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Abstract: Image classification in remote sensing and geographic information system (GIS) data
containing various land cover classes is essential for efficient and sustainable land use estimation
and other tasks like object detection, localization, and segmentation. Deep learning (DL) techniques
have shown tremendous potential in the GIS domain. While convolutional neural networks (CNNs)
have dominated image analysis, transformers have proven to be a unifying solution for several
AI-based processing pipelines. Vision transformers (ViTs) can have comparable and, in some cases,
better accuracy than a CNN. However, they suffer from a significant drawback associated with the
excessive use of training parameters. Using trainable parameters generously can have multiple
advantages ranging from addressing model scalability to explainability. This can have a significant
impact on model deployment in edge devices with limited resources, such as drones. In this research,
we explore, without using pre-trained weights, how the inherent structure of vision transformers
behaves with custom modifications. To verify our proposed approach, these architectures are trained
on multiple land cover datasets. Experiments reveal that a combination of lightweight convolutional
layers, including ShuffleNet, along with depthwise separable convolutions and average pooling can
reduce the trainable parameters by 17.85% and yet achieve higher accuracy than the base mobile
vision transformer (MViT). It is also observed that utilizing a combination of convolution layers along
with multi-headed self-attention layers in MViT variants provides better performance for capturing
local and global features, unlike the standalone ViT architecture, which utilizes almost 95% more
parameters than the proposed MViT variant.

Keywords: vision transformers; MViT; ShuffleNet; CNN; land cover classification

1. Introduction

Deep learning is a subset of machine learning that has exploded in popularity and
has become prominent in many industries around the world today because it is based on
powerful artificial neural networks that are capable of learning and performing complex
tasks such as natural language processing [1] and image classification [2]. As a result, deep
learning has also become useful and ubiquitous for remote sensing tasks because it has the
computational power to extract compact features from data with high spectral and spatial
resolution for purposes such as object detection, land use and landscape classification [3–5],
and multi-class classification [6–8]. Based on the successful performance of parallel text
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processing, transformers [9] have gained significant momentum in the deep learning
domain. Transformer neural networks are models that are highly adept at learning context
from input data using parallel multi-head attention mechanisms [10]. As a result, they
can be applied to remote sensing tasks such as multi-class classification of images because
transformers can extract long-range dependencies from the relationships between elements
of an image sequence to generate global representations.

Vision transformers [11] split an image into patches before flattening those patches
and converting them into linear embeddings with positional embeddings added to them.
The sequence is then fed into a standard transformer encoder, which consists of alternating
multi-head self-attention (MHSA) layers that map the input sequence to linear embeddings,
which are decoded to produce the logits. Since ViT models deal with image patches at a
global level using the self-attention mechanism, they can attain high levels of performance
because they can capture contextual information and long-range dependencies between
image pixels. Vision transformers (ViTs) and transformer architectures have already been
applied in the remote sensing domain for tasks such as classifying various types of high-
resolution UAV images. For example, the researchers of the AiTLAS Benchmark Arena
train ViT and nine other representative architectures that are either convolutional neural
networks (CNNs) or transformer-based on various multi-class classification datasets [12].
In addition, some of the models are trained from scratch, while others are pre-trained using
ImageNet-1K weights [13]. More than 500 models are then evaluated on their respective
datasets before having their accuracies averaged to get the final results. The authors of [14]
utilize ViTs and their self-attention mechanism to achieve extremely accurate results when
attempting to classify images of various crops and plant life. ViT’s architecture allows it
to focus on specific parts by enhancing or weakening predicted pixels within a feature
map while ignoring the other perceptible aspects. However, these works do not address
an MViT model that combines CNNs and transformers. As a result, experiments do not
support how computationally expensive CNN layers are and if modifying them would
provide a better outcome.

There are significant drawbacks of ViT, such as the exorbitant amount of training
parameters as well as the high computational costs, which include the excessive number
of images are required to train the model. Although transformers can be applied for
image analysis, CNNs are generally the dominant model for most aspects of computer
vision. CNN models are typically more compact and resource-efficient, while transformers
are usually large: requiring a significant number of graphics processing units (GPUs) for
training. However, transformers can get contextual understanding and global dependencies
from images using self-attention, unlike CNNs, which typically use local operations that
are restricted to small parts of images. This research demonstrates that a combination
of CNNs and transformers can be optimized to extract both local and global contextual
information for image classification. To achieve this objective, we propose modifications to
the mobile vision transformer (MViT) [15] model, as it closely relates to a blend of CNN
and vision transformers. Our findings demonstrate that higher classification performance
can be achieved even by using lightweight convolutional variants, but only if they are
used strategically in the entire architecture. Motivated by our previous work on ShuffleNet
optimization [16], this research further solidifies our approach to building lightweight deep
learning models without reducing accuracy.

Building upon these intricate models, our research opts for a simpler, less parameter-
intensive architecture. This strategic simplicity aims to explore the potential of efficient
training while maintaining accuracy in remote sensing image analysis. Our focus is on
practicality and applicability, particularly in GIS scenarios, where resource efficiency is a
key concern. As we progress to the specific methods in the following sections, our emphasis
on the practical advantages of reduced complexity remains a cornerstone of our approach.
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In summary, here are our main contributions in this paper:

• Model variants reduce the original MViT’s training parameters by replacing expensive
CNN modules with a combination of average pooling, depthwise separable convolu-
tion, and ShuffleNet blocks. Our models retain the benefits of CNN and transformers
and use them to boost performance on geospatial datasets without some of the other
unnecessary costs.

• The usage of convolution layers combined with the self-attention layers of transformers
inside the MViT variants provides better performance across all geospatial datasets
when compared with the standalone ViT model, which uses 95% more parameters
than the MViT variants.

• We test our proposed architectures on four geospatial datasets; we generate several
models and conform to testing standards as presented in the literature. The trained
models are also made available on GitHub (https://github.com/rahulgomes19/gis-
transformer (accessed on 23 September 2023)) for benchmarking and research purposes.

2. Previous Work

MViT has been applied for various purposes in fields where computer science is heav-
ily applied, as demonstrated in [17]. In this research, the authors create a drone detection
algorithm that has a lightweight MViTv1 backbone feature extractor and multi-scale atten-
tion feature fusion network (CA-PANet). The backbone allows the algorithm to fully extract
local and global features due to its combined CNN and transformer architecture, which
helps the network extract target location information with high accuracy while having a
lesser number of parameters relative to other methods. Another application was outlined
in [18]; the authors create an automatic diabetic retinopathy (DR) grading framework that
has a ResNet101 (CNN) backbone and a custom MViT-Plus backbone to extract local and
global information that is fused to assign DR grades (none, mild, moderate, or severe) for
2D fundus images. The custom MViT-Plus backbone was made during the research and
was made using depthwise separable convolutions as well as MViT-Plus blocks to replace
the transformer block with a lightweight transformer block. As a result, the model can
obtain results quickly with lower costs relative to ViT models while achieving better results
when compared to MViT and other models such as Resnext101 [19] and Se_resnet101 [20].
Although work applying the relatively lightweight but powerful MViT to different fields
such as drones and healthcare is important, this research highlighted the fusion of ResNets
with MobileNets, which increases model complexity. ResNets are, to some extent, costlier
replacements to options like pooling, MobileNet [21], and ShuffleNet [22]. Additionally,
the model was trained to predict only five classes compared to the extensive number of
land cover classes in geospatial datasets with textual variation.

Two noteworthy contributions in this area are the studies by Huang et al. (2023) [23]
and Zhang et al. [24]. Huang et al. introduced LTNet. This novel model fuses CNNs with
transformers, focusing on efficient scene analysis in remote sensing. LTNet incorporates a
multi-level group convolution module and the LightFormer block to effectively balance
local and long-range dependencies. Its efficiency is marked by reduced parameters, leading
to enhanced performance with shorter training durations, which is a critical aspect in rapid-
deployment scenarios. Conversely, Zhang et al.’s work presented MLDANets. This model
is designed for swift change detection and employs a unique attention aggregation and
flexible sampling strategy. The MLDANets model excels at capturing the intricate details
necessary for analyzing images captured at different times and showcases computational
efficiency and strategic multi-level information coordination. Another work, proposed by
Pengyuan et al. [25], developed a spatial-channel-feature-preserving ViT (SCViT) model
that added a progressive aggregation (PA) strategy capable of combining neighboring
tokens that overlap so that spatial information can be retained. The process was able
to increase land cover classification accuracy. However, the number of parameters used
for training was significantly large. For example, the SCViT-L variant utilized more than
40 million trainable parameters. With a vision transformer at its core, the model lacks the

https://github.com/rahulgomes19/gis-transformer
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benefits of convolutional layers, so these complex iterative additions may hold the key
to exploring simpler channel shuffling operations from lightweight CNN models used in
the past.

A list of notable works in the domain of reducing deep learning trainable parameters in
geospatial applications is presented in Table 1. While these results are promising compared
to the baseline architectures, the number of training parameters is still significantly higher
compared to the modifications proposed in this research. Moreover, usage of pre-trained
models freezes the majority of trainable parameters, rendering them unusable. In [12],
an open-source benchmark to evaluate deep learning models for image classification in
Earth observation (EO) was proposed. The authors conducted a comprehensive analysis of
models from ten different deep learning architectures by comparing them to a variety of
multi-class and multi-label image classification tasks from 22 datasets along with a related
repository that can help build the foundation of guiding design principles for evaluating
and documenting machine learning approaches in the different domains of EO. The process
mostly used pre-trained models with a significantly large number of trainable parameters.
In [26], Liu et al. proposed the RemoteCLIP model, which has rich semantics and aligned
text embeddings for seamless downstream application. The researchers evaluated the
model based on 16 datasets. The results indicated that RemoteCLIP consistently outper-
formed baseline foundation models across different model scales. In [27], the authors
proposed a model based on MobileNetV3 for remote sensing image classification. They
aimed to develop a model with fewer parameters so that it could be run on portable devices
with reasonable accuracy. After comparing with other models by conducting experiments
on different datasets, the results showed that the proposed model is not only lightweight
but also has improved accuracy.

The authors of [28] proposed a model that enables and enhances a transfer learning
model (Xception) for scene classification. After setting up the model, they evaluated it using
datasets, including EuroSAT, UC-Merced, and AID. The results indicated that the proposed
model outperformed state-of-the-art methods and had better accuracy and computational
efficiency in each case. Chen et al. [29] proposed the RSCNet model, with the aim of
improving the efficiency of remote sensing scene classification through lightweight neural
networks. The model was evaluated by using the AID and UC-Merced datasets. The results
showed that the RSCNet model has higher classification accuracy and faster processing
speed on the two datasets, which provides the basic theory and key technical support for
conducting fast classification of large amounts of remote sensing images. He et al. [30]
proposed the BPKM model, with aim of building a lightweight network that can be applied
on a mobile terminal or embedded device. After setting up the network, they evaluated the
model by using the AID and UC-Merced datasets. The results showed that the BPKM model
can make great classification of similar categories in aerial scene images, and the authors
reduced the size of the network by about 24 times compared with popular networks.

Shi et al. [31] explored improving the classification performance while also avoiding
drastically increasing the complexity of the model by using an AMB-CNN model for
remote sensing image scene classification. They conducted experiments on the proposed
model by using datasets, including AID, UC-Merced, NWPU45, and RSSCN7. Compared
with some state-of-the-art methods, the number of parameters of the proposed method is
only 5.6 million, and it has a great advantage in classification accuracy. In [32], Xu et al.
proposed a novel scene classification model that integrates multi-source heterogeneous
features, addressing the challenges of difficult distinctions of socio–economic attributes,
visual–semantic discrepancies, intra-class differences, and high inter-class similarity. The
experimental results indicated that the proposed model was better at solving the first
three challenges. Since deep learning requires a huge number of training samples to
ensure the optimal learning procedure, Lakshmi et al. [33] tried to address the issue of
limited training samples in real-life situations for land use and land cover deep learning
classification. The research focused on considering the fraction of multi-spectral data and
evaluated the exemplary CNN architectures with different tuning variants along with
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additional layers before classification. These changes increased the training characteristics
on multi-spectral data.

Table 1. Notable work in geospatial image classification to reduce model complexity. Parameter size
is in millions.

Paper Datasets Model Parameter
Size Paper Datasets Model Parameter

Size

[34]
AID, UC-Merced,

EuroSAT
and WHURS19

MobileNetV2 2.5 m

[32]
UC-Merced, AID,

and
NWPU-

RESISC45

LGDL 2.107 m

DenseNet201 18.7 m RSNet 2.997 m

Xception 21.8 m MobileNet-V2 3.5 m

InceptionResNetV2 54.8 m LGRIN 4.63 m

ResNet152V2 58.8 m SE-MDPMNet 5.17 m

NASNetLarge 87.3 m GoogLeNet 7 m

[29] AID, UC-Merced

ShuffleNet v2 1.3 m ResNet50 25.61 m

SqueezeNet 1.3 m Inception V3 45.37 m

MobileNet v2 2.3 m CaffeNet 60.97 m

DenseNet-121 7 m SPG-GAN 87.36 m

ResNet-50 25.6 m VGG-VD-16 138.36 m

VGG-16 102 m TSAN 381.67 m

[33]
UC-Merced,
WHU-RS19,

and AID

VGG16 Lightly
Fine-tuned 9.47 m

[12]
EuroSAT,

UC-Merced,
WHU-RS19

EfficientNetBO 5.2 m

VGG16 Heavily
Fine-tuned 14.7 m ResNet50 23.5 m

ResNet152V2 Lightly
Fine-tuned 53.97 m DenseNet161 26.4 m

ResNet152V2 Heavily
Fine-tuned 58.32 m ConvNeXt 28 m

[31]
UC-Merced,

AID30
and

NWPU45

AMB-CNN 5.6 m SwinT 49.7 m

HABFNet 6.2 m AlexNet 57 m

LCNN-BFF method 6.2 m ResNet152 58.1 m

Inceptionv3 + CapsNet 22 m MLPMixer 59.8 m

ResNet+WSPM-CRC 23 m ViT 86.5 m

Proposed method 28 m VGG16 134.2 m

[26] EuroSAT, AID,
WHU-RS19

ResNet-50 38 m

[27] NWPU, AID
and UC-Merced

MBV3_SE_G 5.66 m

Vit-Base-32 87 m MBV3_G 7.65 m

Vit-Large-14 304 m ShuffleNet 8.69 m

[30] AID-10, UC-Merced

Slim Network 2.5 m MobilenetV2 13.37 m

Slim Network (BPKM) 2.5 m MBV3_SE 15.15 m

SqueezeNet 4.8 m MobilenetV3 20.92 m

Plump Network 9 m ResNet 83.15 m

AlexNet 60 m

[28] EuroSAT,
UC-Merced, AID

EfficientNet 11 m

VGG-VD-16 140 m
Xception 20 m

ResNet-50 23 m

A prior work that attempted to modify MViT models to boost performance was also re-
ported in [35]; the authors replaced a 3 × 3 convolution layer in the fusion block with a 1 × 1
convolution layer and replaced a 3 × 3 convolution layer in the global representation block
with a depthwise convolution layer. Also, the model fuses the input features, combines
local and global features, and increases the number of channels of the layers. Moreover,
the model, which is called MViTv3, can outperform MViT variants such as MViTv1-XS
and MViTv2-0.75 while maintaining a similar but slightly higher number of parameters.
Another attempt to modify MViT for better performance and lower latency is demonstrated
in [36]; the authors replaced the MHSA in the MViTv1_Block’s transformer block with
a separable self-attention method and did not use MViTv1_Block’s skip connection and
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fusion block. As a result, MViTv2 maintains a similar or smaller number of parameters and
outperforms the MViTv1 model by about 0.9% on the ImageNet dataset. While these works
can modify MViTs in a way that minimizes costs and boosts performance, the number
of parameters used is still too high at around more than 1.25 million (MViTv3-XXS), and
the increase in accuracy (0.9% by MViTv2) from the original MViT architecture is negligi-
ble. This is a drawback to implementing plug-and-play AI models in the real world with
resource-constrained environments.

3. Materials and Methods
3.1. Vision Transformers

The architecture of ViT models can be seen in Figure 1. The ViT model reshapes the
input image tensor into a sequence of flattened patches with dimensions 3P × N. The
dimension 3P is obtained by multiplying the height and width of the pixels in the patches
to produce P. Then, P is multiplied by the number of channels in the input image tensor to
produce 3P. The dimension N represents the number of patches. The sequence of flattened
patches is then projected onto a fixed dimensional space with dimensions d × N. The
dimension d represents the size of the fixed dimensional space, while the dimension N
represents the number of patches. Finally, a stack of L transformer blocks is used to learn
long-range dependencies and global attention. The dimension L represents the number of
transformer blocks utilized for this purpose.

Figure 1. Architectureof the vision transformer model.

The mobile-friendly vision transformer or MViT model [15] contains MViT blocks that
use convolution layers to generate local representations of the input tensor. Also, this block
contains a transformer block with an MHSA mechanism that is used to generate global
representations with spatial inductive biases that are fused with the local representations
to preserve the benefits of transformers and CNNs.

The overall architecture of the model is displayed in Figure 2a. The architecture
starts with a striped 3 × 3 convolutional layer. This layer is followed by four MobileNetv2
(MV2 blocks). The second and fourth blocks both use a stride of 2. These MV2 blocks are
quite narrow and shallow, which means they do not significantly factor into the training
parameter count. This is because their main responsibility is downsampling. These blocks
are followed by an MViT block, which utilizes two transformer blocks that are represented
by L = 2. Also, the spatial dimensions of the feature maps are often multiples of 2. As
a result, the height and width dimensions of the feature maps, represented by h and w,
respectively, are set to 2 at all spatial levels. Another MV2 block, with a stride of 2, is
used before an MViT block with 4 transformer blocks. A dimension of 2 for the height
and width spatial dimensions of the feature maps is applied. Then, an MV2 block with a
stride of 2 is applied before the final MViT block, which has 3 transformer blocks and a
dimension of 2 for the height and width spatial dimensions of the feature maps. Finally,
a 1 × 1 convolutional layer and a global average pooling operation for spatial data are
applied to produce the logits or the output of the last layer inside the model. Also, the
output spatial dimensions of the model get smaller as the model gets closer to generating
the logits. The output spatial dimensions used are 128 × 128, 64 × 64, 32 × 32, 16 × 16,
8 × 8, and 1 × 1.
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(a)

(b)

Figure 2. (a) Overall architecture of mobile-friendly vision transformer (MViT), and (b) shows the
architecture of one MViT block in (a).

The architecture of one MViT block is displayed in Figure 2b. The MViT block receives
an input tensor with the dimensions C, H, and W, which represent the channels, height,
and width of the input tensor. Then, an n × n convolutional layer and a 1 × 1 convolutional
layer are applied to the tensor to encode local spatial information and project the tensor to
a high-dimensional space, respectively. As a result, this produces a modified tensor with
the dimensions d, H, and W, where d is the size of the fixed dimensional space, while the
dimensions H and W represent the height and width of the input tensor. After this, the
modified tensor is unfolded into non-overlapping flattened patches with the dimensions d,
N, and P, which represent the size of the fixed dimensional space, the number of patches,
and the product of the height and width of the pixels in the patches, respectively. A stack
of L transformer blocks, where L represents the number of transformer blocks, is applied
to the non-overlapping flattened patches to generate a new sequence of non-overlapping
flattened patches with the same dimensions d, N, and P. However, unlike ViT, MViT
can remember the patch order and spatial order of pixels within each patch. The new
sequence of flattened patches is then folded and projected to a high-dimensional space
to make a tensor with dimensions d, H, and W, where d represents the size of the fixed
dimensional space. Then, a 1 × 1 convolutional layer is applied to the tensor to project it
to a low-dimensional space with the dimensions C, H, and W. The newly formed tensor
is concatenated with the input tensor to produce a new tensor with dimensions 2C, H,
and W. Finally, an n × n convolutional layer is applied to fuse the concatenated features
and generate the output tensor with dimensions C, H, and W. MViT is a powerful model
because it can achieve high performance with a reduced number of parameters relative to
heavyweight ViTs and CNNs. It leverages the inherent advantages of both architectures.
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While MViT can utilize the dependable aspects of both CNNs and transformers, there
are still potential improvements that can further optimize MViT to boost its performance
on geospatial datasets and reduce its training parameter count. In this research, we incre-
mentally explore these parameters to further optimize this architecture by strategically
replacing blocks that are used to extract higher-order features.

3.2. Proposed Lightweight Transformer Modifications

The first variant tested in our research is called MViT-Depth. To create this variant, a
1 × 1 convolution layer in the local representations section of the MViT block was removed.
An average pooling layer that features a pool_size of 2 × 2 was added. A 1 × 1 upsampling
layer was introduced in between the folded global feature map; this layer contains the global
features extracted by the transformer block and the concatenate layer, which combines the
folded global features with the local features extracted using the N × N convolution layer
and the average pooling layer. We further modified the MViT block inside the model by
replacing the first N × N convolution layer, which takes in the input tensor to generate local
representations, with an N × N depthwise separable convolution layer. When compared to
the ViT model, MViT-Depth has 20,509,607 fewer parameters than ViT on average (94.62%
decrease). When compared to the MViT model, MViT-Depth had exactly 145,200 fewer
parameters than MViT across all four datasets (11.06% decrease).

The architecture of the MViT-Depth block is shown in Figure 3. This block receives
an input tensor with the dimensions C, H, and W. Then, the model modifies the local
representations section by using a n × n separable convolutional layer instead of a regular
convolutional layer as well as an average pooling layer with a pool size of 2 × 2 to encode
local spatial information and project the tensor to a high-dimensional space, respectively.
This produces a modified tensor with the dimensions d, H, and W that passes through the
transformer layers as explained in the previous MViT-Avg section. The new sequence of
flattened patches is folded and projected to a high-dimensional space to make a tensor
with dimensions d, H, and W. Then, a 1 × 1 convolutional layer is applied to the tensor to
project it to a low-dimensional space with dimensions C, H, and W. The tensor is then fed
into an upsampling layer that helps balance the class labels followed by concatenation with
the input tensor to produce a new tensor with dimensions 2C, H, and W. Finally, an n × n
convolutional layer is applied to fuse the concatenated features and generate an output
tensor with the same dimensions C, H, and W.

Figure 3. Architecture of the proposed MViT-Depth transformer block, with changes in red.

In the MViT-combined variant, a custom ShuffleNet block replaces the final MViT
block, as shown in Figure 2a, to create a new model, as shown in Figure 4a. This ShuffleNet
block sets the default kernel size of its layers to be 1 × 1, and it sets the default number of
filters to be 320. The custom ShuffleNet block can be seen in Figure 4b. This block consists
of two pathways of layers that are fused to generate the output tensor. Both pathways
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receive an input tensor with dimensions C, H, and W. The first pathway of layers is called
A, and it starts by feeding the input tensor into a 3 × 3 depthwise convolution layer. Then,
the output from that initial layer is processed by a batch normalization layer as well as
a 1 × 1 convolution layer. Finally, the pathway ends with the output being processed by
another batch normalization and a ReLU layer. The second pathway of layers is labeled
with B, and it starts by feeding the input tensor into a 1 × 1 convolution layer. The output
from the initial layer is processed by a batch normalization layer and a ReLU Layer. Then,
the new output is processed by a 3× 3 depthwise convolution layer as well as another 1× 1
convolution layer. The activation map is then processed by another batch normalization
layer and another ReLU layer. To fuse the two pathways, a concatenate layer is utilized.
The fusion results in an output tensor with dimensions C, H, and W. After these changes
were made, the proposed model had 20,598,679 fewer parameters than ViT on average
(a 95.03% decrease). Also, it had exactly 234,272 fewer parameters than MViT across all
datasets (a 17.85% decrease).

(a)

(b)

Figure 4. (a) Architecture of the entire MViT block and (b) architecture of the ShuffleNet block that
replaces the final MViT block to create the final MViT-combined variant.

For the SWIN model and its variants, the standard SWIN architecture from Liu et al. [37]
was used as a reference. Detailed dimensions and configurations play a crucial role in
achieving balance between model complexity and accuracy while ensuring the parameters
remain lightweight. In the SWIN-Regular model, the PatchExtract layer processes input
images into 2 × 2 patches, reflecting the defined patch size. These patches are embedded
with positional information in the PatchEmbedding layer and then processed through
SwinTransformer layers, which are characterized by a window size of 2 and a shift size of 1.
This design reduces computational complexity compared to global attention mechanisms.
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The embedding dimension is set at 64, with the number of multi-layer perceptron (MLP)
nodes at 256.

Two different SWIN variants were also explored. In the SWIN-ConvBlock variant, the
introduction of a convolutional block before feeding into the SWIN model enhances the
feature space and is beneficial for performance improvement. This block comprises two sets
of layers: a convolutional layer, a batch normalization layer, and an activation layer with
a ReLU function. By replacing the third patch extract layer in the SWIN model with this
convolutional block, the model achieves an increased feature space and a reduction in the
number of parameters. Secondly, the SWIN-ShuffleNet variant features a ShuffleNet block,
which is designed to create a more efficient architecture through a channel shuffle operation.
This block consists of separable convolutional layers, group normalization layers, and acti-
vation layers (ReLU function). By replacing the third patch extract layer with the ShuffleNet
block, it is expected that SWIN-ShuffleNet maintains or boosts accuracy while reducing the
parameter count, capitalizing on the efficiency of the channel shuffle operation.

The total number of training parameters for each model architecture trained on the
four GIS datasets AID, EuroSAT, UC-Merced, and WHU-RS19 is summarized in Table 2.
None of the hyperparameters except the number of classes and train–test splits used by the
model influence the number of training parameters, so there are only four entries for each
model. An observable trend in the table is that the number of training model parameters
for each architecture increases for datasets that have a larger number of image labels. This
shows that each model’s output layer, which maps to a differing number of image classes
for each dataset, slightly influences the number of training parameters of each model.

Table 2. Comparison of the number of trainable parameters for the transformer variants.

Dataset AID
Parameters

EuroSAT
Parameters

UC-Merced
Parameters

WHU-RS19
Parameters

ViT 21,687,269 21,665,744 21,678,044 21,675,994

MViT 1,315,646 1,308,905 1,312,757 1,312,115

MViT-DepthConv 1,170,446 1,163,705 1,167,557 1,166,915

MViT-Combined 1,016,846 1,010,105 1,013,957 1,013,315

SWIN-Reg 155,022 152,313 153,861 153,603

SWIN-ConvBlock 172,846 170,137 171,685 171,427

SWIN-Shuffle 164,073 161,364 162,912 162,654

3.3. Datasets

Models were trained on four multi-class classification GIS datasets: AID [38], Eu-
roSAT [39,40], UC-Merced [41], and WHU-RS19 [42,43]. These datasets feature diverse
image sizes, spatial resolutions, image types, image formats, and labels. These statistics
and data are displayed in Table 3. The labels and their sequence numbers are provided in
Table 4. Due to the variety of datasets utilized for this project, we ensured that the better
performance of our custom MViT variants was consistent across a wide range of labeled
images. The AID dataset is a large aerial image dataset that was formed by collecting
images from Google Earth imagery. These Google Earth images are also post-processed
with RGB renderings extracted from the original optical aerial images. The images of the
AID dataset are labeled with 30 aerial scene class labels, which is the most out of all the
datasets. Also, there are 10,000 JPG images inside AID with a size of 600× 600 and an image
resolution ranging from 0.5 m to 8 m. Figure 5a–e display five sample images from the
AID dataset. The EuroSAT dataset is a large-scale satellite multispectral image dataset that
was collated by using Sentinel-2 satellite images that are accessible from the open-source
Earth observation program Copernicus [44]. Also, this dataset is unique because the images
are multispectral and cover 13 spectral bands that are in the short infrared, near-infrared,
and visible parts of the spectrum. Our experiments used a smaller version of EuroSAT,
and the images of the dataset are labeled with nine class labels, which is one less than the
original and the least out of the four datasets. In addition, EuroSAT is the largest dataset,
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as it contains 24,500 JPG images that have a size of 64 pixels by 64 pixels and an image
resolution of 10 m. Figure 5f–j display sample images from the EuroSAT dataset.

(a) AID—Residential (b) Farmland (c) Forest (d) Industrial (e) River

(f) Euro—Residential (g) Annual Crop (h) Forest (i) Industrial (j) River

(k) UC-Merced—Residential (l) Agriculture (m) Forest (n) Overpass (o) River

(p) WHU—Residentiall (q) Farmland (r) Forest (s) Industrial (t) River

Figure 5. Sample images from the four datasets used in this study.

Table 3. Dataset features used in this study.

Name # of
Images

Image
Size

Spatial
Resolution

Image
Type

Image
Format

# of
Labels

AID 10,000 600 × 600 0.5–8 m Aerial RGB JPG 30

EuroSAT 24,500 64 × 64 10 m Multispectral JPG 9

UC-Merced 2100 256 × 256 0.3 m Aerial RGB TIF 21

WHU-RS19 1005 600 × 600 ≤0.5 m Aerial RGB JPG 19
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Table 4. Dataset labels used in this study.

Class #
Labels

AID EuroSAT UC-Merced WHU RS-19

0 Airport Annual Crop Agricultural Airport

1 Bare Land Forest Airplane Beach

2 Baseball Field Herbaceous Vegetation Baseball Diamond Bridge

3 Beach Highway Beach Commercial

4 Bridge Industrial Buildings Desert

5 Center Pasture Chaparral Farmland

6 Church Residential Dense Residential Forest

7 Commercial River Forest Industrial

8 Dense Residential Sea Lake Freeway Meadow

9 Desert Golf Course Mountain

10 Farmland Harbor Park

11 Forest Intersection Parking

12 Industrial Medium Residential Pond

13 Meadow Mobile Home Park Port

14 Medium Residential Overpass Residential

15 Mountain Parking Lot River

16 Park River Viaduct

17 Parking Runway Football Field

18 Playground Sparse Residential Railway Station

19 Pond Storage Tanks

20 Port Tennis Court

21 Railway Station

22 Resort

23 River

24 School

25 Sparse Residential

26 Square

27 Stadium

28 Storage Tanks

29 Viaduct

The UC-Merced dataset [41] is a large aerial image dataset that was formed by ex-
tracting a diverse range of smaller images from large images that were collated in the
USGS National Map Urban Area Imagery Collection. The sizes of these smaller images are
256 × 256, and the images come from different urban areas around the United States of
America. The dataset’s images feature the smallest spatial resolution of the four datasets
at 0.3 m, and they are the only dataset with TIF images. In addition, the dataset features
images that belong to 21 classes, and there are 100 images per image class, which leads
to a total of 2100 images in the dataset. Figure 5k–o display five sample images from the
UC-Merced dataset.

The WHU-RS19 dataset is a large-scale aerial image dataset that consists of satellite
images that were collected from Google Earth. The dataset is similar to AID in that both
datasets have the same image sizes (600 × 600), and they both originate from Google Earth
imagery. In addition, WHU-RS19 is the smallest dataset out of the four datasets, with
1005 JPG images. Also, the images in the dataset range have a spatial resolution of up
to 0.5 m as well as a diverse range of orientations and illuminations. Also, the images
of the dataset belong to 19 image classes. Figure 5p–t display sample images from the
WHU-RS19 dataset.
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4. Results

For the training and evaluation stage of the completed model architectures, a group
of four experiments were devised, with each experiment corresponding to one of the four
datasets that we planned to train and evaluate the models on. This was followed by the
application of each representative architecture, which included the two benchmarks ViT
and MViT along with the three MViT variants, to all of the datasets. Multiple train–test
splits for each model architecture were also introduced to ascertain if the models could
achieve a high level of performance with lesser amounts of training data. The train–test
splits used were 20–80%, 40–60%, 50–50%, and 60–40%. Hence, each experimental group
corresponding to one of the four datasets had 28 models used for training, bringing the
number of trained models to 112.

All experiments were conducted at the Blugold Center for High-Performance Comput-
ing using an NVIDIA Tesla V100 GPU (Nvidia, Santa Clara, CA, USA) with 32 GB memory
and an AMD EPYC CPU at 2.35 GHz. Data augmentation for the training images started
with resizing all of the images to 72 × 72 followed by randomly flipping those images
along a horizontal axis. The images were randomly rotated before being randomly zoomed
in on during the training process. The hyperparameters were configured to control the
training process. The number of epochs was kept constant at 500, and the batch size was
kept constant at 64. Also, all of the models used an Adam optimizer [45] to help change
the weights and loss rates. For this optimizer, the learning rate was set to 0.001, which
allowed for slow and precise learning. The weight decay was set to 0.0001 to regularize the
neural network by adding a penalty to the loss function. The only hyperparameter that we
varied across the models was the number of classes or labels because each dataset has a
different number of class labels. This hyperparameter played a role in influencing the total
number of training parameters because it modified the size of the output dense layer in
the ViT models. The training accuracies for all model variants are shown in Table A1 in
Appendix A.

The testing accuracy serves as a vital metric for evaluating the model’s performance
on unseen data by providing insights into its generalization capabilities. A high testing
accuracy indicates that the model has successfully learned meaningful patterns from the
training data and can effectively make predictions on new, unseen samples. Moreover,
monitoring testing accuracy helps with detecting overfitting, wherein the model performs
well on the training data but fails to generalize to new data. By continuously assessing
and improving testing accuracy throughout the training process, developers can fine-tune
their models, enhance their predictive capabilities, and build robust solutions that perform
reliably in real-world scenarios. The testing accuracy results can be seen in Table A1. The
mean testing accuracy of all MViT-Combined models is shown in Figure 6. These models
were able to converge to an optimal value at the end of 500 epochs, showcasing their robust-
ness. Throughout the research setup, we monitored the testing accuracy from the splits and
observed that all the proposed MViT variants seemed to outperform traditional versions.

For the AID experiment group, the MViT variants outperformed the ViT model across
all of the splits. A consistent trend was noted among all architectures, where the 60–40 split
was typically the highest-performing model compared to other splits, with the MViT-
Combined model achieving a test accuracy of 89.42%, which outperformed ViT’s best
validation accuracy by 17.92% and MViT’s best test accuracy by 2.84%. The MViT-Combined
model, with only 1,016,846 parameters, extended this performance, achieving the high-
est accuracy among MViT’s variants while using significantly fewer parameters than the
ViT model, which stands at 21,687,269 parameters. The class-based performance for the
60–40 AID testing dataset is shown in Table 5. The SWIN-Reg model and its variants, while
not outperforming the MViT series, still offered a different approach to model architecture,
emphasizing regularization and compactness with only 155,022 parameters for SWIN-Reg
itself. SWIN-ShuffleNet, another variant, showed an interesting combination of SWIN’s
approach with ShuffleNet’s efficiency. The per-class validation accuracy of the 60–40 split on
the AID dataset showed significant improvements. For example, the accuracy for Airports
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(class 0) jumped from 40% to 86.81% for MViT-Combined. Similar trends were observed for
other classes, indicating that the MViT variants can provide substantial accuracy benefits
over the baseline ViT model. However, challenges persisted in classifying Squares (class
26), which could be due to the presence of various sub-classes within the category. Loss
functions reported a consistent trend for both the training and testing data, as shown in
Figure 7.

(a) AID (b) EuroSAT

(c) UC-Merced (d) WHU-RS19

Figure 6. Mean testing accuracy graphs of the best models evaluated in this study.

The findings from the EuroSAT experiment group demonstrated that the highest
accuracy was uniformly distributed across all types of splits, as indicated in Table 6. The
MViT-Combined model demonstrated strong performance on the EuroSAT dataset, achiev-
ing a test accuracy of 97.8% on the 40–60 split with just 1,010,105 parameters. Unlike
with the AID dataset, where shifts from ViT to MViT variants manifested noticeable im-
provements, the EuroSAT dataset saw less significant increases in class accuracy upon
implementing advanced models. Despite the modest relative value changes, the absolute
values of the MViT variants were notably high. This is particularly evident in the case of
Residential (class 6), where all MViT variants achieved 100% class accuracy. Beyond Resi-
dential, several other classes also benefited from the advanced architecture. For example,
the accuracies of Highways (Class 3) and Industrial (Class 4) show significant increases
from 82.4% and 93.27% in ViT to 95.67% and 95.73%, respectively, in MViT-Combined
models. The SWIN-Reg model’s accuracy of 89.23% on the 40–60 split is notable in terms
of parameter efficiency. The SWIN-ShuffleNet variant further underscores the efficacy
of combining architectures, achieving 92.07% on the 40–60 split. The advancements in
EuroSAT’s class accuracies warrant further analysis to understand the underlying factors
contributing to these results. Training loss outcomes can be seen in Figure 8.
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Table 5. Accuracy of 60–40 split models on the AID dataset. The proposed model shows the highest
overall accuracy (in red).

Class
Number ViT MViT MViT-

Depth
MViT-

Combined
SWIN-

Reg
SWIN-Conv

Block
SWIN-

ShuffleNet

0 40.00% 85.56% 87.22% 86.81% 41.67% 47.92% 37.50%

1 84.52% 87.74% 73.55% 84.68% 90.32% 74.19% 67.74%

2 76.37% 92.72% 94.55% 95.45% 67.05% 81.82% 64.77%

3 87.50% 95.00% 97.00% 95.00% 72.50% 85.63% 90.63%

4 70.00% 89.44% 85.56% 88.89% 61.81% 63.19% 63.89%

5 71.54% 80.00% 69.23% 89.42% 42.31% 44.23% 38.46%

6 60.83% 95.00% 93.33% 93.75% 39.58% 47.92% 34.38%

7 86.86% 72.57% 89.71% 77.86% 65.00% 75.00% 31.43%

8 80.98% 95.12% 81.46% 88.41% 61.59% 76.83% 54.88%

9 84.67% 82.00% 96.00% 87.50% 72.50% 80.00% 89.17%

10 64.86% 89.73% 89.73% 92.57% 35.14% 45.27% 43.92%

11 76.00% 97.60% 97.60% 99.00% 76.00% 85.00% 85.00%

12 65.64% 78.46% 86.15% 91.67% 30.77% 32.69% 39.10%

13 80.71% 95.71% 95.00% 98.21% 88.39% 97.32% 83.93%

14 76.55% 91.72% 92.41% 93.10% 40.52% 37.07% 26.72%

15 54.12% 85.29% 97.65% 94.12% 57.35% 44.12% 41.18%

16 62.86% 77.71% 82.86% 79.29% 36.43% 51.43% 52.86%

17 81.54% 98.46% 96.41% 97.44% 80.77% 72.44% 62.18%

18 81.62% 92.43% 88.11% 89.19% 72.30% 76.35% 66.89%

19 83.33% 79.05% 87.62% 94.05% 73.81% 77.38% 73.81%

20 75.79% 97.37% 95.79% 95.39% 80.26% 74.34% 74.34%

21 36.92% 94.62% 74.62% 87.50% 47.12% 30.77% 39.42%

22 62.07% 68.97% 68.97% 77.59% 31.03% 27.59% 25.00%

23 45.37% 87.80% 90.73% 92.07% 34.76% 32.93% 45.12%

24 42.00% 57.33% 78.00% 70.83% 14.17% 20.83% 11.67%

25 84.67% 96.67% 96.00% 98.33% 59.17% 76.67% 70.83%

26 38.79% 44.24% 63.64% 66.67% 18.18% 12.12% 18.94%

27 86.21% 86.90% 95.17% 93.97% 62.93% 72.41% 65.52%

28 63.89% 84.44% 82.22% 90.97% 39.58% 36.11% 42.36%

29 53.81% 93.81% 91.90% 92.26% 22.02% 18.45% 21.43%

Mean Acc 68.61% 85.93% 87.31% 89.40% 53.83% 56.60% 52.10%

Overall Acc 68.62% 85.97% 87.50% 89.42% 53.70% 56.35% 52.15%

Kappa 0.6750 0.8548 0.8705 0.8905 0.5206 0.5479 0.5044

The results for the UC-Merced experiment group show that the 50–50 split model
typically performed exceptionally well, with the MViT-Combined variant achieving the
highest test accuracy of 92.1% on this split. In this configuration, the MViT-Depth variant
reached an accuracy of 91.71%, significantly outperforming ViT’s best split by over 16%
and outdoing the benchmark MViT’s best split by nearly 4.09%.

All MViT variants surpassed the ViT model across each evaluated split. The impressive
performance of these models, particularly MViT-Combined, suggests an optimal balance
between the transformer architecture’s capabilities and the efficiency needed for mobile
deployment, positioning them as a scalable solution for high-resolution satellite imagery
analysis. The class-based performance for the 50–50 test split is detailed in Table 7. The
MViT architecture contributed to substantial improvements across multiple classes, with
notable advances in distinguishing different types of urban structures. For example, in
Classes 2, 9, 12, and 19, we noticed a significant improvement for MViT-Combined com-
pared to the baseline MViT. Baseball Diamond (Class 2) saw scores increase from 88% to
96%, while Golf Course (Class 9) scores increased from 80% to 100%. Medium Residential
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(Class 12) increased from 48% to 74%, and Storage Tanks (Class 19) increased from 50%
to 70%. Although the SWIN-Reg and SWIN-ShuffleNet models did not achieve the top
accuracies, with SWIN-ShuffleNet reaching 58% on the 50–50 split, their designs highlight
the trade-offs between accuracy and compactness of the model. Training loss outcomes can
be seen in Figure 9.

Figure 7. Training (top row) and testing (bottom row) loss for AID datasets across multiple splits.

Figure 8. Training (top row) and testing (bottom row) losses for EuroSat datasets across multi-
ple splits.

The results for the WHU-RS19 experiment group reveal that the MViT-Combined
model on the 60–40 split was the highest-performing model, with a test accuracy of 86.32%.
It outperformed the other splits using the same architecture. Moreover, these results were
achieved with significant improvements in class-specific accuracies, with the highest overall
accuracy and Kappa.

The class-based performance for the 60–40 WHU-RS19 dataset is shown in Table 8.
We also note that, like with AID and UC-Merced, using the MViT variants resulted in a
significant accuracy increase for several classes, with MViT-Combined showing exceptional
performance. In Classes 2 (Bridge), 5 (Farmland), 9 (Mountain), and 10 (Park), a comparison
of the results between MViT and MViT-Combined shows increases from 80.77% to 90.48%,
72% to 85%, 56% to 90%, and 52% to 75%, respectively. The training and testing losses can
be seen in Figure 10.
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Table 6. Accuracy of 40–60 split models on the EuroSAT dataset. The proposed model shows the
highest overall accuracy (in red).

Class
Number ViT MViT MViT-

Depth
MViT-

Combined
SWIN-

Reg
SWIN-Conv

Block
SWIN-

ShuffleNet

0 90.78% 92.78% 97.83% 97.06% 92.11% 89.11% 92.72%

1 98.00% 99.17% 99.56% 99.33% 94.28% 80.61% 98.00%

2 92.06% 98.33% 96.28% 97.50% 92.17% 77.33% 90.39%

3 82.40% 96.13% 97.33% 95.67% 74.40% 72.27% 83.27%

4 93.27% 89.40% 96.33% 95.73% 92.60% 88.93% 94.93%

5 91.83% 92.83% 95.42% 98.17% 90.75% 89.67% 90.50%

6 98.94% 100.00% 99.94% 99.89% 94.28% 99.06% 97.72%

7 88.27% 96.80% 96.47% 97.07% 73.60% 79.93% 78.87%

8 95.67% 99.50% 98.94% 99.11% 98.89% 92.72% 98.50%

Mean Acc 92.36% 96.10% 97.57% 97.72% 89.23% 85.51% 91.66%

Overall Acc 92.65% 96.36% 97.71% 97.80% 89.72% 85.66% 92.07%

Kappa 0.9171 0.959 0.9742 0.9752 0.8841 0.8383 0.9106

Table 7. Accuracy of 50–50 split models on the UC-Merced dataset. The proposed model shows the
highest overall accuracy (in red).

Class
Number ViT MViT MViT-

Depth
MViT-

Combined
SWIN-

Reg
SWIN-Conv

Block
SWIN-

ShuffleNet

0 90.00% 98.00% 98.00% 98.00% 76.00% 84.00% 78.00%

1 68.00% 92.00% 92.00% 96.00% 54.00% 50.00% 78.00%

2 84.00% 88.00% 92.00% 96.00% 66.00% 82.00% 68.00%

3 100.00% 94.00% 98.00% 98.00% 90.00% 100.00% 98.00%

4 56.00% 72.00% 72.00% 86.00% 24.00% 38.00% 32.00%

5 100.00% 100.00% 100.00% 100.00% 92.00% 98.00% 100.00%

6 38.00% 92.00% 84.00% 80.00% 50.00% 54.00% 40.00%

7 80.00% 100.00% 92.00% 92.00% 56.00% 82.00% 82.00%

8 74.00% 88.00% 94.00% 96.00% 32.00% 52.00% 48.00%

9 50.00% 80.00% 92.00% 100.00% 60.00% 86.00% 66.00%

10 94.00% 100.00% 98.00% 100.00% 90.00% 96.00% 98.00%

11 74.00% 88.00% 86.00% 86.00% 20.00% 26.00% 24.00%

12 56.00% 48.00% 84.00% 74.00% 10.00% 24.00% 12.00%

13 80.00% 92.00% 98.00% 96.00% 76.00% 86.00% 74.00%

14 48.00% 90.00% 90.00% 96.00% 40.00% 16.00% 20.00%

15 74.00% 98.00% 100.00% 100.00% 44.00% 70.00% 50.00%

16 80.00% 94.00% 98.00% 94.00% 52.00% 44.00% 60.00%

17 78.00% 100.00% 100.00% 100.00% 38.00% 92.00% 88.00%

18 22.00% 92.00% 94.00% 94.00% 16.00% 22.00% 56.00%

19 26.00% 50.00% 78.00% 70.00% 40.00% 20.00% 22.00%

20 36.00% 74.00% 86.00% 82.00% 30.00% 38.00% 24.00%

Mean Acc 67.05% 87.14% 91.71% 92.10% 50.29% 60.00% 58.00%

Overall Acc 67.05% 87.14% 91.71% 92.10% 50.29% 60.00% 58.00%

Kappa 0.6540 0.8650 0.913 0.917 0.4780 0.5800 0.5590
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Figure 9. Training (top row) and testing (bottom row) losses for UC-Merced dataset across multi-
ple splits.

Table 8. Accuracies of 60–40 split models on the WHU-RS19 dataset. The proposed model shows the
highest overall accuracy (in red).

Class
Number ViT MViT MViT-

Depth
MViT-

Combined
SWIN-

Reg
SWIN-Conv

Block
SWIN-

ShuffleNet

0 28.57% 67.86% 60.71% 72.73% 40.91% 45.45% 59.09%

1 100.00% 96.00% 96.00% 95.00% 85.00% 95.00% 95.00%

2 65.38% 80.77% 80.77% 90.48% 52.38% 66.67% 90.48%

3 32.14% 85.71% 60.71% 86.96% 34.78% 47.83% 30.43%

4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

5 60.00% 72.00% 84.00% 85.00% 80.00% 70.00% 65.00%

6 88.46% 100.00% 88.46% 90.48% 76.19% 95.24% 80.95%

7 50.00% 80.77% 92.31% 76.19% 23.81% 33.33% 33.33%

8 93.55% 77.42% 77.42% 79.17% 75.00% 100.00% 91.67%

9 44.00% 56.00% 96.00% 90.00% 30.00% 25.00% 45.00%

10 68.00% 52.00% 88.00% 75.00% 55.00% 75.00% 60.00%

11 28.00% 92.00% 96.00% 100.00% 35.00% 40.00% 45.00%

12 66.67% 92.59% 100.00% 95.45% 54.55% 59.09% 63.64%

13 37.04% 88.89% 77.78% 76.19% 28.57% 57.14% 42.86%

14 70.37% 74.07% 25.93% 86.36% 31.82% 27.27% 40.91%

15 64.29% 71.43% 82.14% 81.82% 72.73% 59.09% 50.00%

16 24.14% 79.31% 62.07% 69.57% 17.39% 34.78% 39.13%

17 92.00% 88.00% 92.00% 100.00% 40.00% 80.00% 95.00%

18 48.00% 92.00% 92.00% 95.00% 40.00% 30.00% 40.00%

Mean Acc 61.08% 81.41% 80.71% 86.60% 51.22% 60.05% 61.45%

Overall Acc 60.83% 81.31% 79.53% 86.32% 51.00% 59.95% 61.19%

Kappa 0.5865 0.8027 0.7840 0.8556 0.4825 0.5769 0.5904
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Figure 10. Training (top row) and testing (bottom row) losses on WHU-RS19 dataset across multi-
ple splits.

5. Discussion

This work introduced variants of the benchmark MViT model and presented their
training and evaluation outcomes on four GIS datasets: AID, EuroSAT, UC-Merced, and
WHU-RS19. The results highlighted that MViT-Combined outperformed both the bench-
mark MViT and ViT architectures, achieving this with a significantly reduced number of
parameters. While the SWIN models, including SWIN-ConvBlock and SWIN-ShuffleNet,
did not surpass the MViT variants or the ViT in terms of performance, they demonstrated
a commendable balance between parameter efficiency and accuracy, contributing a valu-
able perspective on model optimization. As a result, we can reason that our methods
retained the benefits of CNNs and transformers while replacing some of the expensive
deep-learning computational layers and boosting accuracy and reducing the number of
training parameters.

The activation maps from these datasets can be seen in Figure 11. It is worth noting
that, along with the successful variants, we also explored other modifications to CNN
architectures that did not have a similar outcome. Five of the unsuccessful MViT variants
involved removing entire MViT blocks from the overall architecture of the benchmark
model in an attempt to decrease the number of training parameters. All of these variants had
their respective architectures configured on the UC-Merced dataset and a 50–50 train–test
split. One of these variants had a modified structure that removed the first MViT block from
the overall MViT architecture. The removal resulted in the variant having 1,112,725 training
parameters, which meant the number of training parameters was reduced by 15.24%
relative to the benchmark MViT architecture. However, this variant could not maintain the
benchmark’s performance, as it achieved an accuracy of 78.00%, which was 9.14% lower
than the 87.14% accuracy achieved by MViT. In addition, we created another variant that
removed the last MViT block from the overall MViT architecture. The removal resulted
in the variant having 687,605 training parameters, which meant the number of training
parameters was reduced by 47.62% relative to the benchmark. Unfortunately, the variant
attained a testing accuracy of 83.24%, which was lower than the benchmark’s accuracy.

The other three out of the five variants for which we removed entire blocks from the
overall architecture of the benchmark model focused on eliminating some of the inverted
residual blocks. One of these variants had a modified architecture for which we removed
the first inverted residual MV2 block from the overall benchmark architecture. This removal
resulted in the variant having 1,309,501 training parameters, which meant the number of
training parameters was reduced by 0.25%. However, the variant could not achieve the
benchmark’s performance, as it attained an accuracy of 84.19%, which was 2.95% lower
than the benchmark’s accuracy. In addition, we also created another variant that removed
the second inverted residual MV2 block from the overall benchmark architecture. This
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elimination resulted in the variant having 1,309,501 training parameters which meant the
number of training parameters was reduced by 0.25%. Unfortunately, the variant also could
not achieve the benchmark’s accuracy as it attained an accuracy of 84.19% which was 2.95%
lower than the benchmark’s performance on the same dataset and train–test split.

Our final unsuccessful variant featured changes that were similar to the more fine-
tuned and subtle manipulations made on the benchmark MViT model to generate the three
successful variants. This variant was also configured on the UC-Merced dataset and a
50–50 train–test split before being compared to the original MViT benchmark configured on
the same dataset and train–test split. It had a modified structure that replaced the last N × N
convolutional layer in the MViT block’s fusion section with an N × N depthwise separable
convolution layer. In addition, this variant also had the changes from the MViT-Avg variant,
which include the average pooling layer that replaced the second N × N convolutional
layer in the MViT block’s local representations section as well as an added upsampling
layer in the MViT block’s fusion section. This replacement resulted in the variant having
1,042,309 training parameters, which meant the number of training parameters was reduced
by 20.60%. However, the variant could not attain the benchmark’s accuracy, as it attained
an accuracy of 77.81%, which was 9.33% lower than the benchmark’s performance.

(a) AID dataset (b) EuroSAT dataset

(c) UC-Merced dataset (d) WHU-RS19 dataset

Figure 11. Class Activation Maps (CAMs) for different convolution layers of the MViT-Combined
model where red highlights the class-specific image regions used by the model for classification.
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Overfitting and Model Complexity

To ascertain if 500 epochs cause models to overfit, a benchmark test with a reduced
training period of 200 epochs was conducted. In this test, the MViT model on the AID
dataset with a 50–50 split showed a decrease in training accuracy from 99.46% to 98.54%,
while the validation accuracy slightly improved from 85.82% to 86.06%. However, the
MViT-Depth model on the same dataset and split saw a decrease in training accuracy from
99.46% to 99.37%, but the validation accuracy decreased from 87.44% to 82.90%, indicating
that reduction in the number of epochs alone is not a universal solution for overfitting.
The complex architectures of vision transformer models like MViT are a significant factor
in this context. While their advanced self-attention mechanisms are adept at capturing
intricate data patterns, this can sometimes lead to over-specialization on the training data,
which does not always generalize to new, unseen data. Our 200-epoch benchmarks reveal
that, while a reduced number of training epochs can lower the training accuracy, it does
not automatically translate into higher test accuracy, emphasizing the need for a balanced
approach in model training.

Moving forward, our efforts will focus on tailoring the architecture of vision trans-
formers to better suit the characteristics of the datasets they are trained on. We aim to
employ strategies like rigorous regularization, prudent model pruning, and extensive
data augmentation to create models that are not only accurate but also possess strong
generalization capability, which is essential for practical applications in GIS.

6. Conclusions

Our experiments revealed that a confluence of modern transformer architectures
with lightweight CNN frameworks has the potential to yield superior outcomes. As a
result, it opens up a vast array of possibilities wherein deep learning can be optimized
and generalized across multiple domains without the need for complex loss functions or
hyperparameters. Future work will explore further modifications: mostly to optimize the
transformer layers. Model performance will also be integrated with the ImageNet dataset
to explore possibilities for transfer learning. We note that lightweight models developed as
a part of this initiative can have significant implications on edge devices such as sensors or
UAVs. Deep learning models that are implemented directly on edge devices can reduce
latency, minimize bandwidth usage, and ensure data privacy, since sensitive data may not
need to leave the edge device. Finally, an endeavor to create usable GIS deep learning
transformer-based models will be developed for the community by attempting to train and
evaluate these models on a merged dataset composed of images from the AID, EuroSAT,
UC-Merced, and WHU-RS19 datasets to ensure the continuity and validity of our results.
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MViT Mobile Vision Transformer
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Appendix A. Training and Testing Accuracy Values

Table A1. Final training accuracies for all the models.

Dataset Model
Split Category

Dataset
Split Category

Train
Acc

20–80 40–60 50–50 60–40 20–80 40–60 50–50 60–40

AID

ViT 99.25 99.1 99.14 98.82

UC-Merced

99.52 99.76 98.86 99.76

MViT 99.05 99.4 99.46 99.28 98.57 98.69 99.76 98.95

MViT-Depth 99.45 99.62 99.46 99.9 100 99.64 100 99.84

MViT-Combined 100 99.5 99.96 99.93 100 100 100 100

SWIN-Reg 97.1 97.12 97.34 97.18 75.71 90.48 92.38 98.25

SWIN-Conv Block 99.95 99.73 99.62 99.45 100 99.88 100 99.92

SWIN-ShuffleNet 99.95 99.67 99.36 99.47 100 100 99.9 99.84

EuroSat

ViT 99.8 99.5 99.6 99.44

WHU-RS19

100 99.25 99.8 99

MViT 99.8 99.8 99.84 99.85 98.51 99.25 99.8 96.35

MViT-Depth 99.78 99.87 99.75 99.63 99 98.51 99.6 99.67

MViT-Combined 99.96 99.67 99.88 99.83 99 100 100 100

SWIN-Reg 98.41 98.5 98.56 97.89 88.06 95.27 94.82 96.02

SWIN-Conv Block 99.8 99.65 99.62 99.77 100 100 100 100

SWIN-ShuffleNet 99.55 99.68 99.52 99.61 100 100 99.8 100

Test
Acc

AID

ViT 56.71 66.22 68.7 71.5

UC-Merced

50.77 62.22 67.05 75.71

MViT 73.96 82.9 85.82 86.58 63.39 81.35 87.14 87.62

MViT-Depth 75.29 84.28 87.44 88.25 76.9 83.25 91.71 86.55

MViT-Combined 76.89 85.67 86.52 89.42 80.48 88.02 92.1 90

SWIN-Reg 39.47 49.47 45.08 53.65 35.06 42.7 50.57 55.12

SWIN-Conv Block 41.96 45.7 53.74 56.77 41.37 48.41 60.1 58.1

SWIN-ShuffleNet 40.89 50.87 55.12 52.75 44.4 54.76 57.43 56.43

EuroSat

ViT 91.78 92.65 92.97 94.43

WHU-RS19

46.77 57.38 60.83 60.45

MViT 95.71 96.36 97.98 97.69 66.04 79.77 81.31 64.18

MViT-Depth 92.08 97.71 97.67 96.49 63.81 79.77 81.11 77.36

MViT-Combined 97.35 97.8 97.32 97.08 61.32 80.43 82.11 86.32

SWIN-Reg 86.48 89.6 90.8 90.77 34.08 49.92 52.49 50.75

SWIN-Conv Block 86.03 85.61 89.65 85.04 54.73 53.57 60.24 60.45

SWIN-ShuffleNet 87.23 92.07 91.92 91.94 52.61 59.54 59.64 62.19
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