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Abstract—Devices located in remote regions often lack coverage
from well-developed terrestrial communication infrastructure.
This not only prevents them from experiencing high quality
communication services but also hinders the delivery of machine
learning services in remote regions. In this paper, we propose a new
federated learning (FL) methodology tailored to space-air-ground
integrated networks (SAGINs) to tackle this issue. Our approach
strategically leverages the nodes within space and air layers as
both (i) edge computing units and (ii) model aggregators during
the FL process, addressing the challenges that arise from the
limited computation powers of ground devices and the absence of
terrestrial base stations in the target region. The key idea behind
our methodology is the adaptive data offloading and handover
procedures that incorporate various network dynamics in SAGINs,
including the mobility, heterogeneous computation powers, and
inconsistent coverage times of incoming satellites. We analyze the
latency of our scheme and develop an adaptive data offloading
optimizer, and also characterize the theoretical convergence bound
of our proposed algorithm. Experimental results confirm the
advantage of our SAGIN-assisted FL methodology in terms of
training time and test accuracy compared with various baselines.

Index Terms—Federated learning, Space-air-ground integrated
networks, LEO satellites, Data offloading and handover

I. INTRODUCTION

As the proliferation of edge devices, including mobile phones,
smart vehicles, and Internet-of-Things (IoT) sensors, continues
to escalate, they generate vast quantities of data at the wireless
edge. In response to this surge, federated learning (FL) [1]–
[3] has emerged as a powerful method for harnessing these
distributed data sources to train machine learning (ML) models.
Over recent years, FL has garnered significant attention and has
been rigorously explored across various configurations: from
single-server environments [1], [4], hierarchical structures [5],
[6], to decentralized networks [7], [8]. This body of research,
spanning foundational studies to implementations, underscores
the adaptability and potential of FL in optimizing data-driven
insights at the network edge.
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A. Motivation and Key Questions

Despite the advances in FL frameworks, they mostly rely
heavily on terrestrial communication infrastructures for model
aggregation during the training process. This reliance renders
most existing FL methods unsuitable for areas lacking terrestrial
communication facilities. Specifically, many remote regions of
the Earth, such as mountains, forests, deserts, and coastal areas,
do not have well-developed base stations, even though they are
home to numerous ground devices, such as IoT sensors, that
collect valuable data. The data gathered in these locations are
essential for the development of intelligent services tailored
to a variety of applications: (i) Disaster predictions in coast,
mountain, and forest areas that lack a base station. To achieve
this, FL over data samples collected from various types
of sensor devices in these remote regions is required. (ii)
Autonomous vehicle applications in rural regions. Since these
regions have different traffic patterns compared to urban areas,
FL needs to be conducted over data samples of vehicles in
rural regions. (iii) Medical applications, which is one of the
key use cases of FL. Hospitals located in different areas of
the world may want to collaboratively train a global model
for disease prediction. In such cases, hospitals located in rural
regions can take advantage of satellites based on our approach.
(iv) Smart agriculture across farms where a well-developed
terrestrial base station is unavailable. In this use case, FL
should be conducted using data samples collected from different
farms. Decentralized FL methods [7], [8], although designed
to mitigate some of these challenges, encounter significant
obstacles in environments where communication links between
devices are unreliable or non-existent, as often found in disaster-
affected or maritime regions. Consequently, there is a need for
an FL methodology that is specifically tailored to remote areas,
ensuring that the distributed data collected in those regions can
be leveraged to develop intelligent services.

Space-air-ground integrated networks (SAGINs) have re-
cently emerged as a groundbreaking solution within the wireless
communications community [9], [10], aimed at extending
wireless coverage across the globe, particularly in isolated and
remote regions. In addition to the terrestrial nodes located at the
ground layer, SAGINs leverage satellites in the space layer and
air nodes, such as unmanned aerial vehicles (UAVs), in the air
layer. This multi-layered architecture enables SAGINs to either
complement or entirely supplant traditional terrestrial networks
in delivering communication services. Furthermore, SAGINs

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3459090

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on September 27,2024 at 05:32:06 UTC from IEEE Xplore.  Restrictions apply. 



are not limited to providing mere connectivity; they also have
the potential to act as edge computing platforms [11]–[13]. In
particular, they can undertake computation tasks offloaded from
terrestrial, resource-constrained devices, such as IoT sensors.
The integration of SAGINs thus promises not only to bridge
the connectivity gap in underserved areas but also to enhance
the computational capabilities at the network edge, opening
new avenues for advanced applications and services.

Inspired by the capabilities of SAGINs, this paper sets out to
explore the orchestration of FL within SAGINs to facilitate FL
in remote areas. This brings forth a set of novel challenges that
are absent in conventional FL implementations over terrestrial
networks. Our investigation is driven by research questions
aimed at unlocking the full potential of FL in the context of
SAGINs. First, how should we optimally utilize the unique
components of SAGINs, including satellites, air nodes, and
ground devices, during the FL process? Second, how should we
address the network dynamics in SAGINs (e.g., dealing with the
mobility, varying computation capacities, and the inconsistent
coverage times provided by satellites) during FL? Third, can
we theoretically guarantee the convergence of FL despite the
inherent challenges of SAGINs, such as variable network
conditions and limited connectivity? Despite the importance
of deploying FL in remote regions for intelligent service
development, these questions have been largely overlooked in
existing research. Our goal is thus to fill this gap by providing
insights and solutions that enable effective FL over SAGINs.

B. Main Contributions

In this paper, we propose a FL methodology that takes
advantage of both computation and communication resources
of space/air/terrestrial nodes in SAGINs to provide intelligent
ML services over remote areas. Compared to prior FL methods
that rely on base stations, our approach strategically leverages
the space and air nodes as both (i) edge computing units and
(ii) ML model aggregators during the FL process, to address
the challenges arising from the limited computation powers of
ground devices and the absence of terrestrial base stations in
the target remote region. Under this framework, we propose
an adaptive approach to optimize data offloading depending on
the network dynamics of SAGINs, including the inconsistent
computation capabilities and coverage times of low-earth orbit
(LEO) satellites. Considering the mobility of LEO satellites,
we also propose an optimized data/model handover strategy
where each satellite transmits the trained model and its dataset
to the next incoming satellite to ensure a seamless ML model
training process. By incorporating the handover delay into
our latency modeling, we optimize the amount of data being
offloaded across the layers in SAGINs during the FL process.

Overall, our contributions can be summarized as follows:
• New methodology: We introduce a new SAGIN-based FL

methodology with adaptive data offloading and handover,
which facilitates intelligent ML services in remote areas
without the need for terrestrial communication infrastruc-
tures. Our scheme strategically utilizes the space and air
nodes as edge computing units and model aggregators,
and captures the key features of SAGINs including

mobility of satellites, time-varying resources and coverage
times of incoming satellites, hierarchical architecture, and
computation resources of space/air/terrestrial nodes.

• Analysis and optimization: We analyze the latency of
the proposed algorithm, and propose an optimized inter-
layer data offloading scheme and an intra-layer data
handover strategy for the space layer to minimize the
delay. This optimization process takes into account the
data transmission delay, data processing delay, and model
aggregation delay altogether, as well as various network
dynamics in SAGINs. We also analytically characterize
the convergence bound of our algorithm, and show that the
model converges to a stationary point for non-convex loss
functions even when adaptive data offloading is applied.

• Simulations under practical modeling: We provide
extensive experiments using three FL benchmark datasets.
To simulate real-world scenarios, we adopt the Walker-Star
function to model a satellite constellation and measure
the coverage time of each satellite over the target re-
gion. Experimental results demonstrate that the proposed
methodology can achieve the target accuracy much faster
with less training latency compared to various baselines.

To the best of our knowledge, this is one of the earliest
works to successfully integrate FL with adaptive data offload-
ing/handover optimization across space-air-ground layers, while
accounting for various network dynamics specific to SAGINs.

C. Related Works
FL over terrestrial networks: FL has been actively studied

in terrestrial networks where the server (e.g., base station)
aggregates the client models in the system. Most of them
consider a single-server setup [1], [4], [14]–[17] while some
researchers also study multi-server scenarios [5], [6], [18]–[20].
In [7], [8], [21], [22], the authors investigate decentralized FL
where each client aggregates the models via device-to-device
communications with its adjacent clients, without relying on the
server. Data offloading strategies are also studied in FL where
each client offloads a portion of its local dataset to the server
[23]–[25]. However, prior works on FL are mostly inapplicable
in remote regions, where well-developed base stations are not
available and communication links between devices are unstable
(e.g., disaster or maritime regions). Compared to these works,
we facilitate FL in remote areas by strategically leveraging
non-terrestrial network elements, specifically SAGINs.

FL with UAVs or satellites: Another line of research has
explored FL over UAVs [26]–[28] or satellites [29]–[36], where
either UAVs or satellites collect their own datasets and are
considered as clients. After the local training procedure at
UAVs or satellites, model aggregation and synchronization are
conducted relying on the ground base station [26], [27], [30]–
[33], [36] or directly at the UAVs/satellites [34], [35]. The
problem setup of these studies differs from ours as we focus
on FL over data samples collected at ground devices located in
remote regions. This necessitates interaction between ground
devices and nodes in the space/air layers not only for model
aggregation (to address the lack of base stations in remote
regions) but also for computation offloading (to tackle the
limited computation capabilities of ground devices).
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Some previous works [37]–[40] have focused on the setting
where ground devices collect data and conduct FL assisted by
the UAVs/satellites, similar to our problem setup. Specifically
in [39], the satellite aggregates the models of ground devices
via over-the-air aggregation, without requiring any base stations.
The authors of [37] focus on solving the maze problem using
the deep Q network assisted by the satellites. In [38], [41],
data offloading has been studied for satellite-assisted FL by
considering only the space layer. While these works do not
consider SAGINs, a recent work [40] specifically studied FL
considering space-air-ground layers. However, the nodes in
space and air layers are only used as model aggregators,
not as edge computing units. Compared to all prior works,
the contribution of this work is to adaptively optimize data
offloading across different layers and handover within the space
layer, while taking into account the network dynamics specific
to SAGINs (e.g., heterogeneous coverage time and resource
availability of current/incoming satellites) during FL.

Space-air-ground integrated networks (SAGINs): Moti-
vated by the potential for providing wide wireless coverage
across the Earth, SAGINs [9] have been actively studied in
the literature. Outage analysis is conducted for SAGINs in
[10], while network control methodologies for SAGINs are
considered in [42], [43]. In [11]–[13], [44], the authors focused
on edge computing in SAGINs, where ground devices offload
their computation tasks to the space and air layers. Compared
to existing studies on SAGINs, the unique position of this work
lies in the integration of distributed/federated ML, SAGINs, and
adaptive data offloading/handover. Beyond enhancing wireless
coverage, we provide additional guidelines for intelligent ML
services in remote areas with the assistance of SAGINs.

The rest of the paper is organized as follows. We describe
the problem setup in Section II, followed by an overview of
the methodology in Section III. In Section IV, we analyze the
latency of our scheme and optimize data offloading. Theoretical
convergence results are provided in Section V, and numerical
results are presented in Section VI. Finally, we draw conclusion
and future directions in Section VII.

II. PROBLEM SETUP

We consider a SAGIN that is composed of space, air, and
ground layers. We let G be the set that consists of K terrestrial
devices located at a specific target region that lacks a base
station. We denote Dk = D

l

k
→ D

o

k
as the local dataset of

device k with D
l

k
↑D

o

k
= ↓, where D

l

k
is the privacy-sensitive

dataset that should be kept locally at each device, while D
o

k

consists of non-sensitive samples that can be offloaded to
other nodes. We define ωk = |D

o

k
|/|Dk| as the portion of

non-sensitive data samples at ground device k, where |D|

represents the number of samples in dataset D. This problem
setting covers various applications, including (i) autonomous
vehicles or mobile phones that collect data with both non-
sensitive classes (e.g., traffic lights, trees) and sensitive classes
(e.g., humans), (ii) hospitals with data of patients who have
agreed with the privacy policy and who have not agreed with
it, (iii) sensor devices for disaster predictions in coastal regions
that mostly collect non-sensitive samples.

In the air layer, we consider a set A with N air nodes
(e.g., UAVs) covering the target region. Each air node n is
associated with the device set Gn, where G = →

N

n=1Gn holds
with Gn1 ↑ Gn2 = ↓ if n1 ↔= n2. In the space layer, we
consider LEO satellites that are moving according to their own
orbits. Each ground device can directly communicate with the
corresponding air node in the air layer, while each air node
can communicate with the satellite that is covering the target
region. Fig. 1 illustrates the overview of our system model.

The goal is to train a shared global model w→ tailored to
the datasets collected at ground devices in G. Specifically, we
aim to minimize the following objective function:

F (w) =
K∑

k=1

εkFk(w), (1)

where εk = |Dk|∑
j→G |Dj | is the relative dataset size of device

k. Fk(w) is the local loss function of device k defined as
Fk(w) = 1

|Dk|
∑

x↑Dk
ϑ(x;w), where ϑ(x;w) is the loss (e.g.,

cross-entropy loss) obtained with data sample x and model w.
There are several key challenges in achieving the above goal

in remote areas. First, it is difficult to aggregate the trained
models within such regions without a base station. Secondly,
the terrestrial devices (e.g., IoT sensors) are often equipped
with low computation capabilities, significantly slowing down
the training process. In this work, we use space and air nodes
as model aggregators to solve the first challenge, and also use
them as edge computing units to process data samples offloaded
from the ground layer, to tackle the second challenge.

III. METHODOLOGY OVERVIEW

In this section, we provide an overview of our methodology
that achieves the aforementioned objectives in SAGINs. The
proposed algorithm consists of R global rounds indexed by
r = 0, 1, . . . , R↗ 1. In the following, we focus on a specific
round r to describe the process of our scheme.

A. Adaptive Inter-Layer Data Offloading
Let D(r)

G,k
, D(r)

A,n, and D
(r)
S denote the local datasets at node

k ↘ G in the ground layer, node n ↘ A in the air layer,
and the satellite that is currently serving the targeting region,
respectively, at the beginning of round r. Note that we have

D
(0)
G,k

= Dk, ≃k ↘ G, D
(0)
A,n = ↓, ≃n ↘ A, D

(0)
S = ↓ (2)

for r = 0 since data samples are generated at the ground
devices.

Depending on various system environments, inter-layer data
offloading is first performed across the network to obtain the
updated datasets D

(r+1)
G,k

, D(r+1)
A,n , and D

(r+1)
S at the nodes in

each layer. Fig. 1 illustrates example scenarios of adaptive
data offloading depending on the computation capabilities of
the satellites. Intuitively, if the current/incoming satellites have
relatively high computation powers, more data samples can be
offloaded to the space layer. Otherwise, data samples should
be transmitted from the space layer to other layers for load
balancing. The data offloading solution is also affected by the
coverage times of the satellites over the target region.
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Fig. 1: Overview of adaptive data offloading/handover during FL over SAGINs, depending on the current resource availability.

We describe the detailed optimization procedure for our
adaptive data offloading strategy later in Section IV, as it is
built upon the analysis provided in the following subsections.

B. Local Training at Ground and Air Layers
Based on the updated datasets D

(r+1)
G,k

, D(r+1)
A,n , and D

(r+1)
S

obtained from Section III-A, the nodes in the system conduct
local model updates. We first describe the local training
process at the ground and air layers. At the beginning of
global round r, all nodes in the system have the synchronized
model represented by w(r). Starting from the initial model
w(r,0)

G,k
= w(r,0)

A,n = w(r), each ground device k and air node n

updates its model for H local iterations according to

w(r,h+1)
G,k

= w(r,h)
G,k

↗ ϖ
(r)
G,k

⇐̃ϑ
(r+1)
G,k

(w(r,h)
G,k

), h = 0, . . . H↗1, (3)

w(r,h+1)
A,n = w(r,h)

A,n ↗ ϖ
(r)
A,n⇐̃ϑ

(r+1)
A,n (w(r,h)

A,n ), h = 0, . . . H↗1, (4)

where w(r,h)
G,k

and w(r,h)
A,n are the models after h local iterations

at global round r, ϑ
(r+1)
G,k

(·) = 1

|D(r+1)
G,k |

∑
x↑D

(r+1)
G,k

ϑ(x; ·)

and ϑ
(r+1)
A,n (·) = 1

|D(r+1)
A,n |

∑
x↑D

(r+1)
A,n

ϑ(x; ·) are the local loss

functions defined at the corresponding nodes. Also, ⇐̃ϑ
(r+1)
G,k

(·)

and ⇐̃ϑ
(r+1)
A,n (·) denote the computed mini-batch gradients,

where the size of the mini-batch can be set based on the
size of the local dataset. ϖ(r)G,k

and ϖ
(r)
A,n represent the learning

rates at ground device k and air node n, respectively.
The required local computation times (in seconds) at ground

device k and air node n for model updates are expressed as

ϱ
local,(r)
G,k

=
mG,k|D

(r+1)
G,k

|

fG,k

, ϱ
local,(r)
A,n =

mA,n|D
(r+1)
A,n |

fA,n
, (5)

respectively, where fG,k, fA,n are the CPU frequencies (in
cycles/sec) and mG,k, mA,n are the numbers of required
CPU cycles to update the model with one data sample (in
cycles/sample) at the corresponding nodes.

C. Satellite-Side Training and Data/Model Handover
In parallel with the local training process at the air/ground

layers, the current satellite also updates the model using dataset
D

(r+1)
S . Starting from w(r,0)

S = w(r), the model update process
at the satellite can be written as follows:

w(r,h+1)
S = w(r,h)

S ↗ ϖ
(r)
S ⇐̃ϑ

(r+1)
S (w(r,h)

S ), h = 0, . . . H↗1, (6)

where ⇐̃ϑ
(r+1)
S (·) and ϖ

(r)
S are the satellite-side stochastic mini-

batch gradient and learning rate, respectively. The size of the
mini-batch is set to |D

(r+1)
S |/H so that all data samples in

D
(r+1)
S can be processed in H iterations.
Data/model handover: In satellite networks, satellites are

perceived as non-stationary units, where at each snapshot of the
network each LEO satellite covers a different region compared
to other LEO satellites and may have its own specific task
tailored to its coverage area (e.g., edge computing, FL, or
communication services). In our setup, the current satellite
that is covering the target area is responsible for conducting
FL over that region. However, a key challenge is that each
satellite has a limited coverage time over the target region due
to the mobility. This motivates us to consider an intra-layer
data/model handover strategy within the space layer, to ensure a
seamless FL process. Specifically, the current satellite transmits
the updated model and dataset to the incoming satellite before
leaving the target region, so that this new satellite can continue
model training in the space layer using dataset D(r+1)

S during
its coverage period over the target region. These local training
and handover steps are repeated until all data samples in D

(r+1)
S

are processed, based on a series of incoming satellites that will
cover the target region.

The handover delay between the i-th and (i+1)-th satellites
at global round r can be written as follows:

ϱ
hand,(r)
i,i+1 =

Q(w) + q|D
(r+1)
S |

Z
ISL,(r)
i,i+1

, (7)

where Q(w) is the model size (in bits), q is the size of each
data sample (in bits) and Z

ISL
i,i+1 is the transmission rate for

inter-satellite link (ISL) communications between i-th and
(i+1)-th satellites. Referring to [31], [45], we have Z

ISL,(r)
i,i+1 =

B log2(1+
p
(r)
S,iA

Tx
i A

Rx
i+1

Ci,i+1N0
), where B is the bandwidth, p(r)S,i is the

transmit power of the i-th satellite, ATx
i

and A
Rx
i+1 are the Tx

and Rx gains of antenna, Ci,i+1 is the free space path loss
between satellites, N0 is the noise power density.

Latency at the space layer: Based on the above data/model
handover strategy, we now characterize the training latency at
the space layer. Let f (r)

S,i represent the CPU frequency of the i-
th satellite covering the target region at global round r. We also
denote m

(r)
S,i as the number of CPU cycles required to process

one data sample at the i-th satellite at round r. Moreover, let
T

(r)
i

denote the delay until the i-th satellite leaves the coverage
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Fig. 2: Illustration of model training and intra-layer data/model handover procedures at the space layer. If the current satellite is
not able to complete the task within its coverage time over the target region, the next incoming satellite continues local training
after receiving the dataset and the model from the previous satellite to ensure a seamless FL process.

of the target region, measured from the moment when global
round r has started. Trivially, for the satellites that do not join
or leave the region in round r, T (r)

i
becomes infinity.

To gain insights, we start with some examples illustrated
in Fig. 2. Suppose that the first satellite is able to process the
whole dataset D(r+1)

S within the time duration T
(r)
1 . Then, the

local computation delay ϱ
(r)
S,1 (in seconds) at the space layer

can be written as follows:

ϱ
(r)
S,1 = m

(r)
S,1|D

(r+1)
S |

/
f
(r)
S,1. (8)

However, if ϱ (r)S,1 > T
(r)
1 , indicating that the first satellite is

unable to complete the computation before leaving the target
region, data/model handover from the first satellite to the second
satellite is conducted. Note that the number of data samples
that can be processed at the first satellite within time duration
T

(r)
1 is (f (r)

S,1/m
(r)
S,1)T

(r)
1 . Hence, the amount of data samples

that should be processed at the satellites other than the first one
becomes |D

(r+1)
S | ↗ (f (r)

S,1/m
(r)
S,1)T

(r)
1 . Now suppose that the

second satellite can process all |D(r+1)
S |↗(f (r)

S,1/m
(r)
S,1)T

(r)
1 data

samples before leaving the target region. Then the computation
time at the second satellite to finish local training can be

expressed as m
(r)
S,2(|D

(r+1)
S | ↗

f
(r)
S,1

m
(r)
S,1

T
(r)
1 )/f (r)

S,2. This leads to

the following latency result:

ϱ
(r)
S,2 = T

(r)
1 + ϱ

hand,(r)
1,2 +

m
(r)
S,2(|D

(r+1)
S |↗

f
(r)
S,1

m
(r)
S,1

T
(r)
1 )

f
(r)
S,2

. (9)

The result in (9) incorporates the computation time at the first
satellite, i.e., T (r)

1 , the handover delay, i.e., ϱhand,(r)
1,2 , and the

computation time at the second satellite, i.e., the last term.
However, if ϱ

(r)
S,2 > T

(r)
2 , the local training cannot be

completed before the second satellite leaves the target area.
In this case, the third satellite processes the remaining data
after receiving the information from the second satellite via
ISL communication. Overall, we obtain the following result:

ϱ
(r)
S =






ϱ
(r)
S,1, if ϱ (r)S,1 < T

(r)
1 (1st satellite finishes the task)

ϱ
(r)
S,2, if ϱ (r)S,2 < T

(r)
2 (2nd satellite finishes the task)

ϱ
(r)
S,3, if ϱ (r)S,3 < T

(r)
3 (3rd satellite finishes the task)

...
(10)

where ϱ
(r)
S,1 and ϱ

(r)
S,2 are defined in (8) and (9) while ϱ

(r)
S,3 is

written as follows:

ω
(r)
S,3 = T

(r)
2 + ω

hand,(r)
2,3 (11)

+

m
(r)
S,3

(
|D(r+1)

S |→
f
(r)
S,1

m
(r)
S,1

T
(r)
1 →

f
(r)
S,2

m
(r)
S,2

(T (r)
2 → T

(r)
1 → ω

hand,(r)
1,2 )

)

f
(r)
S,3

.

As illustrated in Fig. 2, the term T
(r)
2 in (11) captures the

delay until the second satellite leaves the target region, ϱhand,(r)
2,3

is the handover delay, and the last term is the delay for the
third satellite to complete the remaining tasks. For an arbitrary
i ⇒ 2, we can generalize the result as follows:

ϱ
(r)
S,i = T

(r)
i↓1 + ϱ

hand,(r)
i↓1,i +

m
(r)
S,i(|D

(r+1)
S |↗ !(r)

i
)

f
(r)
S,i

, (12)

where !(r)
i

is the amount of data samples processed prior to
the i-th satellite at round r. Fig. 2 summarizes the idea of the
repeated local training and data/model handover processes at
the space layer.

D. Model Aggregation

After local updates are completed according to Sections
III-B and III-C, model aggregation is conducted to obtain a
new global model. Specifically, each air node n aggregates
the models {w(r+1)

G,k
}k↑Gn sent from the ground devices in its

coverage and the model w(r+1)
A,n trained by its own. Then, each

air node n sends the aggregated model to the current satellite
for global aggregation. The final global model becomes

w(r+1) =
∑

k→G

ε
(r+1)
G,k

w(r,H)
G,k

+
∑

n→A

ε
(r+1)
A,n w(r,H)

A,n + ε
(r+1)
S w(r,H)

S ,

(13)

where ε(r+1)
G,k

=
|D(r+1)

G,k |
∑

j→G |Dj | , ε
(r+1)
A,n =

|D(r+1)
A,n |∑

j→G |Dj | , and ε
(r+1)
S =

|D(r+1)
S |∑

j→G |Dj | are the portions of data samples at each node.
The delay for uploading the model from ground device k to

air node n can be written as follows:

ϱ
G2A,(r)
k,n

=
Q(w)

Z
G2A,(r)
k,n

, (14)
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where Z
G2A,(r)
k,n

is the uplink communication rate between
ground device k and air node n expressed as1

Z
G2A,(r)
k,n

= E
[
b
(r)
k,n

log2(1 +
pG,k|h

(r)
k,n

|
2

b
(r)
k,n

N0

)
]
. (15)

Here, pG,k is the transmit power of ground device k, b(r)
k,n

is the
bandwidth, and h

(r)
k,n

= ς0/(d
(r)
k,n

)ω
G2A

g is the channel between
device k and air node n, which is defined with the distance d(r)

k,n
,

pathloss exponent between ground and air φG2A, channel gain
ς0 at the reference distance of 1 meter, and Rayleigh fading
parameter g. Similarly, we can also define the model upload
delay from air node n to the current satellite, i.e., ϱA2S,(r)

n,S ,
based on the communication rate Z

A2S,(r)
n,S between air node n

and the current satellite covering the target region2.

IV. ADAPTIVE DATA OFFLOADING OPTIMIZATION

In this section, we provide details for our data offloading
step outlined in Section III-A. This process aims to construct
{D

(r+1)
G,k

}k↑G , {D
(r+1)
A,n }n↑A, and D

(r+1)
S from {D

(r)
G,k

}k↑G ,
{D

(r)
A,n}n↑A, and D

(r)
S , at the beginning of global round r.

A. Characterization of Data Transmission Direction
Latency without data offloading: The first step of our

approach is to characterize the direction of data transmission.
We start by deriving the latency without data offloading, to see
which layer causes more delay. When data offloading is not
considered, the overall delay at round r can be written as

ϱ
(r) = max

{
ϱ
(r)
S

,max
n↑A

{ϱ
(r)
A,n + ϱ

A2S,(r)
n,S }

}
, (16)

where ϱ
(r)
S

is the completion time at the space layer defined
in (10) and ϱ

A2S,(r)
n,S is the model transmission delay from air

node n to the current satellite, similar to (14). ϱ (r)A,n is the delay
until air node n aggregates its own updated model with the
models sent from the devices in its coverage area Gn:

ϱ
(r)
A,n = max

{
ϱ

local,(r)
A,n ,max

k↑Gn

{ϱ
local,(r)
G,k

+ ϱ
G2A,(r)
k,n

}

}
. (17)

Here, ϱ local,(r)
A,n and ϱ

local,(r)
G,k

are the local computation times at
air node n and ground device k, respectively, as described in
(5). Here, we note that all notations in (16) and (17) are defined
with the datasets before data offloading, i.e., {D

(r)
G,k

}k↑G ,
{D

(r)
A,n}n↑A, D(r)

S , to characterize the data offloading direction.
Data transmission scenarios: Our adaptive data offloading

method is motivated by the dynamic nature of SAGINs,
including the computation capabilities as well as the coverage
times of current/incoming satellites. We consider two different
scenarios depending on the direction of data transmission.

1In scenarios where instantaneous channel is available via feedback, the
latency can be written without the expectation.

2Following [46]–[48], Rayleigh fading can be adopted between the ground
device and the air node, considering obstacles in remote areas such as forests
and mountainous regions. In scenarios where the line-of-sight link is dominant,
we can use the free-path space loss model by setting h

(r)
k,n

= ω0/(d
(r)
k,n

)2 as
in [49], [50]

(i) Case I: ϱ
(r)
S

> maxn↑A{ϱ
(r)
A,n + ϱ

A2S,(r)
n,S }(Offloading

from space to air/ground). Case I considers the scenario where
the current and the next few incoming satellites have relatively
low computation/communication capabilities. In this case, we
allow data samples to be transmitted from the space layer to
air/ground layers for load balancing.

(ii) Case II: ϱ
(r)
S

< maxn↑A{ϱ
(r)
A,n + ϱ

A2S,(r)
n,S } (Offloading

from air/ground to space). In this case, the current/incoming
satellites have relatively large computation powers. Hence, we
propose data transmission from air/ground layers to the space
layer for load balancing.

Objective: Our objective is to adaptively optimize data
offloading across space-air-ground layers to minimize the
latency. By incorporating the data offloading delay, we can
rewrite the overall latency in (16) into the following form:

ϱ̄
(r) := max

{
ϱ̄
(r)
S

,max
n↑A

{ϱ̄
(r)
A,n + ϱ

A2S,(r)
n,S }

}
. (18)

In (18), ϱ̄ (r)
S

is the new delay at the space layer and

ϱ̄
(r)
A,n := max

{
ϱ̄

local,(r)
A,n ,max

k↑Gn

{ϱ̄
local,(r)
G,k

+ ϱ
G2A,(r)
k,n

}

}
(19)

is the new completion time at air node n until all the models
in its coverage are aggregated, considering data offloading.
ϱ̄

local,(r)
A,n and ϱ̄

local
G,k

are the updated delays to finish local training
at air node n and ground device k, respectively, under this
data offloading framework.

In the following, we will characterize the new delays ϱ̄
(r)
S

,
ϱ̄

local,(r)
A,n , and ϱ̄

local
G,k

in (18) and (19) by considering data
offloading. Then, we will optimize the amount of data being
offloaded across the layers to minimize ϱ̄

(r).

B. Case I: Data Offloading from Space to Air/Ground
We first consider Case I. Let DS2A,(r)

S,n be the dataset sent
from the space layer to air node n in the air layer.

Dataset and latency characterization at the space layer:
Then the updated dataset D(r+1)

S at the space layer after data
offloading satisfies the following criterion:

|D
(r+1)
S | = |D

(r)
S |↗

∑

n↑A
|D

S2A,(r)
S,n |. (20)

Accordingly, we can obtain the updated satellite-side delay ϱ̄
(r)
S

by inserting |D
(r+1)
S | = |D

(r)
S |↗

∑
n↑A |D

S2A,(r)
S,n | to (10). In

(20), {|DS2A,(r)
S,n |}n↑A is the set of parameters that we would

like to optimize. We also aim to optimize the load balancing
between air and ground layers. To achieve this, we will first
study the load balancing between air node n and the associated
ground devices in Gn when |D

S2A,(r)
S,n | is given. After that, we

focus on the load balancing between the space and air layers.
We first characterize the direction of data transmission

between the air and ground. If (i) |DS2A,(r)
S,n | is provided from

the space layer to air node n, and (ii) data offloading between
air and ground layers is not performed, the local computation
delay at air node n can be rewritten as follows:

ϱ
local,(r)
A,n = max{

mA,n|D
(r)
A,n|

fA,n
,

q|D
S2A,(r)
S,n |

Z
S2A,(r)
S,n

}+
mA,n|D

S2A,(r)
S,n |

fA,n
.

(21)
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The result in (21) can be interpreted as follows. At the beginning
of round r, the current satellite transmits dataset DS2A,(r)

S,n to

air node n. This incurs delay of
q|DS2A,(r)

S,n |

Z
S2A,(r)
S,n

, where Z
S2A,(r)
S,n is

the downlink communication rate between the current satellite
and air node n. In parallel, air node n conducts local update

based on the dataset D(r)
A,n, causing delay of

mA,n|D(r)
A,n|

fA,n
. When

both processes are completed, air node n can update the model
using dataset D

S2A,(r)
S,n received from the satellite, which is

captured in the last term of (21).
Now if ϱ

local,(r)
A,n > maxk↑Gn{ϱ

local,(r)
G,k

+ ϱ
G2A,(r)
k,n

}, i.e., if
the computation time at air node n is larger than the completion
time at the ground layer in its associated region, we let air node
n transmit data samples to the ground layer for load balancing.
Otherwise, i.e., if ϱ

local,(r)
A,n < maxk↑Gn{ϱ

local,(r)
G,k

+ ϱ
G2A,(r)
k,n

},
we let air node n receive data samples from the corresponding
ground devices for load balancing. In the following, we
describe our method assuming ϱ

local,(r)
A,n > maxk↑Gn{ϱ

local,(r)
G,k

+

ϱ
G2A,(r)
k,n

}, where the result for the second case can be obtained
in a similar way.

Dataset and latency characterization at air/ground layers:
We define D

A2G,(r)
n,k

as the dataset that is sent from air node n

to ground device k ↘ Gn at global round r. Then, the following
holds for the updated dataset D(r+1)

A,n at air node n:

|D
(r+1)
A,n | = |D

(r)
A,n|+ |D

S2A,(r)
S,n |↗

∑

k↑Gn

|D
A2G,(r)
n,k

|, (22)

which is obtained after receiving |D
S2A,(r)
S,n | samples from the

satellite and sending
∑

k↑Gn
|D

A2G,(r)
n,k

| samples to the ground
devices in Gn. For each ground device k ↘ Gn, we can write

|D
(r+1)
G,k

| = |D
(r)
G,k

|+ |D
A2G,(r)
n,k

|, (23)

after receiving data from the corresponding air node n.
From the above definitions on the updated datasets at each

layer, we can write ϱ̄
local,(r)
A,n in (19), which represents the delay

for air node n to finish computation, as follows:

ϱ̄
local,(r)
A,n = (24)





mA,n|D
(r+1)
A,n |

fA,n
, if |D(r+1)

A,n | ⇑ |D
(r)
A,n|

max
{mA,n|D

(r)
A,n|

fA,n
,

q|D
S2A,(r)
S,n |

Z
S2A,(r)
S,n

}

+
mA,n(|D

S2A,(r)
S,n |↗

∑
k↑Gn

|D
A2G,(r)
n,k

|)

fA,n
, otherwise

In (24), if |D(r+1)
A,n | ⇑ |D

(r)
A,n|, air node n can finish computation

without waiting for dataset DS2A,(r)
S,n from the satellite. On the

other hand, if |D
(r+1)
A,n | > |D

(r)
A,n|, it indicates that air node n

also needs to process data samples received from the satellite.
For both cases, air node n transmits |D

A2G,(r)
n,k

| data samples
to ground device k after receiving data from the satellite.

Hence, for ground device k, we can write the completion
time in (19) as follows:

Algorithm 1 Load Balancing Between Air Node n and the
Ground Devices in Gn

1: Input: ϑL,1 = ϑL,2 = 0, an appropriate ϑU1 , ϑU2 , and small ϖ1,
ϖ2. Initialized |DA2G,(r)

n,k
| = 0 for all k ↑ Gn. Fixed |DS2A,(r)

S,n |.
2: Output: Optimal data allocation {|DA2G,(r)

n,k
|}k→Gn between air

node n and ground devices in Gn.
3: while ϑU,1 → ϑL,1 ↓ ϖ1 do
4: Set Yn = (ϑU,1 + ϑL,1)/2
5: Obtain {|DA2G,(r)

n,k
|}k→Gn based on the following while loop:

6: Set an appropriate ϑL2 and ϑU2 .
7: while

∑
k→Gn

|DA2G,(r)
n,k

| < (1 → ϖ2)Yn or∑
k→Gn

|DA2G,(r)
n,k

| > (1 + ϖ2)Yn do
8: for each k ↑ Gn do
9: Compute |DA2G,(r)

n,k
| to make ω̄

local,(r)
G,k

+ ω
G2A,(r)
k,n

in
(25) and 1

2 (ϑU,2 + ϑL,2) as close as possible within
range |DA2G,(r)

n,k
| ↑ [0,min{|D(r)

A,n|, Yn}] using bisection
search.

10: end for
11: if

∑
k→Gn

|DA2G,(r)
n,k

| ↔ (1→ ϖ2)Yn then
12: ϑL,2 ↗ 1

2 (ϑU,2 + ϑL,2)
13: else
14: ϑU,2 ↗ 1

2 (ϑU,2 + ϑL,2)
15: end if
16: end while
17: Compute maxk→Gn{ω̄

local,(r)
G,k

+ ω
G2A,(r)
k,n

} based on (25) and
the obtained {|DA2G,(r)

n,k
|}k→Gn

18: Compute ω̄
local,(r)
A,n according to (24)

19: if ω̄ local,(r)
A,n ↓ maxk→Gn{ω̄

local,(r)
G,k

+ ω
G2A,(r)
k,n

}, set ϑL,1 = Yn.
20: else set ϑU,1 = Yn.
21: end while

ω̄
local,(r)
G,k

= max
{ mG,k|D(r)

G,k
|

fG,k︸ ︷︷ ︸
Comp. with original data

,
q|DS2A,(r)

S,n |

Z
S2A,(r)
S,n

+
q|DA2G,(r)

n,k
|

Z
A2G,(r)
n,k︸ ︷︷ ︸

Comm. for receiving data samples

}

+
mG,k|DA2G,(r)

n,k
|

fG,k

.

︸ ︷︷ ︸
Comp. with received data from air node n

(25)

Specifically, each ground device starts computation with its
original data when round r begins, and in parallel, waits until
data samples from air node n arrives. Then, each device finishes
computation using data samples received from air node n.

Load balancing between air/ground layers: For load
balancing between air and ground layers, we first optimize
{|D

A2G,(r)
n,k

|}k↑Gn that minimizes ϱ̄
(r)
A,n in (19), by solving

min
{|DA2G,(r)

n,k |}k→Gn

max
{
ϱ̄

local,(r)
A,n ,max

k↑Gn

{ϱ̄
local,(r)
G,k

+ ϱ
G2A,(r)
k,n

}

}
(26)

when |D
S2A,(r)
S,n | is given. Note that the completion time at

the ground layer, i.e., maxk↑Gn{ϱ̄
local,(r)
G,k

+ ϱ
G2A,(r)
k,n

}, is an
increasing function of |DA2G,(r)

n,k
| while the computation delay

at the air layer, i.e., ϱ̄ local
A,n , is a decreasing function of |DA2G,(r)

n,k
|.

Hence, as described in Algorithm 1, we can use bisection
search to make ϱ̄

local,(r)
A,n and maxk↑Gn{ϱ̄

local,(r)
G,k

+ ϱ
G2A,(r)
k,n

} as
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Algorithm 2 Load Balancing Across Space-Air-Ground Layers
1: Input: ϑL,1 = ϑL,2 = 0, an appropriate ϑU1 , ϑU2 , and small ϖ1,

ϖ2. Initialized |DS2A,(r)
S,n | = 0 for all n ↑ A.

2: Output: Optimal data allocations {|DS2A,(r)
S,n |}n→A and

{|DA2G,(r)
n,k

|}k→Gn for all n ↑ A.
3: while ϑU,1 → ϑL,1 ↓ ϖ1 do
4: Set X = (ϑU,1 + ϑL,1)/2
5: Obtain {|DS2A,(r)

S,n |}n→A based on the following while loop:
6: while

∑
n→A |DS2A,(r)

S,n | < (1→ ϖ2)X or
∑

n→A |DS2A,(r)
S,n | >

(1 + ϖ2)X do
7: for each n ↑ A do
8: Compute |DS2A,(r)

S,n | to make ω̄
(r)
A,n + ω

A2S,(r)
n,S and

1
2 (ϑU,2 + ϑL,2) as close as possible within range
|DS2A,(r)

S,n | ↑ [0,min{|D(r)
S |, X}], using bisection search

and {|DA2G,(r)
n,k

|}k→Gn obtained from Algorithm 1.
9: end for

10: if
∑

n→A |DS2A,(r)
S,n | ↔ (1→ ϖ2)X then

11: ϑL,2 ↗ 1
2 (ϑU,2 + ϑL,2)

12: else
13: ϑU,2 ↗ 1

2 (ϑU,2 + ϑL,2)
14: end if
15: end while
16: Compute ω̄

(r)
A,n in (19) based on the obtained {|DA2G,(r)

n,k
|}k→Gn

for all n ↑ A and {|DS2A,(r)
S,n |}n→A.

17: Compute ω̄
(r)
S according to (10) and |D(r+1)

S | in (20)
18: if ω̄ (r)

S ↓ maxn→A{ω̄ (r)
A,n + ω

A2S,(r)
n,S }, set ϑL,1 = X .

19: else set ϑU,1 = X .
20: end while

close as possible, by controlling our optimization parameters
{|D

A2G,(r)
n,k

|}k↑Gn . In Algorithm 1, we first solve

min
{|DA2G,(r)

n,k |}k→Gn

max
{
ϱ̄

local,(r)
A,n ,max

k↑Gn

{ϱ̄
local,(r)
G,k

+ ϱ
G2A,(r)
k,n

}

}

subject to:
∑

k↑Gn

|D
A2G,(r)
n,k

| = Yn (27)

for a given Yn, and then optimize Yn to minimize ϱ̄
(r)
A,n in (19),

by implementing bisection search in a hierarchical way.
Load balancing across space-air-ground layers: Now

we revisit our final goal, which is to jointly optimize
{|D

S2A,(r)
S,n |}n↑A and {|D

A2G,(r)
n,k

|}k↑Gn for all n ↘ A, to
minimize the overall latency ϱ̄

(r) in (18) based on the obtained
ϱ̄
(r)
S

, ϱ̄ local,(r)
A,n , and ϱ̄

local
G,k

. The overall optimization procedure
is summarized in Algorithm 2. Specifically, we solve

min
{|DS2A,(r)

S,n |}n→A,

max
{
ϱ̄
(r)
S

,max
n↑A

{ϱ̄
(r)
A,n + ϱ

A2S,(r)
n,S }

}
, (28)

for load balancing between space and air layers. During opti-
mization, Algorithm 1 is adopted to obtain {|D

A2G,(r)
n,k

|}k↑Gn

for load balancing between air and ground layers and to
compute ϱ̄

(r)
A,n, for a given |D

S2A,(r)
S,n |. Overall, we make ϱ̄

(r)
S

and maxn↑A{ϱ̄
(r)
A,n+ϱ

A2S,(r)
n,S } as close as possible by applying

bisection search in a hierarchical way.

Remark 1. In practice, Algorithm 1 and Algorithm 2 can be
implemented at the nearest gateway to obtain optimized data
offloading solutions. The solutions are subsequently sent to the
corresponding nodes to execute the data offloading process.

C. Case II: Data Offloading From Air/Ground to Space
Now we consider Case II, where data samples are transmitted

from air/ground to space. Let |DA2S,(r)
n,S | be the number of data

samples sent from the air node n to the current satellite.
Dataset and latency characterization at the space layer:

The satellite-side dataset after data offloading satisfies:

|D
(r+1)
S | = |D

(r)
S |+

∑

n↑A
|D

A2S,(r)
n,S |. (29)

The satellite-side delay ϱ̄
(r)
S can be updated accordingly based

on |D
(r+1)
S | = |D

(r)
S |+

∑
n↑A |D

A2S,(r)
n,S | and (10).

As in Case I, we start by characterizing the data transmission
direction between air and ground layers. Without any data
transmission between air and ground layers, the completion
time at air node n can be written as follows:

ϱ
local,(r)
A,n = max

{mA,n(|D
(r)
A,n|↗ |D

A2S,(r)
n,S |)

fA,n
,

q|D
A2S,(r)
n,S |

Z
A2S,(r)
n,S

}
,

(30)
when |D

A2S(r)
n,S | is given. Different from Case I, in (30), both

the computation time and the data offloading delay contribute
to ϱ

local,(r)
A,n . This is because the air node can upload the model

to the satellite only when all data samples in |D
A2S,(r)
n,S | are

transmitted to the satellite.
Now we consider the following two cases, depending

on whether air node n should transmit data to the ground
layer or collect data from the ground layer. If ϱ

local,(r)
A,n <

maxk↑Gn{ϱ
local,(r)
G,k

+ ϱ
G2A,(r)
k,n

}, we let devices in Gn offload
data to the associated air node n for load balancing. Otherwise,
we let air node n transmit data samples to the corresponding
ground devices. We consider the first case for description. The
result for the second case can be obtained in a similar way.

Dataset and latency characterization at air/ground layers:
Let DG2A,(r)

k,n
be the dataset that is sent from ground device

k ↘ Gn to air node n. Then, we have

|D
(r+1)
A,n | = |D

(r)
A,n|↗ |D

A2S,(r)
n,S |+

∑

k↑Gn

|D
G2A,(r)
k,n

| (31)

at each air node n, after transmitting |D
A2S,(r)
n,S | samples to the

satellite and receiving
∑

k↑Gn
|D

G2A,(r)
k,n

| samples from ground
devices in cluster n. For each ground device k ↘ Gn, we obtain

|D
(r+1)
G,k

| = |D
(r)
G,k

|↗ |D
G2A,(r)
k,n

| (32)

after transmitting data to the associated air node.
From these definitions, we obtain the following result:

ϱ̄
local,(r)
A,n = (33)





max
{mA,n|D

(r+1)
A,n |

fA,n
,
q|D

A2S,(r)
n,S |

Z
A2S,(r)
n,S

}
, if |D(r+1)

A,n | ⇑ |D
(r)
A,n|

max

{
max

{mA,n|D
(r)
A,n|

fA,n
,max
k↑Gn

{
q|D

G2A,(r)
k,n

|

Z
G2A,(r)
k,n

}

}

+
mA,n(

∑
k↑Gn

|D
G2A,(r)
k,n

|↗ |D
A2S,(r)
n,S |)

fA,n
,
q|D

A2S,(r)
n,S |

Z
A2S,(r)
n,S

}
,

otherwise.
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We note that air node n is ready to transmit the model to the
satellite when data offloading to satellite is also completed.
This is captured in the latency result above.

At each ground device k, we can write

ϱ̄
local,(r)
G,k

= max
{mG,k(|D

(r)
G,k

|↗ |D
G2A,(r)
k,n

|)

fG,k

,
q|D

G2A,(r)
k,n

|

Z
G2A,(r)
k,n

}
,

(34)

In (34), we take the maximum of local computation time and
data offloading delay. Again, this is because the ground device
can start uploading the updated model only if both the local
computation and data offloading processes are completed.

Load balancing between air/ground layers: For load
balancing between air and ground layers, our goal is to optimize
{|D

G2A,(r)
k,n

|}k↑Gn . It can be seen that the completion time at the
ground layer, i.e., maxk↑Gn{ϱ̄

local,(r)
G,k

+ ϱ
G2A,(r)
k,n

}, is a decreas-

ing function of |D
G2A,(r)
k,n

| if |D
G2A,(r)
k,n

| ⇑
mG,kZ

G2A,(r)
k,n |D(r)

G,k|

mG,kZ
G2A,(r)
k,n +qfG,k

,

and an increasing function of |D
G2A,(r)
k,n

| otherwise. Also,
the delay ϱ̄

local,(r)
A,n at the air layer is an increasing function

of |D
G2A,(r)
k,n

|. Hence, similar to Algorithm 1, we can find
{|DG2A,(r)

k,n
|}k↑Gn by using bisection search in a hierarchical

way to make ϱ̄
(r)
A,n and maxk↑Gn{ϱ̄

local,(r)
G,k

+ ϱ
G2A,(r)
k,n

} as close
as possible within the range following range:

|D
G2A,(r)
k,n

| ↘

[
0,min

{ mG,kZ
G2A,(r)
k,n

|D
(r)
G,k

|

mG,kZ
G2A,(r)
k,n

+ qfG,k

, |D
(r)
G,k

|↗|D
l

k
|

}]
.

(35)
Recall that |Dl

k
| is the number of privacy-sensitive samples at

ground device k. Hence, |D(r)
G,k

|↗ |D
l

k
| represents the amount

of non-sensitive data of ground device k at round r, which
captures the feasible number of samples for offloading.

Load balancing across space-air-ground layers: Finally,
we optimize {|D

A2S,(r)
n,S |}n↑A and {|D

G2A,(r)
k,n

|}k↑Gn for all
n ↘ A, to minimize the overall latency ϱ̄

(r) in (18) based on
the obtained ϱ̄

(r)
S

, ϱ̄ local,(r)
A,n , and ϱ̄

local
G,k

. Similar to Algorithm 2
for Case I, we can make ϱ̄

(r)
S

and maxn↑A{ϱ̄
(r)
A,n + ϱ

A2S,(r)
n,S }

as close as possible by applying bisection search, where the
solution for load balancing between air and ground layers is
adopted during this process.

D. Complexity Analysis

Algorithm 1 involves load balancing between an
air node and the associated ground devices, utilizing
nested loops and bisection searches. The primary loop,
governed by the variables ↼L,1 and ↼L,2, iterates using a
bisection method until a specified precision ↽1 is achieved,
contributing a complexity of O(log( 1

ε1
)) [51], [52]. Within

this loop, an inner loop also utilizes bisection search to
meet a precision ↽2, adding a complexity of O(log( 1

ε2
)).

The for-loop iterates over n ground devices, with each
iteration involving a bisection search that contributes
O

(
log

(
min{|D(r)

A,n|, Yn}

))
complexity [53], [54]. Summing

these, the overall time complexity of Algorithm 1 can be written

as O

(
log( 1

ε1
)⇓ log( 1

ε2
)⇓ |Gn|⇓ log

(
min{|D(r)

A,n|, Yn}

))
,

reflecting the combined logarithmic and linear
components of the nested operations. Simi-
larly, the complexity of Algorithm 2 becomes
O

(
log( 1

ε1
)⇓ log( 1

ε2
)⇓ |A|⇓ log

(
min{|D(r)

S |, X}

))
.

V. CONVERGENCE ANALYSIS

In this section, we investigate the convergence property of
the proposed algorithm. After data offloading is performed in
the r-th training round, the global loss function defined in (1)
can be rewritten in the following form:

F (w) =
∑

k↑G
ε
(r)
G,k

ϑ
(r+1)
G,k

(w) +
∑

n↑A
ε
(r)
A,nϑ

(r+1)
A,n (w)

+ ε
(r)
S ϑ

(r+1)
S (w). (36)

We note that the global loss function F (w) is time-invariant
because the global dataset does not change; rather only the data
samples are exchanged among the nodes. On the other hand, the
local losses, i.e., ϑ(r+1)

G,k
(w), ϑ(r+1)

A,n (w), and ϑ
(r+1)
S (w), vary

over time. Our goal is to analyze the evolution of ⇔⇐F (w(r))⇔
to characterize the convergence behavior for non-convex loss
functions. We rely on the following assumptions.

Assumption 1. ϑ
(r+1)
G,k

(w), ϑ(r+1)
A,n (w) and ϑ

(r+1)
S (w), are L-

smooth for any k ↘ G, n ↘ A, and for any r.

Assumption 2. The mini-batch gradients ⇐̃ϑ
(r+1)
G,k

(w),
⇐̃ϑ

(r+1)
A,n (w), and ⇐̃ϑ

(r+1)
S (w) are unbiased estimates of

⇐ϑ
(r+1)
G,k

(w), ⇐ϑ
(r+1)
A,n (w), and ⇐ϑ

(r+1)
S (w), respectively. The

variance is bounded as E⇔⇐̃ϑ
(r+1)
G,k

(w)↗⇐ϑ
(r+1)
G,k

(w)⇔2 ⇑ ⇀
2
g
,

≃k ↘ G, which also holds for ⇐̃ϑ
(r+1)
A,n (w) and ⇐̃ϑ

(r+1)
S (w).

Assumption 3. The gradient dissimilarity between each local
loss function and the global loss function F (w) is bounded as

E
⇐ϑ

(r+1)
G,k

(w)↗F (w)

2
⇑ cr ⇔F (w)⇔2 + ⇁

2
r
, ≃k ↘ G. This

holds for ϑ
(r+1)
A,n (w), ≃n ↘ A and ϑ

(r+1)
S (w) as well.

Assumptions 1–3 are standard and have been widely adopted
in the analyses of existing works [21], [24], [25], where
Assumption 3 specifically quantifies the data heterogeneity
in each round r. We present our main theorem below.

Theorem 1. Suppose that Assumptions 1–3 hold and the
learning rates satisfies

ϖ
(r)
G,k

= ϖ
(r)
A,n = ϖ

(r)
S = ϖ

(r)
⇑

1

2
↖
1+crHL

, (37)

where H denotes the number of local iterations at each
node per global round. Then under non-convex settings, our
algorithm satisfies the following convergence result:

1

”R

R↓1∑

r=0

ϖ
(r)E

⇐F

(
w(r)

)
2
⇑ 4

F

w(0)


↗ F

→

H”R

+
4L

”R

R↓1∑

r=0

(ϖ(r))2
(∑

k↑G
(ε(r)

G,k
)2 +

∑

n↑A
(ε(r)

A,n)
2 + (ε(r)

S )2
)
⇀
2
g

+
2H2

L
2
⇀
2
g

”R

R↓1∑

r=0

(ϖ(r))3 +
4H2

L
2

”R

R↓1∑

r=0

(ϖ(r))3⇁2
r
, (38)
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where F
→ is the minimum value that F (w) can achieve and

”R =
∑

R↓1
r=0 ϖ

(r) is the summation of learning rates.

Proof. See Appendix A

The impact of data heterogeneity after each round of data
offloading is reflected both in the learning rate condition (37)
and the last term of (38) in the convergence bound. From
(37), we see that as the extent of data heterogeneity after data
offloading gets larger, a smaller learning rate is required to
guarantee the convergence of the algorithm. We also observe
from (38) that the bound increases as the heterogeneity of data
distributions across the nodes grows. The second term of the
right-hand side of (38) captures the effect of the portion of
data samples at each node on the convergence bound, which is
time-varying due to data offloading. Additionally, by selecting
an appropriate learning rate that satisfies

∑
R↓1
r=0 (ϖ

(r))2 ↙ 0,∑
R↓1
r=0 (ϖ

(r))3 ↙ 0 and ”R ↙ ∝ for R ↙ ∝, the upper
bound will diminish to zero. In particular, we can either adopt
a decaying learning rate according to ϖ

(r) = ϑ
(0)

r+1 or keep it
constant as ϖ

(r) = 1↔
HR

. This guarantees convergence to a
stationary point of the non-convex loss function.

VI. EXPERIMENTAL RESULTS

In this section, we provide experimental results to validate
the effectiveness of the proposed methodology in SAGINs.

A. Simulation Setup

Dataset and model: We consider the following benchmark
datasets for FL: MNIST, FMNIST, and CIFAR-10. Using
MNIST and FMNIST, we train a convolutional neural network
with two convolutional layers and two fully connected layers,
and a convolutional neural network with two convolutional
layers and one fully connected layer, respectively. Using CIFAR-
10, we train the VGG-11 model. We conduct FL using the
training set of each dataset, and evaluate the performance of
the constructed global model using the testing set.

SAGIN setting: We consider K = 50 ground devices located
at a squared target region of 1200 m ⇓ 1200 m. There are
N = 5 air nodes at a height of 20 km above the target
area, each serving 10 ground devices without overlapping.
A series of LEO satellites cover the target region in each
global round, where we adopt the walkerStar function in
MATLAB to construct a constellation model. Fig. 3 shows
the created satellite constellation, where 80 LEO satellites are
distributed evenly across 5 different orbits with altitude of
800 km and inclination of 85↗. We set the minimum elevation
angle to communicate to 15↗, and the latitude and longitude
of the target region are 40↗ N and 86↗ W, respectively. We
use accessIntervals function to calculate the coverage
time of each satellite over the target region. Referring to the
settings of prior works [31], [37], [40], we adopt the following
parameter values for simulations: fG,k = 108 Hz, fA,n = 109

Hz, fS,i ↘ [1, 10] ⇓ 109 Hz, mG,k = mA,n = mS = 3 ⇓ 109

cycles/sample, pG,k = 0.1 W, pA,n = 1 W, pS,i = 10 W,
Z

ISL,(r)
i,i+1 = 3.125 Mbps, N0 = 3.98 ⇓ 10↓21 W/Hz. Here, to

model the time-varying resource availability at the space layer

Fig. 3: Illustration of the satellite constellation constructed
based on the walkerStar function.

over the target region, the CPU frequencies of satellites fS,i
are sampled from a specific uniform distribution [1, 10]⇓ 109.

The training set of each dataset is distributed to the ground
devices in two different scenarios: IID (independent and
identically distributed) and non-IID cases. For the IID case, we
allocate the training samples to the ground devices uniformly
at random. For the non-IID scenario, we sort the training set
according to each sample’s class, split the sorted dataset into
200 shards, and then randomly assign 4 shards to each ground
device. This introduces heterogeneous data distributions among
ground devices. Note that the nodes in the space and air layers
do not hold data at the beginning. We set the portion of non-
sensitive to ωk = ω = 0.8 for all ground devices, and also
study the effect of ω in Section VI-C.

Comparison schemes: For baselines, we first consider the
scheme where only the ground devices process data without
any data offloading, to see the advantage of adopting nodes
in space and air layers as edge computing units. Satellites
and air nodes are only used to aggregate the updated models.
This baseline represents the majority of existing works that do
not involve data offloading. Secondly, we consider optimizing
data offloading only between the air and ground layers. Hence,
the satellite-side computation power is not utilized during
local model updates. Similarly, we optimize data offloading
only between ground and space layers, without using the
computational capabilities of air nodes during local update. We
also consider the static optimization scheme, which applies our
optimization strategy only at the initial global round and keeps
the same solution throughout the remaining FL process. This
baseline utilizes the computational resources of all three layers
of SAGINs and is considered to see the impact of adaptive
data offloading instead of using a fixed solution. Finally, we
consider another baseline that utilizes the resources of all layers
of SAGINs, where the number of data samples processed at
each node is proportional to its computational power. For a
fair comparison, we use FedAvg to aggregate the models in
all baseline schemes and our methodology.

B. Main Experimental Results
We first observe Fig. 4, which reports the accuracy versus

training time plots in different settings. Our key takeaways are
as follows. First, the scheme without data offloading achieves
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Fig. 4: Accuracy versus training time plots. For the static optimization scheme, we apply our inter-layer data offloading scheme
only in the first global round and keep the intra-layer data fixed throughout the remaining rounds. The results show the advantage
of adaptive data offloading optimization considering both space and air layers.

slow convergence, since the computation resources of space
and air nodes are not utilized in this method. Utilizing only the
computation resources of ground devices causes delays. We also
observe that the fixed data offloading scheme achieves relatively
low performance since the varying resource availability at the
satellites are not considered in the scheme. If too many or too
few data samples are offloaded to the space layer, the training
process can be slowed down. This highlights the importance of
adaptively optimizing data offloading, instead of relying on a
fixed solution. We see that our approach, which leverages both
the space and air layers, attains superior performance compared
to the baselines that utilize only one of these layers. The
proposed scheme also outperforms the scheme with optimized
fixed data offloading and the baseline that conducts data
offloading proportional to the computational power of each
node in SAGINs. Further ablation studies on the effect of each
layer are provided in the next subsection. The overall results
highlight the significance of (i) inter-layer data offloading across
space-air-ground, and (ii) adaptively conducting this to account
for the network dynamics in SAGINs.

C. Varying System Parameters

Effect of computation powers of space and air nodes: In
Fig. 5, we investigate the effect of computational capabilities
at different layers, which can be adapted based on the battery
constraint of each node. In extreme cases, the CPU frequency
can drop to 0 if the battery is close to 0, and it can reach the
maximum CPU frequency if the battery is sufficient. MNIST
is considered in a non-IID setup. For these experiments, we
set the CPU frequencies of space and air nodes (i.e., fS and
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(a) Portion of data samples processed at each layer. We increase the
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Fig. 5: Effect of computation capabilities of space/air nodes.

fA, respectively) to the values depicted in the figure. Fig. 5a
first shows the portion of data samples processed at each layer
in our solution, depending on fS and fA. In the first case with
fS = 3 ⇓ 109 Hz and fA = 109 Hz (a scenario where both
space and air nodes have insufficient battery), a relatively large
number of data samples are allocated to the ground layer due
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(d) Training time to achieve 88%
accuracy on FMNIST.

Fig. 6: Effect of the portion of non-sensitive samples on our
solution (ω = 0 reduces to no data offloading).

to the limited batteries at the space and air nodes. The air
layer is allocated with more data samples than the space layer,
indicating that the air nodes are considered more important than
the satellites. This can be also confirmed from the accuracy
curve in Fig. 5b, by comparing the scheme without satellites
and the one without air nodes. Now if fA increases from 109

Hz to 3⇓ 109 Hz (i.e., a scenario where the air node has more
battery compared to the previous case), the portion of data
samples processed at the air node becomes more dominant. On
the other hand, if we increase fS from 109 Hz to 1010 Hz (i.e.,
if the satellite has sufficient battery) while setting fA = 109 Hz,
the role of the space layer becomes crucial, as also verified in
Fig. 5c. Finally, when both space and air layers have sufficient
resources (fS = 1010 Hz and fA = 3⇓ 109 Hz), only 20% of
data samples are allocated to the ground layer. This allocation
is the minimum amount of data that should be processed at the
ground layer considering the portion of non-sensitive samples
(ω = 0.8). Again, the results underscore the significance of
taking advantage of the computation resources across all layers
in SAGINs during the FL process.

Effect of the portion of non-sensitive data: In Fig. 6,
we also study how the portion of non-sensitive samples ω in
each ground device’s local dataset, affects the FL performance.
If all data samples are privacy-sensitive (i.e., ω = 0), the
setting reduces to conventional FL with no data offloading.
Accuracy curves and the training time required to achieve the
target accuracy are reported under the non-IID setting. We see
that our methodology achieves the target accuracy faster as
ω increases, since a larger ω provides a more flexible data
offloading solution for our scheme.

Experiments with free-space path loss model: In practice,
there often exists a line-of-sight link between the ground device
and the air node. To validate the effectiveness of our approach
under this setting, we use the free-space path loss model
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Fig. 7: Experimental results using the free-space pathloss model
with a dominant line-of-sight link.

between the ground device and the air node, as adopted in
[49], [50], considering that the line-of-sight link is dominant.
We also adopt this free-space path loss model for satellite
communication, where there is always a line-of-sight link. Fig.
7 shows the results using the CIFAR-10 dataset in both IID
and non-IID scenarios. Compared to the setting with Rayleigh
fading in Fig. 4, all schemes in Fig. 7 achieve faster convergence
with less training time due to the reduced communication
delay. It can be seen that our scheme consistently outperforms
existing baselines by strategically taking advantage of the
resources across space-air-ground integrated networks. The
overall results further confirm the effectiveness and applicability
of our method.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a distributed ML methodology
that orchestrates FL in space-air-ground integrated networks.
The core idea was to take advantage of both computation
and communication resources of different layers in SAGINs
to facilitate/accelerate FL in remote regions. We analytically
characterized the latency of our method, and proposed an
adaptive data offloading solution to minimize the training
time depending on the current resource availability. We also
derived the convergence bound of the scheme and guaranteed
convergence to a stationary point for non-convex loss functions.
The advantages of the proposed method as well as the effects
of system parameters are investigated via simulations.

There are several promising directions for future research
in this domain. One direction is to optimize the trajectories
of air nodes to achieve a better performance within our
framework. Another direction is to introduce an additional
layer by considering the base stations or geostationary earth
orbit satellites that can connect to the LEO satellites, to further
enhance the performance.

APPENDIX

A. Proof of Theorem 1
For ease of notation, we adopt the following equivalent form

for the global loss function:

F (w) ↭
∑

i↑P
ε
(r)
i

ϑ
(r+1)
i

(w), (39)

where P := {(G, k) | k ↘ G} → {(A, n) | n ↘ A} → {S}
and

∑
i↑P ε

(r)
i

= 1. Additionally, we define !r =
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∑
H↑1
h=0

∑
i→P ε

(r)
i

E
∥∥∥w(r,h)

i
→w(r)

∥∥∥
2
, where w(r,h)

i
represents

the models parameter of device i after h local iterations within
the r-th round. It denotes the intermediate model in (3), (4), or
(6). To prove the convergence of the proposed algorithm, we
first investigate how each round of training reduces the global
loss, as formalized in Lemma 1.

Lemma 1. Under Assumptions 1-3 and ϖ
(r)

⇑
1

2HL
, we have
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(
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[
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2
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+
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(r)

L
2
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(ε(r)
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)2. (40)

To characterize the evolution of E
⇐F


w(r)

2 as shown
in Theorem 1, we need to further bound the term #r =
∑

H↓1
h=0

∑
i↑P ε

(r)
i

E
w(r,h)

i
↗w(r)


2

that appears in Lemma
1. We establish an upper bound for #r in Lemma 2.

Lemma 2. Under Assumptions 1-3 and ϖ
(r)

⇑
1

2HL
, we have

!r↔2(1+cr)H
3(ϱ(r))2E

∥∥∥≃F (w(r))
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2
+
2
3
H

3(ϱ(r))2(ς2
g+3φ2r).

The proofs of Lemmas 1 and 2 are provided in Appendix
B. Combining Lemmas 1 and 2, we obtain
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Reorganizing the above inequality and utilizing (37) give
rise to the following result:

ϱ
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↔ 4
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L
2
φ
2
r .

By telescopic expansion of the above inequality from r = 0
to R↗ 1, we can obtain the result shown in Theorem 1.

B. Proof of Lemmas

1) Proof of Lemma 1: For ease of notation, we denote
e(r,h)
i

, i ↘ P = {(G, k) | k ↘ G} → {(A, n) | n ↘ A} →

{S} as a mini-batch gradient ⇐̃ϑ
(r+1)
G,k

(w(r,h)
G,k

), k ↘ G,
⇐̃ϑ

(r+1)
A,n (w(r,h)

A,n ), n ↘ A, or ⇐̃ϑ
(r+1)
S (w(r,h)

S ).
Due to the smoothness of local loss functions described in

Assumption 1, the global loss function F (w) is L-smooth
as well. Based on the iteration

∑
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∑
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We next bound $1 and $2. First, for $1, we have
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= 1, the Jensen’s inequality, and Assumption 1, we
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where the inequality comes from Assumption 1.
For $2, by using the Cauchy-Schwartz inequality, we have
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(41) give rise to Lemma 1.
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Next, we establish an upper bound for $4 as
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where the last inequality comes from Assumption 3. By
plugging the upper bound of $4 into (42) and taking summation
over ϱ from 1 to H ↗ 1, we obtain
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where we utilize the property of arithmetic sequence. Utilizing
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Scaling the above inequality gives rise to Lemma 2.
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