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Abstract: The behavior of polyzwitterions, constituted by dipole-like zwitterionic monomers, is sig-
nificantly different from that of uniformly charged polyelectrolytes. The origin of this difference lies
in the intrinsic capacity of polyzwitterions to self-associate intramolecularly and associate with inter-
penetrating chains driven by dominant dipolar interactions. Earlier attempts to treat polyzwitterions
implicitly assume that the dipoles of zwitterion monomers are randomly oriented. At ambient tem-
peratures, the dipolar zwitterion monomers can readily align with each other generating quadrupoles
and other multipoles and thus generating heterogeneous structures even in homogeneous solutions.
Towards an attempt to understand the role of such dipolar associations, we present a mean field
theory of solutions of polyzwitterions. Generally, we delineate a high-temperature regime where
the zwitterion dipoles are randomly oriented from a low-temperature regime where quadrupole
formation is significantly prevalent. We present closed-form formulas for: (1) Coil-globule transition
in the low-temperature regime, the anti-polyelectrolyte effect of chain expansion upon addition of
low molar mass salt, and chain relaxation times in dilute solutions. (2) Spontaneous formation of a
mesomorphic state at the borderline between the high-temperature and low-temperature regimes
and its characteristics. A universal law is presented for the radius of gyration of the microgel, as a
proportionality to one-sixth power of the polymer concentration. (3) Swelling equilibrium of chemi-
cally cross-linked polyzwitterion gels in both the high temperature and low-temperature regimes.
Addressing the hierarchical internal dynamics of polyzwitterion gels, we present a general stretched
exponential law for the time-correlation function of gel displacement vector, that can be measured
in dynamic light scattering experiments. The present theory is of direct experimental relevance
and additional theoretical developments to all polyzwitterion systems, and generally to biological
macromolecular systems such as intrinsically disordered proteins.

Keywords: polyzwitterions; hydrogels; gel swelling equilibria; hierarchical gel dynamics; dipole-dipole
interactions; mesomorphic state; polyzwitterion gels

1. Introduction

Polyzwitterions, where every repeat unit along the chain backbone is a zwitterion (elec-
tric dipole) consisting of positive and negative charges separated by designable distance
ℓ, exhibit a wide range of material properties in the areas of biolubricants, cosmetics, soft
contact lens, etc. [1–10]. Polyzwitterions are known to possess terrific material properties
in the areas of cosmetics, soft contact lens, hemodialysis membranes, biolubricants, etc.
The self-assembled structures by polyzwitterions hold potential applications. Gels from
polyzwitterions are of tremendous use in therapeutic situations involving higher salinity
(eye, for example), due to salt-philicity and the enhanced water-holding ability. Control of
gel swelling by chemistry in these amphiphilic biocompatible materials can have significant
impact. Self-assembly from polyzwitterions can also be of great use in encapsulating a
variety of analytes such as drugs and fragrances. Yet, fundamental understanding of their
structural organization and functions, such as their enhanced hydro- and salt-philicity in
combination with amphiphilicity, is lacking.

In general, the polyzwitterion behavior depends on the dipole density along the chains,
dipole length, and identities of the charge of the dipole [11–32], and has attracted significant
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theoretical and modeling efforts [33–43]. The rich functional properties of polyzwitterions
(polydipoles), that are unprecedented in polyelectrolytes (polymonopoles), originate from
delicate cooperative organization of dipolar local charge separations embedded along poly-
mer backbone. The electrostatic forces from dipoles are gentler than the stronger Coulomb
forces among monopole charges, resulting in fragility and diversity of local aggregation of
zwitterions. The occurrence of dipolar interactions is ubiquitous in many biological macro-
molecular systems. Almost all protein molecules contain amino acid monomers that can
possess either permanent or induced dipole moment. Furthermore, even for the nominal
uniformly charged polyelectrolytes such as DNA and sodium poly(styrene sulfonate), dipo-
lar forces are prevalent due to the unavoidable ion-pair formation arising from counterion
adsorption on the repeat units. In general, dipole-dipole, charge-charge, and dipole-charge
interactions are scripted in these biological as well as synthetic macromolecules result-
ing in rich complex structural and dynamical behavior. While there has been extensive
attention to charge-charge interactions in treating charged macromolecules, the role of
dipolar interactions among different parts of the polymer chains and their correlations
accompanying physical aggregation is yet be conceptually framed and understood. In this
general premise, it is desirable to consider the asymptotic limit of charged macromolecules,
where only dipole-dipole interactions are present, as in the case of polyzwitterions. It is
thus of fundamental interest to formulate a theoretical platform to account for the role of
dipolar forces in polyzwitterions, which is the primary goal of this paper.

Towards a general treatment of effects emanating from zwitterions embedded on
polymer backbones, let us first consider different configurations of dipoles (zwitterions)
as illustrated in Figure 1. To begin with, the free energy of interaction of two dipoles of
moments p1 and p2 separated by a distance r (Figure 1a) in a uniform dielectric medium is
given by [1]

∆F =
1

4πϵ0ϵr

1
r3 [p1 · p2 − 3(r̂ · p1)(r̂ · p2)], (1)

where ϵ0 is the permittivity of vacuum, ϵr is the temperature-dependent dielectric constant
of the medium, and the magnitude and unit vector of r are denoted by r and r̂, respectively.
Thus, the interaction between a pair of dipoles depends on their orientations and separation
distance. This dipole-dipole interaction is screened in an electrolyte solution. Assuming
the validity of the Debye-Hückel theory for electrolyte solutions, the above expression for
∆F is modified to [1]

∆F =
1

4πϵ0ϵ

e−κr

r3

[
(1 + κr)p1 · p2 − (3 + 3κr + κ2r2)(r̂ · p1)(r̂ · p2)

]
, (2)

where κ is the inverse Debye length (proportional to the square root of concentration cs of
added salt in the solution). For monovalent salts,

κ2 = 4πℓB(c+ + c−) = (8000πℓBNA)cs, (3)

where c+ and c− are the number concentrations of dissociated cations and anions, NA is
the Avogadro number, and ℓB is the Bjerrum length defined by

ℓB =
e2

4πϵ0ϵrkBT
, (4)

with kBT as the Boltzmann constant times absolute temperature. In the present theory,
effects [1] from the finite size of dissociated ions are not accounted for.

If the polyzwitterion solution is dilute and the chain backbone is highly flexible, and if
the temperature is high enough in comparison with local dipole-dipole interaction energy,
the dipoles of the repeat monomers are expected to be randomly oriented (Figure 1b).
The interaction free energy udd,random(r) (in units of kBT) between two randomly oriented
dipoles with the same dipole moment pe = ℓe (p is dipole length and e is the electronic
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charge), separated by distance r in a salty aqueous solution follows from Equation (2) after
averaging over orientations of the dipoles as [1]

Udd,random(r) = −1
3
ℓ2

B p4

r6 e−2κr
[

1 + 2κr +
5
3
(κr)2 +

2
3
(κr)3 +

1
6
(κr)4

]
. (5)

If the temperature is not too high and if the salt concentration is not high enough to
significantly screen the dipole-dipole interactions, then local pairing of dipoles will result
in quadrupoles. There are primarily two orientations of the dipoles forming quadrupoles
that are stable, namely the parallel and antiparallel configurations as shown in Figure 1c
and Figure 1d, respectively. The distance vector r between the centers of the dipoles is
along the same direction of the dipole orientations in Figure 1c, whereas it is orthogonal to
the directions of the dipoles in Figure 1d. Using Equation (2), the pairwise dipole-dipole
interaction energy (in units of kBT) for these two types of quadrupoles is given by

Udd,parallel(r) = − ℓB p2

r3 e−κr(2 + 2κr + κ2r2), (6)

and

Udd,antiparsallel(r) = − ℓB p2

r3 e−κr(1 + κr). (7)
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Figure 1. Different scenarios of dipole-dipole interactions as described in the main text. (a) Two
dipoles p1 and p2 separated by a distance r. (b) Two dipoles of equal dipole moment p are randomly
oriented and the interaction energy, U(r) ∼ −1/r6 as noted. ℓB is the Bjerrum length. (c) Parallel
orientation of two dipoles with interaction energy U(r) ∼ −1/r3. (d) Anti-parallel orientation of
two dipoles with U(r) ∼ −1/r3. (e) Weakening of quenched dipole-dipole interaction with an
increase in added salt concentration cs, where the inverse Debye length κ ∼ √

cs. (f) Demarkation of
the high-temperature and low-tenperature regimes depending on p, r, κ, and the dielectric constant
ϵr (ϵ0 = vacuum permittivity).
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Even though both parallel and antiprallel dipole orientations are stable, the parallel
configuration of dipoles from chain backbones is expected to be considerably less stable
(compared to the anti-parallel configuration) due to steric hindrance arising from chain
backbone and the inter-dipole distance being much larger and hence weaker because of
1/r3 dependence (as sketched in Figure 1c,d). Therefore, it is reasonable to focus only on the
anti-parallel arrangement of dipoles for the formation of quadrupoles in polyzwitterions.
The strength of udd,antiprallel decreases with an increase cs as illustrated in Figure 1e, where
udd,antiprallel is plotted against the inverse Debye length κ ∼ √

cs.
At any salt concentration, there exists a threshold temperature Tthreshold below which

these antiparallel quadrupoles would spontaneously form as essentially quenched config-
urations, and above which random orientations of dipoles might become plausible. The
threshold temperature is obtained from Equations (4) and (7) as

Tthreshold =
e2 p2

4πϵ0ϵrkBr3 e−κr(1 + κr). (8)

As illustrated in Figure 1f, for temperatures higher than Tthreshold, the polyzwitterion
chains behave as an annealed system with random orientation of zwitterions whereas
they will form quenched and physically associated quadrupoles for temperatures below
Tthreshold. The value of Tthreshold depends on the magnitude of the dipole moment of the
zwitterion, dielectric constant, and the salt concentration. Previous theoretical attempts
to treat polyzwitterions, with the exception of the author’s previous work [35], deal with
the high-temperature situation of random orientations of the dipoles. In the present paper,
we will address the role of quenched configurations corresponding to the lower part
of the diagram in Figure 1f, in addressing polyzwitterion gels. As discussed below, for
temperatures above but close to Tthreshold, the quenched quadrupoles can result in an
intermediate mesomorphic microgel formation where the quadrupoles function as physical
cross-links and the intervening strands undergo conformational fluctuations with their
dipoles being randomly oriented.

The rest of the paper is organized as follows. Defining a continuous Kuhn chain
model encompassing chain connectivity and inter-segment dipole-dipole interactions in
Section 2, the size and dynamics of isolated polyzwitterion chains are presented in Section 3.
Self-assembly of mesomorphic polyzwitterion microgels at T ≥ Tthreshold is described in
Section 4. Swelling equilibrium and hierarchical internal dynamics of polyzwitterion gels
are described in Section 5, followed by concluding remarks on the phase behavior of
polyzwitterion systems.

2. Model

Consider a system of n polyzwitterion chains each containing N repeat units, nγ ions
of species γ from dissolved salt, and ns solvent molecules in volume V. Let ℓ and p be
the linear size and dipole moment, respectively, of each zwitterionic repeat unit. Let also
the dipole length of the zwitterion be p so that the magnitude of the dipole moment is
|p| = p e, where the unit charge is explicitly expressed. Representing the polymer chains
as continuous curves of contour length L = Nℓ, the Helmholtz free energy F of the system
is given by

e−
F

kBT =
1

n!ns! ∏γ nγ!

∫ n

∏
α=1

D[Rα]
∫ ns+∑γ nγ

∏
i

dri

× exp{− 3
2ℓ2

n

∑
α=1

∫ N

0
dsα(

∂Rα(sα)

∂sα
)2 − 1

2

n

∑
α=1

n

∑
β=1

∫ N

0
dsα

∫ N

0
dsβUpp[Rα(sα)− Rβ(sβ)]

−
n

∑
α=1

∫ N

0
dsα

ns

∑
i=1

Ups[Rα(sα)− ri]−
1
2

ns

∑
i=1

ns

∑
j=1

Uss(ri − rj)
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−
n

∑
α=1

∫ N

0
dsα

∑γ nγ

∑
i=1

Upi[Rα(sα)− ri]−
1
2

∑γ nγ

∑
i=1

∑γ nγ

∑
j=1

Uij(ri − rj)}. (9)

Here Rα(sα) is the position vector of the arc length variable sα(0 ≤ sα ≤ N) of the α-th
chain. Upp(r) is the interaction energy between two repeat units of the chains separated by
a distance r,

Upp(r) = vppℓ
3δ(r) + vdipole(r), (10)

where vpp is the short-ranged monomer-monomer excluded volume interaction parameter,
and δ(r) is the Dirac delta function. vpp represents only two-body interactions, and three-
body interactions need to be included in describing situations where polyzwitterion chains
form globule-like structures. vdipole(r) is the dipole-dipole interaction that depends on
specific dipole orientations as displayed in Figure 1.

The short-ranged interactions between polymer repeat units and solvent molecules
and between solvent molecules are given by

Ups(r) = vpsℓ
3δ(r) and Uss(r) = vssℓ

3δ(r), (11)

where vps and vss are parameters analogous to vpp. The electrostatic interactions between
dissociated monovalent ions and between dipoles and ions are given by

Uij(r) =
zizjℓB

r
and Upi(r) =

zi
e
ℓB

r3 (p · r), (12)

where zie is the charge of the i-th dissociated ion, p is the dipole moment of the repeat unit,
and r = |r|.

Integrating out all degrees of freedom associated with mobile salt ions and solvent
molecules within the framework of the Debye-Hückel theory, we get

e−
F

kBT = e−
F0

kBT 1
n!

∫ n

∏
α=1

D[Rα] exp{− 3
2ℓ2

n

∑
α=1

∫ N

0
dsα(

∂Rα(sα)

∂sα
)2

−1
2

n

∑
α=1

n

∑
β=1

∫ N

0
dsα

∫ N

0
dsβU[Rα(sα)− Rβ(sβ)]} (13)

Here F0 is the free energy of the background fluid where the polyzwitterions are present.
It arises from the translational entropy of dissociated salt ions and solvent and the charge
fluctuations from the salt ions, given by

F0

kBTV
= c0 ln c0 − c0 + ∑

i
(ci ln ci − ci)−

κ3

12π
, (14)

where c0 and ci are the number concentrations of the solvent and i-th electrolyte ion.
In Equation (12),

U(r) = vℓ3δ(r) + vdipole−dipole(r, κ), (15)

where v is the familiar excluded volume parameter, written equivalently as (1 − 2χ), where
χ is the Flory-Huggins parameter to compound polymer-polymer, polymer-solvent, and
solvent-solvent short-ranged interactions. The dipole contribution to U(r) is vdipole−dipole(r),
as explicitly given in Equations (2)–(6). In the situation of anti-parallel orientations of
two adjacent dipoles with a separation distance r0 comparable to the monomer size ℓ,
vdipole−dipole(r) can be written as a delta function (analogous to the treatment of the excluded
volume interaction) given by

vdipole−dipole(r) = vdδ(r), (16)
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with

vd = − f ℓB p2

r3
0

e−κr0(1 + κr0), (17)

where we introduce the probability f of realizing anti-parallel orientations of the dipoles of
two adjacent zwitterions. Considering only the favored orientations (Figure 1c,d), f is 0.5,
if the dipoles are completely free without any entropic contribution from chain connectivity.
In realistic situations, we expect f to be smaller than this value. For example, based only on
the loss of orientational entropy of a dipole to be oriented in a specified direction, f = 1/4π.
Combining Equations (15) and (17), we define an effective interaction parameter,

ve f f = v + vd = (1 − 2χ)− f ℓB p2

r3
0

e−κr0(1 + κr0). (18)

Hence, the χ parameter specific to polymer-solvent pair without zwitterions, is increased
by an amount proportional to ℓB p2.

We note that the expression for ve f f is quite different for the high temperature situation
(upper part of Figure 1f) corresponding to randomly oriented dipoles. In this situation, ve f f
becomes [1]

ve f f = v + vdd, (19)

where

vdd = −π

9
ℓ2

B p4

ℓ6 e−2κℓ
[
4 + 8κℓ+ 4(κℓ)2 + (κℓ)3

]
. (20)

Here the dipole contribution is proportional to ℓ2
B p4, instead of ℓB p2 in Equation (17).

3. Size and Dynamics of Polyzwitterions in Dilute Solutions
3.1. Size: Anti-Polyelectrolyte Effect

For an isolated polyzwitterion chain, the probability distribution function G(R, N) for
a chain of N repeat units and end-to-end distance R follows from Equations (9)–(20) as

G(R, N) =
∫ R

0
D[R(s)] exp{− 3

2ℓ2

∫ N

0
ds(

∂R(s)
∂s

)2 − ℓ3

2

∫ N

0
ds

∫ N

0
ds′ve f f δ[R(s)− R(s′)]

−ℓ6w
∫ N

0
ds

∫ N

0
ds′

∫ N

0
ds′′δ[R(s)− R(s′)]δ[R(s′)− R(s′′)], (21)

where the three-body interaction of strength w is included in anticipation of the necessity
to stabilize the expected globular state of the polyzwitterion chain. The free energy F1 and
the mean square end-to-end distance ⟨R2⟩ of the chain are given by G(R, N) as

F1

kBT
= − ln

∫
dR G(R, N), (22)

and

⟨R2⟩ =
∫

dR R2 G(R, N)∫
dR G(R, N)

. (23)

We will use the variational procedure [44], which has been found to be effective in treating
polyelectrolytes and neutral polymers, to calculate F1 and ⟨R2⟩ in terms of χ, ℓB, p, and
cs. Since the technical details of this procedure are already in the literature [1,44], we give
only the results for F1 and ⟨R2⟩ along with the effect of dipoles on the theta θ temperature
relevant to phase behavior.
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3.1.1. Designing θ Temperature

Writing ve f f of Equation (18) as (1 − 2χe f f ), we get

1 − 2χe f f = 1 − 2χ − f ℓB p2

r3
0

e−κr0(1 + κr0), (24)

so that

χe f f = χ +
1
2

f ℓB p2

r3
0

e−κr0(1 + κr0). (25)

Hence a plot of χe f f versus ℓB p2/ℓ3 is linear with the slope depending on salt concentration
as shown in Figure 2a. If the polyzwitterion solution exhibits upper solution critical solution
temperature (UCST) behavior, as prescribed by χ = θ/2T, the dependence of θ temperature
(now θe f f ) on the dipole length of the zwitterion is given by

θe f f = θ +
f e2 p2e−κr0(1 + κr0)

4πϵ0ϵrkBr3
0

, (26)

where the definition of ℓB is used. The elevation of the theta temperature is linearly propor-
tional to p2 with the coefficient being a decreasing function of cs. Thus the dipole length p
of the zwitterion has a significant effect on the θ temperature of polyzwitterion solutions
and offers an important synthesis tool to design the phase behavior of polyzwitterions.

ℓ"𝑝$

𝑟&'

𝜒)**

𝑠𝑙𝑜𝑝𝑒 = 	*$ 𝑒
1234(1 + 𝜅𝑟&)

(a)

𝑝$

𝜃)**

𝜃

(b)

Figure 2. Elevation of θ temperature by p2. (a) Effective chi parameter and (b) effective theta
temperature.

3.1.2. Size and Free Energy

Using the variational procedure and following the derivation in Refs. [1,44], the free
energy F1 of a single polyzwitterion chain in solutions is obtained from Equation (22) as

F1

kBT
=

3
2

[
R2

Nℓ2 − 1 − ln(
R2

Nℓ2 )

]
+

4
3

(
3

2π

)3/2
(v + vd)

N2ℓ3

R3 + w
N3ℓ6

R6 , (27)

where the unknown three-body interaction parameter w absorbs all numerical prefactors.
By minimizing the above free energy expression with respect to the root mean square
end-to-end distance R, dF1(R)/dR = 0, we get(

R2

Nℓ2

)5/2

−
(

R2

Nℓ2

)3/2

=
4
3

(
3

2π

)3/2
(v + vd)

√
N + 2w

(
Nℓ2

R2

)3/2

. (28)



Gels 2024, 10, 393 8 of 22

Rewriting this result in terms of the chain expansion factor α = (R2/Nℓ2)1/2, we obtain

α5 − α3 − 2w
α3 =

4
3

(
3

2π

)3/2
(v + vd)

√
N. (29)

A plot of α versus the term on the right-hand-side of this equation is given in Figure 3a
exhibiting the coil-globule transition.
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(a) (b)

Figure 3. (a) Coil-globule transition: α is the chain expansion factor and z = 4
3 (

3
2π )3/2(v + vd)

√
N.

(b) Anti-polyelectrolyte effect.

Since the dipole-dipole interactions are attractive (vd < 0), polyzwitterions can readily
form globules for sufficiently large dipole lengths. In addition to the dipole length, cs plays
an important role in determining the dipole-dipole interaction strength. Once a polyzwitte-
rion forms a globule in the low salt condition, it expands upon weakening the inter-segment
dipole-dipole attraction with additional salt. This behavior of formation of expanded coil
from a globule upon addition of salt is illustrated in Figure 3b, where the chain expansion
factor α is plotted versus cs for v = 1, N = 225, w = 0.2, and f ℓB p2/r3

0 = 2.5. This behavior
is the opposite to the familiar polyelectrolyte behavior where the size shrinks due to the
screening of charge-charge repulsion with added salt. The ‘anti-polyelectrolyte’ behavior
of polyzwitterion chains arises from screening of the attractive dipole-dipole interaction
with added salt. The extreme limits of formation of globule and coil structures and the
intervening crossover behavior are given by Equation (29). The size and free energy of the
coil and globule states predicted by Equations (27) and (28) are as follows.

(a) Polyzwitterion coils (v + vd > 0):

For sufficiently large positive values of v + vd, Equation (28) gives(
R2

Nℓ2

)5/2

=
4
3

(
3

2π

)3/2
(v + vd)

√
N, (30)

so that the root-mean-square end-to-end distance R, which is proportional to the radius of
gyration Rg, scales with the degree of polymerization N as

Rg

ℓ
∼ (v + vd)

1/5N3/5, (31)

with the size exponent ν = 3/5. This result is as expected for good solution conditions.
Substituting this result in Equation (27), the free energy F1 is given by

F1

kBT
= 1.8(v + vd)

2/5N1/5. (32)
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(b) Polyzwitterion globules (v + vd < 0): For sufficiently strong attractive dipole-dipole
interactions (v + vd < 0), Equation (28) gives

(
R2

Nℓ2

)3/2

=

[
4
3

(
3

2π

)3/2
|v + vd|

]−1
2w√

N
, (33)

so that
R
ℓ
=

[
3
2
(

2π

3
)3/2 w

|v + vd|

]1/3
N1/3. (34)

Hence the scaling behavior of Rg of polyzwitterion globule is

Rg

ℓ
∼

(
w

|v + vd|

)1/3
N1/3, (35)

with the size exponent ν = 1/3, as expected for globules.
Substituting Equation (34) into Equation (27), the free energy of the globule is given as

F1

kBT
=

9
2π3

|v + vd|2
w

N. (36)

3.2. Dynamics

The Rouse equation for the dynamics of the position Rm(t) of the m-th segment at
time t, applicable in the absence of hydrodynamic interaction, is given as [1,45]

ζb
∂Rm(t)

∂t
− 3kBT

ℓ2
∂2Rm(t)

∂m2 +
∂

∂Rm
∑

j
U
(
Rm − Rj

)
= fm(t), (37)

where ζb is the segment friction coefficient, U is the intersegment interactions (Equation (9)),
and fm is the random force acting on the m-th segment. By approximately linearizing the
nonlinear dependence of U on Rm(t) in terms of an effective Kuhn length ℓeff, Equation (37)
is approximated as [1]

ζb
∂Rm(t)

∂t
− 3kBT

ℓℓeff

∂2Rm(t)
∂m2 = fm(t), (38)

where ℓeff is related to the chain expansion factor α as ℓeff/ℓ = α2 with ⟨R2⟩ = Nℓℓeff.
In general, since ⟨R2⟩ ∼ N2ν,

ℓeff ∼ N2ν−1. (39)

Introducing the Fourier transform of Rm(t) in terms of the Rouse modes R̂p(t) (where p
denotes the Rouse mode index),

R(m, t) =
∞

∑
p=−∞

R̂p(t) cos
(πpm

N

)
, (40)

R̂p(t) =
1
N

∫ N

0
dm R(m, t) cos

(πpm
N

)
, (41)

we get

ζb
∂R̂p(t)

∂t
+

3π2kBT
ℓℓeff

( p
N

)2
R̂p(t) = f̂p(t), (Rouse) (42)

where
ℓeff ∼

(πp
N

)1−2ν
. (43)

The dependence of the relaxation time τp of the p-th Rouse mode is obtained from
Equation (42) as
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τp =
ζbℓℓeff

3π2kBT

(
N
p

)2
∼ ζb

T

(
N
p

)2ν+1
. (44)

The longest chain relaxation time τR (Rouse time) corresponding to p = 1 scales as

τR ∼ N2ν+1 (Rouse) (45)

According to the Rouse dynamics, the time correlation function of the end-to-end
distance vector X(t) = RN(t)− R0(t) is known as [45]

⟨X(t) · X(0)⟩ = ⟨R2⟩( 8
π2 )e

−t/τR ∼ e−ARt/N2ν+1
, (Rouse) (46)

where AR is the prefactor in Equation (44). The above equation is derived using the
assumption that the longest relaxation time (p = 1 mode) dominates the time correlation
function of the end-to-end distance.

When hydrodynamic interaction is fully present as in dilute solutions, Equation (42) is
modified into the Zimm description [1],

∂R̂p(t)
∂t

+ Dp
3π2kBT
ℓℓeff

( p
N

)2
R̂p(t) =

f̂p(t)
ζb

. (Zimm) (47)

Here, Dp is the preaveraged hydrodynamic interaction tensor for all chain segments given as

Dp ∼ 1
η0

(πp
N

)ν−1
. (48)

The Zimm relaxation time of the p-th Rouse mode follows from Equation (47) as

τp,Zimm =
ℓℓeff

3π2kBT
1

Dp

(
N
p

)2
. (49)

Using Equations (43) and (48),

τp,Zimm ∼ η0

T

(
N
p

)3ν

, (50)

so that the longest relaxation time τZ (Zimm time) is

τZ ∼ N3ν. (Zimm) (51)

Analogous to Equation (46), the time correlation function of the end-to-end distance vector
X(t) with hydrodynamic interaction present is given by

⟨X(t) · X(0)⟩ ∼ e−t/τZ ∼ e−AZt/N3ν
. (Zimm) (52)

The above results on polyzwitterion single chains are used below in arriving at mean field
predictions of microgel formation and internal dynamics of gels in polyzwitterion systems.

4. Polyzwitterion Microgels in Solutions

For polyzwitterion concentrations above the overlap concentration, the chains inter-
penetrate and intermingle. For such semidilute concentrations, the solution is uniform if
there are no driving forces for local aggregation. in the case of polyzwitterions, such a
scenario is feasible only in the high temperature phase in Figure 1f where the zwitterion
dipoles are randomly oriented. On the other hand, in the low temperature phase (bottom in
Figure 1e), the stable quenched quadrupoles are expected to result in pervasive network
formation with local heterogeneous structures and macrophase separation. At intermediate
conditions for T ≥ Tthreshold, we anticipate formation of physical aggregation into microgels.
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We label this situation as the mesomorphic state since it emerges as an interlude
between homogeneous liquid phase and liquid-liquid or liquid-gel macrophase separation.
In the mesomorphic state of polyzwitterion solutions, most of the zwitterion dipoles are
randomly oriented with the rest of them are anchored into quadrupoles. The quadrupole
energy can be quite high compared to the thermal energy. As an example, for ℓ = 1 nm,
p = 1 nm, ℓB = 0.7 nm, and the inter-dipole distance r0 = 0.25 nm, the quadrupole energy
u (Figure 1e) is 64kBT. If u is so strong, the various quadrupoles will act like physical cross-
links and the intervening strands behave like flexible chains with intra-strand excluded
volume interactions and randomly oriented dipole-dipole interactions.

We address this mesomorphic state by the following approach. (a) Using combinatorics
and the pioneering works of Tanaka [46] and Semenov and Rubinstein [47] on associating
polymers, we present the equation of state for the fraction of dipoles involved in quadrupole
formation. (b) Using Flory’s mean field theory [48–52] of swollen networks, swelling
equilibrium of polyzwitterion gels is derived. (c) Specializing on microgels formed by finite
number of polyzwitterion chains, their free energy is derived. (d) Using the free energies
of isolated chains and microgels containing prescribed number of chains, an the classical
micellization/aggregation theory [53], the critical aggregation concentration (CAC) and
microgel size distribution are derived.

4.1. Equation of State for Quadrupole Formation

For a solution of volume V0 containing n polyzwitterion chains, each with N repeat
units of volume v0, the total number of dipoles capable of quadrupole formation is

Ns = f nN = f ϕ0
V0

v0
, (53)

where f is the fraction of monomers that have the correct orientation for the formation
of quadrupoles, and ϕ0 = nNv0/V0 is the volume fraction of polyzwitterion. Let q be the
fraction of dipoles associated as quadrupoles so that the number of physical crosslinks Nc
is given as

Nc =
q
2

f nN =
q
2

Ns. (54)

The free energy F0 of the cross-linked Gaussian network is

F0

kBT
= − ln Z0, (55)

where the partition function Z0 is given by

Z0 = Q1Q2Q3eϵNc , (56)

where Q1, Q2, and Q3 are, respectively, the probability to choose 2Nc dipoles out of Ns
dipoles, the probability of forming Nc quadrupoles out of 2Nc dipoles, and the probability
of finding two dipoles closeby. ϵ is the energy gain in the formation of one quadrupole.
Q1, Q2, and Q3 are given by

Q1 =
Ns!

(2Nc)!(Ns − 2Nc)!
, Q2 = (2Nc − 1)(2Nc − 3) · · · 3 · 1, Q3 =

(
v0

V0

)Nc

. (57)

Substituting Equations (56) and (57) in Equation (55), and using the Stirling approximation,
we get

F0

kBT
= −

(
v0

V0

)[
f qϕ0

2
ln(

f ϕ0

e
)− f ϕ0

2
[q ln q + 2(1 − q) ln(1 − q)− ϵq]

]
. (58)

Minimizing F0 with respect to q, ∂F0/∂q = 0, we get the equation of state for the optimal
fraction of dipoles associated into quadrupoles as
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q
(1 − q)2 = f ϕ0eϵ. (59)

This expression is equivalent to the previous results of Semenov and Rubinstein [47], and
the chemical equilibrium expression of Tanaka [46].

4.2. Swelling Equilibrium of Polyzwitterion Gels

We assume that the free energy F of a gel made from n chains (of N monomers) is the
additive sum of free energy Fel due to elasticity, free energy of mixing Fmix, free energy Felec
due to electrostatic interactions among randomly oriented dipoles, and free energy Fquad
due to formation of quadrupoles,

F = Fel + Fmix + Felec + Fquad. (60)

The free energy Fel from the elasticity of the gel is obtained from the earlier works
of Flory, Dusek and Patterson, and Tanaka [48–52]. Given that there are 2Nc monomers
involved in quadrupoles (crosslinks) out of the total N0 = nN monomers in the system, the
number of monomers per cross-linked unit, Ne, is

Ne =
N0

2Nc
=

nN
2Nc

. (61)

Adopting the Flory-Stockmayer assumption that the cross-linking statistics is that of tree-
like network architecture, the number of elastically effective chain strand (ne f f ) is

ne f f = 2Nc(1 −
2Nc

N
). (62)

Approximating this result,

ne f f ≃ 2Nc =
nN
Ne

=
n
γ

, (63)

where Equation (61) is used and γ = Ne/N. Thus there are ne f f elastically active strands of
Ne monomers and Nc = ne f f /2 crosslinks.

It is noteworthy to point out that the minimum value of N, Nmin, required for network
formation depends inversely on the fraction q of dipoles associated as quadrupoles. Since
Nc = q f nN/2 (Equation (54)),

Ne =
nN
2Nc

=
1

q f
, (64)

so that Nmin = Ne given as

Nmin ==
1

q f
, (65)

where the equilibrium value of q is given in Equation (59).
For an isotropically swollen gel of swelling ratio λ = V/V0 (where V is the volume of

the swollen gel and V0 is the gel volume in its reference state of Gaussian network), the
standard theory of rubber elasticity gives

Fel
kBT

=
3
2

ne f f (λ
2 − 1 − ln λ). (66)

The volume fraction of the polyzwitterion in the swollen gel is

ϕ =
Vd
V

=
Vd
V0

= ϕ0
1

λ3 , (67)

where Vd is the volume of dry polyzwitterion material and ϕ0 = Vd/V0. Taking Vd = nNv0
and V0 as the value given by the volume of Gaussian coils proportional to N3/2,
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ϕ0 =
nNv0

n(4πR3
g0/3)

=
a√
N

, (68)

where a is a constant of order one. In view of γ = Ne/N,

ϕ0 = a
√

γ

Ne
. (69)

By combining Equations (66) and (67), Fel is given by

Fel
kBT

=
3
2

ne f f

[
(

ϕ0

ϕ
)2/3 − 1 +

1
3

ln(
ϕ0

ϕ
)

]
. (70)

For ϕ ≪ 1, this expression reduces to

Fel
kBT

=
3
2

ne f f (
ϕ0

ϕ
)2/3. (71)

The classical expression for for the free energy of mixing for a gel is

Fmix
kBT

= (
V
v0

)[(1 − ϕ) ln(1 − ϕ) + χϕ(1 − ϕ)], (72)

where ϕ refers to ne f f Nev0/V.
The electrostatic contribution from randomly oriented zwitterion dipoles to the free

energy is
Felec
kBT

=
ℓ3

2

ne f f

∑
α

ne f f

∑
β

∫ Ne

0
dsα

∫ Ne

0
dsβ vdd δ[R(sα)− R(sβ)],

where mean field approximation is used and vdd is given in Equation (20). Combining Fmix
and Felec, we get

Fmix
kBT

+
Felec
kBT

=
V
v0

[
(1 − ϕ) ln(1 − ϕ) + χϕ − χe f f ϕ2

]
, (73)

where χe f f now is
χe f f = χ − vdd/2. (74)

For ϕ ≪ 1,
Fmix
kBT

+
Felec
kBT

= ne f f Ne

[
(

1
2
− χe f f )ϕ + O(ϕ2)

]
+ constant. (75)

The free energy due to quadrupole formation is

Fquad

kBT
= −Ncϵ = −

ne f f

2
ϵ (76)

Collecting the results for Fel , Fmix, Felec, and Fquad from Equations (71), (75) and (76),
we get the free energy of a gel with ne f f elastically active strands as

Fne f f

kBTne f f
= − ϵ

2
+ Ne

(
1
2
− χe f f

)
ϕ +

3
2

(
ϕ0

ϕ

)2/3
. (77)

The minimization of this expression with respect to ϕ yields the polyzwitterion volume
fraction at the swelling equilibrium of the polyzwitterion gel as

ϕ =
ϕ2/5

0

N3/5
e ( 1

2 − χe f f )3/5
. (78)
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Using Equation (68), we get

ϕ =
a2/5γ1/5

N4/5
e ( 1

2 − χe f f )3/5
. (79)

Substituting this result in Equation (77), we obtain

Fne f f

kBTne f f
= − ϵ

2
+

5
2

a2/5γ1/5
(

1
2
− χ +

vdd
2

)2/5
N1/5

e + constant. (80)

4.3. Equilibrium Distribution of Microgel Size

Since we know expressions for the free energies of isolated chains and microgels
containing a certain number of polyzwitterion chains, albeit using mean field arguments, we
can derive the distribution of number of polyzwitterion chains in aggregates as a function
of the characteristics of the zwitterion dipoles, and salt concentration for T ≥ Tthreshold.
According to the standard theory [53] of micellization/aggregation, the mole fraction Xm
of aggregates with m elastically effective strands (mNe = nN) is given as

Xm = m
[

X1e(F1− Fm
m )/kBT)

]m
, (81)

with the constraint of conservation of the total mole fraction X as

X =
∞

∑
m=1

Xm. (82)

In Equation (81), X1 is the mole fraction of unaggregated polyzwitterion chains and F1 is
given by Equation (32) by replacing vd by vdd. Fm is given by Equation (80) by replacing
ne f f by m. In the context of aggregation equilibrium depicted in Equation (81), the constant
term in Equation (80) is not arbitrary. We choose this constant term such that Fm → F1 for
m = 1 in order to comply with the constraint in Equation (82), Xm=1 = X1. This yields

1
kBT

(
F1 −

Fm

m

)
=

(
1 − 1

m

)
Θ, (83)

where Θ follows from Equation (32) (with vd replaced by vdd), and Equation (80), as

Θ =
ϵ

2
+ (2.375 − 5

2
a2/5γ1/5)(

1
2
− χ +

vdd
2

)2/5N1/5
e . (84)

Substitution of Equation (83) in Equation (81) gives

Xm = m
(

X1eΘ
)m

e−Θ. (85)

This indicates that the approximate value of the critical aggregation concentration (CAC) is

CAC = e−Θ. (86)

The convenient form of Xm given by Equation (85) enables analytical derivation of X1, the
average number of chains and the number of chains with the maximum propensity in the
microgels. Substituting Equation (85) in Equation (82), we get

X =
∞

∑
m=1

Xm =
∞

∑
m=1

m(X1eΘ)me−Θ =
X

(1 − X1eΘ)2 . (87)

Solving the quadratic equation for X1 in terms of X and Θ in Equation (87), we obtain

X1 =
(1 + 2XeΘ)−

√
1 + 4XeΘ

2Xe2Θ . (88)
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4.4. Representative Results

For the purpose of illustrating the general features of the dependence of Xm on the
number of chains in the microgel on the polyzwitterion concentration c and monovalent
salt concentration cs, we give the following results. In Equation (84), Θ depends on vdd and
ϵ, which are cs dependent, and N (= Ne/γ). By choosing a = 1, γ = 0.1, Ne = 50, χ = 0,
ℓB = 0.7 nm, p = 1 nm, ℓ = 1 nm, and κℓ = 2.26

√
cs, vdd is plotted in Figure 4a as a function

of cs in molarity. For the antiparallel quadrupole, we choose ℓB = 0.7 nm, p = 1 nm, and
r0 = 0.25 nm, and ϵ, given by (ℓB p2/r3

0)(1 + κr0) exp(−κr0), is given in Figure 4b as a
function of cs. For the above choice of parameter values, the cs dependence of Θ is given in
Figure 4c.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.8

-0.6

-0.4

-0.2

0.0
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(a) (b) (c)

Figure 4. Dependence on salt concentration cs of (a) vdd, (b) ϵ, and (c) Θ.

For cs = 0.25 M, the dependence of the mole fraction of unaggregated chains X1 on
the total mole fraction X of polyzwitterion chains is given in Figure 5a. The occurrence of
CAC (e−Θ) is evident from this figure. Considering poly(sulfobetaine methacrylate) as a
typical polyzwitterion, with N = 512 and Mw = 180, 216 g/mol, the mole fraction of the
polymer is related to its concentration c in g/L as X = 10−7 = c. The distribution of Xm
on m for cs = 0.25 M and c = 1 g/L is displayed in Figure 5b exhibiting the spontaneous
selection of finite-sized microgels with a maximum around m = 20. The dependence of Xm
on c (1.0, 0.5, 0.1 g/L) at the fixed salt concentration cs = 0.25 M is portrayed in Figure 6a.
At lower polyzwitterion concentrations, the propensity of formation of microgels is lower
with the corresponding microgel decreasing continuously. The dependence of Xm on cs
is illustrated in Figure 6b at c = 1 g/L for cs = 0.25 M, 0.5 M, and 1.0 M. The microgels
are constituted by smaller number of chains as the salt concentration increases. The above
quantitative predictions on the self-assembly of polyzwitterion microgels can be tailored to
various polyzwitterion systems by choosing appropriate values of the system-dependent
parameters such as the dipole moment.

Using Equation (85) for Xm at X > CAC, Xm simplifies to

Xm ≃ m exp(− m√
XeΘ

− Θ), (89)

so that ∂Xm/∂m = 0 yields the number of chains in the microgel with maximum probability as

mmax =
√

XeΘ/2, (90)

and the average number of chains in the microgel as

⟨m⟩ = 2mmax = 2
√

XeΘ/2. (91)

Furthermore, taking the polyzwitterion volume fraction in the aggregate (microgel) as

ϕagg =
⟨m⟩Neℓ3

4
3 πR3

g,agg
, (92)
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where Rg,agg is the average radius of gyration of the aggregate. Substituting ϕagg from
Equation (79) in the above equation, we get

Rg,agg = (
3

2π
)1/3eΘ/6(

1
2
− χe f f )

1/5N3/5
e ℓX1/6. (93)

Hence the radius of gyration of the aggregate is proportional to the one-sixth power of
polyelectrolyte concentration at all salt levels of self-assembly,

Rg,agg ∼ c1/6, (94)

with the prefactor proportional to the radius of gyration of a single isolated strand under
the same experimental conditions of microgel formation. The above theoretically derived
exponent 1/6 for polyzwitterion microgels has earlier been implicated in the contexts of
the slow mode in salt-free polyelectrolyte solutions [40] and physical polyzwitterions [30]
arising from counterion binding to polyelectrolytes. These references provide experimental
validation of the predictions from the present theory. The above scaling behavior appears
to be universal for all associative charged macromolecular systems.
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Figure 5. (a) Dependence of the mole fraction X1 of unaggregated polyzwitterions on the total mole
fraction of the polyzwitterion chains. (b) Distribution of the mole fraction of microgels containing m
chains on m for c = 1 g/L and cs = 0.25 M.
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Figure 6. (a) Polyzwitterion concentration dependence of the distribution of the mole fraction
of microgels containing m chains on m for c = 1.0, 0.5, and 0.1 g/L and cs = 0.25 M. (b) Salt
concentration dependence of the distribution of the mole fraction of microgels containing m chains
on m for cs = 0.25, 0.5, and 1.0 M and c = 1.0 g/L.



Gels 2024, 10, 393 17 of 22

5. Swelling Equilibrium and Internal Dynamics of Polyzwitterion Gels

When polyzwitterion molecules in a solution at concentrations above the overlap
concentration are allowed to form permanent chemical crosslinks, such gels can exhibit
rich behavior encompassing both the high-temperature and low-temperature attributes
described in Introduction.

5.1. Swelling Equilibrium

The derivation given in Section 4 is valid for the present situation as well, where
Nc is the number of permanent crosslinks instead of physical quadrupoles (which might
contribute to additional physical crosslinks). Therefore, the swelling equilibrium is given
by Equation (78) as

ϕ =
ϕ2/5

0

N3/5
e ( 1

2 − χe f f )3/5
, (95)

where
χe f f = χ − 1

2
vdd, (96)

for the experimental conditions that allow random orientations of the zwitterion groups, and

χe f f = χ − 1
2

vd, (97)

for conditions where quenched quadrupoles are preferred. Since the quantitative con-
sequences of vd ∼ p2 and vdd ∼ p4 can be significant, the volume phase transitions of
chemically cross-linked polyzwitterion gels and their response to externally imposed stim-
uli such electric fields, mechanical forces, and added salt, can be quite different for the
above two scenarios. While these issues are not addressed in the present paper, such a
premise is of interest for future considerations.

5.2. Internal Dynamics

The displacement vector of the gel is a fluctuating quantity, shich can be quantified, for
example, by a combination dynamic light scattering (DLS) experiments and gel elasticity
theory. The displacement vector is directly proportional to to the end-to-end distance vector
X(Ne, t) of the elastically active strands of Ne monomers in the gel. As already shown above
in Equations (46) and (52), the time correlation function of X(Ne, t) is

⟨X(t) · X(0)⟩ ∼ exp(− t
τ0Nx

e
), (98)

where τ0 absorbs all numerical prefactors and

x =

{
2ν + 1 Rouse
3ν Zimm

(99)

In almost all chemically cross-linked gels, Ne of all elastically active strands is not the
same. For weakly cross-linked gels, it is well known that Ne is distributed according to the
exponential [54],

P(Ne) = e−kNe , (100)

where k is the rate of the cross-linking reaction. In fact, even if the segments between
two adjacent cross-links were to locally organize into vitrimer-like dynamically associated
structures, the form of Equation (100) is preserved with k depending on the local dynamical
details. The electric field (E) correlation function g1(t) measured in DLS is the superposition
of Equations (98) and (100),

g1(t) ∼
∫

dNe e
−kNe− t

τ0 Nx
e ∼ e−( t

τ )
β
, (101)
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where τ is the net characteristic time that compounds all hierarchical relaxation times for
strands with varying Ne values, and β is a stretched exponent,

β =
1

1 + x
. (102)

If hydrodynamic interactions are absent, then the Rouse dynamics is applicable and we get
from Equation (99),

β =
1

2ν + 2
. (103)

On the other hand, if the gel meshes are widely open to allow hydrodynamic interaction
without significant screening, the Zimm dynamics is applicable so that

β =
1

3ν + 1
. (104)

For polyzwitterion gels, where the local polymer concentration is rather high, we ex-
pect that the hydrodynamic interaction is screened so that the Rouse dynamics is applicable.
As already described, when the quadrupole formation is prevalent at low salt concnetra-
tions, ν = 1/3 so that β = 8/3. On the other hand, if the formation of quadrupoles is
weakened by adding salt, and since the strands between crosslinks are not too long to
allow significant excluded volumere swelling, we expect ν ≃ 1/2 so that β = 1/3. Thus
we anticipate a crossover from β = 8/3 to β = 1/3 as cs is increased for the hierarchical
internal dynamics of polyzwitterion gels as sketched in Figure 7.

𝛽

cs

3/8

1/3

Figure 7. The stretched exponent β for hierarchical internal dynamics of polyzwitterion gels is 8/3
for salt-free limit and it decreases to 1/3 as the concentration of added salt increases.

6. Conclusions

The incipient ability of dipolar zwitterion monomers of polyzwitterions to associate
results in a broad range of properties unlike the situation with uniformly charged poly-
electrolytes. Even though there have previously been several theoretical attempts to treat
polyzwitterions, they assume that the dipolar zwitterionic moieties are randomly ori-
ented. In reality, this assumption can be valid only if the temperature is extremely high
or the concentration of added low molar mass electrolyte is very high. In order to be
relevant to practical experimental systems, it is necessary to treat drastic deviations from
the random-orientation paradigm. The theory presented here is a new paradigm for treat-
ing the behavior of polyzwitterions. Here, the non-random orientations of zwitterionic
groups into quenched conformations are explicitly treated using statistical mechanics and
field-theoretic methods.
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In the present theory, two regimes have been identified for the rotational degree of
freedom associated with the zwitterion dipoles. In the high-temperature regime, the dipoles
are randomly oriented. In the low-temperature regime, the dipole orientations are quenched
resulting in quadrupoles. In developing a theoretical formulation for polyzwitterion
solutions, we have accounted for the spontaneous formation of quadrupoles in the low-
temperature regime.

In the present mean field theory of polyzwitterion systems, we have derived closed-
form formulas for (a) the size and dynamics of isolated chains in dilute solutions, (b) self-
assembly of mesomorphic microgels in semidilute solutions, and (c) swelling equilibrium
and hierarchical internal dynamics of chemically cross-linked polyzwitterion gels.

The general picture that emerges from the considerations in the present work is
sketched in Figure 8. The key experimental variables can be temperature or salt concen-
tration or pH, in addition to the polyzwitterion concentration. In this figure, the ordinate
is any one of the variables: temperature T, salt concentration cs, and pH of the solution.
In general, the phase diagram is multi-dimensional. In order to emphasize this aspect of
multi-dimensionality, we have inserted the slanted lines denoting pH and cs by focussing
on the variable T (orthogonal to the abscissa). Therefore, as an example of the ordinate
variable, let the temperature be the experimental handle to explore the behavior of polyzwit-
terions. In extremely dilute solutions and at high temperatures, individual polyzwitterion
chains exist as expanded coils. When the temperature is lowered, the chain undergoes
coil-to-globule transition. However, the globule exhibits the anti-polyelectrolyte effect of
expanding into the coil conformation upon addition of salt.

T

Tc
TTCP

C

Cs
pH

LLPS

LGPS

CAC Gelation

Mesomorphic 
state GEL

Figure 8. Generalized phase diagram for polyzwitterion solutions. The ordinate is any one of the
variables: temperature T, salt concentration cs, and pH of the solution. In general, the phase diagram
is multi-dimensional. In order to emphasize this aspect of multi-dimensionality, we have inserted the
slanted lines denoting pH and cs by focussing on the variable T (orthogonal to the abscissa denoting
the polymer concentration).

In the high-temperature region, but not too high, as the polymer concentration is
increased, the polyzwitterion chains spontaneously aggregate into mesomorphic microgels.
In between the dilute regime and the mesomorphic state, there is a line denoting the critical
aggregation concentration necessary for the formation of the microgels. Upon further
increase in polymer concentration, the mesmorphic state becomes a gel if the polymer
concentration is higher than that corresponding to the gelation threshold.

For intermediate polymer concentrations, when the temperature is lowered, dipolar
correlations result in quadrupoles and multipoles generating structural heterogeneity
that interferes with fluctuations in the local polymer concentration. Eventually, as the
temperature is lowered, a critical temperature Tc is reached below which liquid-liquid
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phase separation (LLPS) occurs. At temperatures lower than Tc, a tricritical point can
emerge at the temperature TTCT at which the gel line meets the coexistence curve. For
temperatures below TTCT, liquid-gel phase separation (LGPS) occurs.

In the above general context of the rich phase behavior, we have only addressed in this
paper the behaviors outside the critical point and the coexistence curve. Since the present
work shows that the dipolar associations in polyzwitterion systems lead to significantly rich
consequences in contrast with considerations where dipoles are assumed to be randomly
oriented, such dipolar associations are expected to play a major role in the construction of
LLPS and LGPS phase behaviors.

This theory makes many predictions on (a) the structure and dynamics of polyzwitteri-
ons in dilute solutions, (b) emergence of a spontaneous formation of mesomorphic microgel
aggregates and their size distribution, and (c) swelling equilibria and hierarchical internal
dynamics of polyzwitterion gels. These predictions open a new avenue of experiments
toward critical assessments of theoretical predictions, more fundamental understanding of
polyzwitterion behavior, and potential applications.in health care industry. Furthermore,
since the present theory is only based on mean-field arguments, treatment of concentration
fluctuations is of immediate future interest.

It must be mentioned that the dipolar behaviors addressed in the present work are also
present in biological macromolecules such as intrinsically disordered proteins. Extension
of the present theory to such broader situations is of considerable future interest.
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