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Energy-Efficient Connectivity-Aware Learning Over
Time-Varying D2D Networks
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Abstract—Semi-decentralized federated learning blends the con-
ventional device-to-server (D2S) interaction structure of federated
model training with localized device-to-device (D2D) communica-
tions. We study this architecture over edge networks with multiple
D2D clusters modeled as time-varying and directed communica-
tion graphs. Our investigation results in two algorithms: (a) a
connectivity-aware learning algorithm that controls the fundamen-
tal trade-off between the convergence rate of the model training
process and the number of energy-intensive D2S transmissions
required for global aggregation, and (b) a moftion-planning al-
gorithm to enhance the densities and regularity levels of cluster
digraphs so as to further reduce the number of D2S transmis-
sions in connectivity-aware learning. Specifically, in our semi-
decentralized methodology, weighted-averaging-based D2D up-
dates are injected into the federated averaging framework based on
column-stochastic weight matrices that encapsulate the connectiv-
ity within the clusters. To develop our algorithm, we show how the
current expected optimality gap (i.e., the distance between the most
recent global model computed by the server and the target/desired
optimal model) depends on the greatest two singular values of
the weighted adjacency matrices (and hence on the densities and
degrees of digraph regularity) of the D2D clusters. We then de-
rive tight bounds on these singular values in terms of the node
degrees of the D2D clusters, and we use the resulting expressions
to design our connectivity-aware learning algorithm. Simulations
performed using real-world datasets and Random Direction Mo-
bility Model (RDMM)-based time-varying D2D topologies reveal
that our connectivity-aware algorithm significantly reduces the
total communication energy required to reach a target accuracy
level compared with baselines while achieving the accuracy level in
nearly the same number of iterations as these baselines.

Index Terms—Connectivity, federated

learning, energy efficiency.
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I. INTRODUCTION

EDERATED learning (FL) [2], [3] is a popular paradigm

for distributing machine learning (ML) tasks over a network
of centrally coordinated devices. By not requiring the devices
to share any training data with the central coordinator (server),
FL improves privacy and communication efficiency. The first
FL technique, known as federated averaging (FedAvg), was
proposed in [2], [3] as a distributed optimization algorithm for
a “star” topology-based network architecture. In each iteration
of the FedAvg algorithm, (i) devices individually perform a
number of local stochastic gradient descent (SGD) iterations
and transmit their cumulative stochastic gradients to the central
server, which then (ii) aggregates a random subset of these
gradients to estimate the globally optimal ML model. In recent
years, several variants of FedAvg have been proposed to address
the challenges encountered by FL at the wireless edge, including
different dimensions of heterogeneity in dataset statistics (e.g.,
varying local data distributions) and in the network system itself
(e.g., varying communication and computation capabilities).

An emerging arch of work has been exploring FL under edge
networks that diverge from the star learning topology between
the devices and the server. This had led to varying degrees of
decentralization in FL, reaching fully decentralized, serverless
settings that sit at the opposite extreme of the star topology [4],
[51, [6], [7], [8], [9], [10]. In between these two extremes is
semi-decentralized FL, where device-to-device (D2D) commu-
nications complement device-to-server (D2S) interactions [11],
[12], [13], [14]. These D2D interactions occur locally within
clusters of devices, with each cluster forming a connected com-
ponent. In semi-decentralized FL, D2D transmissions are less
energy-consuming than D2S interactions and can help reduce
the frequency of D2S communications through localized syn-
chronizations of the ML model updates.

Despite these recent investigations, we still do not have a clear
understanding of how different D2D topology properties impact
the learning process. For instance, the ratio of the number of
D2D interactions to that of D2S interactions will impact the
training efficiency (measured in terms of either the training
speed or the maximum achievable training accuracy for a given
energy budget) differently over different topologies. This be-
comes especially important in the presence of constraints such as
upload/download bandwidths, and stochastic uncertainties such
as data heterogeneity, client mobility, and communication link
failures. On one hand, edge devices in clustered D2D networks
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Fig. 1. Conventional federated learning vs. connectivity-aware semi-

decentralized learning architecture.

that have little to no cross-cluster interactions are typically in
contact with only a small fraction of the rest of the network at
any given time instant (e.g., networks of unmanned aerial vehicle
(UAV) swarms spread over geo-distributed regions separated
by long distances). In such networks, if there is no central
coordinator (implying zero D2S interactions) and if the training
data are distributed heteregeneously among the edge devices,
no practically feasible number of D2D interactions is likely to
aggregate a set of local ML models that are diverse enough to
approximate the global data distribution [15].

On the other hand, having a high number of D2D interactions
is advantageous when D2S interactions take the form of high-
energy, high-latency transmissions (e.g., if the UAV swarms in
the previous example are miles away from the nearest base
station). Moreover, classical star-topology-based FL architec-
tures miss out on an important benefit of D2D cooperation:
devices acting as information relays between other devices and
the server, effectively sharing with the server more information
than it would expect to receive.

We are thus motivated to conduct a formal study of semi-
decentralized FL, and reveal the combined impact of D2S and
D2D interactions on the training process. After building an
understanding of the D2D topologies on which the D2D interac-
tions occur, we propose a novel FL technique that enables us to
take into account the degree distributions of the D2D clusters and
use this knowledge to tune the number of energy-intensive D2S
transmissions while simultaneously ensuring a minimum rate of
global training convergence. As shown in Fig. 1, we incorporate
two scales of model aggregations: on the first scale, the edge
devices perform intra-cluster model aggregations with their
one-hop neighbors via distributed averaging, and on the second
scale, a central server samples a random set of clients (as in the
classical FedAvg architecture [3]) for global aggregation. In our
theoretical analysis of these model aggregations, our focus will
be on the expected optimality gap, which will be defined formally
in Lemma 2 and then used throughout the paper. Informally, the
expected optimality gap is a quantity that captures on average
the extent to which the global model computed by the central
server differs from the target model (or the desired model that
minimizes the global loss function) after a given number of iter-
ations. Intuitively, therefore, the expected optimality gap quan-
tifies the distance that the global model should traverse to reach
optimality.

Our methodology has several potential use-cases, including
the following that we will refer to as examples henceforth:

1) UAV Networks for ISR: UAVs are being increasingly de-
ployed for intelligence, surveillance, and reconnaissance (ISR)
operations in defense settings [16], [17]. With UAVs partitioned
into D2D-enabled swarms deployed across different areas,
our connectivity-aware algorithm can facilitate energy-efficient
intra-cluster communications and reduce the over-reliance of the
model training process on D2S transmissions.

2) Self-Driving Cars: Many learning tasks for self-driving cars
call for vehicles to communicate over short distances. In such
settings, geographical proximity can be used to partition the
traffic network into clusters, enabling us to design intra-cluster
D2S communications that turn out to be more energy-efficient
than D2S communications with a far-away server.

A. Summary of Contributions

We summarize our key contributions below:

1) Analysis With Time-Varying and Directed Cluster Topolo-
gies: Our model is general in that each D2D cluster is assumed
to be a time-varying directed graph (digraph). We show how
the expected optimality gap of the learning process depends
on the greatest two singular values of the weighted adjacency
matrices used for local aggregations in the clusters. Our analysis
is applicable to edge networks with asymmetric/unidirectional
D2D communications subjected to link failures.

2) Singular Value Bounds in Terms of Node Degrees: We
derive bounds on the singular values of the cluster-specific
weighted adjacency matrices in terms of the degree distribution
of every cluster. This introduces new technical challenges as
described in Section I-B, since it is a stark departure from
existing analyses of averaging-based FL algorithms that rely
heavily on the spectral gaps of symmetric weight matrices (e.g.,
see [6], [11], [13], [18], [19], [20], [21]).

3) Connectivity-Aware Learning Algorithm: We use our sin-
gular value bounds to design a time-varying threshold on the
number of clients required to be sampled by the central server
for global aggregation so as to enforce a desired convergence
rate while simultaneously reducing the number of D2S com-
munications. This tradeoff results in a novel connectivity-aware
algorithm with significant energy savings, as validated subse-
quently by our numerical results.

4) Motion-Planning Algorithm: We develop a motion-
planning algorithm that enhances the regularity properties of
the cluster digraphs, thereby enabling our connectivity-aware
learning algorithm to further reduce the total energy consump-
tion by further reducing the number of D2S transmissions, as
can be seen from our latest set of simulation results.

5) Effect of Data Heterogeneity Under Mild Gradient Diver-
sity Assumptions: We derive a bound on the expected optimality
gap that captures the effects of cluster densities as well as the
extent of data heterogeneity across the devices. In doing so, we
employ a milder definition of gradient diversity [11] than what
is typically assumed in literature.
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B. Related Work

Several different FL approaches with varying levels of energy
efficiency and different degrees of decentralization have been
proposed to date. In this section, we focus on those which are
most relevant to the present work.

Semi-decentralized FL: The closely related paper [11] also
proposes a semi-decentralized learning methodology for clus-
tered D2D networks. The key differences between [11] and the
present work are (a) we do not assume the D2D communications
to be bidirectional (equivalently, the cluster graphs in our model
are not undirected), and (b) our analysis uses column-stochastic
weight matrices that need not satisfy the standard but unrealistic
assumptions of symmetry or double stochasticity (which may
not hold if the cluster graphs are directed). This leads to two
significant technical challenges. First, we cannot use standard
eigenvalue results in our analysis since we must focus on singular
values, which generally differ from eigenvalues for asymmetric
matrices. Second, unlike doubly stochastic matrices, column-
stochastic aggregation matrices in general do not ensure conver-
gence to consensus in the absence of a central coordinator, which
means our analysis must (and does) account for the combined
effect of global aggregations and column-stochasticity.

Another closely related semi-decentralized learning method-
ology is [12], in which the goal is to enable edge devices to
compute weighted sums of their neighbors’ scaled cumulative
gradients in order to reduce the dependence of the global training
process on unreliable D2S links. [12], however, assumes the
D2D communication network to be time-invariant and undi-
rected, thereby disregarding potential communication link fail-
ures and client mobility.

Energy-Efficient FL: [22] proposes a computationally effi-
cient iterative algorithm to minimize the overall energy con-
sumption in IOT-based FL architectures by simultaneously op-
timizing a combination of objectives such as communication fre-
quency, learning accuracy, and bandwidth allocation. A related
work, [23], proposes a reinforcement learning-based algorithm
called AutoFL, which jointly optimizes the convergence time
and the energy efficiency by allowing only selected subsets
of devices to participate in any given training round. In the
context of FL over heterogeneous mobile networks, [24] de-
velops an algorithm that sparsifies local gradients to varying
extents depending on the total energy budget. Related works
include [25], which explores energy-efficiency from the view-
point of communication-computation trade-offs in 5G+ net-
works, [26], which uses Intelligent Reflecting Surfaces (IRS) to
maximize resource utilization in wireless networks, and others
such as [27], [28], [29], [30]. See [31] for a related survey. How-
ever, none of these works, unlike ours, consider time-varying
D2D networks.

Learning over Clustered D2D Networks: Recently, [32] pro-
posed fully decentralized (serverless) learning over a static D2D
network (unlike our dynamic D2D topologies) equipped with
bridge nodes to enable cross-cluster communications. Refer-
ence [14] also focuses on clustered networks, but it provides
a semi-decentralized learning methodology where the basis for
clustering is data similarity, whereas our methodology makes no

such assumptions. Another relevant work, [33], proposes having
one edge server per cluster so as to eliminate the need for a central
server. Its learning algorithm assumes the edge network topology
to be undirected, which gives rise to a symmetric adjacency
matrix.

Other Averaging-based Algorithms: We remark that there
exists abundant literature on distributed optimization over time-
varying digraphs characterized by weight matrices that are not
necessarily doubly stochastic (see [34], [35], [36], [37], [38],
[39], [40]). However, the effects of both data heterogeneity and
degree distributions of the studied communication digraphs on
the convergence rates of these algorithms have remained largely
unexplored.

II. PRELIMINARIES: SINGULAR VALUES OF DIGRAPH
ADJACENCY MATRICES

Before introducing the semi-decentralized learning setup,
we explain the significance of an essential component of our
proposed algorithm: the greatest two singular values of weighted
adjacency matrices of digraphs.

Consider a network of n devices aiming to estimate the value
of an unknown quantity of interest g (which, as we shall see, takes
the form of gradients of the global loss function throughout this
paper). The network forms a directed graph G = (V, E), where
V' denotes the set of network nodes/devices and E C V x V
denote the set of edges (i.e., the set of communication links).
Suppose each device i € {1,2,...,n} stores alocal estimate x;
of ¢ and updates this estimate by computing a weighted sum of
its own estimate as well as the estimates of its in-neighbors, i.e.,
devices it can receive information from. To model this distributed
computation, we define the n x n weighted adjacency matrix A
of G, where a;; in the i-th row and the j-th column of A denotes
the weight assigned by device i to the estimate of device j in its
local weighted sum computation. a;; # 0 only if (i, j) € E.

The set of updated estimates of ¢ is given by

x(k+1) = Ax(k), (1)

where z(k + 1) (respectively, z(k)) is a vector whose i-th entry
denotes the updated estimate (respectively, current estimate) of
device i foreachi € {1,2,...,n} overiterations k£ > 0. Hence,
the computation of the local estimates {x;(k)}7_; of the devices
is governed by the structure of A, which in turn depends on G.

We now examine this connection between G, A and the
distributed computation procedure (1) when the goal of the
devices is to perform repeated weighted summations to let their
local estimates converge to - 37" | x;(0), the average of all the
initial estimates. This goal imposes two requirements:

i) (Average Preservation): The average of all the local
estimates should be preserved at each iteration, i.e.,
LS ai(k) = 33, @i(0) for each k.

ii) (Consensus): Every local estimate should converge to the
same limit, 1.e., there should exist a real number ¢ such that
xi(k) = cas k — oo forall i € {1,2,...,n}. In other
words, all the devices should reach a consensus on their
estimate of q.
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It is well-known in the literature on distributed algorithms for
averaging and optimization [41] that (i) requires A to be column-
stochastic (i.e., the entries in every column of A should sum to
1), while (ii) requires A to be row-stochastic (i.e., the entries in
every row should sum to 1). In effect, A is required to be doubly
stochastic, i.e., both row-stochastic and column-stochastic.

While there exist standard techniques to construct doubly
stochastic adjacency matrices for undirected graphs, the existing
algorithms for distributed construction of such matrices for
directed graphs [42], [43], [44], [45], [46], [47] are known to
either be computationally expensive or have poor convergence
rates. This motivates us to consider choices for A that are either
column-stochastic or row-stochastic, and control the impact of
violations of double-stochasticity that manifest as a result.

To this end, for a given column-stochastic matrix A, we
define its average deviation from double stochasticity ops(A)
as the average difference of the row sums from 1, ie.,
dps(A) == £ >0 [ D7 aij — 1|.If Aisrow-stochastic, then
we use its transpose as dps(A) = dps(A"). Similarly, we
define the maximum deviation from double stochasticity as
Aps(A) = maxep,) | 05— aij — 1] if A is column-stochastic
and Aps(A) = Aps(AT) if A is row-stochastic.

The greater the deviation of A from double stochasticity, the
greater the extent to which (i) or (ii) is violated. We next show
how the largest singular value o of A captures this deviation.

A. Interpreting the Largest Singular Value

We first note that 0 — 1, dps(A), and Aps(A) are all zero if
A is a doubly stochastic matrix: dps(A4) =0 and Aps(A) =
0 follow from the definition of row-stochasticity, whereas
o% — 1 = 0 is a known result [48, Problem 8.7.P5].

On the other hand, if A is not doubly stochastic, then we have
the following bounds on 0% — 1:

Lemma 1: Let A be either a row-stochastic or a column-
stochastic matrix. Then 0 < 07 — 1 < Apg(A).

Proof: Let p denote the spectral radius of A. Then the lower
bound is obtained as follows:

b
2 @D ? 291

)

where (a) follows from [49, Problem 5.12.2], (b) follows
from [49, Example 7.1.4], and (c) follows since every row-
stochastic or column-stochastic matrix has p = 1.

For the upper bound, suppose first that A is column-stochastic.
Then we have

((,L) n n n
Jf —1 < max Z(AAT)U —1= maxz Z a;pajr — 1
j=1 j

1EN

where (a) follows from [48, Theorem 8.1.22] and the fact that
o? is the spectral radius of AA", and (b) follows from the
column-stochasticity of A. Noting that max;c[y Dl ik —
1 < max;ep) | Dop—q @ix — 1| yields the desired bound. O
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Fig.2. Correlation between o1, the greatest singular value of A, and dps (A),
the average deviation from double stochasticity for different values of n and
| E|. Each subplot displays 100 points, each of which corresponds to the equal-
neighbor weighted adjacency matrix (see Section IV) of a random digraph,
which we generate by sampling from the uniformly on n and |E)|.

Thus, a smaller maximum deviation from row-stochasticity
makes it less likely that o deviates significantly from 1. This
means that for a fixed number of edges or communication
links in G, a weight assignment that brings A closer to double
stochasticity will tend to result in a smaller value of o1, as the
example below shows.

Example 1: Consider the following column-stochastic matri-
ces, and let their greatest singular values be o and o7.

A/

Wl W= Wik O
V== O O
O Wl W= W=
wik O plovel=
Wl W= Wik O
BlLal= O O

O Wl Wl wl—
W= O Wl Wl

Note that both A and A’ have the same zero pattern. Hence,
they are both candidate adjacency matrices for the same di-
graph. However Apg(A4) = + < & = Apg(A4’) and dps(A) =
& < 1 =0ps(A’), which means A is closer to being doubly
stochastic than A’. This is consistent with 07 = 1.03 < 1.06 =
o, i.e., the greatest singular value of A deviates less from 1 than
the greatest singular value of A’.

Therefore, given a communication digraph G, the greatest
singular value of its weighted adjacency matrix A provides
an estimate of the extent to which the distributed computation
protocol described by (1) deviates from its end goals of average
preservation and consensus. Note, however, that the dependence
of o1 on the structure of A is complex in general and cannot
be captured fully by any measure of deviation from double
stochasticity. Nevertheless, there is a significant correlation be-
tween o and dps (A) for a class of weighted adjacency matrices
called equal-neighbor adjacency matrices, as plotted in Fig. 2
for several randomly generated digraphs. We will discuss these
matrices further in Section IV.
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B. Interpreting the Second-Largest Singular Value

We now focus on o,. Note that o3 is by definition the
second-largest eigenvalue of A" A. Furthermore, by symmetry
of AT A, there exists an undirected graph G?) that has A" A as
its weighted adjacency matrix.

These observations enable us to use the literature on weighted
Cheeger’s inequality (e.g., see [50]) to relate o» to the concept
of isoperimetric numbers, quantities that capture the severity
of “bottlenecks” in the flow of information over networks. In
essence, a large isoperimetric number means that every two-set
partitioning of the network nodes has many links connect-
ing the two subsets together. Therefore, in the case of ap-
proximately regular graphs,' i.e., graphs in which node de-
grees are approximately homogeneous across the network, we
would expect the isoperimetric number to often increase with
the total number of links in the graph. In the case of G(?),
this would likely result in a decrease in the eigenvalue o3
of its weighted adjacency matrix AT A, because the greater
the isoperimetric number, the lower the upper bound provided
by the weighted Cheeger’s inequality on the second-largest
eigenvalue.

Now, the number of edges in G2 (which equals half the
number of non-zero entries in A" A) is non-decreasing in the
number of links in the original graph G (which equals the
number of non-zero entries in A). Along with the preceding
discussion, this suggests that increasing the number of links
in an approximately regular digraph G tends to increase the
isoperimetric number of the corresponding augmented graph
G@ and in turn decrease the value of 09. Thus, 09 is an estimate
of the lack of connectivity in G. This is consistent with Fig. 3,
which exhibits a negative correlation between o2 and the number
of links | E| for several randomly generated graphs of different
sizes.

III. SEMI-DECENTRALIZED FL SETUP

We now introduce the system model, the learning objective,
and the network model in semi-decentralized FL.

A. System Model and Learning Objectives

We consider a collaborative learning environment consisting
of n edge devices, or clients, and a central parameter server
(PS) that is tasked with aggregating all the local model updates
generated by the clients. We use [n] := {1,2,...,n} to denote
the set of clients.

Each client i € [n] has a local dataset D;, which is a col-
lection of data samples of the form & = (u,y) where v € R
is the feature vector of the sample and y is its label. On this
basis, for any model x € RP, we define the loss function L :
RP x U, D; — R so that L(z; &) denotes the loss incurred by
xzonasample € U D; (where U], D; is the global dataset).
The average loss incurred by x over the local dataset of client
iis given by fi(z) := 157 Yeep, L(w;€), where fi : R? — R
denotes the local loss funbtion of client 3.

'We will show results around approximately regular digraphs in Section V1.
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Fig. 3. Correlation between o2, the second greatest singular value of A, and

| EZ|, for different values of n. Each subplot displays 100 points, each of which
corresponds to the equal-neighbor weighted adjacency matrix of a digraph.
These digraphs are generated by deleting up to one randomly selected edge per
node from an n-vertex random regular digraph whose maximum out-degree is
distributed uniformly on {1,2,...,n}.

In collaboration with the PS, the clients seek to minimize
the global loss function f : RP — R, defined as the unweighted
arithmetic mean f(z) :== 3" | fi(z) of all the local loss
functions. The learning objective, therefore, is to determine the
global optimum x* := arg mingcgr f(x).

B. D2D and D2S Network Models

We model two types of interactions among the network ele-
ments: (i) D2S and (ii) D2D. For D2S interactions, the devices
can engage in uplink communications to the PS if prompted
by the server, which happens through a sampling procedure
explained later.

We model the D2D network as a time-varying directed graph
G(t) = ([n], E(t)), where [n] denotes the vertex set and E(t)
the edge set of the digraph. The existence of a directed edge
from a node i € [n] to another node j € [n] in G(¢) denotes
the existence of a communication link from the ¢-th client to
the j-th client in the D2D network. In this case, we refer to
client 7 (respectively, client j) as the in-neighbor (respectively,
out-neighbor) of client j (respectively, client ¢). The set of
in-neighbors (respectively, out-neighbors) of a client i € [n] at
time ¢ is denoted by NV, (¢) (respectively, N;* (¢)). The number of
in-neighbors (respectively, out-neighbors) is called the in-degree
(respectively, out-degree) and is denoted by d; (t) (respectively,
di (t)). We let dpp,, (), d, (t), and dax(t) denote the max-
imum in-degree, the minimum out-degree, and the maximum
out-degree, respectively.

Unlike standard works on distributed learning [36], [37],
[38], [39], we do not assume the D2D network to
be strongly connected or even periodically strongly con-
nected [38], [39] over time. This gives rise to a number
¢ > 1 of strongly connected components of G(t), denoted
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{(Vi(6), By (1)), (Va(b), Ea(t)), .., (Valt), E(t))} which we
refer to as clusters of the D2D network. Here, we make the
following mild assumptions that apply to most cellular networks:

1) There does not exist any communication link between any
two clusters. In other words, E(t) = U5_, E(t).

2) Regardless of any client movement from one cluster to
another, as of time ¢, the server has full knowledge of the
vertex sets {V;(t)}5_, of all the ¢ clusters.

The second condition is satisfied in cellular communications

since the base station knows the users in its coverage area.

IV. PROPOSED METHOD FOR CONNECTIVITY-AWARE
LEARNING

We now present our methodology for connectivity-aware
learning over the semi-decentralized setup from Section II. Our
technique will enable the central server to use limited knowledge
of the cluster degree distributions to tune a communication-
efficiency trade-off.

A. Local Model Updates

As in many FL schemes, we assume every client performs
multiple rounds of local SGD iterations between any two con-
secutive rounds of global aggregation. Let z(*) denote the
global model that all the clients possess at the end of the ¢-th
round of global aggregation. Then, each client i € [n] performs
T € N iterations of local SGD. In other words, for each k €
{0,1,...,T — 1}, we have

xz(.t,k-&-l) _ xgt,k) B ﬁtﬁfi(xz('t’k)), @)

where 7, > 0 is the learning rate or the step-size, and v filz) =

|X71i| Y tey, VL(7;§) is the stochastic gradient computed by

client ¢+ by sampling a mini-batch or a random subset x; C D;
(t0) ._ (1)
=az'\Y.

i

of its local samples. Note that =

B. Intra-Cluster Model Aggregations

The next step involves all the clients aggregating their scaled
cumulative gradients with their neighbors. This aggregation
takes the form of weighted sum computations similar to (1).
Every client i € [n] first transmits its scaled cumulative stochas-
tic gradient xz(-t’T) —z® = —p, f;é Vi (:cgt’k)) to each of
its out-neighbors j € M+ (t) before the ¢-th global aggregation
round. To facilitate this, we assume that every cluster £ € [c]
contains an access point to which every client i € Vp(t) sends a
list of its in-neighbors (clients whose gradients 7 has received).
The access point then announces the end of the concerned
D2D communication round, determines the out-degree sequence
{d;r (t) : j € Vo(t)} of the cluster, and broadcasts this sequence
to every client in the cluster.

Subsequently, the client computes the following weighted
sum of all the scaled cumulative gradients it receives from its
in-neighbors:

Ai(t) = Z

JENT ()

1 (t,T) (t)
T - . 3)
df(t) ( )

This rule can be expressed compactly in matrix form as
A(t) = A() X g (1), (4)

where A(t) = [Al(t) Ag(t) : An(t)}—r, Xdiff(t) =
[a:?’T) —z® a:gt’T) —g® gD z®)], and
A(t) e R™™ is a matrix whose (7,7)-th entry equals
a;j(t) = d%(t) foralli € [n] and j € N, (t).

Fact 1: JA(t) is a column-stochastic matrix because the fol-
lowing holds for all j € [n]:

. 1
2= 2 TB

i€[n]:jeN; (t) J
It can be verified that A(t) is a block-diagonal matrix with its
blocks {A,(t)}§_, being the equal-neighbor adjacency matrices
of the c clusters in the D2D network.
Henceforth, we refer to A(t) as the equal-neighbor adjacency
matrix of G(t) because it represents every client ¢ € [n] trans-

mitting an equal share (a fraction d+1(t)) of its scaled cumulative

gradient to its d;f (¢) out-neighbors.

1
2 =t

ieNf (@) "I

C. Global Aggregation at the PS

For the global aggregation step, the PS samples a random
subset of clients S(¢) C [n]. The cardinality m(t) < n of this
set is carefully chosen by our algorithm such that the resulting
number of D2S interactions is just enough to complement the
intra-cluster aggregations without excessively slowing down the
training process.

Specifically, this involves three broad steps: (a) The PS first
learns the degree distribution of each cluster. (b) It then computes
an upper bound on an error quantity ¢(¢) that captures the
combined effect of random sampling and the cluster degree dis-
tributions on the convergence rate. (c) It computes the minimum
value of m(t) required to keep ¢(t) below a desired threshold.
More specifically:

1) For the (¢ + 1)-th round of global aggregation, the server

uses m(t) (computed in the previous iteration) to se-

lect [(#)nz(t)—‘ clients uniformly at random from the

ng(t) := |Vi(t)| clients that constitute cluster £ € [c]. This
ensures that every cluster has a representation in the global
aggregation that is proportionate to its size. The resulting
set of randomly sampled clients is denoted by S(t). The
server then updates the global model as

1
(t+1) _ (8) , _* At 5
x ol > A(t) )
1€S(t)
1 n
— 2® § (B,

v+ m t) - Tz(t) i(t), (6)
where 7;(t) := |{i} N S(¢)| is an indicator random vari-

able that takes the value 1 when client ¢ is sampled and the
value 0 otherwise. Note that .-, 74 (t) = [S(t)| = m(t).
2) The current round is now ¢ <— ¢ + 1. All the cluster ac-
cess points send their respective out-degree sequences to
the server. Using this information, the server computes
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ay(t) == #(t) min,ecv, ;) d; (t), the minimum out-degree
fraction of cluster ¢ € [c]. The server then uses either of
the two sets of singular value bounds that we later derive
in Section V (either (12) and (13) or (17) and (18)) to
compute an upper bound (m(t), i (t),...,a.(t)) on
the connectivity factor affecting the convergence rate. This
connectivity factor, motivated in part by the discussion in
Section 11, is defined as

@)

where ¢ (t) := o7 (Ae(t)) + 03(As(t)) — 1 depends on
the greatest two singular values o (Ag(t)) > o2(Ae(t))
of the equal-neighbor adjacency matrix Ay(¢) of cluster £.
For the upper bound, we will show that

wm(t), ar(t),...,a(t))
(i )L o

=1
where either of the following holds (with the indexing (¢)
on the right hand side omitted for brevity):

2
?/Jz(t):l—ksz—k(l—l) + 2¢¢ <1+2_12)’

Qy Qy ay

Ye(t) =2+ 29,
_ (1 —en)’(1-a2) ((1*56)2(1*043@)*0‘—1?)

n[(£net,l+1) (5net,Z*a7Z+ L )

gy
®)
. D ()=, () o dmax () —df, (1)
with Eg(t) = T(t), @Z(t) = W,
ee(t
ao(t) = s — T and enere(t) = o (t) + 2205
3) Finally, the server sets m(t+1) equal to

min{r € [n] : Y(r,on(t+1),...,0:(t +1)) < Pmax}>
where ¢max is a threshold given as an input to the
algorithm. This step ensures that ¢(¢) remains below the
threshold ¢p,.x, thereby preserving the convergence rate.
Our algorithm for ¢,,,, global rounds is given in Algorithm 1.

V. CONVERGENCE ANALYSIS

We now provide theoretical performance guarantees for Al-
gorithm 1. We also explain how the effect of D2D cluster
connectivity on the convergence rate of the algorithm is captured
by the singular values of the equal-neighbor adjacency matrices
of the clusters. For all the calculations omitted from the proof
sketches, please refer to the supplementary material.

A. Assumptions and Preliminaries

1) Loss Functions: We start by making the following stan-
dard assumptions on the local loss functions:

Assumption 1 (Strong Convexity): All the local loss functions
{fi}1—, are p-strongly convex, i.e., there exists x> 0 such

Algorithm 1: Connectivity-Aware Semi-Decentralized
Learning.

Input: n’ C’ T, ¢max’ tIIla)U m(o), {nf(t) ii?)x, 1‘(0)
Output: 3 (tmax)

I: forte {0,1,...,tmax — 1} do
(¢,0)

2:  Clienti € [n] sets ;" + x(*)
3: for k € {0,1,..., 7 — 1} do
4: Client i € [n] computes
xl(t,k+1) « x£t7k) - ntﬁfi(xgt,k))
5:  end
6:  Client s € [n] transmits its scaled cumulative local

gradient —7; Z:é %fi(x(t’k)

3
out-neighbors A" (t)
7:  Client i € [n] computes the following weighted sum
of its in-neighbors’ cumulative local gradients:

Ai(t) Z d+1(t) (ch.t’T) - x(t))

JEN; (1) 7

) = xgt’T) — 2 toits

8:  PSsamples my(t) = ""ét)

random from cluster ¢ € [¢]
9:  PScomputes z(*1) « 20 ¢ ﬁ S Tt A(t)
and broadcasts z(**'1) to all clients
10:  PScomputes m(t+1) <« min{r € [n]:
Y(ryar(t+1), .. ac(t+ 1) < dmax
11: end
12:  return x(fmex)

m(t) clients uniformly at

that (Vf;(z) = Vfi(y))" (x = y) = pllz — y|* for all z,y €
RP and all 7 € [n].

Assumption 2 (Smoothness): All the local loss functions
{fi}_, are B-smooth, i.e., there exists a finite 8 such that
IV fi(x) = Vfi(y)l < Bllz =yl for all z,y € R? and all i €

As shown in [11], Assumptions 1 and 2 imply that the global
loss function f is both pu-strongly convex and 3-smooth.

2) SGD lIterations: Additionally, we make the following
standard assumption on the stochastic gradients generated
through the SGD procedure for each client:

Assumption 3 (Unbiasedness and Bounded Variance):
The SGD noise associated with every client is unbiased,
ie, E[Vfi(x)—Vfi(x)|x] =0, and it has a bounded
variNance, i.e., there exists a constant o > 0 such that
E|Vfi(z) — Vfi(z)]|* < ¢® for all models x € RP and all
i€ [n].

In addition, we assume that the SGD noise is independent
across clients, i.e., forallz € RP, the random vectors {V f;(z) —
V fi(x)}_, are mutually conditionally independent given z.

3) Gradient Diversity: Furthermore, we assume that the
training data are not distributed uniformly at random among
the clients, which gives rise to data heterogeneity among the
clients. Unlike the standard assumption on data heterogeneity
that imposes a uniform upper bound on ||V f;(z) — Vf(z)]]
(see [51] for example), we make a weaker assumption on the
diversity of local gradients. In fact, this assumption, which
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was first proposed in [11], can be derived as a consequence
of Assumptions 1 and 2, as shown in [11]. Below, we formally
state this observation.

Lemma 2 (Gradient diversity [11]): For all i € [n] and = €
RP, we have ||V fi(x) — Vf(x)| < 0 + 28||x — x*||, where

0 := Pmax|z" — zj|| = fmax ||z" —argmin f;(y)|| (9)
i€[n] i€[n] yEeRP
As argued in [11], the standard assumption (which is a special
case of the above inequality with 8 = 0) is unrealistic as it does
not apply to quadratic and super-quadratic loss functions unless
the upper bound § is chosen to be unreasonably large.

B. Results

We now quantify how the singular values of the equal-
neighbor matrices and the number of clients sampled by the PS
affect the efficiency of our algorithm in terms of its optimality
gap.

We first show how the expected optimality gap of our algo-
rithm depends on the expected deviation of the global average
2D — 2 (ie., the random vector computed by the PS using
the aggregation rule (5)) from the true average of all the scaled
cumulative gradients.

Lemma 3: At the end of the (¢ + 1)-th round of global ag-
gregation, the expected optimality gap of Algorithm 1 is given
by

2

B Hx(tJrl) Pk Hm(tJrl) _ D) H2+E Hj(t“) —z*

where 21 = z(®) + L E;’zl(scl(-t’T) —2®) is a vector that
would equal the global model if the PS were to sample all the n
clients.

Proof: The key steps are to note that

2

E Hx(ﬁ»l) Pk Hx(Hl) _z(t+D) H2+]E Hj:(t“) —

12K |:(x(t+1) _i,(t+1))T (j(t-yl) —x*)]

and to show that the cross-term above vanishes. To this end,
let v(t) € R™ denote the vector of server-assigned weights,
i.e., vi(t) = L if i € [n] is sampled by the PS at time ¢ and
v;(t) = 0 otherwise. We then observe that z(*+1) — z(t+1) —
Xair(AT (t)v(t) — £1). As a result, we can use (a) the in-
dependence of v(t) and the matrix of local models Xgr(2),
(b) the column-stochasticity of A(t), and (c) the fact that ev-
ery node is sampled with the same probability to show that
E[(x(t-‘rl) _ i,(t—&-l))T(i.(t-i-l) _ .’I}*)] =0. 0

Observe that the first term on the RHS depends on z(t+1) —
j(tﬂ), which can be easily shown to be the difference between
the random average %(t) 2ies(r) Di(t) and the true average

1 Z?:l(:cgt’T) — 2®). Thus, this term captures the error due
to random sampling. As the next result shows, this difference
depends on the network topology as well as on m(t), the number

of clients selected for global aggregation uniformly at random
by the PS.

Proposition 1: Let § be the constant defined in (9). Then
Algorithm 1 satisfies the following for every t € NU {0}:

E Hx(t+1) _ j(t+1)H2
< <2T9277t2 + 4eT(0* + 28%)m7 + 66 T*n}

+ (27 + 46)T? %2 H:c(t) -

2)¢>(t>,

where ¢(t) is the connectivity factor defined in (7).

The proof of this proposition is based on the following key
result that helps us connect the greatest two singular values of
A(t) with ||zt — z(4D12,

Lemma 4: For s € N, let v € R?® be a stochastic vector, and
let A € R*** be an irreducible column-stochastic matrix with
positive diagonal entries. Then [[ATv — 11| < (0F + 03 —
1)||vL||?, where v, :=v — %1 is the component of v that is
orthogonal to 1, and o, and o4 are the largest and the second-
largest singular values of A, respectively.

Proof: We first show that the quantity in question equals
v AATv |, derive an inequality connecting the principal eigen-
vector of AAT with oy and o5, and then use the results of each
of these steps to obtain the desired upper bound.

For the first step, we use A1 = 1 repeatedly to show that
[vTA—2117||2 = vTAAT v, . We call this Observation 1.

Next, we let p denote the unit-norm principal eigenvector of
AAT | and we relate o1 and o5 to p. To do so, we first note
that AAT is irreducible by Lemma 6 in the supplementary
material, and hence, the Perron-Frobenius theorem implies that
p is unique up to scaling by a complex scalar of unit magnitude.
We now let {9;}_, denote the unit-norm eigenvectors of AA™
corresponding to its eigenvalues {0’?};22, where o; denotes
the j-th largest singular value of A. Here, we apply the spectral
decomposition theorem for symmetric matrices to AA" to make
the critical observation that s = 0%2(17p)2 + o3 (s — (17p)?).

This enables us to obtain 1 (17)? > —-"%. The final step is to
1 2

upper bound vI' AATv | . To this end, let p denote the unit-norm
principal eigenvector of AAT, let p, := p — 1(p”'1)1 denote
the component of p that is orthogonal to 1, and let vy :=
v, — (vI'p)p denote the component of v, that is orthogonal
to p. We then have

vl AA v, = (vi + (vTp)p) AAT (vi + (v1 D)D)
W T AATY, + (Tp)2pT AATp
® )
< 03 ol® + (vIp)’o7

(¢
< (o7 + 03— 1) [loL|?, (10)

where (a) holds because v1'p = 0, (b) follows from the Courant-
Fischer theorem and the fact that vi is orthogonal to the principal
eigenspace {8p : B € R} of AAT, and (c) is derived using the
Pythagoras’ theorem and the orthogonalities of v and p; with 1,
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Cauchy-Schwarz inequality, and from our preceding observation

that £(17p)% > 01 %% Combining (10) with Observation 1 now
2

ylelds the requlred upper bound. d
We are now ready to prove Proposition 1.
Proof: Reusing x(+1) — 2+ = Xy (AT (t)v(t) —
(an observation made in the proof of Lemma 3) yields

1)

E o+ — 50+ — deiff@) (AT(t)v(t) - ;1) 2

AT (t)v(t) — %1 i

e

) ;Zj@(ﬂ

<EXan(0IE

(%) <ZE sz(‘t’T) _®
i=1

where (a) follows from the fact that every n x n matrix has
its squared spectral norm upper bounded by the sum of the
squares of its column norms (Lemma 4 in the supplementary
material) and Lemma 3. Using Lemma 11 (which is proved
in the supplementary material using standard upper bounding
techniques) now yields the desired result. g

In other words, E[z(**+? — z(+1)|| depends on the previous
optimality gap E||z(*) — 2*||? via ¢(t), i.e., the connectivity
factor that captures the combined effect of global aggregation
(via m(t)) and the D2D network topology within each cluster
(via ¢r (1))

Moreover, Lemma 3 and Proposition 1 together show that the
singular values of the equal-neighbor adjacency matrices can
be used to derive an upper bound on the expected optimality
gap (and ultimately establish theoretical performance guaran-
tees) for our connectivity-aware algorithm. Doing so yields the
following.

Proposition 2: Let § be as defined in (7), let
¢(t) be the connectivity factor defined in (7), let
I:= f(z*) — 237 mingere fi(z), and let e denote the

exponential constant. Then the expected optimality gap of
Algorithm 1 satisfies the following for all ¢ € Ny:

E H:c(tﬂ) —a* ’

+(27+4e)T? 3202 (2 T+¢(t)

< ((1—pn)” EH )

2
T (i + 68T + 4T 0 + 8eT(0? + 262) + 1262 T2> 02

+ (270" + 4eT(0* + 26%) + 66° T?) ¢(t)n; .

Proof: We quantify the difference between the iterates
mgt’k) resulting from stochastic gradient descent and the iter-
ates 3(“*) resulting from centralized non-stochastic gradient
descent by first defining f(4F) := ptE-1) _ 5 7 f(BER-1)
(with 50 := 2(®)) and then by using Cauchy-Schwarz and
Young’s inequalities along with standard inductive arguments
based on strong convexity and smoothness in order to ob-
tain an upper bound on Zk VE| (t.h) _ B2 in terms of
E||2® — x*||?, which results in Lemma 9 in the supplementary

material. We then use the resulting expressions along with the

independence of the zero-mean random vectors {V f; (z (t’q))

V£; ()}, to upper bound E|jz{"*) — (|2 in terms of
E||2*) — x*||2. This results in Lemma 11 in the supplementary
material. Next, we use the resulting inequality along with the
property of averages that the arithmetic mean of a finite set of
vectors { z; } 7, is the minimizer of the unweighted mean-square
loss function R Sy —ly) = Ly Iz — yll* in order to
obtain Lemma 12 in the supplementary material. A simple induc-
tion on k enables us to extend the result to an upper bound on the
k-independent quantity E||z(**1) — 2*||? as shown in Lemma
13 in the supplementary material. As the last step, we combine
the resulting expressions with Lemma 2 and Proposition 1 in
order to obtain the desired inequality. U
A recursive expansion on the inequality in Proposition 2
results in our main theoretical result, which we state below.
Theorem 3: Consider a connectivity factor thresh-

old ¢max >0, and suppose that ¢(t) < ¢dpax for all
times ¢ > 0. In addition, suppose 7; = ﬁ, where
tr = |4(1 = ) + (16 T + 8fmax)(2)? + 1. Then  the

expected optimality gap of Algorithm 1 satisfies the following
forallt > 0:

2
E Hx(t) —x*

t 2
< () Efe o
t+1

2 (o 2
+ (32T + 16¢max) (T (M)

2 2 2
+ de ((9) +2 <5> ) +6 <5) )t+t1. (11)
T \\p % %

Theorem 3 reveals that the convergence rate of our algo-
rithm is O(1/t), which coincides with that of FedAvg and its
semi-decentralized variants such as [11]. In fact, O(1/t) resem-
bles the convergence rate of vanilla centralized SGD. It also
shows that suitably tuning the connectivity factor (by choosing
an appropriate value of ¢y,.x) is critical to the efficiency of
the algorithm: as ¢y,ax increases the bound gets worse/larger;
however, ¢ ax, by its definition, is non-negative, which means
it can at best be made equal to 0, which forces m = n, in
which case the inequality boils down to an upper bound on
the convergence rate of FedAvg with full device sampling. At
the other extreme, setting ¢yax to 0o results in m = 1, which
happens when our semi-decentralized FL architecture collapses
to full decentralization.

Moreover, Theorem 3 jointly captures the effect of the fol-
lowing factors on the expected instantaneous optimality gap
and hence on the convergence rate: (i) the initial optimality gap
E|2(® — 2*||? (via the first term), (ii) The SGD noise variance
0% and the strong convexity u and smoothness parameters /3
(via the second term), and finally, (iii) the combined effect of
cluster connectivity levels and random sampling-based global
aggregations (via the third term, which depends on ¢y, which
in turn prevents the connectivity factor ¢(¢) from becoming too

2
I
2 16 (an (/%) +67?”2)

t+1
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large). It can be seen that higher values of the SGD noise variance
0 and the data heterogeneity measure I" lead to a larger value
of the bound, implying that our algorithm is sensitive to the size
of the mini-batches used for computing the stochastic gradients
as well as to the non-i.i.d.-ness of the local datasets.

VI. SINGULAR VALUE BOUNDS

Having established the role of the connectivity factor ¢(¢) in
the performance of Algorithm 1, we now analyze two important
quantities associated with ¢(¢): the top two singular values of
the equal-neighbor adjacency matrices of the clusters. Since a
precise estimation of these singular values requires full knowl-
edge of the cluster topologies, which is challenging to obtain
in practice, we are motivated to derive a set of novel upper
bounds on these values in terms of the node degrees of the
cluster digraphs, which are easy to obtain/measure in practice.
To the best of our knowledge, this is one of the first attempts
at connecting the singular values of adjacency matrices with
minimal topological information such as node degrees of the
digraphs.

To conduct our analysis, for any digraph G = ([s], E), we first
i (G)—d;t; (G
s (G)
geneity of out-degree of the nodes across the digraph. We also

define € = ¢ := , which quantifies the hetero-

let a(G) := w capture the minimum fraction of the node
population that any node is out-connected to. In addition, we let
W(G) = (w;;) and DT (G) := diag([d] df --- df]") de-
note the binary adjacency matrix and the out-degree matrix of G,
respectively. In the sequel, we drop the indexing (G) for brevity.

We are now equipped to state our first set of bounds on
the greatest two singular values of GG under certain regularity
assumptions on the digraph.

Proposition 4: Suppose G = ([s], E) is a directed graph in
which every node has its in-degree equal to its out-degree, i.e.,
d = d; for all i € [n]. Then the greatest two singular values
o1 and o9 of the equal-neighbor adjacency matrix A of G satisty
the following inequalities for av > % ande < 1:

0} <1+e+0(?),

1 2 2 1
03 < (—1) + 2¢ (1+— 2) +0(?), (13)
« « «

where O(+) is the big-O notation used in the context of & — 0.
Proof: To simplify our notation, we define D := DT
(where D% is the diagonal matrix of out-degrees) for
the remainder of this proof. Observe that AT = DWW =
D~ 2(D 2WD %)Dz, which means A" is similar to the nor-
malized adjacency matrix defined as Ay := D 3WD 3.
Ontheotherhand, wehaved . =df (1—¢) <d <d},
for all ¢ € [s], which implies the existence of a diagonal ma-
trix B3 suchthat O < F3 < Tand D =d}  ((1 —e)I +cE3).
Using similar arguments, it can be easily shown that
there exist diagonal matrices F; and F, such that O <
By, By <1, D7 =\dhux((1 -5+ 5E1) +0O(?), and
D% = \/ﬁ(f + £E>) 4+ O(e?). As aresult of this and some
simplification, we obtain AT — Ay = —£((Ey —I)AT +

12)

ATE5) + O(e?). In conjunction with standard bounds on sin-
gular value perturbations (e.g., see [49]) and in light of the
similarity of D'WD'WT and D2 WD W'D 2, this
implies the following:

05(4) = 0;(AT) = /1, (DIWD W) 4 0y (A7)
+ O(e%).

We now bound o1 (A) and o5(A) individually. As for o1 (A), the
derivation (14) and the fact that o1 (A) = o1 (A ") imply

(14)

01(4) < (1— &) L (DWD-TWT)

= JM(DIWDIWT)(1 + ) + O(E). (15)
So, itis enough to bound A; (D~*W D~1WT'). For this purpose,
note that A being column-stochastic implies that D™'TW1 = 1
and hence also that W1 = D1. Besides, our assumption on
in-degrees and out-degrees can be expressed as Z;Zl wij =
> 5= wji foreachi € [s], orequivalently, W1 = W1 = D1.
As a result, we have D~'WT1 = 1. Thus, D'WD W' =
ATD'WTisa product of row-stochastic matrices and hence,
it is row-stochastic in itself. Thus, A1 (D 'WDW7T) =1
and (15) implies (12).

It remains to prove (13). We do this by using Theorem 2.2
of [52], which helps derive a bound in terms of o; and the
minimum positive entry § of the matrix D~ 'W D~ 'W7T, We
first note that (D 'WDWT),; > ((2;[1))25 ,
using the fact that the number of commonfi\xout—neighbors of any
two nodes 7, j € [s] is at least (2a — 1)s. We can now apply
Theorem 2.2 of [52] by setting © = % in the theorem (because

which is derived

% 1, as explained above, is the unit-norm principal eigenvector
of D'WD~1WT). Thus,

162
Jo(D WD W) < 2y (- wp Ty - Go D
(dmax)
2 1 )
=1- <a_o<2) (1—2e) 4+ O(e7),
(16)
where the last step holds because djf,, = <.
Combining (12), (14) and (16) now gives
(A) < /1 21 (1—2¢) + O(e2) + e + O(?)
o |- = - .
A= a a?

Squaring both sides and rearranging the terms results in (13).0J

Remark 1: Observing the bounds in Proposition 4, we can see
that setting o = 1, which corresponds to G being a clique, in the
bounds yields o1 < 14 O(e) and 02 = O(e). These inequali-
ties, for € < 1, are tight with respect to the well-known lower
bounds o1 > 1 and o2 > 0. This implies that the bounds (12)
and (13) can be expected to be reasonably tight for high edge den-
sity (i.e., whenever o =~ 1). Another implication of the bounds
is decreasing e, which measures how irregular the digraph is,
leads to (13) becoming sharper.
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The above singular value bounds are especially tight for
digraphs that are approximately regular (or digraphs that do not
exhibit significant variations in their in-degrees and out-degrees)
since such digraphs satisfy ¢ < 1. This happens in practice,
when the D2D clusters are dense, such as in the wireless setting
where the nodes are close to each other or when they can move
and communicate over time). Furthermore, the same holds for
the condition on «vin Proposition 4 (i.e., a > %), which is always
met when the clusters are dense. Thus, we expect Proposition 4
to apply, for example, to local wireless mesh networks where
devices are in close proximity with rich connectivity [19] and
also to swarms of UAV networks where the UAVs communicate
while traveling together in close groups [53].

However, the bounds (12) and (13) are obtained under the
assumption that every node has its in-degree equal to its out-
degree, which can be restrictive in practical settings. This ob-
servation further motivates us to find a new set of singular
value bounds that work well under milder assumptions. We thus
provide the following bounds, which not only relax the said
restrictive assumption, but also apply to digraphs with more
general out-degree distributions (and hence subsume digraphs
with wider out-degree variations).

Sy di;‘r‘lax_dmin 7
Proposition 5: Let p = =max—=in where dyy,, denotes the
maximum in-degree of the digraph G. If o > 1 we have the

following bounds:

02 <1+, (17)

(1—e)*(1-a?y) ((1-e)’(A—a?;)—a)

2
o3 < 1+¢p—
? 5(enet + 1) (Enet -1+ é)

)

(18)

where gpet ;=@ + £ and vy := 1 — 1

Proof: The proof is carried out based on lengthy computa-
tions and upper bounding techniques that involve using bounds
on the minimum and maximum entries of the Perron eigenvector
of certain positive matrices associated with the digraph G. For
the detailed proof, please see the supplementary material. [

The bounds obtained in Proposition 5 are particularly effective
when the D2D cluster digraphs are dense but moderately irreg-
ular. This is often the case in practical systems, when there is
communication heterogeneity (e.g., in wireless sensor networks
consisting of sensors with different radii).

In conjunction with Theorem 3, the bounds derived in Propo-
sitions 4 and 5 capture the inherent dependence of the expected
optimality gap, and hence that of the convergence rate, on the de-
gree distributions of the D2D clusters. In particular, upon having
approximately regular D2D clusters, the bounds in Proposition 4
along with the result of Theorem 3 determine the convergence
rate of Algorithm 1. The same holds when using the result
of Proposition 5 with Theorem 3, which will characterize the
convergence rate of Algorithm 1 upon having irregular D2D
clusters.

VII. MOTION-PLANNING ALGORITHM

Having characterized the dependence of the convergence rate
on the deviation of the cluster topologies from digraph regularity,

o0, e
0. ®
(6] b .'AP [3)
¥ . .

o to .
| e ."

2 (1] < e
x

Fig.4. Schematic diagram of a typical cluster region and our motion-planning
configuration. The U-nodes are blue and the C-nodes in red. The purple solid
circle is the geometric center of the four closest U-nodes.

we now develop a method aimed at making cluster digraphs
more regular. This method is a motion-planning algorithm that
assumes that some of the mobile clients in the network have
physical trajectories that can be controlled with a high prob-
ability. Such clients will be referred to as control nodes or
C-nodes and the remaining will be called uncontrollable nodes
or U-nodes. The objective of our algorithm is to reduce the
spread in the out-degree distribution of each cluster digraph
by steering the C-nodes within the cluster to U-nodes with
low out-degrees, thereby enabling link formations between the
concerned C-nodes and U-nodes.

Our algorithm makes the following assumptions.

1) Every U-node changes its velocities arbitrarily but peri-
odically with a period A > 0.

2) Between consecutive velocity changes, every U-node
makes a sojourn at its current location for a short duration
of time § < A, during which it may make measurements
or record observations pertaining to tasks that are inde-
pendent of the model training process of interest. During
such sojourns, every C-node approaches (i.e., enters the
sensing radius of) the U-node it is assigned to with a high
success probability p4,i.e., 1 —pa < 1.

3) Suppose client 7 is a C-node assigned to client j, which is
a U-node. Then, given that ¢ has entered the sensing radius
of j, we assume that ¢ and j transmit to each other with a
high probability pr (in the sense that 1 — pyr < 1).

On the basis of these assumptions, we define a control failure
as the event that a given C-node fails to either (a) enter the sensing
radius of the U-node that it is assigned to, or (b) to transmit
and receive local scaled cumulative gradients to and from the
concerned U-node. This failure probability pr is easily seen to
be given by pr = (1 — pa) +pa(l —pr) < 1.

To describe our algorithm in detail, we first need to collect
all the U-nodes with the minimum out-degree into the set
Smin, and we need to define a function that arranges all the
subsets of Spin satisfying a certain condition in a specific
order. To this end, for every natural number s < |Spin|, we
let Sg: {1,2,..., (Isrgi“‘)} — 2%min be the function that maps
every index 7 < (‘S“;‘“I) to the i-th set in the lexicographic
ordering of all the s-sized subsets of Spyip-

We now describe the steps of our motion-planning algorithm,
each iteration of which corresponds to one sojourn period of
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the uncontrollable nodes. As before, the algorithm assumes for
each cluster the presence of an access point (AP) that is located
in the same cluster region as the mobile clients comprising the
cluster (see Fig. 4) and is therefore available to the clients for
short-distance communications.? For any j < n( where n( Dis
the number of control nodes in cluster ¢, we now descrlbe the
steps performed by the j-th node within cluster ¢ as part of any

one iteration 7.

1) The AP assigned to cluster ¢/ measures and collects
the velocities and the positions® (location coordinates
{(zi(7),yi(7)) re < i < n((f)}, where z;(7) and y;(7)
are the x- and y-coordinates of the U-node ) of all the
U-nodes in the cluster, which we index by {i € V; : ¢ <
1< ng)}.

2) It then computes the out-degrees of the U-nodes using its
knowledge of the sensing radius and then transmits these
out-degrees as well as the location coordinates computed
in the previous step to every control node (C-node).

3) C-node j performs the following steps to determine its
destination (the physical location within its cluster region
that it should travel to during the sojourn times of the
U-nodes):

a) It identifies the set Sp,i, of U-nodes with the minimum
out-degrees.

b) It sets S := Snin, s := |S|, and determines whether the
geometric center (x5(7), ys (7)) (defined as the arithmetic
mean of the location coordinates { (z;(7), y; (7)) : i € S})
of the s U-nodes within S lies in the intersection /g of the
sensing regions (defined by the sensing radius) of all of
the s U-nodes. If (x5(7),ys(7)) € Is, C-node j chooses
(zs(T),ys(7)) as its destination.

¢) If (xs(7),ys(7)) ¢ Is, the C-node decrements the value
of s by 1, generates a set S C Shyin such that S is the first
set of size s to appear in the lexicographic ordering of the
subsets of Spin. It then updates (zs(7),ys(7)) and Is
accordingly and chooses (zs(7),ys(7)) as its destination
under the same condition as in the previous step.

d) Ifitstill finds (xs(7), ys(7)) ¢ S, then it keeps repeating
the previous step until the repetition eventually yields
(xs(7),ys(7)) € S, each time choosing S as the next
subset in the lexicographic ordering of subsets of size s.
In doing so, it decrements the value of s by 1 whenever
all the subsets of higher sizes are found to be exhausted.

4) Node j then travels to the destination (zs(7), ys (7)) dur-
ing the sojourn period with probability p 4 and establishes
bidirectional links with the concerned set of U-nodes with
probability pr.

2These communications do not constitute D2S interactions as the server is
assumed to be a distinct entity located far away from every cluster region.

3We assume this location-sharing between the clients and the AP introduces
negligible energy overhead compared with model transmissions. In applications
such as mobile edge computing, intelligent traffic systems [54], and cellular com-
munications, such information may already be collected (e.g., through Global
Positioning Systems (GPS) [55]), and can be shared with the concerned APs
(e.g., base stations, road-side units) using established signalling protocols [56],
[57].

Algorithm 2: Motion-Planning for Control Nodes.

Inputs: n, ¢, number of iterations 77, sensing radius r,

{(zi(T),ys(1)) re<i<m,7€{0,A,...,(Tr — 1)A}}
Output: {(zs(7),ys(7)) : 7€ {0,A,...,(TT — 1)A}}
1: forle{l,2,...,c} do
2: Set

S Smin={j:c<j< n,dj' = MiNecji<n d;t}

3: Set s < |Smin|

4. while s > 0 do

5: Set (z5(7),ys(7)) 157 Lses(®i(1), 4i(7)),
6: Ig + Uieg{(l‘,y) :

(z —2i(1)* + (y — wi(7))* < r?}

7: if (zs(7),ys(7)) € Is: then

8: Break

9: if (zs(7),ys(T )) ¢ Is: then

10: Setig + S;1(9)

11: if i < (1Su): then
12: Set S «+ S(is+1)
13: else

14: Sets+s—1

15: Set S «+ S,(1)

16: end

17: return (zg

(1), ys(7))

Using the above notation, Algorithm 2 provides a pseudo-
code for our motion-planning method, which we simulate in the
next section to show how it effectively contributes to savings in
the total communication energy by reducing the number of D2S
transmissions required to ensure any given convergence rate.

VIII. NUMERICAL VALIDATION

We now perform numerical experiments to demonstrate that
Algorithm 1 achieves substantial reductions in the total commu-
nication energy when compared to certain baselines, whereas
Algorithm 2 enhances these energy reductions by further reduc-
ing the number of devices required to be sampled by the server
in Algorithm 1. Moreover, these reductions are achieved without
sacrificing testing accuracy.

A. Implementation

1) Network Architecture: We simulate a network consisting
of n =70 edge devices partitioned into ¢ = 7 clusters with
ny = 10nodes per cluster. In every global aggregation round, the
digraph for each cluster £ € [¢] is constructed using the Random
Direction Mobility Model (RDMM) [58] as follows: we assume
that every client has a sensing radius* of 7 = 15 meters and
that all the clients belonging to any given cluster are restricted
to move within a square region having dimensions 45 m X
45 m. Each client performs 77 = 20 rounds of motion, with
each new round starting with the client changing its direction
of motion uniformly at random independently of other clients

4This means that the client detects the presence of another client in its vicinity
and is able to establish a communication link with the latter if and only if the
distance separating the clients is at most 7.
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and its own past directions of motion. In other words, if we use
a 2-dimensional rectangular coordinate system to specify client
locations within the cluster region, then regardless of our choice
of the coordinate axes, the angle ;(7) made by the velocity
vector of any client ¢ with the x-axis in the 7-th round of motion
is arandom angle uniformly distributed over {0°,1°,...,359°},
and {6;(7) : i € [n]} are independent random variables. An
exception to the above update rule is encountered when the
client hits any of the four boundaries of the cluster region during
round 7 — 1, in which case 6;(7) is chosen uniformly at random
from the set of all whole number angles (measured in degrees)
that enable the client to remain within the cluster region. For
example, if the client hits a boundary parallel to the x-axis, then
0;(7) is uniformly distributed over {0°,1°,...,180°}.

At the end of each round of motion, any two clients ¢ and j that
are separated by r or a distance smaller than r establish either of
the two unidirectional links (¢, j) or (j,%), each independently
of the other with probability 0.5.

2) Datasets: All our simulations are performed on
MNIST [59], Fashion-MNIST (F-MNIST) [60], and
CIFAR-10 [61] datasets. The MNIST dataset consists of
70 K images (60K for training and 10 K for testing), and each
image is a hand-written digit between 0 to 9 (i.e., the dataset has
10 labels). The same applies to the FMNIST dataset, the only
difference being that it consists of images of fashion products.
On the other hand, CIFAR-10 consists of 60 K images (50 K
for training and 10 K for testing), and each image belongs to
one of 10 classes (e.g., automobiles, frogs, etc.).

3) ML Models and Implementation: We use the neural net-
work model from [3] along with one of its variants in our
simulations. In particular, for all the experiments performed
using the MNIST and FMNIST datasets we use a convolutional
neural network (CNN) with two 5 x 5 convolution layers, the
first of which has 32 channels and the second 64 channels, where
each of these layers precedes a 2 x 2 max pooling, resulting
in a total model dimension of 1,663,370. On the other hand,
for all the experiments performed using CIFAR-10, we use a
more complex CNN with four 5 x 5 convolution layers, which
we obtain by adding two extra layers to the aforementioned
two-layer CNN. We use the PyTorch implementation of this
setup provided in [62] with cross-entropy loss. Each dataset is
distributed among the clients in a non-i.i.d. manner: the samples
(from either of the two datasets) are first sorted by their labels,
partitioned into chunks of equal size, and each of the 70 clients
is assigned only two chunks (i.e., each client will end up having
only two labels). This results in extreme data heterogeneity,
which leads to strong empirical guarantees for our approach.

All of our simulations are performed using the following hy-
perparameter values/ranges: 7' = 5, tiyax € {15,30}, and 7, =
0.01(0.1)* where t is the global aggregation index.

B. Results

We compare the energy vs. accuracy trade-offs associated
with Algorithm 1 with those associated with two baselines, Fe-
dAvg [3] and collaborative relaying (COLREL) [12]. The second
baseline is a recently proposed semi-decentralized FL algorithm
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Fig. 5. Total communication energy/cost vs. testing accuracy under high D2S
connectivity (Dataset: MNIST).

that incorporates single-step averaging-based updates. Under the
D2D and D2S connectivity constraints introduced in Section III,
COLREL is a variant of FedAvg that incorporates one round
of column-stochastic D2D aggregations before every global
aggregation round but does not provide any criterion to control
the sampling size m, which we assume to be fixed throughout
its implementation. The fundamental difference between our
method and COLREL is that our method takes into account the
change in the connectivity of D2D clusters, optimally tuning the
value of m according to the set of novel upper bounds on the
singular values we obtained in Section VI.

We consider these tradeoffs under different D2S connectivity
levels. Intuitively speaking, on one hand, as the D2S connectivity
improves, we expect to see that our algorithm leads to a lower
energy and cost savings as compared to FedAvg. This is because
our algorithm will naturally collapse to FedAvg and D2D com-
munications will become less useful since more devices would
engage in uplink communications, which by itself degrades
the benefit of D2D local aggregations. On the other hand, as
D2S connectivity improves, we expect to see that our algorithm
achieves significant energy savings as compared to COLREL.
This is because the impact of tuning m becomes more prominent
when there is a possibility of D2S communications.

All of the following plots and discussion are based on the
assumption that the ratio of the energy required for D2D commu-
nication to that of up-link (D2S) transmission, denoted by ggrj R
equals 0.1. This is a pessimistic estimate in favor of D2S consid-
ering that most ratios reported in the literature [11], [63], [64]
take values less than 0.1. Thus, the communication costs reported
are (#D2S transmissions) + 0.1 x (#D2D transmissions).

1) Case 1. Cost Savings Under High D2S Connectivity:
When the PS has a high downlink bandwidth and the connec-
tivity between the devices and the PS is reliable, implementing
FedAvg or COLREL has the effect of setting m to a value close
to n. As an example, we implement FedAvg and COLREL with
m = 57 and m = 52, respectively (note that COLREL requires
fewer up-link transmissions because it uses D2D aggregations
in addition to global aggregations). The results for MNIST are
shown in Fig. 5: choosing ¢max = 0.06 results in Algorithm 1
achieving a testing accuracy of 90% while consuming about
46% less energy than Fed Avg (thereby incurring proportionately
lower communication costs). With respect to COLREL, the
energy saving is even higher because COLREL also expends
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Fig. 6. Total communication energy/cost vs. testing accuracy under high D2S
connectivity (Dataset: F-MNIST).
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Fig. 7. Total communication energy/cost vs. testing accuracy under high D2S

connectivity (Dataset: CIFAR-10).

energy on D2D aggregations with relatively little gain in testing
accuracy.

Repeating a similar experiment on FMNIST results in a
similar performance, depicted in Fig. 6. We see that Algo-
rithm 1 (with ¢, = 0.02) consumes about 30% less energy
than COLREL for achieving a testing accuracy of 70%. We also
repeat this experiment on CIFAR-10 with the more complex
four-layer CNN described in Section VIII-A. Here, we observe
that Algorithm 1 (with ¢, = 0.06) consumes 40% less energy
than COLREL for achieving a testing accuracy of 63%.

2) Case 2. Cost Savings Under Low D2S Connectivity:
When the connectivity between the devices and the PS is poor,
implementing FedAvg or COLREL has the effect of setting
m to a value significantly smaller than n. As an example, we
implement FedAvg and COLREL with m = 26 and m = 15,
respectively. Choosing ¢,.x = 0.2 results in Algorithm 1 con-
suming about 30% less energy than FedAvg for achieving a
testing accuracy of 90% on MNIST, as shown in Fig. 8.
Moreover, the figure also shows that our algorithm does not
compromise on the convergence rate and attains testing accuracy
levels that are comparable to the baselines after each global
aggregation. The cost saving is lower than in Case 1 as we
expect because the singular value bounds incorporated by our
algorithm into its choice of m(t) are looser for higher values of
the link failure probability p. Repeating a similar experiment on
FMNIST results in a similar performance, depicted in Fig. 9. We
also repeat this experiment on CIFAR-10 with the more com-
plex four-layer CNN described in Section VIII-A. As shown in
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Fig. 8.  Left-subplot: Total communication energy/cost vs. testing accuracy

under low D2S connectivity (Dataset: MNIST). Right-subplot: The plot shows
that our algorithm attains testing accuracy levels comparable to those of our
baselines after each global aggregation.
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Fig. 9. Total communication energy/cost vs. testing accuracy under low D2S
connectivity (Dataset: F-MNIST).

Fig. 7, we observe that Algorithm 1 (with ¢,,x = 0.2) consumes
30% less energy than COLREL for achieving a testing accuracy
of 63%.

C. Motion-Planning Algorithm

Having shown how our connectivity-aware learning algorithm
achieves significant energy savings by reducing the value of m,
which denotes the number of D2S transmissions, we now show
how Algorithm 2, our motion-planning method, significantly
reduces the required value of m as determined by Step 11 of
Algorithm 1.

Specifically, we assume that the trajectories of the U-nodes
evolve according to the Random Direction Mobility Model as
described in Section VIII-A, with each U-node pausing for a
sojourn at the end of every round of motion. We then compute
the required value of m using the expression provided in Step
11 of Algorithm 1. We perform 100 iterations of this procedure
with n = 140 nodes and plot the average value of m against
¢, the number of control nodes, for different values of pg, the
control failure probability.

We observe from Fig. 11 that the value of m decreases
as the number of control nodes increases, which implies that
our motion-planning method contributes to energy savings by
reducing the required number of energy-intensive D2S com-
munications. We also observe that if 10% of the nodes are
controlled, the value of m decreases by about 12%, and if 20%
of them are controlled, the value of m decreases by about 14.6%.
Moreover, we observe that our algorithm is robust to an increase
in the probability of control failures.
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Fig. 10.  Total communication energy/cost vs. testing accuracy under low D2S
connectivity (Dataset: CIFAR-10).
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Fig. 12.  Number of D2S transmissions m versus the number of control nodes
c for a threshold of ¢pax = 0.02 and 77 = 10 rounds of motion.

The reduction in m is slightly less remarkable when the value
of T isincreased from 5 to 10 (see Fig. 12). This may be because
having greater rounds of motion result in the uncontrolled cluster
digraph being less sparse and irregular, thereby creating less
room for improvement in digraph regularity using our motion-
planning of C-nodes. Nevertheless, we still reduce the number
of D2S transmissions by 11% (respectively, 7%), by using only
c = 4 (respectively, ¢ = 2) C-nodes.

D. Scalability and Generality

We conclude this section with a few remarks on the scalability
and generality of our proposed methods. We also comment
briefly on the potential shortcomings of our approach.

First, note that neither the connectivity-aware algorithm (Al-
gorithm 1) nor the motion-planning algorithm (Algorithm 2)
imposes any restriction on ¢, the number of clusters in the D2D
network, or on ny, the number of clients within any cluster.
Moreover, the numerical values of the singular value bounds
derived in Section VI are independent of n, ¢, and {ny : £ € [n]},
because these bounds can be seen to depend only on the ratios
of the node degrees and not on the absolute values of these node
degrees. As such, we expect both algorithms are scalable with
the number of devices.

Second, the computational steps that define both of our pro-
posed algorithms do not impose restrictions on the dataset or the
ML model employed. Also, our bounds are simple polynomi-
als requiring low complexity computations. Hence, we expect
both the algorithms to retain their energy-saving capabilities in
other, real-world network settings. This is consistent with our
simulation results, which show that Algorithm 1 continues to
achieve energy saving levels superior to both the baselines even
when we switch to a deeper CNN and a more complex dataset
(namely, CIFAR-10). These results are plotted in Fig. 10.

On the contrary, the development of Algorithm 1 is based on
theoretical analysis that is not intended for highly irregular D2D
networks (i.e., communication digraphs in which the minimum
out-degree is negligible compared to the maximum out-degree).
This motivated our motion-planning algorithm (Algorithm 2),
which uses client mobility to increase the regularity of the
communication digraphs associated with each D2D cluster. Nev-
ertheless, it is worth exploring whether Algorithm 1 can be en-
hanced by replacing the current singular value bounds in Step 10
with improved singular value bounds that can account for greater
levels of digraph irregularity. The derivation of such improved
bounds is likely to introduce significant technical difficulties
arising from the heterogeneity of the edges inherent in irregular
digraphs. To address these challenges, one possible starting point
is to partition the network into multiple approximately regular
digraphs, analyze each of these separately, and then examine
the properties of the isoperimetric numbers of the resulting edge
cuts.

Another potential drawback of Algorithms 1 and 2 is that they
may not perform as well in applications involving sparse D2D
networks. This shortcoming arises due to the fundamental limits
on communication that are imposed by the lack of D2D links
in sparse networks. In other words, it is not possible to design
energy-efficient algorithms for sparse D2D networks by merely
exploiting the graph-theoretic properties of such networks. One
possible approach to address this is to partition the D2D network
into a larger number of clusters so as to make each of the clusters
small and dense (since smaller networks can achieve higher edge
densities with smaller node degrees).

IX. CONCLUSION

We have investigated averaging-based semi-decentralized
learning over clustered D2D networks modeled as time-varying
digraphs. We first revealed the connection between the singular
values of the column-stochastic matrices used for D2D model
aggregations and the convergence rate of the learning process.
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We then derived a set of upper bounds on these singular values in
terms of the degree distributions of the cluster digraphs, and we
used the resulting bounds to design a novel connectivity-aware
FL algorithm that enables the central parameter server to tune
the number of up-link transmissions by using its knowledge
of the time-varying degree distributions of clusters. We also
used the bounds to motivate a motion-planning algorithm that
aids our former algorithm in further reducing the number of
energy-intensive D2S transmissions.

Future works include obtaining upper bounds on singular
values under more general assumptions, and obtaining optimal
device sampling schemes for irregular clusters. An empirical
assessment of our algorithm with the baselines functioning over
distinct D2S connectivity regimes is also remained open.
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