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Abstract—Augmenting federated learning (FL) with direct

device-to-device (D2D) communications can help improve conver-

gence speed and reduce model bias through rapid local information

exchange. However, data privacy concerns, device trust issues, and

unreliable wireless channels each pose challenges to determining

an effective yet resource efficient D2D structure. In this paper, we

develop a decentralized reinforcement learning (RL) methodology

for D2D graph discovery that promotes communication of non-

sensitive yet impactful data-points over trusted yet reliable links.

Each device functions as an RL agent, training a policy to predict

the impact of incoming links. Local (device-level) and global

rewards are coupled through message passing within and between

device clusters. Numerical experiments confirm the advantages

offered by our method in terms of convergence speed and straggler

resilience across several datasets and FL schemes.

I. INTRODUCTION

Federated Learning (FL) has become a popular approach
for global machine learning (ML) model construction across
a set of distributed edge devices. The standard operation of
FL consists of a coordinating server periodically aggregating
models trained locally at the edge devices on their respective
local datasets. One of the fundamental challenges in FL is the
presence of non-i.i.d data distributions across participating
devices, which can slow convergence speed and result in
global model bias [1]. These issues are exacerbated when
some devices can only communicate their model updates to
the server intermittently, e.g., due to poor channel conditions.

A recent trend of work has considered mitigating these issues
through augmenting FL with device-to-device (D2D) commu-
nications in relevant network settings, e.g., wireless sensor
networks [2]. In D2D-enabled FL, short-range information
exchange is employed to reduce the tendency of devices to
overfit on their locally collected datasets [3]. However, there
are two factors which have a strong impact on the efficacy of
such procedures: (i) inter-device trust and privacy concerns,
which may prevent data sharing between specific device pairs,
possibly for certain data classes; (ii) D2D wireless condition
variations, which impacts communication efficiency and can
result in intermittent data transmission failures.

In this paper, we ask: How can we facilitate discovery of
an effective D2D structure for FL systems taking these factors
into account? To answer this, we propose a reinforcement
learning (RL) [4] methodology for identifying links between
devices that maximize a reward measuring FL performance and
communication efficiency. In its decentralized form, device-
specific policies (i.e., agents) can learn to independently predict

these links through low-overhead message passing without
complete exposure of local data distributions.

Related work. A few studies have explored bias reduction
in FL models through D2D information exchange. For example,
they have considered offloading of (i) partial data sets to
compensate for heterogeneous computation capabilities across
devices [1], (ii) data to devices which are estimated to contribute
more to system performance [3], and (iii) unlabelled data
for decentralized pseudo-labelling [5]. Our work, by contrast,
considers D2D graph discovery to jointly optimize expected
learning improvement and communication reliability.

Other works have employed RL to address similar issues.
For example, [6], [7] train policies at the server to select
devices for aggregation that reduce the bias of the system
model. In our work, by contrast, we leverage RL for D2D
communication procedures. In addition, all of the above studies
assume a centralized decision making system, which exposes
additional device information to the network. To the best of our
knowledge, a methodology to allow for device level decision-
making in the presence of inter-device trust constraints and
variable communication channels has not been studied.

Summary of Contributions

• We propose a decentralized RL methodology for coop-
erative discovery of an efficient wireless communication
graph for a D2D-enabled FL system (Sec. III). In our
scheme, devices act as RL agents, training local policies
for link formation and engaging in data/reward sharing.

• Our RL reward modeling and message passing procedure
results in a D2D communication structure that (i) encour-
ages reliable communication of impactful information (ii)
in the presence of variable network conditions, while (iii)
maintaining privacy requirements.

• We evaluate our method by conducting experiments on es-
tablished datasets and FL schemes (Sec. IV). Our method
shows substantial improvement over baselines in terms
of convergence speed, reliability of D2D communication,
and robustness against the presence of stragglers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first detail our models for the wireless
network and learning processes. Then, we formulate the D2D
exchange graph discovery problem.

A. Network and Learning Models

We consider an FL system over a network of client devices
C = {C1, C2, . . . , CN}, hence |C| = N ; which are regularly978-1-6654-3540-6/22 © 2022 IEEE
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Fig. 1: System model for D2D-enabled FL. In our RL-based approach
for graph discovery,where each device acts as a learning agent.

aggregated at server S. Each device Ci has access to a local
dataset Di and a local model ωt

i → Rp where p is the number of
parameters, which is updated over the training period t → [0, T ]
to minimize a local cost function which is detailed in Section
II-A4. Local models {ωt

i}i→C are aggregated every εa time steps
at server S to obtain a global model ωt

G, which is broadcast to
all devices Ci → C for further local training. Now we discuss
the aspects of our model that hold significance in any FL task.

1) Device-to-Device Communication

We assume that D2D communication can be established
among the devices in C in order to exchange a subset of their
local data-points with each other prior to the learning task.
Recent works such as [8] imply that D2D exchange of a small
number of data-points that reduce the non-i.i.d skew in local
datasets yields significant performance gains in a learning
task. However, predicting such D2D links may not have a
straightforward solution additional resource costs required to
account for unreliable channels due to network topology. To
limit this cost, we allow every receiver Ci to receive data-points
from at most one other remote device Cj , resulting in at most
one incoming edge per device over which it receives data.

Now, the signal received at Ci may suffer from attenuation
due to channel conditions between Ci and Cj , which is observed
in the received signal strength (RSS) at Ci. We consider
a network architecture similar to [9], which assumes D2D
communication conducted using OFDMA. In our scenario,
for simplicity, we assume similar noise power ϑ2 across all
channels and a constant rate of transmission r between devices.
Therefore, we can express the probability of unsuccessful
transmission to Ci from Cj similar to [9] as

PD(i, j) = 1↑ exp

(
↑(2r ↑ 1) · ϑ2

Wi,j

)
, (1)

where W → RN↑N , such that Wi,j defines the RSS at Ci
when it receives a signal from device Cj . Thus, PD is a useful
indicator of system performance, which we use to design the
reward function, which is detailed in Sec. III-C

2) Clusters of Reliable Devices

A low probability of failure of D2D communication is crucial.
Hence, from the perspective of a receiver, it is important to
identify links to remote devices which enable this. We therefore
partition the devices in C into K disjoint clusters, where each

device Ci belongs to a cluster k, denoted by Kk, such that
devices within a cluster are capable of reliably communicating
between themselves. We define a reliable cluster of devices Kk

as one where for all pairs of devices Ci, Cj → Kk; PD(i, j) ↓
ϖD ; where ϖD is a reliability threshold set by the user. Thus,
the probability of failure between any two devices within
a cluster will always be less than ϖD. We can now define
two forms of D2D communication as intra-cluster and inter-

cluster communication.
Now, in order to minimize data exchange over unreliable

channels (i.e, inter-cluster communication), we define a budget
B(Kk) for each cluster Kk, which limits the total number of
data-points requested over inter-cluster links. Thus, the number
of data-points requested by devices in Kk from devices which
are not in Kk can be at most B(Kk). For any k = 1, 2, . . . ,K.
If Qj↓i denotes the number of data-points requested by the
receiver Ci → Kk, we formally define this constraint as∑

Ci→Kk

∑

Cj /→Kk

Qj↓i ↓ B(Kk). (2)

3) Trust between Devices

In D2D communication, another desired property is pro-
tection against privacy breaches. In other words, devices are
prohibited from sharing sensitive data with other devices unless
the receiver is trusted by the transmitter; for example, a camera
equipped device may want to share images other than those
of humans for privacy concerns, except with certain trusted
devices. We encode this notion of trust in a device specific
trust matrix which is denoted by Ti → RN↑L, where L is the
number of classes in the overall dataset D =

⋃

Ci→C
Di. The

entries of trust matrix Ti belong to the set {0, 1} , given by

Ti[j, ϱ] =

{
1 if Ci trusts Cj with class ϱ

0 else.
(3)

Thus, in our system model, we do not allow a device Ci to
transmit data-points of class ϱ to device Cj if Ti[j, ϱ] = 0.
Note that Ti[j, ϱ] = 1 does not imply that Tj [i, ϱ] = 1.

4) Learning Task

Finally, once intelligent D2D data exchange has been
conducted; the local model ωt

i at each device is updated at
every time step t to achieve a local learning task, as described
in Sec. II-A. We consider a classification task, where each
client Ci has its own local data-set Di which consists of tuples
(d, ϱ) → Di where d is the feature vector for any data-point
and ϱ is the corresponding class. The performance of the local
model ωt

i depends on a loss function L(ωt
i,Di), where

L(ωt
i,Di) =

∑

(d,ω)→Di

CELoss(ωt
i, d, ϱ) (4)

where CELoss is the Cross Entropy Loss between the
predicted and ground truth classes. Now, in the FL setting, the
goal of the system is to learn a global model ω↔

G such that

ω↔
G = argmin

ε→Rp

|C|∑

i=1

L(ω,Di) (5)
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The optimal global model is expected to perform the classifica-
tion task with high accuracy across the global data distribution
D =

⋃

i→C
Di.

B. Graph Discovery Problem Formulation

As local ωt
i models are updated, they are expected to diverge

over the training iterations between aggregation [10], resulting
in slow convergence of ω↔

G. Studies such as [11] have shown
that this effect is more pronounced when the data-sets across
devices are non i.i.d. Our aim is to enable faster convergence
of ω↔

G through cooperative D2D information exchange by
improving local data diversity.

Here we define class-distribution vector of local data at
client Ci as Di → RL, where L is the total number of classes
in global dataset D and ϱ-th entry of Di is the number of
local data-points of class ϱ available in client Ci. Now, due
to the nature of stochastic gradient descent, which is used to
optimize local models ωt

i, the number of data-points required
to create a noticeable improvement in the local data diversity
(hence, in the learning task), must be above a certain threshold.
We denote this threshold by ci → RL, where any entry ci[ϱ]
indicates the threshold for the corresponding class ϱ for client
Ci. ci[ϱ] can be user defined, as different scenarios may limit
the number of data-points that can be shared over wireless
channels. Now, we take into account the skew of classes across
devices by first defining a diversity threshold L̂, which is set by
the user. We ensure that each device Ci has at least L̂ classes
available in their local dataset after D2D exchange by imposing
the following constraint:

(
L∑

ω=1

|Di[ϱ] ↔ ci[ϱ]|) ↔ L̂. (6)

Therefore, in short, our goal in this paper is to identify the
links over the set of devices C that improve the diversity

metric
L∑

ω=1

|Di[ϱ] ↔ ci[ϱ]| for every Ci, while ensuring that the

requirement specified in (6) is fulfilled to create an optimal
communication graph. Note that this needs to be optimized
subject to the constraints mentioned in Sec. I which include
(i) allowing at most one incoming edge for every device Ci,
(ii) maintaining a minimum received signal strength (RSS) for
every transmission, (iii) not allowing the transmission of a
prohibitively large number data-points between two different
clusters as shown in (2) and (iv) abiding by the notions of
trust defined between the devices in (3).

III. PROPOSED METHODOLOGY

In this section, we discuss our proposed method, which
discovers an optimal D2D communication graph over the
devices C to solve the problem established in Sec. II-B. In
order to do so, we use a decentralized RL framework, which
trains a set of local policies ς = {ςi → RN}i→[1,N ] that are
used to jointly predict links among devices. These links aim for
reliable sharing of salient data-points which reduce the skew
of datasets at each client, while obeying system constraints.

Fig. 2: The intelligent graph discovery process iteratively improves
local policies in a decentralized manner by updating them such that
information exchange over the predicted links maximize a system-
wide performance metric.

We use the Q-Learning framework [4] for training the policy
ς, where each policy training episode consists of four steps.
The first one is link formation, where the set of policies ς
predict a set of links over the graph of devices C. The next one
is the message passing procedure, which decides the payload
of data-points to be transmitted over the predicted edges. After
that, the reward formulation step calculates the utility of links
predicted by ς based on a reward function. The final step is the
policy update which updates ς in an iterative manner, based
on the experienced rewards and leads to the discovery of an
optimal graph. The steps are discussed below in details.

A. Link Formation
In this step, we first define the state at device Ci as sti =

{Wi,j : Cj → C} → RN indexed by t, where Wi,j is the
RSS at device Ci while receiving a signal from device Cj
as defined in (1). The set of possible states is given by M,
and |M| = S. We also define an experience buffer at each
device Ci as φi → RS↑N↑2, which is used to store computed
rewards and will be discussed in Sec. III-D. φi[s, j, 0] is the
total reward and φi[s, j, 1] counts the frequency, respectively,
for all times that ςi selects a link from device Cj when in state
s over the policy training process. Each device Ci predicts an
incoming edge from Cj using its local policy ςi and sti with
probability

ςi(s
t
i)[j] =

exp(ϑi[t,j,0]
ϑi[t,j,1]

)
∑

k→C exp(
ϑi[t,k,0]
ϑi[t,k,1]

)
(7)

which addresses the exploration-exploitation issue in RL [4].
Once links are predicted for all receiving nodes, information is
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exchanged over the edges of the directed graph over C based
on the message passing algorithm, which we describe next.

B. Message Passing

Algorithm 1: D2D Message Passing
1: Given : Receiver node Ci, Transmitter node Cj , current

state s, policy ς
2: Transmitter Cj calculates the available data for exchange

as Vj↓i using (8) and shares it with receiver Ci
3: Receiver Ci computes the data diversity vector Di

according to (6)
4: Receiver Ci calculates the required data vector Qj↓i

using (9)
5: Transmitter Cj selects local data-points to add to

transmission buffer Uj↓i using (10) and transmits them
to receiver Ci.

The goal of the message passing algorithm is to select data-
points to be transmitted over a link, while maintaining notions
of trust between the transmitter and the receiver. We also ensure
that the D2D exchange does not result in the transmitter having
a more biased local data-set than before. The logic for the
message passing algorithm is as follows.

Let Nj be the set of devices requesting data-points from
transmitter Cj after the link formation step. Cj first transmits
the number of data-points that are available for sharing with
all devices Ci → Nj as a vector Vj↓i → RL. We calculate
Vj↓i[ϱ] as follows

Vj↓i[ϱ] = Tj [i,ω]=1(Dj [ϱ]↑ cj [ϱ]) (8)

The above equation ensures that transmitter Cj only shares
those data-points that are allowed by trust matrix Tj .

Upon receiving Vj↓i, receiver Ci forms a requirement vector
Qj↓i → RL, where Qj↓i[ϱ] is the number of data-points of
class ϱ requested by Ci from Cj and is calculated as follows

Qj↓i[ϱ] =






Vj↓i[ϱ], if ci[ϱ]↑Di[ϱ] ↔ Vj↓i[ϱ]

ci[ϱ]↑Di[ϱ], if 0 < ci[ϱ]↑Di[ϱ] < Vj↓i[ϱ]

0, if ci[ϱ]↑Di[ϱ] ↓ 0
(9)

The requirement vector Qj↓i is then shared with transmitter Cj .
Based on Qj↓i, Cj selects data-points of class ϱ from Dj for
all classes ϱ → L and forms a transmission buffer Uj↓i → RL.
The transmission buffer Uj↓i → RL contains the number of
data-points that Cj is actually able to share. This may differ
significantly from Vj↓i due to the different demands Rj↓i→

made by all i↗ → Nj devices. Note that, if the total demand
is higher than what Cj can afford to transmit, data-points are
sent based on relative demand from each receiver Ci → Nj . We
calculate transmission buffer Uj↓i as follows.

Uj↓i[ϱ] =






Qj↓i[ϱ], if
∑

Ci→→Nj

Rj↓i→ [ϱ] ↓ Dj [ϱ]↑ cj [ϱ]

Qj↓i[ϱ]∑
Ci→→Nj

Qj↓i→ [ϱ]
· (Dj [ϱ]↑ cj [ϱ]), else

(10)

Fig. 3: An example of message passing process for cj [ω] = 10 → ω.

Now, as transmission buffer Uj↓i drops packets with probabil-
ity PD(i, j) as per (1), receiver Ci is receives a buffer D̃j↓i,
such that D̃j↓i[ϱ] ↓ Uj↓i[ϱ] ↗ ϱ → L and forms an updated
class distribution vector D̂i as follows

D̂i[ϱ] = Di + D̃j↓i ↑
∑

k→Ni

D̃i↓k, j ↘ ςi(s
t
i) (11)

In our simulations, we model the expected number of received
data-points D̃j↓i as D̃j↓i[ϱ] = [1↑ PD(i, j)]Uj↓i[ϱ].

The message passing algorithm is outlined in Algorithm 1.

Example 1. In Fig. (3), transmitter Cj shares data-points only
from trusted classes with receivers Ci and Ck, while preserving
enough for its own threshold constraints to be satisfied.
Consider ϱ = 3, where the total demand Qj↓k +Qj↓i = 20,
is greater than what is available at Ci to share, which is
Vj↓i[ϱ] = Vj↓k[ϱ] = 10. Here, the demand is split between
both, so that D̃j↓k[ϱ] = Uj↓i[ϱ] = 5 and D̂j [ϱ] = 10.

Remark 1. Note that for any receiver Ci, the data distribution
Di is never fully exposed to a transmitter Cj , unless Tj [i, k] =
1 ↗ k (complete trust). Also, due to (10), Cj may want to share
fewer data-points from a class ϱ with requesting devices, as Cj
must be left with at least cj [ϱ] data-points after each exchange.

Remark 2. Intuitively, the improved diversity of D̂i mitigates
the detrimental effect of straggler devices [3] within the system
by ensuring that data-points of any class are available at more
devices. We explore this effect further in Sec. IV-B.

C. Reward Modelling

Now, we use the updated class distribution vectors D̂i to
formulate a reward structure for the system. This enables the
policies to learn device specific requirements through a local
reward, while also optimizing the system-wide metrics via a
global reward. Therefore, the cumulative reward experienced by
each device Ci should take into consideration (i) performance
of its local policy ςi, (ii) performance of other devices
{Cj}j ↘=i,j→C , (iii) reliability of the received signal, as defined
in (1) and (iv) the inter-cluster transmission, as defined in (2).

We now briefly discuss the parameters influencing cumulative
reward. The local data diversity, as defined in (6), D̂i ↗ i →
[1, N ] should increase after D2D data exchange to improve
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convergence speed. Also, for a predicted link between Ci and
Cj , the probability of failed transmissions PD(i, j) as defined
in (1), should be low in order to reliably receive signals over
a selected edge. Also, as defined in (2), the total number of
data-points received via inter-cluster exchange must be less
than the data budget B(Kk). Trust concerns are handled by the
message passing algorithm in (8).In order to incorporate all of
the above metrics, the overall reward must constitute a tradeoff,
which is characterized by user defined weights ϖ1,ϖ2,ϖ3. The
reward consists of two components, a local reward riL specific
to device Ci, and a global reward rKk

G specific to cluster Kk.
The local reward is independent of the system performance

and captures the performance of the policy ςi for device Ci
in terms of data diversity and reliability. In order to account
for the data diversity requirement (6), for a given diversity
threshold L̂, we first define a score function f : (RL,RL) ≃ R,
which maps a diversity vector Di and a set of threshold values
ci = [ci[1] ci[2] . . . ci[L]] as follows

f(Di, ci) =






L∑

ω=1

Di[ω]≃ci[ω] ,if

(
L∑

ω=1

Di[ω]≃ci[ω]

)
↔ L̂

0 ,otherwise.
The utility function f ensures that the predicted links satisfy

the data diversity requirement in (6), by only returning rewards
if the condition is met. Thus, we define the local reward as

riL = ϖ1 · f(D̂i, c)︸ ︷︷ 
Data Diversity

↑ ϖ2 · (PD(i, j))︸ ︷︷ 
Reliability Maximization

, j ↘ ςi(s
t
i). (12)

Next, the global reward rKk
G captures the performance of the

overall network, ensuring that all devices on average improve
while cluster budget constraints are met. To that end, devices
share their local riL rewards with other devices in the network.
Budget constraints are found by obtaining the number of data-
points received over inter-cluster links for device Ci→ → Kk as
Q̃Kk =

∑

i→→Kk

|Qj↓i→ | where j ↘ ςi(s
t
i) and Cj /→ Kk. We now

define the global reward as

rKk
G =

∑

i→C

riL
N

︸ ︷︷ 
System Performance

+ϖ3 · (B(Kk)↑ Q̃Kk)︸ ︷︷ 
Cluster Budget

; (13)

The overall reward for a client Ci → Kk is given by RKk
i =

riL+↼ ·rKk
G ; where the weighting term ↼ governs the importance

given to the overall performance of the system. If ↼ is large,
the devices tolerate a large reduction in local rewards if the
global reward improves as a result, while a small ↼ results
in devices greedily optimizing their local rewards. Next, we
discuss how the reward RKk

i is used to update local policy ςi.
D. Policy Update

We use a decentralized multi-agent Q-Learning algorithm
to update a policy ςi in a state indexed by s, selected an edge
from Cj resulting in a reward RKk

i as follows

φi[s, j, 0] = φi[s, j, 0] +Rc
i (t); φi[s, j, 1] = φi[s, j, 1] + 1.

This update increases the probability of a policy predicting
links that maximize the experienced rewards, specified in (7).

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we illustrate the advantages of our algorithm
against baselines in terms of convergence speed, energy
consumption, reliability of D2D communication, consistency
in the presence of stragglers and delayed model aggregations.

A. Experimental Setup

We use the RadioML [12], CIFAR10 [13] and FashionM-
NIST [14] datasets for our evaluations. All datasets are split
80/20 to obtain training and testing datasets respectively. We
consider a network of N = 25 devices, and emulate non i.i.d
training data across all devices. Each device has 990 samples
per device for RadioML, and 1200 for the CIFAR10 and
FashionMNIST from 4 different classes. We use a convolutional
neural network (CNN) as the FL model for RadioML and
CIFAR10, and a fully connected network for FashionMNIST.

B. Results and Discussion

Performance on Various Datasets: Now, we compare our
algorithm on various datasets with the following baselines; (i)
without data exchange and (ii) graphs generated using the Erdős-
Renyi model with uniform edge selection probability (denoted
as “uniform”) paired with the message passing algorithm (Alg.
1). We show this comparison on RadioML, CIFAR10 and
Fashion MNIST in Figs. 4(a), 4(b) and 4(c), respectively. The
results illustrate that D2D information exchange using our
method improves the FL performance significantly over both of
the competing scenarios. We emphasize that our approach finds
a desirably structured D2D communication graph, resulting
in considerable improvement of the FL performance over the
“uniform” case irrespective of overall dataset.

Varying FL Schemes: Next we apply our method to two
other FL schemes: FedProx [15] and FedSGD [10], and
compare the performance in Fig. 4(d). We observe that our
method significantly outperforms both baselines which indicates
that it can be applied over different popular FL schemes
without sacrificing performance gains. In FedProx, our method
complements the proximal dissimilarity term by reducing model
bias via D2D exchange. In FedSGD, gradient aggregation is
also benefited by our method as the bias in the model gradient
is reduced due to data similarity.

Effect of Stragglers on Performance: We now study
the performance of our method in the presence of straggler
devices [3] in the FL system which do not participate in model
aggregation. Thus, as the number of stragglers increases, fewer
local models are aggregated. As each model is biased towards
non-i.i.d local data, it reduces the accuracy of the global model.
In Fig. 4(e), we choose stragglers randomly from the devices
and show that our method is more resilient to stragglers than
the baselines. It indicates the ability of our method to share
data that reduces the bias of the aggregated model as the data
exchange allows the system to make up for the bias introduced
by stragglers. This shows that our method is inherently robust
to node failure and heterogeneous communication capabilities.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Simulation results: Our method significantly improves performance over baselines for (a) RadioML ,(b) CIFAR10 and (c) FMNIST. It
can be used to augment existing federated learning algorithms such as (d) FedProx (top) and FedSGD (bottom). It retains performance in the
presence of stragglers (e) and consumes less energy to reach performance milestones (f). (g) Our method significantly improves the probability
of successful D2D transmission. (h) The performance of our method remains relatively consistent over larger global aggregation intervals.

Energy Consumption to reach Benchmarks: Next, we
conduct a simulation to compare the energy required by our
method to achieve performance benchmarks with baselines. We
use the wireless energy consumption model [16] to calculate
the energy consumed for D2D and device-to-server (D2S)
communication. In this simulation, we assume that the D2S
distance is 3⇐ the average D2D distance. Fig. 4(f) shows that
our method uses significantly less energy to reach benchmarks
as baselines despite the initial overhead due to D2D exchange.
Note that in the “uniform” case, suboptimal links result in
fewer data-points exchanged, resulting in lower D2D energy,
but consequently significant higher D2S energy as a result.

Reliability of D2D Performance: In Fig. 4(g), we study
D2D reliability in terms of the probability of successful
transmission and the cluster budget. We observe that our method
consistently predicts links to reduce inter cluster communication
while improving system performance. In practice, it results in
a reduction of number of transmitted packets (which is not the
case in “uniform” graphs), thus saves additional costs required
to ensure successful transmission over unreliable channels.

Change in Aggregation Interval: Next, we observe the
effect of various aggregation intervals εa, or the frequency of
local models synchronization. A low εa can result in faster
convergence, but involves a larger overhead due to frequent D2S
communication required for synchronization. Fig. 4(h) shows
that as εa becomes larger, our method outperforms the baselines
by a considerable margin which indicates its resilience to delays
in model aggregation, and a lower local model drift. Thus, a
small initial overhead for our method results in significant
gains in D2S overhead by retaining similar performance.
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