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Abstract: The behavior of polyzwitterions, constituted by dipole-like zwitterionic monomers, is sig-
nificantly different from that of uniformly charged polyelectrolytes. The origin of this difference lies
in the intrinsic capacity of polyzwitterions to self-associate intramolecularly and associate with inter-
penetrating chains driven by dominant dipolar interactions. Earlier attempts to treat polyzwitterions
implicitly assume that the dipoles of zwitterion monomers are randomly oriented. At ambient tem-
peratures, the dipolar zwitterion monomers can readily align with each other generating quadrupoles
and other multipoles and thus generating heterogeneous structures even in homogeneous solutions.
Towards an attempt to understand the role of such dipolar associations, we present a mean field
theory of solutions of polyzwitterions. Generally, we delineate a high-temperature regime where
the zwitterion dipoles are randomly oriented from a low-temperature regime where quadrupole
formation is significantly prevalent. We present closed-form formulas for: (1) Coil-globule transition
in the low-temperature regime, the anti-polyelectrolyte effect of chain expansion upon addition of
low molar mass salt, and chain relaxation times in dilute solutions. (2) Spontaneous formation of a
mesomorphic state at the borderline between the high-temperature and low-temperature regimes
and its characteristics. A universal law is presented for the radius of gyration of the microgel, as a
proportionality to one-sixth power of the polymer concentration. (3) Swelling equilibrium of chemi-
cally cross-linked polyzwitterion gels in both the high temperature and low-temperature regimes.
Addressing the hierarchical internal dynamics of polyzwitterion gels, we present a general stretched
exponential law for the time-correlation function of gel displacement vector, that can be measured
in dynamic light scattering experiments. The present theory is of direct experimental relevance
and additional theoretical developments to all polyzwitterion systems, and generally to biological
macromolecular systems such as intrinsically disordered proteins.

Keywords: polyzwitterions; hydrogels; gel swelling equilibria; hierarchical gel dynamics; dipole-dipole
interactions; mesomorphic state; polyzwitterion gels

1. Introduction

Polyzwitterions, where every repeat unit along the chain backbone is a zwitterion (elec-
tric dipole) consisting of positive and negative charges separated by designable distance
¢, exhibit a wide range of material properties in the areas of biolubricants, cosmetics, soft
contact lens, etc. [1-10]. Polyzwitterions are known to possess terrific material properties
in the areas of cosmetics, soft contact lens, hemodialysis membranes, biolubricants, etc.
The self-assembled structures by polyzwitterions hold potential applications. Gels from
polyzwitterions are of tremendous use in therapeutic situations involving higher salinity
(eye, for example), due to salt-philicity and the enhanced water-holding ability. Control of
gel swelling by chemistry in these amphiphilic biocompatible materials can have significant
impact. Self-assembly from polyzwitterions can also be of great use in encapsulating a
variety of analytes such as drugs and fragrances. Yet, fundamental understanding of their
structural organization and functions, such as their enhanced hydro- and salt-philicity in
combination with amphiphilicity, is lacking.

In general, the polyzwitterion behavior depends on the dipole density along the chains,
dipole length, and identities of the charge of the dipole [11-32], and has attracted significant
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theoretical and modeling efforts [33—43]. The rich functional properties of polyzwitterions
(polydipoles), that are unprecedented in polyelectrolytes (polymonopoles), originate from
delicate cooperative organization of dipolar local charge separations embedded along poly-
mer backbone. The electrostatic forces from dipoles are gentler than the stronger Coulomb
forces among monopole charges, resulting in fragility and diversity of local aggregation of
zwitterions. The occurrence of dipolar interactions is ubiquitous in many biological macro-
molecular systems. Almost all protein molecules contain amino acid monomers that can
possess either permanent or induced dipole moment. Furthermore, even for the nominal
uniformly charged polyelectrolytes such as DNA and sodium poly(styrene sulfonate), dipo-
lar forces are prevalent due to the unavoidable ion-pair formation arising from counterion
adsorption on the repeat units. In general, dipole-dipole, charge-charge, and dipole-charge
interactions are scripted in these biological as well as synthetic macromolecules result-
ing in rich complex structural and dynamical behavior. While there has been extensive
attention to charge-charge interactions in treating charged macromolecules, the role of
dipolar interactions among different parts of the polymer chains and their correlations
accompanying physical aggregation is yet be conceptually framed and understood. In this
general premise, it is desirable to consider the asymptotic limit of charged macromolecules,
where only dipole-dipole interactions are present, as in the case of polyzwitterions. It is
thus of fundamental interest to formulate a theoretical platform to account for the role of
dipolar forces in polyzwitterions, which is the primary goal of this paper.

Towards a general treatment of effects emanating from zwitterions embedded on
polymer backbones, let us first consider different configurations of dipoles (zwitterions)
as illustrated in Figure 1. To begin with, the free energy of interaction of two dipoles of
moments py and p, separated by a distance r (Figure 1a) in a uniform dielectric medium is
given by [1]

1 1

AF= — -
4reper 13

[p1-p2—3(¢-p1) (% p2)], 1)
where € is the permittivity of vacuum, €, is the temperature-dependent dielectric constant
of the medium, and the magnitude and unit vector of r are denoted by r and £, respectively.
Thus, the interaction between a pair of dipoles depends on their orientations and separation
distance. This dipole-dipole interaction is screened in an electrolyte solution. Assuming
the validity of the Debye-Hiickel theory for electrolyte solutions, the above expression for
AF is modified to [1]

1 e [(1 +xr)p1 - p2 — (34 3kr +k2r%) (2 p1) (- PZ)}' @

AF =
4rtege 13

where « is the inverse Debye length (proportional to the square root of concentration cs of
added salt in the solution). For monovalent salts,

k2 = 4mlp(cy +c_) = (800071¢gN)cs, (3)

where c; and c_ are the number concentrations of dissociated cations and anions, N4 is
the Avogadro number, and /3 is the Bjerrum length defined by

o2

- 47T€0€rkBT’

lp (4)
with kpT as the Boltzmann constant times absolute temperature. In the present theory,
effects [1] from the finite size of dissociated ions are not accounted for.

If the polyzwitterion solution is dilute and the chain backbone is highly flexible, and if
the temperature is high enough in comparison with local dipole-dipole interaction energy,
the dipoles of the repeat monomers are expected to be randomly oriented (Figure 1b).
The interaction free energy 4 random (7) (in units of kpT) between two randomly oriented
dipoles with the same dipole moment pe = /e (p is dipole length and e is the electronic
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charge), separated by distance r in a salty aqueous solution follows from Equation (2) after
averaging over orientations of the dipoles as [1]

_ 1yt
6

_ 5 2 1
Udd,random (1’) =3 e 2 (1 + 2xr + g(KT)2 + = (KT’)3 + 8 (K?’)4 . (5)

3

If the temperature is not too high and if the salt concentration is not high enough to
significantly screen the dipole-dipole interactions, then local pairing of dipoles will result
in quadrupoles. There are primarily two orientations of the dipoles forming quadrupoles
that are stable, namely the parallel and antiparallel configurations as shown in Figure 1c
and Figure 1d, respectively. The distance vector r between the centers of the dipoles is
along the same direction of the dipole orientations in Figure 1c, whereas it is orthogonal to
the directions of the dipoles in Figure 1d. Using Equation (2), the pairwise dipole-dipole
interaction energy (in units of kg T) for these two types of quadrupoles is given by

(pp* _
udd,Parallel(r) = _Tge Kr(z + 2xr + K21,2), (6)
and )
lgp~ _
udd,antiparsallel(r) = _Tg)e Kr(l + Kl”). (7)
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Figure 1. Different scenarios of dipole-dipole interactions as described in the main text. (a) Two
dipoles p; and p» separated by a distance r. (b) Two dipoles of equal dipole moment p are randomly
oriented and the interaction energy, U(r) ~ —1/7° as noted. (g is the Bjerrum length. (c) Parallel
orientation of two dipoles with interaction energy U(r) ~ —1/13. (d) Anti-parallel orientation of
two dipoles with U(r) ~ —1/r3. (e) Weakening of quenched dipole-dipole interaction with an
increase in added salt concentration cs, where the inverse Debye length x ~ /cs. (f) Demarkation of
the high-temperature and low-tenperature regimes depending on p, r, x, and the dielectric constant
€r (€9 = vacuum permittivity).
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Even though both parallel and antiprallel dipole orientations are stable, the parallel
configuration of dipoles from chain backbones is expected to be considerably less stable
(compared to the anti-parallel configuration) due to steric hindrance arising from chain
backbone and the inter-dipole distance being much larger and hence weaker because of
1/7% dependence (as sketched in Figure 1c,d). Therefore, it is reasonable to focus only on the
anti-parallel arrangement of dipoles for the formation of quadrupoles in polyzwitterions.
The strength of 44 antiprallel decreases with an increase c; as illustrated in Figure le, where
Ugdd antiprallel 18 plotted against the inverse Debye length x ~ /cs.

At any salt concentration, there exists a threshold temperature Ty, esholq below which
these antiparallel quadrupoles would spontaneously form as essentially quenched config-
urations, and above which random orientations of dipoles might become plausible. The
threshold temperature is obtained from Equations (4) and (7) as

o2 p2

Kr
—_— 1 .
4mege kprd (14 xr) ®)

Tihreshold =
As illustrated in Figure 1f, for temperatures higher than Tyyeshold, the polyzwitterion
chains behave as an annealed system with random orientation of zwitterions whereas
they will form quenched and physically associated quadrupoles for temperatures below
Tihreshold- The value of Tyyeshold depends on the magnitude of the dipole moment of the
zwitterion, dielectric constant, and the salt concentration. Previous theoretical attempts
to treat polyzwitterions, with the exception of the author’s previous work [35], deal with
the high-temperature situation of random orientations of the dipoles. In the present paper,
we will address the role of quenched configurations corresponding to the lower part
of the diagram in Figure 1f, in addressing polyzwitterion gels. As discussed below, for
temperatures above but close to Tiyeshold, the quenched quadrupoles can result in an
intermediate mesomorphic microgel formation where the quadrupoles function as physical
cross-links and the intervening strands undergo conformational fluctuations with their
dipoles being randomly oriented.

The rest of the paper is organized as follows. Defining a continuous Kuhn chain
model encompassing chain connectivity and inter-segment dipole-dipole interactions in
Section 2, the size and dynamics of isolated polyzwitterion chains are presented in Section 3.
Self-assembly of mesomorphic polyzwitterion microgels at T > Tyreshold 1S described in
Section 4. Swelling equilibrium and hierarchical internal dynamics of polyzwitterion gels
are described in Section 5, followed by concluding remarks on the phase behavior of
polyzwitterion systems.

2. Model

Consider a system of 1 polyzwitterion chains each containing N repeat units, 1, ions
of species 7y from dissolved salt, and 75 solvent molecules in volume V. Let £ and p be
the linear size and dipole moment, respectively, of each zwitterionic repeat unit. Let also
the dipole length of the zwitterion be p so that the magnitude of the dipole moment is
|p| = p e, where the unit charge is explicitly expressed. Representing the polymer chains
as continuous curves of contour length L = N/, the Helmholtz free energy F of the system
is given by

ng -&-Z7 ny

i 1 n .
e |/]—[1D[R“]/ T

ning! [T, nytJ) = ;
2 1M 2 N N
x exp{— Y 2/ ~3 Z le/o dsa/O dsﬁupp[Ra(sa) —Rﬁ(sﬁ)]

BR,,C (sa)

g Ng

n N s
-y /0 dsy Y Ups[Ra(sq) — 1] Z 2 Uss(r
a=1 i=1

zl]



Gels 2024, 10, 393 50f22
n N Ly 1y 127”7 Ly ny

— % [ s X UpRa(s) —rl =5 Y 1 Ul — ). ©)
a=1 i=1 i=1 j=1

Here R, (sy) is the position vector of the arc length variable s,(0 < s, < N) of the a-th
chain. Uy (r) is the interaction energy between two repeat units of the chains separated by
a distance r,

Upp(r) = vpp€35(r) + Vdipote (1), (10)

where v)), is the short-ranged monomer-monomer excluded volume interaction parameter,
and ¢(r) is the Dirac delta function. v, represents only two-body interactions, and three-
body interactions need to be included in describing situations where polyzwitterion chains
form globule-like structures. Ud,'pole(l‘) is the dipole-dipole interaction that depends on
specific dipole orientations as displayed in Figure 1.

The short-ranged interactions between polymer repeat units and solvent molecules
and between solvent molecules are given by

Ups (1) = 0,55 (1) and Uss (1) = 05535 (x), (11)

where vps and vgs are parameters analogous to vpy,. The electrostatic interactions between
dissociated monovalent ions and between dipoles and ions are given by

zizil .
b and Upi(r) = zilp

e r3

uz]( ) (P : r)/ (12)

r
where z;e is the charge of the i-th dissociated ion, p is the dipole moment of the repeat unit,
and r = |r|.

Integrating out all degrees of freedom associated with mobile salt ions and solvent
molecules within the framework of the Debye-Hiickel theory, we get

BR,X sa)

,L
¢ FT — kBTi/H’DRa exp{— 20 2/ ™ )2

n n N N
;gﬁ;/o sy [ dspURa(sa) — Ry (sp)]} (13)

Here Fy is the free energy of the background fluid where the polyzwitterions are present.
It arises from the translational entropy of dissociated salt ions and solvent and the charge
fluctuations from the salt ions, given by

E K
W _colnco—co+IZ(CzlnCz—Cz)—ﬁ/ (14)

where ¢y and ¢; are the number concentrations of the solvent and i-th electrolyte ion.
In Equation (12),
U(r) = 0635(1') + vdipole—dipole(r/ x), (15)

where v is the familiar excluded volume parameter, written equivalently as (1 — 2)), where
x is the Flory-Huggins parameter to compound polymer-polymer, polymer-solvent, and
solvent-solvent short-ranged interactions. The dipole contribution to U(r) is Ug;pote—dipote (T),
as explicitly given in Equations (2)—(6). In the situation of anti-parallel orientations of
two adjacent dipoles with a separation distance ry comparable to the monomer size /,
Vdipole—dipole (r) can be written as a delta function (analogous to the treatment of the excluded
volume interaction) given by

Udipole—dipole (r) = Udé(r)/ (16)
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with

2
—ﬂ%pe_m(l + xrg), (17)
"o

U4 =

where we introduce the probability f of realizing anti-parallel orientations of the dipoles of
two adjacent zwitterions. Considering only the favored orientations (Figure 1c,d), f is 0.5,
if the dipoles are completely free without any entropic contribution from chain connectivity.
In realistic situations, we expect f to be smaller than this value. For example, based only on
the loss of orientational entropy of a dipole to be oriented in a specified direction, f = 1/47.
Combining Equations (15) and (17), we define an effective interaction parameter,

Vnp?
Vepf =v+vg = (1-2x) - f%pe*’%(l +xro). (18)
0

Hence, the x parameter specific to polymer-solvent pair without zwitterions, is increased
by an amount proportional to £ p?.

We note that the expression for v, ¢ is quite different for the high temperature situation
(upper part of Figure 1f) corresponding to randomly oriented dipoles. In this situation, v.fs
becomes [1]

Veff = U+ Vdd, (19)

where
3 p*
9 5

Here the dipole contribution is proportional to ¢4 p*, instead of £gp? in Equation (17).

Vaq = e 2[4+ 8l + 4(x0) + (x0)%]. (20)

3. Size and Dynamics of Polyzwitterions in Dilute Solutions
3.1. Size: Anti-Polyelectrolyte Effect

For an isolated polyzwitterion chain, the probability distribution function G(R, N) for
a chain of N repeat units and end-to-end distance R follows from Equations (9)—(20) as

G(R,N) = ./(;RD[R(S)}eXp{—i/ON as( RS2 O N '/O'N 450, £0[R(5) — R(s')]

20?2 ds 2 Jo

o /0 Y s /O Y s /O Y 4s"SIR(s) — R(s)OR(S) — R(s")], 1)

where the three-body interaction of strength w is included in anticipation of the necessity
to stabilize the expected globular state of the polyzwitterion chain. The free energy F; and
the mean square end-to-end distance (R?) of the chain are given by G(R, N) as

kiT - —ln/dR G(R,N), (22)
B
and )

g2y — JAR R GRN) )

[dRG(R,N)

We will use the variational procedure [44], which has been found to be effective in treating
polyelectrolytes and neutral polymers, to calculate F; and (R?) in terms of x, /g, p, and
cs. Since the technical details of this procedure are already in the literature [1,44], we give
only the results for F; and (R?) along with the effect of dipoles on the theta 8 temperature
relevant to phase behavior.
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3.1.1. Designing 6 Temperature
Writing v,¢; of Equation (18) as (1 — 2)x,fy), we get
2
12X =1-2x— fgife_”o(l + xrp), (24)
"o
so that )
1f¢ _
Xeff =X+ Ef%pe Ko (1 4 krp). (25)
0

Hence a plot of s versus (g p?/ 3 is linear with the slope depending on salt concentration
as shown in Figure 2a. If the polyzwitterion solution exhibits upper solution critical solution
temperature (UCST) behavior, as prescribed by x = 0/2T, the dependence of 6 temperature
(now 6,¢¢) on the dipole length of the zwitterion is given by

fe2pPe=*0(1 +kry)

B, =0+
eff 47T€0€rk31’8

, (26)

where the definition of {5 is used. The elevation of the theta temperature is linearly propor-
tional to p? with the coefficient being a decreasing function of cs. Thus the dipole length p
of the zwitterion has a significant effect on the 6 temperature of polyzwitterion solutions
and offers an important synthesis tool to design the phase behavior of polyzwitterions.

(a) (b)

Oerr
Xerr
slope = ge_’cro(l + K1)
0
'Esz pZ

s

Figure 2. Elevation of § temperature by p?. (a) Effective chi parameter and (b) effective theta

temperature.

3.1.2. Size and Free Energy

Using the variational procedure and following the derivation in Refs. [1,44], the free
energy Fj of a single polyzwitterion chain in solutions is obtained from Equation (22) as

F _3[R? R? 4/ 3\%2 N2/ N3
m—z[w””“(w)]*s(mJ S R

where the unknown three-body interaction parameter w absorbs all numerical prefactors.
By minimizing the above free energy expression with respect to the root mean square
end-to-end distance R, dF; (R) /dR = 0, we get

R2 \ /2 R2\¥2 4/ 3\32 N2 32
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Rewriting this result in terms of the chain expansion factor « = (R?/N¢?)1/2, we obtain

2w 4 3\%?
aS_“3_a3:3<271) (v 4 v4)VN. (29)

A plot of a versus the term on the right-hand-side of this equation is given in Figure 3a
exhibiting the coil-globule transition.

(a) (b)

2.0F ' ' 7 15F
1.5
1.0}
s 1.0} | =
0.5
0.5
0.0k . . 4 ook . . . . i
-20 -10 0 10 20 00 02 04 06 08 1.0
z ce (M)

Figure 3. (a) Coil-globule transition: a is the chain expansion factor and z = § (5% )%/2(v + v;)V/N.
(b) Anti-polyelectrolyte effect.

Since the dipole-dipole interactions are attractive (v; < 0), polyzwitterions can readily
form globules for sufficiently large dipole lengths. In addition to the dipole length, ¢ plays
an important role in determining the dipole-dipole interaction strength. Once a polyzwitte-
rion forms a globule in the low salt condition, it expands upon weakening the inter-segment
dipole-dipole attraction with additional salt. This behavior of formation of expanded coil
from a globule upon addition of salt is illustrated in Figure 3b, where the chain expansion
factor « is plotted versus ¢; forv =1, N = 225, w = 0.2, and f/p pz/ rg = 2.5. This behavior
is the opposite to the familiar polyelectrolyte behavior where the size shrinks due to the
screening of charge-charge repulsion with added salt. The ‘anti-polyelectrolyte” behavior
of polyzwitterion chains arises from screening of the attractive dipole-dipole interaction
with added salt. The extreme limits of formation of globule and coil structures and the
intervening crossover behavior are given by Equation (29). The size and free energy of the
coil and globule states predicted by Equations (27) and (28) are as follows.

(a) Polyzwitterion coils (v + v; > 0):
For sufficiently large positive values of v + v;, Equation (28) gives

2\ 5/2 3/2
(@) :‘;(;{) (v+9v7)VN, (30)

so that the root-mean-square end-to-end distance R, which is proportional to the radius of
gyration R, scales with the degree of polymerization N as

R
— ~ (40PN, (31)

with the size exponent v = 3/5. This result is as expected for good solution conditions.
Substituting this result in Equation (27), the free energy F; is given by

il 1.8(v + vg)2/°N1/5. (32)
kpT
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(b) Polyzwitterion globules (v + v; < 0): For sufficiently strong attractive dipole-dipole
interactions (v + v; < 0), Equation (28) gives

REN\Y? [ar/3\%2 T 2w
so that 3
R_ 3273, w 1/3
0 {2(3) |v—|—vd|] N S
Hence the scaling behavior of R of polyzwitterion globule is
R w /3
8 1/3
=~ N3, 35
=) )

with the size exponent v = 1/3, as expected for globules.
Substituting Equation (34) into Equation (27), the free energy of the globule is given as

F _i|v+vd|2N

ksT ~ 273 w (36)

3.2. Dynamics

The Rouse equation for the dynamics of the position Ry, (t) of the m-th segment at
time ¢, applicable in the absence of hydrodynamic interaction, is given as [1,45]

OR,(t) 3kpT PRu(t) . 0
O T I W +3Rm;U(Rm—Rj):fm(t), (37)

where (, is the segment friction coefficient, U is the intersegment interactions (Equation (9)),

and f;, is the random force acting on the m-th segment. By approximately linearizing the

nonlinear dependence of U on Ry, (t) in terms of an effective Kuhn length /¢, Equation (37)

is approximated as [1]

OR,,(t)  3kpT 3’Ry(t)
ot Ul Om2

Cb = fu(t), (38)
where (. is related to the chain expansion factor a as leg/f = a?® with (R?) = Nlly;.
In general, since (R?) ~ N%,

bogt ~ N?7L. (39)

Introducing the Fourier transform of Ry, (t) in terms of the Rouse modes R, (t) (where p
denotes the Rouse mode index),

R(mt)= Y. Ry(t)cos(72M), (40)
L Rteos(5)
R (t)—l/NdmR(m t)cos<7Tpm) (41)
PYYTN o ’ N J’
we get
OR,(t) 3m2kpT 2. ;

TG R @

where mpy\1-2v
Legt ~ (W) : 43

The dependence of the relaxation time T, of the p-th Rouse mode is obtained from
Equation (42) as
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T, = gbggeff ﬁ 2,-\/@ N vt (44)
P 3m2kpT \ p T\p '

The longest chain relaxation time 1z (Rouse time) corresponding to p = 1 scales as
TR ~ N2V +1 (Rouse) (45)

According to the Rouse dynamics, the time correlation function of the end-to-end
distance vector X(t) = Ry(t) — Rq(t) is known as [45]

(X(t) - X(0)) = (R?) (%)e—f/fk ~ e ARNTTL T (Rouse) (46)
where Ay is the prefactor in Equation (44). The above equation is derived using the
assumption that the longest relaxation time (p = 1 mode) dominates the time correlation
function of the end-to-end distance.

When hydrodynamic interaction is fully present as in dilute solutions, Equation (42) is
modified into the Zimm description [1],

AR,(E)  32kpT [ pN\2,s Fo(t)
p B p p .
D — | Ry(t) = =—=. V4 47
5 D, () B =752 (@imm) “7)
Here, Dy, is the preaveraged hydrodynamic interaction tensor for all chain segments given as
1 p v—1
D, ~ — (£ . 4

The Zimm relaxation time of the p-th Rouse mode follows from Equation (47) as

U 1 (N)?
Tp,Zimm = 37T2kBTD7p ? . (49)

Using Equations (43) and (48),

3v
Mo (N
Tp,Zimm ™~ T (p) ’ (50)

so that the longest relaxation time 7z (Zimm time) is
77 ~ N, (Zimm) (51)

Analogous to Equation (46), the time correlation function of the end-to-end distance vector
X(#) with hydrodynamic interaction present is given by

(X(t) - X(0)) ~ e /72 ~v e Az/NY (Zimm) (52)

The above results on polyzwitterion single chains are used below in arriving at mean field
predictions of microgel formation and internal dynamics of gels in polyzwitterion systems.

4. Polyzwitterion Microgels in Solutions

For polyzwitterion concentrations above the overlap concentration, the chains inter-
penetrate and intermingle. For such semidilute concentrations, the solution is uniform if
there are no driving forces for local aggregation. in the case of polyzwitterions, such a
scenario is feasible only in the high temperature phase in Figure 1f where the zwitterion
dipoles are randomly oriented. On the other hand, in the low temperature phase (bottom in
Figure 1e), the stable quenched quadrupoles are expected to result in pervasive network
formation with local heterogeneous structures and macrophase separation. At intermediate
conditions for T > Tyjesn014, We anticipate formation of physical aggregation into microgels.
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We label this situation as the mesomorphic state since it emerges as an interlude
between homogeneous liquid phase and liquid-liquid or liquid-gel macrophase separation.
In the mesomorphic state of polyzwitterion solutions, most of the zwitterion dipoles are
randomly oriented with the rest of them are anchored into quadrupoles. The quadrupole
energy can be quite high compared to the thermal energy. As an example, for £ = 1 nm,
p = 1nm, {g = 0.7 nm, and the inter-dipole distance rg = 0.25 nm, the quadrupole energy
u (Figure le) is 64kpT. If u is so strong, the various quadrupoles will act like physical cross-
links and the intervening strands behave like flexible chains with intra-strand excluded
volume interactions and randomly oriented dipole-dipole interactions.

We address this mesomorphic state by the following approach. (a) Using combinatorics
and the pioneering works of Tanaka [46] and Semenov and Rubinstein [47] on associating
polymers, we present the equation of state for the fraction of dipoles involved in quadrupole
formation. (b) Using Flory’s mean field theory [48-52] of swollen networks, swelling
equilibrium of polyzwitterion gels is derived. (c) Specializing on microgels formed by finite
number of polyzwitterion chains, their free energy is derived. (d) Using the free energies
of isolated chains and microgels containing prescribed number of chains, an the classical
micellization/aggregation theory [53], the critical aggregation concentration (CAC) and
microgel size distribution are derived.

4.1. Equation of State for Quadrupole Formation

For a solution of volume Vj containing n polyzwitterion chains, each with N repeat
units of volume vy, the total number of dipoles capable of quadrupole formation is

N; = fuN = f4>0;/—§, (53)

where f is the fraction of monomers that have the correct orientation for the formation
of quadrupoles, and ¢g = nNvy/V} is the volume fraction of polyzwitterion. Let g be the
fraction of dipoles associated as quadrupoles so that the number of physical crosslinks N,
is given as

_1 _1
Ne= 7 fnN = JN.. (54)

The free energy Fj of the cross-linked Gaussian network is

F

where the partition function Zy is given by
Zp = Q1Q2Qze ™, (56)

where Qq, Q, and Q3 are, respectively, the probability to choose 2N, dipoles out of N;
dipoles, the probability of forming N, quadrupoles out of 2N, dipoles, and the probability
of finding two dipoles closeby. € is the energy gain in the formation of one quadrupole.
Q1,Qy, and Q3 are given by

Ng!
(2Ne)!(Ns — 2N,

20

Ne
Q) = i sz(2NC—1)(2NC—3)~--3-1,Q3=(VO) : (57)

Substituting Equations (56) and (57) in Equation (55), and using the Stirling approximation,
we get

o =~ ()| ) - g 20— -enl]. 69

Minimizing Fy with respect to g, 0Fy/9dg = 0, we get the equation of state for the optimal
fraction of dipoles associated into quadrupoles as
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(1 _qq)z = foe*. (59)

This expression is equivalent to the previous results of Semenov and Rubinstein [47], and
the chemical equilibrium expression of Tanaka [46].

4.2. Swelling Equilibrium of Polyzwitterion Gels

We assume that the free energy F of a gel made from # chains (of N monomers) is the
additive sum of free energy F,; due to elasticity, free energy of mixing F,,;,, free energy F,,.
due to electrostatic interactions among randomly oriented dipoles, and free energy Fy 44
due to formation of quadrupoles,

F = Fo + Fyix + Felec + Fquad- (60)

The free energy F,; from the elasticity of the gel is obtained from the earlier works
of Flory, Dusek and Patterson, and Tanaka [48-52]. Given that there are 2N, monomers
involved in quadrupoles (crosslinks) out of the total Ng = nN monomers in the system, the
number of monomers per cross-linked unit, N, is

_N()_HN
T 2N, 2N,

N, (61)

Adopting the Flory-Stockmayer assumption that the cross-linking statistics is that of tree-
like network architecture, the number of elastically effective chain strand (,¢/) is

2N,

neff = ZNC(l - N ) (62)
Approximating this result,
nN n
nfff ~ ZNC = Wg = ;, (63)

where Equation (61) is used and v = N,/ N. Thus there are 1, elastically active strands of
N, monomers and N, = n, ff /2 crosslinks.

It is noteworthy to point out that the minimum value of N, Ny, required for network
formation depends inversely on the fraction g of dipoles associated as quadrupoles. Since
N: = qfnN/2 (Equation (54)),

nN 1
N, = = — 4
e 2NC qf/ (6 )
so that N,,;;, = N, given as
1
N,y == ﬁ' (65)

where the equilibrium value of g is given in Equation (59).

For an isotropically swollen gel of swelling ratio A = V/Vj (where V is the volume of
the swollen gel and Vj is the gel volume in its reference state of Gaussian network), the
standard theory of rubber elasticity gives

Fp 3

—— 2_1_
kBT = Zneff()\ 1 11‘1/\). (66)

The volume fraction of the polyzwitterion in the swollen gel is

_Va_Va_ 1
4)_ V - VO_(PO)\3/ (67)

where V is the volume of dry polyzwitterion material and ¢g = V;/Vj. Taking V; = nNvy
and V} as the value given by the volume of Gaussian coils proportional to N/2,
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nNvg _a 68)

fo = n(4nR%/3) VN’

where a is a constant of order one. In view of v = N, /N,

¢ = am. (69)

By combining Equations (66) and (67), F,; is given by

Fg _ 3 $ovoszs 4, 1. o
ksT = Zneff |:( ¢ ) 1+ 3 11’1(*4) ). (70)
For ¢ < 1, this expression reduces to
Fg 3 $0\2/3
T zneff(?b )77 (71)

The classical expression for for the free energy of mixing for a gel is

2 ()1 9)In(1 — ) + xp(1 — )], 72)
B

(%]

where ¢ refers to 1,7 N,vg/ V.
The electrostatic contribution from randomly oriented zwitterion dipoles to the free
energy is

Fpe (3" (N, Ne
r5=7 L %jfo sy [ dsg 04 1R (sx) — R(sp)],

where mean field approximation is used and v, is given in Equation (20). Combining F,,;,
and F,,., we get

Fmix Felec _ K _ _ — 2
f i = o (17 OV = 9)+ 20~ xess9?). 7
where x,¢f now is
Xeff = X — Vaa/2. (74)
For ¢ < 1,
Fnix | Fetec _ (1 — Xefr)¢ 4+ O(¢?) | + constant. (75)
keT " kgT "o/ |\2 T XefS

The free energy due to quadrupole formation is

F, n
kt;fl = —N,e=— gfe (76)

Collecting the results for Fy, Fyix, Felec, and Fyyqq from Equations (71), (75) and (76),
we get the free energy of a gel with 7,7 elastically active strands as

F 2/3
g € 1 3 (o
kpTrers 2+N3<2 Xeff)"’+2<¢> ‘ 7

The minimization of this expression with respect to ¢ yields the polyzwitterion volume
fraction at the swelling equilibrium of the polyzwitterion gel as

_ 4)5/5
NE/S(% - Xeff)3/5

¢ (78)
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a2/51/5

¢= N5 (79)
N, / (% - Xeff)3/5
Substituting this result in Equation (77), we obtain
Fn € 5 1 (Y 2/5

eff —- _ = Y 2/5.1/5( & ﬂ N1/5 tant 80
7kBTneff 2+2a 104 <2 X+ 2) .7 + constant. (80)

4.3. Equilibrium Distribution of Microgel Size

Since we know expressions for the free energies of isolated chains and microgels
containing a certain number of polyzwitterion chains, albeit using mean field arguments, we
can derive the distribution of number of polyzwitterion chains in aggregates as a function
of the characteristics of the zwitterion dipoles, and salt concentration for T > Ty esn014-
According to the standard theory [53] of micellization/aggregation, the mole fraction X,
of aggregates with m elastically effective strands (mN, = nN) is given as

m m
X = m[Xle(Fl_%)/kBT)} ) (81)

with the constraint of conservation of the total mole fraction X as
X=Y Xun. (82)

In Equation (81), X is the mole fraction of unaggregated polyzwitterion chains and Fj is
given by Equation (32) by replacing v; by v,,. Fy, is given by Equation (80) by replacing
nef¢ by m. In the context of aggregation equilibrium depicted in Equation (81), the constant
term in Equation (80) is not arbitrary. We choose this constant term such that F,,, — F; for
m = 1 in order to comply with the constraint in Equation (82), X,,—1 = Xj. This yields

1 Fn\ 1
ar(n=)=(-a)e &

where O follows from Equation (32) (with v, replaced by v;;), and Equation (80), as

€ 5 1 ,
© =2 +(2375 — 2a** ) (5 —x + %)2/51\1@1/5. (84)

Substitution of Equation (83) in Equation (81) gives
Xy = m(XleQ)m e @, (85)
This indicates that the approximate value of the critical aggregation concentration (CAC) is
CAC =¢7 9. (86)

The convenient form of X, given by Equation (85) enables analytical derivation of Xj, the
average number of chains and the number of chains with the maximum propensity in the
microgels. Substituting Equation (85) in Equation (82), we get

X

X = S
(1—X1e9)2

[7e

(87)

m=1

X =Y m(X;e®)"e® =
m=1

Solving the quadratic equation for Xj in terms of X and ® in Equation (87), we obtain

(1+2Xe®) — V1 +4Xe®

X, =
! 2Xe20

(88)
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0.0

4.4. Representative Results

For the purpose of illustrating the general features of the dependence of X;;, on the
number of chains in the microgel on the polyzwitterion concentration ¢ and monovalent
salt concentration cs, we give the following results. In Equation (84), © depends on v;; and
€, which are ¢; dependent, and N (= N./7). By choosinga = 1,7 = 0.1, N. = 50, x =0,
lp =0.7nm,p = 1nm,/ = 1nm, and k/ = 2.26,/cs, vy, is plotted in Figure 4a as a function
of c; in molarity. For the antiparallel quadrupole, we choose /g = 0.7 nm, p = 1 nm, and
ro = 0.25 nm, and e, given by (£gp*/r3)(1 + xro) exp(—xry), is given in Figure 4b as a
function of cs. For the above choice of parameter values, the c; dependence of @ is given in
Figure 4c.

-0.2r

—0.4}

-0.6f

(a) (b) (c)
45
23F
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21F
1w 35¢ @ 20f
19F
30F 18F
17F
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Figure 4. Dependence on salt concentration cs of (a) v;;, (b) €, and (c) ©.

For ¢; = 0.25 M, the dependence of the mole fraction of unaggregated chains X; on
the total mole fraction X of polyzwitterion chains is given in Figure 5a. The occurrence of
CAC (¢79) is evident from this figure. Considering poly(sulfobetaine methacrylate) as a
typical polyzwitterion, with N = 512 and M, = 180,216 g/mol, the mole fraction of the
polymer is related to its concentration c in g/L as X = 10~7 = c. The distribution of Xy,
on m for cs = 0.25 M and ¢ = 1 g/L is displayed in Figure 5b exhibiting the spontaneous
selection of finite-sized microgels with a maximum around m = 20. The dependence of X,
onc (1.0,0.5, 0.1 g/L) at the fixed salt concentration ¢; = 0.25 M is portrayed in Figure 6a.
At lower polyzwitterion concentrations, the propensity of formation of microgels is lower
with the corresponding microgel decreasing continuously. The dependence of X, on cs
is illustrated in Figure 6b at c = 1 g/L for ¢s = 0.25M, 0.5 M, and 1.0 M. The microgels
are constituted by smaller number of chains as the salt concentration increases. The above
quantitative predictions on the self-assembly of polyzwitterion microgels can be tailored to
various polyzwitterion systems by choosing appropriate values of the system-dependent
parameters such as the dipole moment.

Using Equation (85) for X, at X > CAC, X,, simplifies to

), (89)

X =~ mexp(— m__
" P vV Xe®
so that 90X, /dm = 0 yields the number of chains in the microgel with maximum probability as

Mmax = \/XEG/ZI (90)
and the average number of chains in the microgel as

(m) = 2Mmpax = 2/ Xe®/2., 91)

Furthermore, taking the polyzwitterion volume fraction in the aggregate (microgel) as

Pasg = 323 (92)
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where Rg 400 is the average radius of gyration of the aggregate. Substituting ¢, from
Equation (79) in the above equation, we get

3 13,0761
Rgagg = (27[) e (§

= Xegs) VOO, 93)
Hence the radius of gyration of the aggregate is proportional to the one-sixth power of
polyelectrolyte concentration at all salt levels of self-assembly,

Rg g ~ c'/®, (94)

with the prefactor proportional to the radius of gyration of a single isolated strand under
the same experimental conditions of microgel formation. The above theoretically derived
exponent 1/6 for polyzwitterion microgels has earlier been implicated in the contexts of
the slow mode in salt-free polyelectrolyte solutions [40] and physical polyzwitterions [30]
arising from counterion binding to polyelectrolytes. These references provide experimental
validation of the predictions from the present theory. The above scaling behavior appears
to be universal for all associative charged macromolecular systems.

(a) (b)
4.x107"0 T " " " . . . . .
3 x10-0f 15x107%}
o[
><“2.x10*1°-r o3 1.x10
5.x107'0¢
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oL ... ..
%% 2.x107  4.x107 6.x107 8.x107 1.x10° 0 20 40 60 80 100 120 140
X m
Figure 5. (a) Dependence of the mole fraction Xj of unaggregated polyzwitterions on the total mole
fraction of the polyzwitterion chains. (b) Distribution of the mole fraction of microgels containing m
chains on m forc =1 g/L and ¢s = 0.25 M.
(a) (b)
8.0x107% T T T T . . .

9 — 0.25M
15107 6.0x10%} — 05M
o £ —
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Figure 6. (a) Polyzwitterion concentration dependence of the distribution of the mole fraction
of microgels containing m chains on m for ¢ = 1.0, 0.5, and 0.1 g/L and ¢s = 0.25 M. (b) Salt
concentration dependence of the distribution of the mole fraction of microgels containing m chains
on m for cs = 0.25,0.5,and 1.0 Mand c = 1.0 g/L.
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5. Swelling Equilibrium and Internal Dynamics of Polyzwitterion Gels

When polyzwitterion molecules in a solution at concentrations above the overlap
concentration are allowed to form permanent chemical crosslinks, such gels can exhibit
rich behavior encompassing both the high-temperature and low-temperature attributes
described in Introduction.

5.1. Swelling Equilibrium

The derivation given in Section 4 is valid for the present situation as well, where
N, is the number of permanent crosslinks instead of physical quadrupoles (which might
contribute to additional physical crosslinks). Therefore, the swelling equilibrium is given
by Equation (78) as

95"
= , (95)
NP2 (% = Xef)3/
where 1
Xeff =X = 5Vdds (96)

for the experimental conditions that allow random orientations of the zwitterion groups, and

1
Xeff =X — Vs 97)

for conditions where quenched quadrupoles are preferred. Since the quantitative con-
sequences of v; ~ p? and vy ~ p* can be significant, the volume phase transitions of
chemically cross-linked polyzwitterion gels and their response to externally imposed stim-
uli such electric fields, mechanical forces, and added salt, can be quite different for the
above two scenarios. While these issues are not addressed in the present paper, such a
premise is of interest for future considerations.

5.2. Internal Dynamics

The displacement vector of the gel is a fluctuating quantity, shich can be quantified, for
example, by a combination dynamic light scattering (DLS) experiments and gel elasticity
theory. The displacement vector is directly proportional to to the end-to-end distance vector
X(Ng, t) of the elastically active strands of N, monomers in the gel. As already shown above
in Equations (46) and (52), the time correlation function of X(N,, t) is

X(t) - X(0)) ~ exp(—
(X()-X(0)) ~ exp(~ —), 98)
where 1y absorbs all numerical prefactors and
_ 2v+1 R.ouse (99)
3v Zimm

In almost all chemically cross-linked gels, N, of all elastically active strands is not the
same. For weakly cross-linked gels, it is well known that N, is distributed according to the
exponential [54],

P(N,) = e~ N, (100)

where k is the rate of the cross-linking reaction. In fact, even if the segments between
two adjacent cross-links were to locally organize into vitrimer-like dynamically associated
structures, the form of Equation (100) is preserved with k depending on the local dynamical
details. The electric field (E) correlation function g; () measured in DLS is the superposition
of Equations (98) and (100),

_ __t
gi(t) ~ [aNeeTVE e, (101)
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where 7 is the net characteristic time that compounds all hierarchical relaxation times for
strands with varying N, values, and B is a stretched exponent,

B 1
14

B (102)
If hydrodynamic interactions are absent, then the Rouse dynamics is applicable and we get

from Equation (99),
1

P=ar2
On the other hand, if the gel meshes are widely open to allow hydrodynamic interaction
without significant screening, the Zimm dynamics is applicable so that

(103)

_ 1
C3u+1°

B (104)

For polyzwitterion gels, where the local polymer concentration is rather high, we ex-
pect that the hydrodynamic interaction is screened so that the Rouse dynamics is applicable.
As already described, when the quadrupole formation is prevalent at low salt concnetra-
tions, v = 1/3 so that § = 8/3. On the other hand, if the formation of quadrupoles is
weakened by adding salt, and since the strands between crosslinks are not too long to
allow significant excluded volumere swelling, we expect v ~ 1/2 so that f = 1/3. Thus
we anticipate a crossover from = 8/3 to B = 1/3 as ¢ is increased for the hierarchical
internal dynamics of polyzwitterion gels as sketched in Figure 7.

3/8 —

B

113 —

Cs

Figure 7. The stretched exponent § for hierarchical internal dynamics of polyzwitterion gels is 8/3
for salt-free limit and it decreases to 1/3 as the concentration of added salt increases.

6. Conclusions

The incipient ability of dipolar zwitterion monomers of polyzwitterions to associate
results in a broad range of properties unlike the situation with uniformly charged poly-
electrolytes. Even though there have previously been several theoretical attempts to treat
polyzwitterions, they assume that the dipolar zwitterionic moieties are randomly ori-
ented. In reality, this assumption can be valid only if the temperature is extremely high
or the concentration of added low molar mass electrolyte is very high. In order to be
relevant to practical experimental systems, it is necessary to treat drastic deviations from
the random-orientation paradigm. The theory presented here is a new paradigm for treat-
ing the behavior of polyzwitterions. Here, the non-random orientations of zwitterionic
groups into quenched conformations are explicitly treated using statistical mechanics and
field-theoretic methods.
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In the present theory, two regimes have been identified for the rotational degree of
freedom associated with the zwitterion dipoles. In the high-temperature regime, the dipoles
are randomly oriented. In the low-temperature regime, the dipole orientations are quenched
resulting in quadrupoles. In developing a theoretical formulation for polyzwitterion
solutions, we have accounted for the spontaneous formation of quadrupoles in the low-
temperature regime.

In the present mean field theory of polyzwitterion systems, we have derived closed-
form formulas for (a) the size and dynamics of isolated chains in dilute solutions, (b) self-
assembly of mesomorphic microgels in semidilute solutions, and (c) swelling equilibrium
and hierarchical internal dynamics of chemically cross-linked polyzwitterion gels.

The general picture that emerges from the considerations in the present work is
sketched in Figure 8. The key experimental variables can be temperature or salt concen-
tration or pH, in addition to the polyzwitterion concentration. In this figure, the ordinate
is any one of the variables: temperature T, salt concentration ¢, and pH of the solution.
In general, the phase diagram is multi-dimensional. In order to emphasize this aspect of
multi-dimensionality, we have inserted the slanted lines denoting pH and ¢, by focussing
on the variable T (orthogonal to the abscissa). Therefore, as an example of the ordinate
variable, let the temperature be the experimental handle to explore the behavior of polyzwit-
terions. In extremely dilute solutions and at high temperatures, individual polyzwitterion
chains exist as expanded coils. When the temperature is lowered, the chain undergoes
coil-to-globule transition. However, the globule exhibits the anti-polyelectrolyte effect of
expanding into the coil conformation upon addition of salt.

cac ,GCs Gelation

/ esomorphic

state GEL

Figure 8. Generalized phase diagram for polyzwitterion solutions. The ordinate is any one of the
variables: temperature T, salt concentration ¢s, and pH of the solution. In general, the phase diagram
is multi-dimensional. In order to emphasize this aspect of multi-dimensionality, we have inserted the
slanted lines denoting pH and c; by focussing on the variable T (orthogonal to the abscissa denoting
the polymer concentration).

In the high-temperature region, but not too high, as the polymer concentration is
increased, the polyzwitterion chains spontaneously aggregate into mesomorphic microgels.
In between the dilute regime and the mesomorphic state, there is a line denoting the critical
aggregation concentration necessary for the formation of the microgels. Upon further
increase in polymer concentration, the mesmorphic state becomes a gel if the polymer
concentration is higher than that corresponding to the gelation threshold.

For intermediate polymer concentrations, when the temperature is lowered, dipolar
correlations result in quadrupoles and multipoles generating structural heterogeneity
that interferes with fluctuations in the local polymer concentration. Eventually, as the
temperature is lowered, a critical temperature T; is reached below which liquid-liquid
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phase separation (LLPS) occurs. At temperatures lower than T, a tricritical point can
emerge at the temperature Tycr at which the gel line meets the coexistence curve. For
temperatures below Trcr, liquid-gel phase separation (LGPS) occurs.

In the above general context of the rich phase behavior, we have only addressed in this
paper the behaviors outside the critical point and the coexistence curve. Since the present
work shows that the dipolar associations in polyzwitterion systems lead to significantly rich
consequences in contrast with considerations where dipoles are assumed to be randomly
oriented, such dipolar associations are expected to play a major role in the construction of
LLPS and LGPS phase behaviors.

This theory makes many predictions on (a) the structure and dynamics of polyzwitteri-
ons in dilute solutions, (b) emergence of a spontaneous formation of mesomorphic microgel
aggregates and their size distribution, and (c) swelling equilibria and hierarchical internal
dynamics of polyzwitterion gels. These predictions open a new avenue of experiments
toward critical assessments of theoretical predictions, more fundamental understanding of
polyzwitterion behavior, and potential applications.in health care industry. Furthermore,
since the present theory is only based on mean-field arguments, treatment of concentration
fluctuations is of immediate future interest.

It must be mentioned that the dipolar behaviors addressed in the present work are also
present in biological macromolecules such as intrinsically disordered proteins. Extension
of the present theory to such broader situations is of considerable future interest.
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