + t)2 − 1
=

ξ

γ + t+ 1
. (70)

where (67) comes directly from (65), (68) is based on the
property of learning rate defined in Theorem 2, (69) comes
from the fact that 4B

µ2 ≤ ξ.
According to the definition of ξ, we have the inequality

ξ = max{ 4Bµ2 , γ∆0} ≤ 4B
µ2 + γ∆0.

Substituting the above inequality into (70), we have

E∥w̄t −w∗
K∥2 ≤ 1

γ + t
(
4B

µ2
+ γ∆0). (71)

Using the property of L−smooth of F (·), we can obtain

E[F (w̄t)− F ∗] ≤ L

2
E∥w̄t −w∗

K∥2

≤ L

2

1

γ + t
(
4B

µ2
+ γ∆0)

≤ κ

γ + t
(
2B

µ
+

µγ

2
∆0) (72)

where κ = L
µ . This concludes the proof.

APPENDIX E
PROOF OF THEOREM 3
According to Theorem 2, the model trained by a set M of
edge servers can always converge to the optimal weight
w∗

M, and we can write

E(||w̄M,t −w∗
M||2) ≤ ∆, (73)

where

∆ =
4

µ2(γ + t)
(
∑
k∈M

p2kσ
2
k

nk
+ 48G2(2τ2 +

K∑
k=1

pke
2
k)

+6LD∗
M(F ) +

µ2(γ + 1)

4
∥w0 −w∗

M∥2) (74)

Combining (74) with (49), we have

E(F (w̄M,t))− F ∗ ≤ L∆+ L||w∗ −w∗
M||2. (75)

This concludes the proof.


