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ABSTRACT
We present a theoretical framework to investigate thermoreversible phase transitions within polyzwitterion systems, encompassing
macrophase separations (MPS) and gelation. In addition, we explore concentration fluctuations near critical points associated with MPS,
as well as tricritical and bicritical points at the intersection of MPS and gelation. By utilizing mean-field percolation theory and field theory
formalism, we derive the Landau free energy in terms of polyzwitterion concentration with fixed dipole strengths and other experimental
variables, such as temperatures and salt concentrations. As the temperature decreases, the dipoles can form cross-links, resulting in polyzwit-
terion associations. The associations can grow to a gel network and enhance the propensity for MPS, including liquid–liquid, liquid–gel, and
gel–gel phase separations. Remarkably, the associations also impact critical behaviors. Using the renormalization group technique, we find
that the critical exponents of the polyzwitterion concentration correlation functions significantly deviate from those in the Ising universality
class due to the presence of polyzwitterion associations, leading to crossover critical behaviors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0216981

I. INTRODUCTION

The presence of moieties, consisting of permanent electric
dipole moment, is ubiquitous in a plethora of both synthetic and
biological charged macromolecules. The electrostatic and orienta-
tion attributes of such dipolar moieties add a complex layer of
additional conceptual challenges to the already existing challenges
toward a fundamental understanding of charged macromolecules
consisting of only monopolar charges.1 The additional complex-
ity arises from gentle dipole–dipole interactions, compared to the
Coulomb interaction among charged units. For example, while the
electrostatic interaction energy between two monopole charges sep-
arated by a distance r is proportional to 1/r, the interaction energy
between two dipoles is proportional to 1/r3. Furthermore, if the
dipoles are randomly oriented, the interaction energy between two
dipoles is proportional to 1/r6, and the one between a dipole and a
charge is proportional to 1/r4. Thus, the presence of dipoles gener-
ates a spectrum of spatial range of interactions, which, in turn, is
self-consistently modulated by the conformational entropy of
the macromolecules containing these dipoles. In general, the
dipole–dipole interactions are attractive and can readily form pairs

of dipoles (quadrupoles). Such quadrupoles and multipoles can eas-
ily assemble and disassemble. When these nanostructures form,
the solution of charged macromolecules is not spatially uniform at
all length scales. Due to various possible associations of dipoles,
branched aggregates can easily form in solutions, and these elec-
trostatically driven physical associations can lead to gelation. Fur-
thermore, these systems can undergo macrophase separation under
suitable experimental conditions, such as lower temperature or
lower ionic strength in their solutions.

The inherent nature of dipole–dipole aggregation brings the
dipolar polymers into the general class of associating polymers,
which is of tremendous current interest.2–8 However, the role of
electrostatics in associating polymers is not fully explored except
for a few isolated situations.9–16 Toward formulating an adequate
theoretical framework for the role of dipoles on the thermody-
namic and structural properties of dipole-carrying macromolecules,
we consider the extreme case of homo-polyzwitterions where
each repeat unit is made of a permanent dipole moment. Apart
from the interest in a fundamental understanding of polyzwit-
terions, these molecules are of great importance in industrial
settings.17–21
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The primary goal of the present paper is to formulate a the-
ory of the thermodynamic behavior of polyzwitterion solutions
using an adequately simple model that contains the essential ele-
ments of dipole–dipole interactions, short-range excluded volume
interactions, electrostatic screening due to added salt, and chain con-
formational entropy. In this model, the dipoles can form cross-links
in pairs, and the binding free energy, comprising the binding energy
of dipoles and the reduction in entropy of cross-links, determines
their extent of reaction. There are immense possible association con-
figurations. The associations involve varying numbers of polyzwitte-
rions, and the associations with the same number of polyzwitterions
can also feature differing numbers of cross-links when loops exist
within them, as observed in simulations.22–24 Similarly, the possible
structures of gels are diverse.

To avoid the complexity, we employ mean-field percolation
theory, which assumes that associations lack loops in both the pregel
and postgel regimes.2,25 Meanwhile, although there are multiple the-
oretical methods for determining the gel structure26,27 or, at the
least, the number of cross-links within gels,6,28,29 we focus only on
two common approaches: Stockmayer’s treatment, where the gel
is tree-like, and Flory’s treatment, where gels may contain loops.
These treatments allow us to calculate the number of cross-links
in associations and gels, thereby determining the chemical poten-
tials associated with forming these associations and the gel network.
These treatments allow us to calculate the number of cross-links
in associations and gels, thereby determining the free energy asso-
ciated with forming these associations and the gel network. Our
model accounts for short-range van der Waals forces and long-
range dipole–dipole and dipole–charge interactions. To simplify
the screening effects, due to added salt, on the electrostatic inter-
actions among monomers and ions, we restrict ourselves to the
Debye–Hückel (DH) approximation. With these assumptions and
simplifications, we derive the Landau free energy of the concen-
trations of associations and gels using the field theory formalism.
When studying the chemical equilibriums of associations and the
gel, we derive the weight distributions, as well as the threshold
concentration of the gelation.

Furthermore, we predict phase transitions in polyzwitterion
solutions utilizing the derived free energy. As the temperature
decreases, the liquid–liquid phase separation (LLPS) emerges. How-
ever, compared to non-associative polymer solutions, the associa-
tive polyzwitterion solutions more easily undergo LLPS due to the
dipole–dipole interactions within the polymer-rich phase. More-
over, if the concentration in the polymer-rich phase exceeds a
specific threshold, a gel will form, resulting in a liquid–gel phase
separation. The interplay between gelation and phase separations
goes beyond the simple LLPS.30,31 Therefore, in this paper, we refer
to these phenomena as macrophase separations (MPS) rather than
LLPS. With higher concentrations, the solution can transition from
a homogeneous solution to a homogeneous gel. Our model addi-
tionally predicts that the homogeneous gel can undergo further
transitions, such as gel–liquid or gel–gel phase separations, upon
further cooling. We demonstrate multiple critical points in the
polyzwitterion model due to the cooperation of thermoreversible
MPS and gelation, which has been previously studied in neutral
associative polymer32 and patchy particle solutions.33,34 Further-
more, employing the derived Landau free energy accounting for
polyzwitterion concentration fluctuations, we can investigate the

critical behavior near the transitions, including gelation and MPS,
which exhibit distinctly different critical behaviors. MPS is a ther-
modynamic phase transition and belongs to the Ising universality
class,35 while gelation represents a geometric phase transition and
belongs to the percolation universality class.31 By utilizing the renor-
malization group (RG) technique, we derive the correlation function
beyond the Ornstein–Zernike (OZ) form36,37 and discover crossover
critical behaviors in MPS because associations lead to a transi-
tion from critical to bicritical points. As for the gelation, with the
assumptions of tree-like associations, we present a crossover crit-
ical behavior due to the coupling between thermal fluctuations of
monomer concentration and geometrical percolation.

The remainder of this paper is structured as follows.We present
the microscopic model in Sec. II and derive the free energy under
several assumptions in Sec. III. In Sec. IV, we provide the key results
on the phase diagrams under the treatments of Stockmayer and
Flory, along with the presentation of anomalous critical behaviors.
The conclusions are present in Sec. V.

II. MODEL
We consider np flexible polyzwitterion chains, each with the

uniform number of Kuhn segments N with Kuhn segment length
ℓ, dispersed in a solution of volume Ωℓ3 containing n0 solvent
molecules and fully dissociated monovalent electrolyte with nc
cations and na anions. Let p⃗ be the dipole moment of each of the
Kuhn segments. Representing the polyzwitterion chains as continu-
ous curves of contour length L = Nℓ, the partition function Z of the
system is given by

Z = 1
np!n0!nc!na! ∫

np

∏
α=1

D{
R⃗(sα)
ℓ
}

nc
∏
c=1

dr⃗c
ℓ3

na
∏
a=1

dr⃗a
ℓ3

no
∏
o=1

dr⃗o
ℓ3

× exp
⎡
⎢
⎢
⎢
⎢
⎣

−
3
2ℓ2

np

∑
α=1
∫

N

0
dsα(

∂R⃗(sα)
∂sα

)

2

−
Uelc

kBT
−
Uvdw

kBT

⎤
⎥
⎥
⎥
⎥
⎦

, (1)

where R⃗(sα) is the sαth segment position of the αth polyzwitte-
rion, and the symbols r⃗c, r⃗a, and r⃗o denote the position of the cth
cation, the ath anion, and the oth solvent molecule, respectively.
The integral over D {R⃗(sα)/ℓ} denotes the path integral over the
conformations of the αth chain in accordance with the Edwards
Hamiltonian given above. The electrostatic interactions Uelc among
the dipoles and ions are given by

Uelc

kBT
=
1
2

np

∑
α=1

np

∑
α′=1
∫

N

0
dsα∫

N

0
dsα′

ℓB

∣r⃗α,α′ ∣
3

× [p⃗ ⋅ p⃗ ′ − 3(p⃗ ⋅
r⃗α,α′
∣r⃗α,α′ ∣

)(p⃗ ′ ⋅
r⃗α,α′
∣r⃗α,α′ ∣

)]

−

nc
∑
c=1

np

∑
α=1
∫ dsα(p⃗ ⋅

R⃗(sα) − r⃗c
∣R⃗(sα) − r⃗c∣

)
⎛

⎝

ℓB

∣R⃗(sα) − r⃗ c∣
2
⎞

⎠

+

na
∑
a=1

np

∑
α=1
∫ dsα(p⃗ ⋅

R⃗(sα) − r⃗a
∣R⃗(sα) − r⃗a∣

)
⎛

⎝

ℓB

∣R⃗(sα) − r⃗ a∣
2
⎞

⎠

+
1
2

nc
∑
c=1

na
∑
a=1

ℓB
∣r⃗c − r⃗a∣

, (2)
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where ℓB is the Bjerrum length e2/4πε0εkBT (where kB is the Boltz-
mann constant, T is the temperature, e is the electron charge, ε0 is
the vacuum permittivity, and ε is the relative permittivity). p⃗(p⃗ ′)
denotes the dipole moment of the sα(sα′)th segment in the unit of
e ⋅ ℓ, and the inter-segment distance vector r⃗α,α′ is given by

r⃗α,α′ ≡ R⃗(sα) − R⃗(sα′). (3)

We assume that the size of ions is extremely tiny such that there is no
van der Waals interaction for the electrolyte ions. For the excluded
volume interactions among the solvent molecules and segments, we
model them as the short-ranged van der Waals interaction Uvdw
given by

Uvdw

kBT
=
woo

2

no
∑

o,o′=1
δ(r⃗o − r⃗o′)

+
wpp

2

np

∑
α,α′=1

∫

N

0
dsα∫

N

0
dsα′ δ(R⃗(sα) − R⃗(sα′))

+ wop

no
∑
o=1

np

∑
α=1
∫

N

0
dsαδ(r⃗o − R⃗(sα)), (4)

with woo, wpp, and wpo representing the excluded volume parameters
among the solvent molecules, among the segments, and between the
segments and solvent molecules, respectively. Because the dynamics
of electrolyte ions is much faster than that of polyzwitterions,1,38 we
integrate out the degrees of freedom of small ions and implement
the (DH) approximation to get Uelc in Eq. (1), yielding

1
nc!na! ∫

nc
∏
c=1

dr⃗c
ℓ3

na
∏
a=1

dr⃗a
ℓ3

exp [−
Uelc

kBT
]

= cst. ×
ΩncΩna

nc!na!
exp [Ω

(κℓ)3

12π
−
Uelc(κ)
kBT

], (5)

where the constant includes the divergence of no physical effect,
and the dipole–dipole interaction among segments becomes the
modified Uelc(κ),

Uelc(κ)
kBT

=
1
2

np

∑
α=1

np

∑
α′=1
∫

N

0
dsα∫

N

0
dsα′Vdd(R⃗(sα) − R⃗(sα′)), (6)

where Vdd is the screened dipole–dipole interaction energy defined
by

Vdd(r⃗) =
ℓBe−κr

r3
[(1 + κr)p⃗ ⋅ p⃗ ′ − (3 + 3κr + (κr)2)(p⃗ ⋅

r⃗
r
)(p⃗ ′ ⋅

r⃗
r
)],

(7)

and the inverse Debye length κ is given by

κ2 = 4πℓB
ρc + ρa
ℓ3

. (8)

Here, ρc and ρa are the homogenous ion concentrations nc/Ω and
na/Ω, respectively. Moreover, because the high temperature drives
these dipoles to freely rotate about each other, upon averaging with

respect to the dipole orientations, we approximate the dipole–dipole
interaction as UKee given by1,12,13

UKee

kBT
=
1
2

np

∑
α=1

np

∑
α′=1
∫

N

0
dsα∫

N

0
dsα′VKee(∣R⃗(sα) − R⃗(sα′)∣), (9)

with

VKee(∣r⃗ ∣) ≡ −
(ℓBp)2

3
1 + 2κr + 5/3 (κr)2 + 2/3 (κr)3 + 1/6 (κr)4

r6

× e−2κr , ∣r⃗∣ > ℓ, (10)

where we have assumed that the distance between dipoles is larger
than ℓ. In addition, we assume that the whole solution is incompress-
ible. Introducing the local concentration variables ϕ̂o(r⃗) and ϕ̂(r⃗)
for the solvent molecules and polyzwitterion segments, respectively,

ϕ̂o(r⃗) = ℓ3
n0
∑
o=1

δ(r⃗ − r⃗o), (11)

ϕ̂(r⃗) = ℓ3
np

∑
α=1
∫

N

0
dsα δ(r⃗ − R⃗(sα)), (12)

the incompressibility condition at every position r⃗ is written as

∏
r⃗
δ[ϕ̂o(r⃗) + ϕ̂(r⃗) − 1]. (13)

Combining Eqs. (5) and (9) with Eq. (1), we obtain the partition
function as

Z = cst. ×
ΩncΩna

nc!na!
exp [Ω

(κℓ)3

12π
]∫

np

∏
α=1

D{
R⃗(sα)
ℓ
}

×

no
∏
o=1

dr⃗o
ℓ3

∏
r⃗
δ[ϕ̂o(r⃗) + ϕ̂(r⃗) − 1]

np!no!

× exp
⎡
⎢
⎢
⎢
⎢
⎣

−
3
2ℓ2

np

∑
α=1
∫

N

0
dsα(

∂R⃗(sα)
∂sα

)

2

−
Uvdw

kBT
−
UKee

kBT

⎤
⎥
⎥
⎥
⎥
⎦

. (14)

If the temperature is high enough, the orientational average of
the screened dipole–dipole interaction energy (VKee ∼ 1/r6) is appli-
cable. Meanwhile, at lower temperatures, the dipole orientations are
not random and Vdd given by Eq. (7) must be used. For example, if
two neighboring dipoles, separated by a distance ℓ, are oriented in
an anti-parallel manner (↑↓), the dipole–dipole interaction energy
Vdd is

Vdd

RRRRRRRRRRRr=ℓ, (p⃗,p⃗ ′)=(↑,↓)

= −
ℓBp2

ℓ3
(1 + κℓ)e−κℓ. (15)

Starting from this general model for polyzwitterion solutions,
we present below a field-theoretic treatment of the phase behavior
of polyzwitterion solutions containing added salt, after a discussion
of dipolar associations and gelation.

III. FIELD THEORY OF ASSOCIATIVE
POLYZWITTERION SOLUTIONS
A. Associations in polyzwitterion solutions

As the temperature decreases, the dipole–dipole interaction
becomes comparable to the thermal energy, leading to the formation
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of quadrupoles and other multipoles. The binding energy depends
on the relative orientation and distance between two dipoles. We
assume that the pairwise dipole bound is antiparallel (↑↓) with a
distance ℓ, so the binding energy equals

−
ℓBp2

ℓ3
(1 + κℓ)e−κℓ = −

Θp

T
(1 + κℓ)e−κℓ. (16)

We define an effective temperature Θp to denote the strength of the
anti-parallel quadrupole energy in the absence of salt11 as

Θp

T
≡
ℓBp2

ℓ3
. (17)

Therefore, once the solution temperature T decreases to the scale
of Θp, dipole bindings inevitably form, leading to the associa-
tion of polyzwitterions. These physical associations of dipoles into
quadrupoles, aggregates of quadrupoles, and multipoles can result
in branched structures that vary in size and shape. These structures
naturally contain different numbers of cross-links (quadrupoles)
and may contain closed loops. Modeling such complex architectures
is challenging. However, we can simplify the process by apply-
ing mean-field percolation theory,25 assuming the absence of loops.
This approximation becomes more accurate as the molecular weight
of polyzwitterions increases.39 By considering tree-like associations
involving m polyzwitterions containing m − 1 pairwise cross-links
for a specific architecture, the Boltzmann factor accounting for
conformational entropy is given by

Parch = exp
⎡
⎢
⎢
⎢
⎢
⎣

−(m − 1)
fbind
kBT

−
m

∑
α=1

3
2ℓ2 ∫

dsα(
∂R⃗ (m)

∂sα
)

2⎤
⎥
⎥
⎥
⎥
⎦

×
m−1

∏
Nc=1

δNc , (18)

where the symbol fbind denotes the binding free energy,

fbind
kBT

= −
Θp

T
(1 + κℓ)e−κℓ − Δs, (19)

with the entropy loss Δs = Sbinding − Sunbinding. The binding free
energy fbind primarily depends on quadrupoles. However, we should
also consider the impact of cross-links on the hydration between
polyzwitterions and solvent molecules, which affects the phase
diagrams of aqueous polymer solutions, as shown in previous
research.40 We do not include this effect for simplicity. Here,
R⃗ (m)(sα) is the sαth segment position of the αth polyzwitterion in
the m-association. The symbol ∏ δNc represents the multiplication
of Dirac delta functions,

m−1

∏
Nc=1

δNc = δ(R⃗
(m)
(s1) − R⃗ (m)(s2)) ⋅ ⋅ ⋅

× δ(R⃗ (m)(sm−1) − R⃗ (m)(sm)), (20)

where δ(R⃗ (m)(si−1) − R⃗ (m)(si)) specifies the cross-link between the
si−1th segment of the (i − 1)th polyzwitterion and the sith segment of

the ith polyzwitterion. By following Stockmayer’s method, we derive
the number of architectures for tree-likem-associations Am as2,26

Am =
Nm
(Nm −m)!

m!(Nm − 2m + 2)!
, (21)

and the Boltzmann factor of tree-like m-associations containing a1
the first architecture, a2 the second architecture, . . ., and aAm the
Amth architecture is then given by

Pm =

a1
∏
I1=1

PI1

a2
∏
I2=1

PI2 ⋅ ⋅ ⋅
aAm
∏

IAm=1
PIAm

a1!a2! ⋅ ⋅ ⋅ aAm !
, (22)

where Ia represents the Iath association with the ath architecture.
Furthermore, employing the multinomial theorem, we simplify the
Boltzmann factor as

Pm =

exp [−nm μm
kBT
−

nm
∑
I=1

m
∑
α=1

3
2ℓ2 ∫dsα(

∂R⃗ (m)I
∂sα
)
2
]

nm!

×

⎛
⎜
⎜
⎜
⎜
⎝

m−1
∏
Nc=1

δ1st Arch.Nc
+ ⋅ ⋅ ⋅ +

m−1
∏
Nc=1

δAm−th Arch.
Nc

Am

⎞
⎟
⎟
⎟
⎟
⎠

nm

, (23)

where R⃗(m)I (sα) represents the sαth segment position of the αth
polyzwitterion in the Ith m-associations, nm = a1 + a2 + ⋅ ⋅ ⋅ + aAm

and μm is the free energy associated with the creation of an
m-association, defined as

μm
kBT
= (m − 1)

fbind
kBT

− lnAm. (24)

As a result, we rewrite the partition function given in Eq. (14) as

Z = cst. ×
ΩncΩna

nc!na!
exp [Ω

(κℓ)3

12π
]

×∫

np

∏
α=1

D{
R⃗(sα)
ℓ
}

no
∏
o=1

dr⃗o
ℓ3

∏
r⃗
δ[ϕ̂o(r⃗) + ϕ̂(r⃗) − 1]

no!

× exp [−
Uvdw

kBT
−
UKee

kBT
]
∞

∏
m=1

Pm. (25)

B. Gel phase
Thus far, we have not accounted for the presence of a gel net-

work. The gelation occurs when the polyzwitterion concentration
surpasses a certain threshold. Under the assumption of tree-like
architectures, the gel network must be tree-like at the gelation point.
Moreover, we assume that there is one and only one gel network if it
forms. Hence, by defining the free energy of a polyzwitterion joining
the gel as the limit of μm withm→∞

μg
kBT
= lim

m→∞

1
m

μm
kBT
= (

fbind
kBT

− ln(
(N − 1)N−1

(N − 2)N−2
) − ln N), (26)
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the Boltzmann factor of the gel network is given by

Pg = exp
⎡
⎢
⎢
⎢
⎢
⎣

−mg
μg
kBT
−

mg

∑
α=1

3
2ℓ2 ∫

dsα(
∂R⃗ (g)

∂sα
)

2⎤
⎥
⎥
⎥
⎥
⎦

× lim
m→∞

m−1
∏
Nc=1

δ1st Arch.Nc
+ ⋅ ⋅ ⋅ +

m−1
∏
Nc=1

δAm−th Arch.
Nc

Am
, (27)

where the symbol mg denotes the number of polyzwitterions in the
gel network and R⃗ (g)(sα) is the sαth segment of the αth polyzwitte-
rion in the gel network. As the concentration increases beyond the
threshold value, if we continue assuming a tree-like gel network, the
treatment is called Stockmayer’s treatment. On the contrary, we can
allow loop formation within the gel network. The free energy of a
polyzwitterion joining the gel becomes

μg
kBT
=
Δμloop
kBT

+ lim
m→∞

1
m

μm
kBT

, (28)

where Δμloop represents the free energy associated with loop forma-
tions. Since the precise architecture of the gel network is unknown, it
is difficult to analyze Δμloop from first principles. In view of this, we
use Flory’s treatment of “shadow root” to derive Δμloop and inspect
the impact of loops within the gel network on the phase diagram of
polyzwitterion solutions. The details of Flory’s treatment will be dis-
cussed in Sec. III D. As a result, by incorporating associations and
gelation, the partition function is given by

Z = cst. ×
ΩncΩna

nc!na!
exp [Ω

κℓ3

12π
] ×∫

np

∏
α=1

D{
R⃗(sα)
ℓ
}

no
∏
o=1

dr⃗o
ℓ3

×

∏
r⃗
δ[ϕ̂o(r⃗) + ϕ̂(r⃗) − 1]

no!
exp [−

Uvdw

kBT
−
UKee

kBT
]Pg

∞

∏
m=1

Pm.

(29)

C. Field theory formalism
Analogous to the local concentration variables ϕ̂0(r⃗) and ϕ̂(r⃗),

we define the concentration variables ϕ̂g(r⃗) and ϕ̂m(r⃗) for gel and
m-associations, respectively, as

ϕ̂g(r⃗) = ℓ3
ng

∑
α=1
∫

N

0
dsα δ(r⃗ − R⃗ (g)(sα)), (30)

ϕ̂m(r⃗) = ℓ3
nm
∑
I=1

m

∑
α=1
∫

N

0
dsα δ(r⃗ − R⃗(m)I (sα)). (31)

Using ϕ̂m(r⃗) and ϕ̂g(r⃗) and inserting the identity

1 = ∫ D {ϕo}D {ϕg}
∞

∏
m=1

D {ϕm}∏
r⃗
δ[ϕo − ϕ̂o]δ[ϕg − ϕ̂g]

×
∞

∏
m=1

δ[ϕm − ϕ̂m], (32)

the partition function in Eq. (29) is rewritten as

Z = cst. ×
ΩncΩnc

nc!na!
exp [

Ωκ3ℓ3

12π
]

×∫ D {ϕo}D {ϕg}∏
m=1

D {ϕm} exp [−
Uvdw

kBT
−
UKee

kBT
]

×∫

np

∏
α=1

D{
R⃗(sα)
ℓ
}

no
∏
o=1

dr⃗o
ℓ3

∏
r⃗
δ[ϕ̂o(r⃗) + ϕ̂(r⃗) − 1]

no!

×∏
r⃗
δ[ϕo − ϕ̂o]δ[ϕg − ϕ̂g]

∞

∏
m=1

δ[ϕm − ϕ̂m]Pg

∞

∏
m=1

Pm. (33)

Upon integrating with respect to R⃗ and r⃗o, we can fully describe the
partition function in terms of the concentrations of the associations
and the gel. We initiate these integrations by decomposing the con-
centration field into its homogeneous and fluctuation components
using the Fourier transform (FT),

F { f } = ∫
dr⃗
ℓ3

f (r⃗) exp (−iq⃗ ⋅ r⃗), (34)

where we include the factor ℓ3 to scale quantities with respect to ℓ.
The FT of Dirac delta functions is equal to

F{∏
r⃗
δ[ϕi − ϕ̂i]} = δ[

ϕi(0⃗)
Ω
− ϕi]∏

q⃗≠0⃗

δ[ϕi − ϕ̂i], (35)

F{∏
r⃗
δ[ϕo + ϕ − 1]} = δ[

ϕo(0⃗) + ϕ(0⃗)
Ω

− 1]∏
q⃗≠0⃗

δ[ϕo + ϕ], (36)

where ϕi(0⃗) represents the Fourier transform at the null momentum
q⃗ = 0⃗, ϕi represents the homogenous concentrations of each species,
and the q⃗ dependence of ϕi and ϕ̂i is not written down explicitly
for q⃗ ≠ 0⃗. It is formidable to integrate out the positions R⃗(sα) and
r⃗o straightforwardly in Eq. (33). However, by combining the FT of
these concentration fields and the Legendre transformation41 shown
in Appendix A (supplementary material), we approximate the inte-
gral as a series expansion of the Landau free energy of concentration
fields. The integration with respect to r⃗o approximates to

∫

no
∏
o=1

dr⃗o
ℓ3

δ[ ϕo(0⃗)Ω − ϕo]∏
q⃗≠0⃗

δ[ϕo − ϕ̂o]

no!

≈ δ[
ϕo(0⃗)
Ω
− ϕo]

Ωno

no!
No exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗≠0⃗

Γ(2)o ϕ2o + ⋅ ⋅ ⋅
⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (37)

with the normalized factor

No = ∫ D {ϕo} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗≠0⃗

Γ(2)o ϕ2o + ⋅ ⋅ ⋅
⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (38)

The symbol ∫q⃗≠0⃗ represents the abbreviation of ∫dq⃗/(2π)
3ℓ3. Here,

the second-order term is equal to

Γ2o(q⃗) =
1
ϕo

, (39)

J. Chem. Phys. 161, 024903 (2024); doi: 10.1063/5.0216981 161, 024903-5

Published under an exclusive license by AIP Publishing

 12 July 2024 17:17:09

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7299196


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

and the higher-order terms Γ(n)o , n ≥ 3, are provided in Appendix A
(supplementary material).

When integrating with respect to R⃗, we start by re-expressing
the differential variables D {R⃗(sα)} as

np

∏
α=1

D{
R⃗(sα)
ℓ
} =

mg

∏
α=1

D{
R⃗ (g)(sα)

ℓ
}

×
∞

∏
m=1

nm
∏
I=1

m

∏
α=1

D

⎧⎪⎪
⎨
⎪⎪⎩

R⃗(m)I (sα)
ℓ

⎫⎪⎪
⎬
⎪⎪⎭

, (40)

yielding the approximations

∫

nm
∏
I=1

m

∏
α=1

D

⎧⎪⎪
⎨
⎪⎪⎩

R⃗(m)I (sα)
ℓ

⎫⎪⎪
⎬
⎪⎪⎭

δ[ ϕm(0⃗)Ω − ϕm]∏
q⃗≠0⃗

δ[ϕm − ϕ̂m]

nm!
Pm

≈ δ[
ϕm(0⃗)
Ω
− ϕm]

Ωnm

nm!
Nm exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗≠0⃗

Γ(2)m ϕ2m + ⋅ ⋅ ⋅
⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (41)

∫

ng

∏
α=1

D{
R⃗ (g)(sα)

ℓ
}δ[

ϕg(0⃗)
Ω
− ϕg]∏

q⃗≠0⃗

δ[ϕg − ϕ̂g]Pg

≈ δ[
ϕg(0⃗)
Ω
− ϕg]ΩNg exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗≠0⃗

Γ(2)g ϕ2g + ⋅ ⋅ ⋅
⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (42)

with the normalized factors

Nm = ∫ D {ϕm} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

Γ(2)m ϕ2m + ⋅ ⋅ ⋅
⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (43)

Ng = ∫ D {ϕg} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

Γ(2)g ϕ2g + ⋅ ⋅ ⋅
⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (44)

Here, because the precise architecture of the gel network is
unknown, we cannot determine the exact form of Γ(2)g . However,
we do know that Γ(2)g must be proportional to 1/ϕg , as there will
be no gel concentration fluctuation if the gel does not form. The
second-order term Γ(2)m is equal to

Γ(2)m (q⃗) =
1

mNϕm
(1 +

R2
g(m) q2

3
+ ⋅ ⋅ ⋅ ), (45)

where the symbol Rg(m) represents the ensemble-averaged radius
of gyration of m-associations, and their fractal dimensions will be
discussed in more detail later in this paper. The higher-order terms
Γ(n)m , n ≥ 3, are provided in Appendix A (supplementary material).
In addition, the FT of Uvdw is equal to

F{
Uvdw

kBT
} = Ω

⎡
⎢
⎢
⎢
⎢
⎣

woo

2
(
ϕo(0⃗)
Ω
)

2

+
wpp

2
(
ϕ(0⃗)
Ω
)

2

+ wop(
ϕ(0⃗)
Ω
)(

ϕo(0⃗)
Ω
)]

+ ∫

q⃗≠0⃗

woo

2
ϕ2o +

wpp

2
ϕ2 + wopϕϕo. (46)

Because the FT of VKee in Eq. (10) is

F {Eq. 10} =
4π
9
(
ℓBp2

ℓ3
)

2

[g(κℓ) −
h(κℓ)
2
(qℓ)2 + ⋅ ⋅ ⋅ ], (47)

where the high-order terms are not written down explicitly, and

g(κℓ) = (1 + 2κℓ + (κℓ)2 + (κℓ)3/4)e−2κℓ, (48)

h(κℓ) = (1 + 25κℓ/24 + 5(κℓ)2/12 + (κℓ)3/12)e−2κℓ, (49)

the FT of UKee is equal to

F{
UKee

kBT
} = Ω

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
2π
9
(
Θp

T
)
2
g(κℓ)

⎛
⎜
⎜
⎜
⎝

ϕg(0⃗) +
∞

∑
m=1

ϕm(0⃗)

Ω

⎞
⎟
⎟
⎟
⎠

2⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1
2∫

q⃗≠0⃗

4π
9
(
Θp

T
)
2
[−g(κℓ) +

h(κℓ)
2

q2 + ⋅ ⋅ ⋅ ]

× (ϕg +
∞

∑
m=1

ϕm)
2

. (50)

Consequently, by substituting Eqs. (37)–(42), (46), and (50)
into Eq. (33), we derive the partition function as

Z = cst. × exp [−mg
μg
kBT
−
∞

∑
m=1

nm(− ln mN − 1 +
μm
kBT
)]Z δZ,

(51)
where the constant includes the terms of no physical effect. The
mean-field part Z is given by

Z = exp(− Ωf
kBT
), (52)

where the mean-field free energy of the polyzwitterion solution is
equal to

f
kBT
= ρc ln ρc + ρa ln ρa −

κ3ℓ3

12π

+
∞

∑
m=1

ϕm
mN

lnϕm + (1 − ϕ) ln (1 − ϕ)

+ [χ +
2π
9
(
ΘP

T
)
2
g]ϕ(1 − ϕ). (53)
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Here, the symbol χ denotes the Flory–Huggins mixing para-
meter wop − (woo + wpp)/2. The contribution from concentration
fluctuation δZ is

δZ = Ng∫

q⃗≠0⃗

D {ϕg} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

Γ(2)g ϕ2g + ⋅ ⋅ ⋅
⎤
⎥
⎥
⎥
⎥
⎥
⎦

∞

∏
m=1

Nm

×∫

q⃗≠0⃗

D {ϕm} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

Γ(2)m ϕ2m + ⋅ ⋅ ⋅
⎤
⎥
⎥
⎥
⎥
⎥
⎦

×No exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

{Γ(2)o − 2(χ +
2π
9
(
ΘP

T
)
2
g)

+
2π
9
(
ΘP

T
)
2
h (qℓ)2}(ϕg +

∞

∑
m=1

ϕm)
2

+ ⋅ ⋅ ⋅

⎤
⎥
⎥
⎥
⎥
⎦

. (54)

D. Associative chemical equilibria and weight
distributions

We have constructed the partition function for a distribution
(mg ,n1,n2, . . .) of associations and the gel. In general, there are
enormous possible distributions (W ) if they preserve the number
of polyzwitterions np,

mg +
∞

∑
m=1

mnm = np. (55)

Toward seeking an optimal distribution (W ∗), we combine Eqs. (51)
and (55) to write the general partition function as

Q = ∑
W={mg ,n1 ,n2 ,...}

δ[mg +
∞

∑
m=1

mnm − np]

× exp(−mg
μg
kBT
−
∞

∑
m=1

nm(− ln mN − 1 +
μm
kBT
))ZW δZW

= ∑
W={mg ,n1 ,n2 ,...}

∫
dθ
2π

exp(iθ(ng +
∞

∑
m=1

mnm − np))

× exp(−mg
μg
kBT
−
∞

∑
m=1

nm(− ln mN − 1 +
μm
kBT
))ZW δZW,

(56)

where ZW δZW are defined as in Eq. (51) for a specific distribution
W . The second equality arises from the integral representation of the
Kronecker delta function δ[n] = ∫dθ/2π exp (iθ n). Once the free
energies μg and μm are assigned in themean-field percolation theory,
the optimal distribution W ∗ corresponds to the saddle point in the
thermodynamic limit. Hence,

Q ≈ Q∗

≡ exp(iθ∗(m∗g +
∞

∑
m=1

mn∗m − np) −m
∗
g
μg
kBT

−
∞

∑
m=1

n∗m(
μm
kBT
− ln mN − 1))ZW ∗δZW ∗. (57)

To derive W ∗, by substituting Eq. (53), we differentiate − lnQ∗ with
respect to W and θ, leading to

−
∂ lnQ∗

∂(iθ)
∣

W ∗ ,θ∗
≈ m∗g +

∞

∑
m=1

mn∗m − np = 0, (58)

−
1
m

∂ ln Q∗

∂nm
∣

W ∗ ,θ∗
≈ −iθ∗ +

μm/kBT − ln mN + ln ϕ∗m
m

+N
∂

∂Ω
(
ΩfW ∗

kBT
) = 0, (59)

−
∂ ln Q∗

∂mg
∣

W ∗ ,θ∗
≈ −iθ∗ +

μg
kBT
+N

∂

∂Ω
(
ΩfW ∗

kBT
) = 0, (60)

where ϕ∗m is the optimal homogenous concentration of
m-associations, and the contribution of δZW is not signifi-
cant when the system is outside the Ginzburg critical region.
Equation (58) is the mass conservation,

ϕ∗g +
∞

∑
m=1

ϕ∗m = ϕ, (61)

which is independent of W . Equation (59) is the condition of the
chemical equilibrium among associations,

μ1
kBT
− ln N + ln ϕ∗1 = ⋅ ⋅ ⋅ =

μm/kBT − ln mN + ln ϕ∗m
m

. (62)

The substitution of Eq. (24) for μm into Eq. (62) yields the
well-known Stockmayer weight distribution,2,26

exp(− fbind
kBT
)

N
ϕ∗m = mωm[exp(−

fbind
kBT
) ϕ∗1 ]

m

, (63)

with

ωm =
(Nm −m)!

m!(Nm − 2m + 2)!
. (64)

Equation (60) is equivalent to the gelation condition. If a gel does
exist, ϕ∗1 must satisfy

μg
kBT
+ ln N =

Δμloop
kBT

+
fbind
kBT

− ln(
(N − 1)N−1

(N − 2)N−2
) = ln ϕ∗1 , (65)

where Eq. (28) is substituted. It is worth noting once again that
Δμloop is zero at the gelation points and becomes negative if loops
are present within the gel. This equation clearly illustrates the
fact that the presence of loops leads to an enhanced accumula-
tion of polyzwitterion chains from the solution phase. Furthermore,
the threshold value ϕ∗1,th can be decided by substituting Δμloop
= 0 into Eq. (65). We can convert the threshold ϕ∗1,th into the
threshold concentration ϕ∗th. To derive the threshold value ϕ∗th, we
parameterize

exp(−
fbind
kBT
) ϕ∗1 = p(1 − p)

N−2, (66)
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and p satisfies

p =

∞

∑
m=1

2(m − 1) ϕ∗m/mN
∞

∑
m=1

ϕ∗m
, (67)

as shown in Appendix B (supplementary material). Thus, p is the
ratio of the number of associating monomers to the total number
of monomers, corresponding to the extent of reaction of bindings.
Moreover, the concentration of the associations is equal to

∞

∑
m=1

ϕ∗m =
p

(1 − p)2
exp(

fbind
kBT
), (68)

which is also ϕ in the pregel regime. By substituting Eq. (66) into
Eq. (65), we find the threshold pth for the gelation as

pth =
1

N − 1
. (69)

Within a gel, the number of cross-links in one polyzwitterion chain
is not less than 2, resulting in the average number of cross-links
being more than one. Utilizing Eqs. (68) and (69), we determine the
threshold concentration as

ϕ∗th =
N − 1
(N − 2)2

exp(
fbind
kBT
). (70)

Thus, a decrease in the temperature and an increase in the number
of associative groups N facilitate the formation of the gel.

As a result, W ∗ in the pregel regime satisfies

W
∗
pregel : {ϕ

∗
g = 0,

∞

∑
m=1

ϕ∗m = ϕ ∣ ϕ ≤ ϕ∗th}. (71)

If ϕ goes beyond the threshold value, the concentration of asso-
ciations ∑ϕ∗m, referred to as the “sol” concentration in this work,
cannot be larger than ϕ∗th because of the chemical equilibriums
between the sol and the gel. According to Eq. (65), Stockmayer’s
treatment, assuming tree-like gel structures, leads to a static ϕ∗1 in
the postgel regime, hence a constant sol fraction and a linear growth
of the gel fraction as ϕ increases. The number distribution satisfies

W
∗
postgel,Stockmayer : {ϕ

∗
g = ϕ − ϕ

∗
th,

∞

∑
m=1

ϕ∗m = ϕ
∗
th ∣ ϕ > ϕ∗th}. (72)

In contrast, by following Flory’s approach, we introduce a shadow
root pFlory, which satisfies

pFlory(1 − pFlory)
N−2
= p(1 − p)N−2, (73)

where p is the extent of reaction of the sol from Eq. (67), and

ϕ =
pFlory

(1 − pFlory)2
exp(

fbind
kBT
). (74)

As ϕ increases in the postgel regime, pFlory becomes larger, resulting
in a smaller p and, consequently, a lower ϕ∗1 . According to Eq. (65),
it implies the formation of loops in the gel, and the approach results

in a decreasing sol fraction and a nonlinear growth of the gel fraction
as ϕ increases. The number distribution satisfies

W
∗
postgel,Flory : {ϕ

∗
g = (

pFlory
(1 − pFlory)2

−
p

(1 − p)2
)

× exp(
fbind
kBT
) ∣ ϕ > ϕ∗th}. (75)

E. Mean-field free energy, correlation functions,
and the Ginzburg criterion

With an understanding of the interactions and the thermal
response of weight distributions in the solution, we can naturally
derive the free energy to predict thermoreversible phase behavior.
By substituting Eqs. (53), (63), and (65) into Eq. (57), the mean-field
free energy is

fMF

kBT
≡
− ln (Q/δZW ∗)

Ω

= ρc ln ρc + ρa ln ρa −
κ3ℓ3

12π
+

ϕ
N

ln ϕ

+ (1 − ϕ) ln (1 − ϕ) + χϕ(1 − ϕ)

+
2π
9
(
ΘP

T
)
2
g(κℓ) ϕ(1 − ϕ) +

ϕ
N

ln
ϕ∗1
ϕ

−
∞

∑
m=1

ϕ∗m
mN
−
ln N
N

ϕ, (76)

where the first line is the common Flory–Huggins theory and the
second line is the contributions from dipoles. The result is similar
to previous research,2,32,42 except for the linear term ln N/N ϕ̄ of no
physical effect.

The contribution of δZW ∗ is not considerable unless the
monomers are highly correlated in a long-range distance, lead-
ing to a strong fluctuation. To estimate fluctuations, we evalu-
ate the segment–segment correlation function. By inserting the
identity

1 = ∫ D {ϕ}∏
q⃗≠0⃗

δ[ϕ − ϕg −
∞

∑
m=1

ϕm]

= ∫ D {ϕ}D {λ} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

i∫
q⃗

λ(ϕ − ϕg −
∞

∑
m=1

ϕm)
⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (77)

where λ is a Lagrangian multiplier field, into Eq. (54) under the
random phase approximation (RPA), we get

δZW = No ∫ D {ϕ} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

{[Γ(2)o − 2(χ +
2π
9
(
ΘP

T
)
2
g)]

+
2π
9
(
ΘP

T
)
2
h q2}ϕ2]∫ D {λ} exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

i∫
q⃗

λ ϕ
⎤
⎥
⎥
⎥
⎥
⎥
⎦

Ng
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×∫ D {ϕg} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

Γ(2)g ϕ2g − i∫
q⃗

λ ϕg

⎤
⎥
⎥
⎥
⎥
⎥
⎦

×
∞

∏
m=1

Nm ∫ D {ϕm} exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

Γ(2)m ϕ2m − i∫
q⃗

λ ϕm

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(78)

These integrals are the standard Gaussian integral; hence,

δZW =NoNp ∫ D {ϕ} exp

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

1

(Γ(2)g )
−1
+ ∑

m=1
(Γ(2)m )

−1 + Γ
(2)
o

− 2(χ +
2π
9
(
ΘP

T
)

2
g) +

2π
9
(
ΘP

T
)

2
h (qℓ)2

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

ϕ2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (79)

where

Np = ∫ D {ϕ} exp

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2!∫

q⃗

ϕ2

(Γ(2)g )
−1
+
∞

∑
m=1
(Γ(2)m )

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (80)

Consequently, the inverse correlation function I−1(q) equals

I−1(q) =
1

(Γ(2)g )
−1
+
∞

∑
m=1
(Γ(2)m )

−1 + Γ
(2)
o

− 2(χ +
2π
9
(
ΘP

T
)
2
g) +

2π
9
(
ΘP

T
)
2
h (qℓ)2, (81)

where Γ(2)g is infinite in the pregel regime because of ϕg = 0. If a
gel is present, Γ(2)g will be infinite under Stockmayer’s treatment
because the mesh size of a tree-like gel is infinite. However, in prac-
tical scenarios, gels do not exhibit a strictly tree-like structure. In
Flory’s treatment, the gel structure is left unspecified, even though it
allows for the formation of loops. Due to the lack of knowledge about
the gel structure, we will discuss the correlation function outside the
post-gel regime under both treatments in this paper. In the pregel
regime, by employing Eqs. (39) and (45), the inverse correlation
function approximates to

I−1(q) ≈ ε +Qq2 +O(q4) (82)

around q = 0. Here,

ε =
1

⟨m⟩wNϕ
+

1
1 − ϕ

− 2(χ +
2π
9
(
ΘP

T
)
2
g(κℓ)), (83)

Q =
⟨mR2

g(m)⟩w/⟨m⟩w
3⟨m⟩wNϕ

+
2π
9
(
ΘP

T
)
2
h(κℓ)ℓ2, (84)

where the weight average over associations is defined as

⟨ f ⟩w ≡

∞

∑
m=1

f ϕ∗m
∞

∑
m=1

ϕ∗m
. (85)

For example, according to the properties of Stockmayer’s distribu-
tions in Appendix B (supplementary material),

⟨m⟩w =
1 + p

1 − p/pth
. (86)

The correlation length ξ equals

ξ2 ≡ Q/ε. (87)

One reason to validate the mean-field (Flory–Huggins) theory is
the multiplicity of the interactions.43 In a solution, each polymer
is surrounded by many other polymers and interacts with them
simultaneously. In other words, the net interaction of the polymer
has been ensemble averaged. Consequently, if the segments strongly
correlate with each other over a long distance, which exceeds the
size of the polymer, or the association in our case, the net interac-
tion of a polymer cannot be effectively averaged within the polymer
itself. This leads to a breakdown of the mean-field theory when crit-
ical behaviors dominate the system. Based on this argument, the
Ginzburg criterion is

ξ2

⟨mR2
g(m)⟩w/⟨m⟩w

≫ 1 ⇒ ε≪
1

⟨m⟩wNϕ

+

2π
3 (

ΘP
T )

2h(κℓ)ℓ2

⟨mR2
g(m)⟩w/⟨m⟩w

, (88)

agreeing with the previous research.44–46 As the system approaches
the critical points ε→ 0, the fluctuations inevitably ruin the RPA.
We will address this issue using the RG theory in Sec. IV.

IV. RESULTS
The chemical properties of monomer determine the mixing

parameter χ. We assume that the polyzwitterion follows the UCST
behavior and assign χ to

χ = (
1
2
+

1
√
N
+

1
2N
)
ΘFH

T
, (89)

where ΘFH will be the critical temperature if there is no dipole
interaction. In addition, we assign the following values: N = 100,
ℓB/ℓ = 0.988 ΘFH/T, Θp/ΘFH = 0.75, and a temperature range of
T/ΘFH = 1.4–1.7. If ΘFH is equal to 200 K, we can map the system
into the polyzwitterions of Kuhn length ℓ ≈ 1 nm carrying p ≈ 42D
≈ 0.87e nm, corresponding to side chemical groups roughly hav-
ing six (C–C) covalent bonds, dissolving in an aqueous solution
(εr ≈ 80) within the temperature range 280–340 K. Using the mean-
field free energy presented in Eq. (76), we derive the osmotic
pressure and the chemical potential of the polyzwitterion solution.
Macrophase separation occurs when the osmotic pressure and the
chemical potential are the same as in two phases. Gelation occurs if
the concentration exceeds the threshold concentration ϕ∗th as defined
in Eq. (70). For illustrative purposes, we provide phase diagrams in
the ϕ − T plane for a salt-free polyzwitterion solution with increas-
ing exp (Δs/kB) = 0.03 ∼ 0.08 in Fig. 1. To explore the effect of salt
with changes in temperature, we depict the same phase diagrams for
ρsalt = 0.01 in Fig. 2. In addition, to investigate the effect of varying
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FIG. 1. Phase diagrams in a salt-free solution from exp [Δs/kB] = 0.03 to
exp [Δs/kB] = 0.08, corresponding to (a)–(f). The top (bottom) panel in each plot
is the phase diagram under Stockmayer’s (Flory’s) treatment. Here, the red solid
lines represent the binodal curve, the black dashed lines indicate the spinodal
curves, the green-shaded regions denote the unstable regions, the yellow solid
line marks the gelation line, and the diagonal-hatched (cross-hatched) regions
show the gel phase under Stockmayer’s (Flory’s) treatment. The critical points
are indicated by black solid circles, and the pseudo-critical points under Flory’s
treatment are shown as empty circles. The bicritical point is marked as a blue (red)
solid diamond if ∂ε/∂ϕ̄ = 0 (≠ 0).

FIG. 2. Same as Fig. 1 for ρsalt = 0.01.

salt concentrations, we also present phase diagrams in the ϕ − ρsalt
plane at ΘFH = 1.45 in Fig. 3. Here, the electric neutrality ensures
ρc = ρa = ρsalt.

We will discuss Stockmayer’s and Flory’s treatments separately.
In addition, to clarify our terminology, we refer to

(i) the intersection of the binodal line and the spinodal line
as a critical point, and the symbols ϕ∗c and Tc denote the
corresponding concentration and temperature, respectively.

(ii) the intersection of the gelation line and the binodal line as
a tricritical point,47 and the symbols ϕ∗tri and Ttri denote the
corresponding concentration and temperature, respectively.

(iii) the intersection of the gelation line and the spinodal line as
a bicritical point,47 and the symbols ϕ∗bi and Tbi denote the
corresponding concentration and temperature, respectively.

A. Under Stockmayer’s treatment
At first, we observe that macrophase separation occurs at a

temperature higher than ΘFH, indicating an increasing propensity
for MPS due to dipole–dipole interactions. Furthermore, we notice
two scenarios regarding the interplay between MPS and gelation.

FIG. 3. Phase diagrams in the ϕ − ρsalt plane at T/ΘFH = 1.45 from exp [Δs/kB]

= 0.03 to exp [Δs/kB] = 0.08, corresponding to (a)–(f). The dotted lines are tie
lines, and the meaning of other lines, dots, and shaded regions are the same as
the description in Fig. 1. In panel (e), the critical point in the upper panel is in the
pregel regime.
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In the first scenario, MPS facilitates gelation. When the solution is
initially homogeneous, as the temperature decreases, it undergoes
MPS, leading to polymer-rich droplets, where gelation can occur if
the droplets are more concentrated than the threshold concentra-
tion. The second scenario shows that gelation facilitates MPS as well.
When there is a homogeneous gel phase at a high temperature, as the
temperature decreases, the gel will absorb more flowing polyzwit-
terions and expel the polymer-poor liquid. The interplay between
MPS and gelation becomesmore significant as exp (Δs/kB) increases
because cross-links are easier to form. In saline solutions, ions break
the cross-links and dissolve polymer-rich and gel phases. There-
fore, the MPS and gelation occur at lower temperatures, as shown
in Fig. 2. In addition, the slopes of tie lines are negative, as depicted
in Fig. 3. It is worth noting that there is no shadow curve, which is a
common phenomenon in polydisperse solutions.48,49

Moreover, we observe the interesting movements of the crit-
ical and tricritical points. At exp (Δs/kb) = 0.03, the critical point
is located around the overlap concentration 1/

√
N and remains

significantly distant from the tricritical point. We expect that the
critical behaviors of the two points remain within their respective
universality classes. However, as exp (Δs/kB) increases, the value of
ϕ∗c remains close to 1/

√
N, while ϕ∗tri gets closer, eventually merg-

ing into a bicritical point at exp (Δs/kB) = 0.07, as illustrated in
Fig. 1(e). The value exp (Δs/kB) = 0.07 is derived from the analytical
calculation of ϕ∗c shown in Appendix C (supplementary material).
As exp (Δs/kB) increases further, the bicritical point moves to the
lower concentration. It is worth noting that ∂ε/∂ϕ ∣ϕ=ϕ∗bi ≠ 0 when
exp (Δs/kB) > 0.07.

1. Merger of two universality classes
MPS belongs to the Ising universality class, whereas gelation

falls into a percolation universality class. When the critical and tri-
critical points merge into the bicritical points, they must exhibit only
one kind of critical behaviors. It implies a crossover from two dis-
tinct universality classes to a merged universality class. When the
critical point is far from the tricritical point, we can renormalize the
fluctuations caused by macrophase separation within the Ginzburg
region. By applying the RG technique of the ϕ4 theory,41,50–53 the
correlation function is renormalized into

ξ2 =
Q
ε2ν

, (90)

and the Fisher approximation54,55 of correlation functions is
given by

I−1(q) = Q(q2 + ξ−2)1−η/2, (91)

where ε andQ are defined as in Eqs. (83) and (56), respectively. Since
the concentration field undergoingMPS is not equivalent to the total
concentration field ϕ, the validity of Eqs. (90) and (91) is doubtful.
However, a careful analysis in Appendix D (supplementarymaterial)
demonstrates that the strongest fluctuations dominate the system,
thereby validating Eqs. (90) and (91).

As the tricritical points get closer and closer to the critical
points, the impact on Q becomes significant because ⟨mRg(m)⟩w
and ⟨m⟩w are divergent. Renormalizing Q is inevitable and raises
doubts about the validity of Eqs. (90) and (91). We are unsure

how to perform RG for MPS and gelation simultaneously. It is
also uncertain whether we can perform RG separately for MPS and
gelation. Nevertheless, we follow M.E. Fisher’s suggestion, which
states that “the nature of the transition and the critical point remains
ideal if observed at a fixed force f ,”56 which has been applied to
three-component liquid mixtures,57 resulting in the assumption that
Eqs. (90) and (91) remain valid even near the gelation points. We
need to performRG for gelation, and, according to the ϕ3 theory,58,59
the renormalized Q exhibits

⟨mR2
g(m)⟩w/⟨m⟩w
3⟨m⟩wNϕ

∼ (1 −
p
pth
)

0

(percolation theory), (92)

which has been confirmed in the simulations for cubic lattices60 and
polymer melts.24 Both ⟨mRg(m)⟩w and ⟨m⟩w diverge, but their ratio
does not diverge. However, Eq. (92) does not apply to our model.
These theories and simulations do not include the excluded volume
effect. They are suitable only for concentrated solutions where the
excluded volume interaction is screened. Although the critical points
are located at the overlap concentration ϕ∗c ∼ 1/

√
N, this is the

overlap concentration for a single polyzwitterion, not for the asso-
ciations! In cases where the excluded volume interaction is partially
screened, according to the Flory–de Gennes theory,25,61 the fractal
structure of characteristic associations follows Rg(m) ∼ (mN)2/(2+d).
It implies that the overlap concentration at d = 3 is

mN
R3
g(m)

∼
1

(mN)1/5
>

1
√
N
. (93)

The excluded volume effect is not screened out for the asso-
ciations, so we treat them as lattice animals. By following Flory’s
argument,25 the free energy of lattice animals approximates to

F
kBT
∼

R2
g(m)

(mN)1/2
+ wpp

(mN)2

Rd
g(m)

, (94)

thereby giving

Rg(m) ∼ (mN)
5

2(2+d) (95)

from energy minimization, where d = 3. As for the number distribu-
tion, because the associations are porous, we continue assuming that
they are tree-like. As a result, Q follows

Q ≈
⟨mR2

g(m)⟩w/⟨m⟩w
3⟨m⟩wNϕ

∼ (1 −
p
pth
)

4ν f −1

(ourmodel), (96)

where ν f = 5/2(2 + d) = 1/2, and we derive the divergent behav-
ior of Q from formulas in Appendix B (supplementary material).
Similarly, we apply the same argument at tricritical points.

2. Crossover critical behaviors
To demonstrate the merger of the two universality classes, we

focus on the divergence behaviors as T → Tc at the critical points.
As T → Tc, by its definition, ε approaches to zero. Simultaneously,
Q also becomes larger because there are more large associations at
a lower temperature. Similarly, as T → Ttri, Q diverges and ε also
becomes smaller at a lower temperature. The corresponding scaling
laws are
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FIG. 4. Schematic presentation of the definitions of Tgel and Tsp.

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε ∼
1
T
−

1
Tc

,Q ∼ (
1
T
−

1
Tgel(ϕ∗c )

)

−(4ν f −1)

, critical points,

ε ∼
1
T
−

1
Tsp(ϕc)

,Q ∼ (
1
T
−

1
Ttri
)
−(4ν f −1)

, tricritical points,

(97)

where Tgel(ϕ∗c ) is the temperature of the gelation point at ϕ∗c ,
Tsp(ϕc) is the temperature of the spinodal point at ϕ∗tri, and the scal-
ing law of Q is from p − pth ∼ T − Tgel. The schematic presentation
of these temperatures is shown in Fig. 4.

Because the scaling laws of Q and ε are relative to different
temperatures, there is no well-defined critical exponent. Instead, we
define the apparent critical exponents at the temperature T as

νapp = −
∂ ln ξ

∂ ln( 1
Tc(tri)

− 1
T )

RRRRRRRRRRRRRT

= ν
∂ ln ε

∂ ln( 1
Tc(tri)

− 1
T )

RRRRRRRRRRRRRT

−
1
2

∂ ln Q

∂ ln( 1
Tc(tri)

− 1
T )

RRRRRRRRRRRRRT

, (98)

γapp = −
∂ ln I(0)

∂ ln ( 1
Tc(tri)

− 1
T )

RRRRRRRRRRRRRT

= (2 − η)ν
∂ ln ε

∂ ln( 1
Tc(tri)

− 1
T )

RRRRRRRRRRRRRT

+
η
2

∂ ln Q

∂ ln ( 1
Tc(tri)

− 1
T )

RRRRRRRRRRRRRT

, (99)

FIG. 5. Given ν = 0.63, η = 0.04, and ν f = 0.5, the apparent critical exponents for critical points are shown in (a) and (b), where Tc is the temperature of critical points.
Similarly, the apparent critical exponents for tricritical points are shown in (c) and (d), where T tri is the temperature of tricritical points. Once exp (Δs/kB) > 0.07, the critical
exponents converge into values of bicritical points. These values are evaluated in a salt-free solution.
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where the second equality is derived from the substitution of
Eqs. (90) and (91). Tc and Ttri denote the critical and tricritical
temperatures, respectively. When the critical point and the tricrit-
ical points merge into the bicritical points, their apparent critical
exponents merge into the critical exponents at the bicritical points.
Substituting the scaling law equation (97) into νapp and γapp, we
derive the first-order approximation of νapp and γapp as

νapp ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν + (2ν f −
1
2
)

1
Tc
− 1

T
1

Tgel
− 1

T
, critical points,

ν
1
Tsp
− 1

T
1
Ttri
− 1

T
+ (2ν f −

1
2
), tricritical points,

ν + (2ν f −
1
2
), bicritical points,

(100)

γapp ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 − η) ν − η (2ν f −
1
2
)

1
Tc
− 1

T
1

Tgel
− 1

T
, critical points,

(2 − η) ν
1
Tsp
− 1

T
1
Ttri
− 1

T
− η (2ν f −

1
2
), tricritical points,

(2 − η) ν − η (2ν f −
1
2
), bicritical points.

(101)

We adopt the accepted values ν = 0.63 and η = 0.04.50 The
apparent critical exponents for a salt-free solution are depicted in
Fig. 5. The merger of two universality classes leads to crossover
behaviors in νapp and γapp, especially when temperatures devi-
ate significantly from Tc or Ttri. At the bicritical point, where
exp (Δs/kB) > 0.07, the ν value is higher, resulting in enhanced νapp.
These anomalous enhancements in critical exponents have recently
been observed in polyelectrolyte coacervate mixtures.62 For the γapp
values, those of the critical points experience a slight suppression,
while those of the tricritical points exhibit a significant enhance-
ment. Because geometric phase transitions do not significantly affect
the second virial coefficient ε, in comparison with the critical points,

the tricritical points have a smaller γ, consistent with experimental
observations.63 The presence of salt ions changes Tc and Ttri, but
the crossover behaviors remain similar because the Debye length is
much smaller than ξ in critical phenomena.64

While we have explained that the crossover critical behav-
iors arise from merging two universality classes, the underlying
microscopic mechanism remains a puzzle. To address this ques-
tion, we must understand how fluctuations impact the associations.
Intuitively, the associations are disassembled by small-scale fluctu-
ations, leading to inhomogeneous concentrations. If the disassem-
bly occurs, the energy of fluctuations will dissipate. Associations
resist fluctuations that are smaller than themselves. Meanwhile,
fluctuations at a large scale tend to move associations rather than
disassembling them. Consequently, in comparison with an ideal
Ising behavior, the correlation length ξ of an associative solution
is shorter at temperatures above the critical point (T > Tc). How-
ever, when the solution reaches the critical point, fluctuations are
larger than any associations, resulting in ξ being the same as in the
ideal Ising model. When we describe the divergence using a scal-
ing law, ξ ∼ (T − Tc)

−νapp , the apparent critical exponents must be
enhanced, i.e., νapp > ν. A schematic illustration of this phenomenon
is shown in Fig. 6. Furthermore, we can support this argument with
the fluctuation free energy, δf ∼ −1/ξ3. As ξ becomes shorter and
shorter, leading to the suppression of large associations, δf becomes
more negative. We provide a more detailed quantitative analysis in
Appendix E (supplementarymaterial). A similar argument can apply
to the tricritical points.

It is worth noting that the crossover behaviors seem to suggest
a transition to a new universality class at bicritical points. However,
Fisher’s method is an assumption and does not provide a rigorous
analysis of the bicritical point. Anomalous critical exponents do not
necessarily imply that the universality class changes; they can arise
from narrow Ginzburg regions, as shown in the restricted primitive
model65,66 and the polymerization process.67,68 For example, at the
critical points of MPS in Fig. 5, the critical exponents deviate from
the Ising model at a large ∣T − Tc∣, where the correlation length ξ is
not much larger than the characteristic associations. Moreover, we
assume that the associations belong to lattice animals, while associ-
ations can exhibit different fractal structures at varying association

FIG. 6. If the scale of fluctuations is shorter than the associations, the fluctuations can disassemble the associations, and they dissipate after dissembling. Meanwhile, the
associations move back and forth under the influence of large-scale fluctuations, but the fluctuations do not dissipate. Therefore, compared to the ideal Ising behavior, ξ is
shorter in an associative solution at T > Tc. However, ξ is the same as the Ising one at T = Tc, so the apparent νapp is larger than ν.
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strengths, impacting virial coefficients, as demonstrated in the sim-
ulations of Stockmayer fluid69,70 and patch particle model.33,34,71,72

This variability adds another layer of complexity to analyzing the
critical behavior at bicritical points. Conducting a rigorous analysis
can lead to a more concrete conclusion about the universality class
at bicritical points, and we will explore it in future work.

B. Under Flory’s treatment
In contrast to Stockmayer’s treatment, the presence of loops

within the gel network in Flory’s treatment results in a larger region
for macrophase separation. The loops decrease the free energy and
make the gel phase more resistant to ions, resulting in a more neg-
ative slope of tie lines in Fig. 3. Moreover, the loop formation can
lead to a split of the gel into polymer-poor and polymer-rich gels,
called gel–gel phase separation, because the loop formation in the
polymer-rich gel lowers the total free energy if the binding strength
is sufficiently strong, as depicted in Figs. 1(c)–1(f). These splits in
the gel lead to binodal curves exhibiting a double-hill shape, and
there are possibly two apexes on the spinodal curves. These two
apexes are not always observable if one is situated below the bin-
odal curves. We define the ones located beneath the binodal curves
as pseudo-critical points. In the pregel regime, the concentrations
and temperatures of the pregel apexes are the same as the critical
points under Stockmayer’s treatment. As the value of exp (Δs/kB)
increases, a new apex appears in the postgel regime. With further
increases in exp (Δs/kB), the temperature of the postgel apex contin-
ues rising while the corresponding concentration decreases. When
exp (Δs/kB) > 0.07, the pregel apex no longer exists. We present the
quantitative analysis of the emergence of these two apexes in detail
in Appendix C (supplementary material).

There are critical and tricritical points under Flory’s treatment
in Fig. 1. As discussed earlier, the pregel critical and tricritical points
exhibit anomalous critical behaviors. However, with exp (Δs/kB)
> 0.07, no bicritical point emerges, making it impossible to observe
the merger of two universality classes. Instead, a postgel critical
point appears. The critical behavior of this postgel critical point is
contingent on the gel structure, particularly Γ(2)g , which remains
unspecified under Flory’s treatment. We need a microscopic model
that accounts for detailed structures. However, the presence of loops
within the gel network introduces a complexity. Amodel accounting
for loops within a gel network falls outside our scope, and we leave
it in the future.

V. CONCLUSIONS
Employing the mean-field percolation theory and field theory

formalism, we have developed a theory for solutions consisting of
homo-polyzwitterions capable of forming tree-like associations and
gels through pairwise dipole bindings. We have derived the sys-
tem free energy and predicted the occurrence of thermoreversible
macrophase separation (MPS) and gelation under various physi-
cal conditions, including dipole strength, hydrophobicity, dielectric
property of the solvent, and ionic strength. When the gel forms, we
have employed two conventional methods to describe the gel: (1)
Stockmayer’s treatment, where the gel resembles tree-like structures,
and (2) Flory’s treatment, where the formation of loops with the
gel is allowed. The phase diagrams reveal that, as the temperature

decreases, the solution undergoes MPS, enhanced due to attrac-
tive interactions among dipoles. MPS can be a liquid–liquid phase
separation. However, if the concentration of polymer-rich droplets
exceeds a certain threshold, gel can form within the droplets, result-
ing in a gel–liquid phase separation. MPS can facilitate gelation in
this case. Another scenario for gel–liquid phase separation occurs
when gelation itself promotes MPS. Once the gel forms at a high
concentration, decreasing the temperature causes the gel to incor-
porate more free polyzwitterions and expel the polymer-poor liquid.
Both treatments exhibit these scenarios, but only Flory’s treatment
reveals an interesting gel–gel phase separation. The gel division ben-
efits the free energy of the entire system because there can be more
loops in the polymer-rich gel phase. The phase diagrams also exhibit
the multiple critical points arising from the coupling of the MPS and
gelation in the polyzwitterion solution.

In addition, with the help of the renormalization group theory,
we have discovered anomalous critical behaviors near the critical,
tricritical, and bicritical points. Under Stockmayer’s treatment, the
critical point remains distinct from the tricritical point when the
binding entropy loss, Δs = Sbinding − Sunbinding, is substantial. The tri-
critical and bicritical points belong to their respective universality
classes. As the entropy loss decreases, the tricritical point moves
closer to the critical point until it merges into a bicritical point,
resulting in a critical behavior belonging to the universality class
of bicritical points. Remarkably, their critical behaviors display a
crossover to new critical behavior during this transition. From the
apparent critical exponents in this limit, especially νapp, we dis-
cuss the emergent anomalous concentration fluctuations and argue
that the microscopic mechanism behind these anomalies is the sup-
pression of fluctuations during association-disassembly. In contrast,
although anomalous critical behaviors appear under Flory’s treat-
ment, we cannot observe the merging process because there is no
bicritical point. Instead, postgel critical points are present. The
lack of knowledge regarding gel structures presents a challenge in
investigating the critical behaviors of postgel critical points.

Our theory addresses the growing interest in polyzwitterions.
It focuses on their thermoreversible properties and can explain
the anomalous critical behaviors observed in recent experiments.62
In addition, the proposed theoretical framework can be extended
to various electrostatic interactions, enabling the investigation of
the phases and formations of biomolecular condensates involv-
ing intrinsically disordered proteins. However, similar to most
polyelectrolyte theories, the complexities associated with dissolved
small electrolyte ions introduce challenges in making quantitative
predictions, such as charge renormalization. Our discussion pri-
marily focuses on the aggregations led by quadrupoles. However,
dipoles can also contribute to the formation of aggregates involv-
ing quadrupoles and higher-order multipoles upon further cooling.
These aggregates have more negative binding free energy, facili-
tating MPS and gelation and resisting concentration fluctuations
more effectively. As a result, the phase diagram can exhibit a wilder
binodal curve, a more inclined gel transition line, and a narrower
Ginzburg region under the framework in this paper. Moreover,
except for these quantitative modifications, their presence can result
in more complicated self-assembled phases, such as micelles in a
solute phase and fibers in a gel phase. Their impacts on phase tran-
sitions and critical behaviors raise a challenge in describing phase
behaviors of charged associative polymer solutions. Addressing this
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challenge goes beyond the scope of the present work, and we leave it
for future investigations.

SUPPLEMENTARY MATERIAL

This article contains a supplementary material. We present
the derivation of Landau–Ginzburg free energy in Appendix A, the
Stockmayer distribution in Appendix B, the analysis of critical points
in Appendix C, the ϕ4 theory of the model in Appendix D, and the
suppression of associations in Appendix E.
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