
2752 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

A Unified Parallel CORDIC-Based Hardware
Architecture for LSTM Network Acceleration

Nadya A. Mohamed , Student Member, IEEE, and Joseph R. Cavallaro , Fellow, IEEE

Abstract—Deep Neural Networks (DNNs) have recently become
the standard tool for solving various practical problems in a wide
range of applications with state-of-the-art performance. Recur-
rent Neural Networks (RNNs) such as Long Short-Term Memory
(LSTM) are a subset of DNNs with fully connected single or
multi-layer networks. The complex neurons and internal states
of LSTM networks enable them to build a memory of events,
making them ideal for time series applications. Despite the great
potential of LSTM networks, their heterogeneous operations and
computational resource requirements create a vast gap when it
comes to the fast processing time required in real-time applications
using low-power, low-cost edge devices. This work proposes a novel
hardware architecture that combines serial-parallel computation
with matrix algebra concepts and efficient low-power computer
arithmetics for LSTM network acceleration. The hardware is based
on a systolic ring of outer-product-based processing elements (PEs)
and a reusable single activation function block (AFB). PEs and AFB
are implemented using the coordinate rotation digital computer
algorithm (CORDIC) in the linear and hyperbolic modes. Unlike
most approaches, the proposed hardware can be configured to
perform recurrent and non-recurrent fully connected layers (FC)
computations, making it suitable for various low-power edge ap-
plications. The architecture is validated on the Xilinx PYNQ-Z1
development board using an open-source time series dataset. The
implemented design achieves 114μs average latency and 1.8 GOPS
throughput. The proposed design’s low latency and 0.438 W power
consumption makes it suitable for resource-constrained edge plat-
forms.

Index Terms—Accelerator, CORDIC, FPGA, fixed-point
arithmetic, long short-term memory, recurrent neural networks,
serial-parallel computation, systolic.

I. INTRODUCTION

THE increasing advances in science and technology and
the availability of a vast amount of training data and

computing power have enabled deep neural network models to
excel in solving various practical problems with state-of-the-art
performance [1], [2], [3]. Recurrent Neural Networks (RNNs)
are a subset of DNNs capable of handling long-term dependen-

Manuscript received 23 September 2022; revised 15 February 2023; accepted
19 March 2023. Date of publication 19 April 2023; date of current version 6
September 2023. This work was supported by the US NSF under Grants CNS-
2016727 and CNS-1827940, for the “PAWR Platform POWDER-RENEW”.
Recommended for acceptance by J. Hormigo. (Corresponding author: Nadya
A. Mohamed.)

The authors are with the Department of Electrical and Computer Engineering,
Rice University, Houston, TX 77005 USA (e-mail: nam7@rice.edu; caval-
lar@rice.edu).

Digital Object Identifier 10.1109/TC.2023.3268400

cies, making them useful for sequential data processing such
as dynamical system control, speech recognition, and natural
language processing [4], [5], [6]. Unlike Convolutional neural
networks (CNNs), which use filters, RNNs are fully connected
single or multi-layer networks with complex neurons and in-
ternal states. The prediction accuracy of RNNs is further im-
proved by introducing gating units to let information through the
network optionally and build a memory of time dependencies.
Long Short-Term Memory and Gated Recurrent Unit (GRU) are
the most popular gated variants of RNNs [7]. LSTM networks
were around 21% of Google’s tensor processing units (TPUs)
deep learning training workload in 2019 [8]. Specifically, LSTM
networks addressed time-series applications targeting small to
medium Internet-of-Things (IoT) and edge devices with limited
computing and memory resources.

The high accuracy of RNNs comes at the cost of increased
computational and memory requirements due to the high di-
mensionality of input data and the number of computations
that need to be performed. Cloud computing is a common
approach to meeting the requirements of RNNs. This approach
requires moving the data from the data source [e.g., IoT sen-
sors and smartphones] to a centralized location in the cloud.
Such a solution introduces several challenges. Sending data to
the cloud for inference incurs additional propagation delays
from the network, leading to failure to satisfy the end-to-end
low-latency requirements for real-time interactive applications.
In addition, unloading data from the sources to the cloud
introduces scalability issues in network resource utilization,
especially when not all the data from all the resources are
needed. Besides, uploading sensitive information to the cloud
and how the cloud or applications will use these data risks
privacy.

Providing computational abilities close to the end devices
through edge computing is a viable solution to meet the earlier la-
tency, scalability, and privacy challenges. Many research efforts
have focused on using CNNs for edge computing, while less has
been reported for RNNs. Specialized Field-Programmable Gate
Array (FPGA) [9], [10] and Application-Specific Integrated
Circuit (ASIC) [11], [12], [13] accelerators for low power CNN’s
inference have been proposed. However, these specialized archi-
tectures cannot directly be utilized to accelerate RNNs inference.
The densely connected layers with large memory footprints, the
heterogenous computing patterns, and the necessity of storing
and regularly updating the internal states in RNNs make their
acceleration more difficult, motivating novel algorithmic and
architecture solutions.

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

MOHAMED AND CAVALLARO: UNIFIED PARALLEL CORDIC-BASED HARDWARE ARCHITECTURE FOR LSTM 2753

This work presents a novel unified parallel CORDIC-based
solution for accelerating recurrent LSTM networks. The pro-
posed solution combines serial-parallel computation with ma-
trix algebra concepts and coordinate rotation digital computer
algorithm to enhance the accuracy and throughput of LSTM
inference. A systolic ring of outer-product-based processing
elements and a single reusable activation function block is
adopted in the architecture. The outer product generates and
accumulates partial sums in parallel, eliminating data dependen-
cies and increasing hardware utilization and system throughput.
In addition, the single activation function block performs non-
linear computations for the whole network. Given the CORDIC
algorithm’s ability to perform various computing tasks using
two fundamental operations (shift and add), it used to implement
both PEs and AFB. The CORDIC implementation of the acti-
vation function block allows configurable activation functions
(sigmoid/tanh) to maximize hardware utilization. In addition,
the CORDIC implementation of the PEs makes the proposed
solution generic for FPGA and ASIC platforms. Furthermore,
the generic unified computing kernel can be configured to per-
form recurrent and non-recurrent fully connected computations,
making it suitable for many IoTs and edge applications. The
major contributions of this work are summarized as follows:
� A hardware architecture that combines serial-parallel com-

putation with matrix algebra concepts to form a systolic
ring of outer-product-based processing elements and a
single reusable activation function block. The proposed
hardware architecture reduces data dependency, permits
pipelining, and increases hardware utilization and system
throughput.

� A CORDIC-based implementation of the processing el-
ements and activation function block. The CORDIC
algorithm linear mode is employed for the PE MAC im-
plementation. In addition, it is used together with the
hyperbolic mode to implement the configurable activa-
tion function block. The CORDIC-based implementation
makes the proposed solution generic for FPGA and ASIC
platforms.

� A unified computing kernel with the ability to perform
both recurrent and non-recurrent fully connected layer
computations to improve hardware utilization and support
various applications.

� Experimental validation of the proposed hardware ar-
chitecture on resource-constrained Xilinx PYNQ-Z1
development board using an Autoencoder-LSTM network
presented in [34], [42]

The rest of this article is organized as follows. Section
II presents the background of LSTM networks and reviews
the existing accelerator designs. Section III describes the pro-
posed accelerator design. Section IV details the architecture
implementation. Section V discuss experimental results, and
Section VI concludes the paper.

II. BACKGROUND AND PRELIMINARIES

A. LSTM Recurrent Neural Networks

Long short-term memory networks (LSTM) are a special
kind of recurrent neural network (RNNs) capable of learning

Fig. 1. LSTM layer architecture and details of a single LSTM cell. LSTM
Layer has the form of a chain of repeating modules called LSTM cells. Each
LSTM cell consists of layers of neural networks, internal states, and point-wise
operations. The σ represents the sigmoid activation function.

long-term dependencies, making them suitable for time series
analysis. They have the form of a chain of repeating modules
called LSTM cells, shown in Fig. 1. Each LSTM cell consists
of layers of neural networks, internal states, and point-wise
operations. The key to LSTM networks is the cell-state, ct,
which could be viewed as the extracted information from the
input sequence at each time step. The LSTM cell can add
or remove information to the cell state using Gate structures.
Gates are ways to let information through optionally. They are
composed of sigmoid and hyperbolic tangent neural net layers
and point-wise operations. The LSTM cell has three main gates;
forget, input, and output. Forget gate determines the fraction
of history information to be forgotten by multiplying the value
of the cell-state, ct, by a number between 0 (delete) and 1
(keep everything). The multiplication value is determined by
the current input, xt, and the LSTM cell hidden-state from the
previous time step, ht−1. The input gate has two parts; the tanh
layer, which creates a vector of new candidate values, ut, and the
sigmoid layer, which decides the amount of new candidates to
be added to ct. The LSTM cell hidden-state and also the LSTM
cell’s output,ht, is a manipulated version of ct. The cell-state, ct,
is first passed through a tanh layer to push the values between -1
and 1, then multiplied by a number between 0 (no outputs) and 1
(preserve output) generated using the output gate structure. The
size of the LSTM cell is defined by the number of elements in
the hidden state, ht, and the number of input features per time
step (number of features in xt). The computations in a single
LSTM cell with n hidden-state units and m-dimensional input
features are described using the following set of equations:

ft = sigmoid(Uf × ht−1 +Wf × xt + bf)

it = sigmoid(Ui × ht−1 +Wi × xt + bi)

ut = tanh(Uu × ht−1 +Wu × xt + bu)

ot = sigmoid(Uo × ht−1 +Wo × xt + bo)

ct = (ft · ct−1) + (it · ut)

ht = ot · tanh(ct) (1)

where ft, it, ut, ot ∈ IRn are the outputs of the forget gate, the
input gate, and the output gate, respectively. The ct and ht, as
described earlier, are the cell-state and the hidden-state/output of
the LSTM cell. They are initialized to zero and updated at each
time step, demonstrating the “recurrent” nature of LSTM. Wj ∈

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

2754 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

IRnxm, Uj ∈ IRnxn and bj ∈ IRn (j = f, i, u, o) are weight and
bias parameters learned during the training process.

The LSTM network could be a single or multi-layer network.
The network could be layered or stacked by connecting the
LSTM layer cells’ hidden state to the input of the following
LSTM layer cells. For final processing, the hidden state, ht,
of the last layer is often connected to a non-recurrent fully
connected layer described using the following equation:

yt = AF (Wy × ht + by) (2)

where Wy is the weight matrix, by is a bias vector, ht is the
hidden state of the last LSTM layer, and AF is the activation
function used in the layer.

B. RNNs Acceleration

The complex data dependencies encountered in RNN models
make their acceleration more challenging than feed-forward
neural networks and CNNs. Thus, CPUs and GPUs have difficul-
ties exploiting RNN’s fine-grained parallelism, and they remain
underutilized [14]. Various optimization methods have been
proposed to reduce the computational complexity and memory
footprints and accelerate the RNN’s inference using FPGA and
ASIC accelerators. Proposed methods include pruning, quanti-
zation, and specialized computing units.

1) Weight Pruning: Weight pruning is a model com-
pression technique proposed to reduce DNNs memory and
computation costs. It removes redundant neuron connections
converting the weight matrices to sparse matrices. Accordingly,
converting the dense matrix-vector multiplication (MxV) to
sparse matrix-vector multiplication (SpMxV) [20]. The result-
ing sparse matrices are stored using compressed sparse row
(CSR) or compressed sparse column (CSC) format [21]. A hard-
ware accelerator with on-chip sparse matrix decoding ability
could reduce the dominant MxV operations by executing the
multiply-and-accumulate (MAC) operations only on non-zero
weights. However, the irregularity of the SpMxV could chal-
lenge the hardware accelerator’s maximum performance, energy
efficiency, and hardware utilization. Coarser-grained weight
pruning methods to induce more structured sparsity patterns
and a scheduler to encode and partition the compressed model
into multiple processing elements were presented to overcome
the limitations above [22], [23]. The authors in [24], [25] in-
troduced a Bank-Balanced Sparsity (BBS) that splits the weight
matrix row into multiple equal-sized banks. Then, a fine-grained
pruning is performed to obtain a similar sparsity among the
banks. These advanced methods improve RNNs’ memory and
computational costs with minimal performance loss; however,
the training process is relatively complex and requires addi-
tional hyper-parameter to find the particular structure that would
give the optimal performance. Instead of reducing the number
of computations, this work focuses on reducing the hardware
complexity, data dependencies, and computation patterns, thus
increasing hardware utilization and throughput.

2) Quantization: The most used software framework for
Deep learning performs inference by adopting the floating-point

representation to ensure the best accuracy. However, consider-
ing hardware implementation on resource-constrained devices,
floating-point arithmetic is not optimal for resource utilization.
Various methods have focused on reducing numerical preci-
sion to reduce computing complexity and memory footprint.
Reduced bit-width floating-point formats such as IEEE’s half-
precision (float16), Google’s brain floating-point (bfloat16), and
Nvidia’s 18-bit TensorFloat format have been shown to run
effectively without accuracy loss on a variety of platforms [15],
[16]. Various methods were also proposed to quantize the struc-
ture of gates and interlinks in RNNs to reduce memory foot-
prints and make it possible to use fixed-point MAC units [17],
[18], [19]. These methods fall into two categories, post-training
quantization, and quantization-aware training. The feedback
loop in RNNs makes quantization-aware training challenging.
Given that the main focus of this work is the efficient hardware
accelerator architecture, post-training quantization is utilized to
find the fixed-point representation that would ensure a suitable
precision for the computations and low resource utilization.

3) Specialized Computing Units: With the breakthrough of
DNN’s application, the networks developed in the process
showed the trend of increased computations for better accuracy.
Therefore, it was vital to develop energy-efficient computing
units, specifically matrix multiplication units. Bit-serial MAC
that allows per-layer precision selection is presented in [26],
[27]. Compared to conventional fixed-point MAC units, the
introduced flexible bit-serial MAC supports various precision
and is smaller in area but would require more cycles to finish the
multiplication between high-bit precision operands. Approxi-
mate multipliers are another widely adopted approach that aims
to achieve the best possible trade-off between accuracy and
design efficiency [28]. The approximate logarithmic multipliers
in [29], [30] are based on Mitchell’s method [31] that utilizes
binary logarithms for multiplication. The presented approaches
offer a straightforward design but exhibit significantly higher
computational error than bit-serial MAC. Conversely, the Booth
algorithm-based approximate multipliers in [32], [33] focused
on simplifying partial product generation offering a lower com-
putational error at higher design complexity. This work proposes
a CORDIC-based MAC unit that could support various precision
to achieve the best possible trade-off between accuracy and
design efficiency.

All previously presented methods reviewed in this section
contributed to reducing the computation complexity and mem-
ory footprint of the RNNs. However, the computation kernels’
configurability, stall, and resource parallelism remain challeng-
ing, leaving space for further exploration and improvement.

III. ACCELERATOR DESIGN

The proposed unified parallel CORDIC-based architecture
accelerates the inference of the LSTM networks in addition
to fully-connected layers. The main computation effort in
the LSTM cells, as described earlier in Section II, comes
from the gates, cell state, and hidden state computations. Despite
the number of input features and the number of elements in the
hidden state which may vary according to the application, the

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

MOHAMED AND CAVALLARO: UNIFIED PARALLEL CORDIC-BASED HARDWARE ARCHITECTURE FOR LSTM 2755

Fig. 2. Matrix-vector multiplication (MxV) optimization options: (a) Inner
product-base MxV. (b) Outer product-base MxV.

computation patterns in a single LSTM cell remain the same.
This fact makes it possible to propose a versatile hardware
architecture.

A. Systolic Outer Product-Based Architecture

Optimizing the computation of the gate functions is essential
to accelerate real-time LSTM network inference. With refer-
ence to Fig. 1 and equations listed in (1), each LSTM gate
requires two MACs and element-wise vector additions. How-
ever, given that the weight matrices Wj ∈ IRnxm, Uj ∈ IRnxn

and the bias vector bj ∈ IRn in each gate share the same first
dimension n, it is possible to combine them into one matrix
of dimension (n× (n+m+ 1)). Likewise, since all the gates
share the same dimensionality and input vector, it is possible
to merge the gates’ combined matrices into one matrix of
size ((4n)× (n+m+ 1)). Therefore, rather than optimizing
four matrix-vector multiplications, each time step computations
would focus on optimizing a single matrix-vector multiplication,
reducing the pipeline control complexity.

In general, the matrix-vector multiplication of a matrix W ∈
IRnxm by vector x ∈ IRm could be optimized in two forms:
� Inner product-based: Multiply in parallel all elements of

the input vectorx by the matrix row vectorsWi. This would
require m multipliers and an adder tree. In addition, the
process should be repeated for all n rows of the matrix
W as shown in Fig. 2(a). In this case, the elements of the
output vector are computed sequentially.

� Outer product-based: Multiply in parallel a single element
of the input vector x by the matrix column vectors Wj .
This would require n MAC units, and the process should
be repeated for all m columns of the matrix W as shown
in Fig. 2(b). In this case, the output vector elements are
computed in parallel.

The conventional designs of the MxV used in most of
the existing LSTM network architectures are of the inner
product-based option. The main drawback of such a structure
is the hardware pipeline stall time imposed by the recurrent
nature of the LSTM networks and the data dependencies between
the output vector of the current time step and the input vector
of the next time step. In such a case, the system must wait for
the newly computed hidden state, ht, before starting the subse-
quent step computations. This indicates that the whole system

Fig. 3. Computation sequence in the proposed systolic outer product-based
architecture.

pipeline must be drained out before starting the following time
step matrix-vector multiplication. Pipeline latency is critical to
achieving a high throughput system. Therefore, our proposed
scheme adopted the outer product-based approach to reduce the
hardware stall time and the data dependencies between different
time step computations. To illustrate the proposed scheme’s
computations, the matrix-vector multiplication in (3) shows a
simplified example of an m-dimensional input vector with three
hidden units. The matrixW represents the combined parameters
matrix described earlier in this section. Each row inW represents
the weight of one hidden unit, and the first column includes all
units’ biases. After (m+ 1) computations, the resulting vector
y contains the sum of the products of each hidden unit. Using
as many multipliers as hidden units working in parallel, the
partial sum of all the units will be simultaneously computed for
each element in the input vector; an example of a single partial
sum is boldly marked in (3). Similarly, each unit’s final sum of
products could simultaneously be obtained using an arithmetic
accumulator per unit.

⎡
⎢⎣y1y2
y3

⎤
⎥⎦ =

⎡
⎢⎣b0 w00 w01 . . . w0m

b1 w10 w11 . . . w1m

b2 w20 w21 . . . w2m

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎣

1

x0

...

xm

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎣b0 +w00x0 + w01x1 . . . w0mxm

b1 +w10x0 + w11x1 . . . w1mtxm

b2 +w20x0 + w21x1 . . . w2mxm

⎤
⎥⎦ (3)

Given the serial processing nature of the input vector in the
outer product-based scheme, a single activation function block
(AFB) performing both activation and point-wise operations
can serve all the hidden units forming a systolic ring topology.
Fig. 3 demonstrates the computation sequence in the proposed
scheme. Steps 1 through 3 compute and accumulate MxV partial
products. The final results of the MxV are stored in a parallel-in
serial-out shift register (PISO), step 4. The activation function
block in step 5 uses the MxV results stored in the PISO reg-
ister to compute the LSTM cell or the FC layer output vector,
which also serves as an input to the subsequent matrix-vector
multiplication. In step 6, the AFB updates the input vector

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

2756 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

TABLE I
SUMMARY OF BASIC CORDIC ALGORITHM IN LINEAR AND HYPERBOLIC MODES

with the newly computed output vector elements one at a
time. Once the first element in the output vector is computed,
the subsequent matrix-vector multiplication could immediately
start. While the MxV kernel performs step 1 computations, the
AFB would update step 2 input, and the same process repeats
for the rest of the elements. The proposed architecture allows
the following subsequent MxV to start without waiting for the
system pipeline to be drained. Additionally, the hardware is
iteratively reused to compute the output of either the LSTM cell
or the FC layer, reducing the hardware complexity and power
consumption.

B. CORDIC-Based Computing Units

1) Overview: The Coordinate Rotational Digital Computer
algorithm is an iterative technique to evaluate elementary func-
tions [35]. The CORDIC algorithm’s basic idea is to rotate a two-
dimensional vector through an angle to obtain some elementary
functions such as sine, cosine, inverse tangent, hyperbolic sine,
hyperbolic cosine, inverse hyperbolic tangent, multiplication,
division, and square root. These functions could be further pro-
cessed to obtain other functions such as tangent, logarithms, and
exponential functions [36]. The CORDIC algorithm can evaluate
three classes of functions: linear, circular, and hyperbolic. It
computes the results using three variables: x, y, and z. The
initialization of these variables depends on the implemented
arithmetic operation or mathematical function. After initializing
the three variables, a set of iterative equations is repeatedly
applied to these variables until they converge to the results. The
generalized iterative equations are:[

xi+1

yi+1

]
=

[
1 mαiδi

−αiδi 1

][
xi

yi

]
(4)

zi+1 = zi + δiθi

where i is the index of iteration, m determines the class of
function being evaluated: linear (m = 0), circular (m = +1),
hyperbolic (m = −1). The value of δi is either −1 or +1 and is
chosen to either drive y or z toward zero and obtain the desired
function. In addition, αi is set to 2−i, this setting simplifies the
computations performed in (4) to simple shift and add binary
operations. The rotation angle θi for each of the three classes is

computed using tanh−1 αi for (m = −1), αi for (m = 0), and
tan−1 αi for (m = +1).

This work utilizes the CORDIC algorithm linear and hyper-
bolic modes. The linear mode is employed for the MAC imple-
mentation. In addition, it is used together with the hyperbolic
mode to implement the configurable activation function block.
Table I summarizes the available basic CORDIC functions in
linear and hyperbolic modes. In Table I xin, yin, and zin rep-
resent the initial values of variables x, y, and z respectively.
The factor Kh in hyperbolic mode is a constant that corrects the
amplification introduced by the linearized “rotation” in x and y
coordinates and is given by

Kh =

N∏
i=1

√
1− (2−i)2 (5)

The accuracy of the functional results in Table I depends on the
convergence of the CORDIC algorithm, which is how closely
the y or z variable is driven toward zero. The y or z variable
can theoretically be driven to zero if the initial point (xin, yin)
or the initial value zin is within a specific range. This specific
range is known as the “range of convergence” and is limited by
the sum of rotation angles θN +

∑N
j=i+1 θj . Due to the incom-

plete representation of the hyperbolic rotation angles θi, some
iterations must be repeated to satisfy the convergence theorem.
In [36], it was recommended that every (4, 13, 40, 121, . . .)th
iteration be repeated to complete the angle representation. The
numerical values of each class range of convergence are also
given in Table I. These convergence ranges are further discussed
in the context of DNN in the coming sections.

2) MAC Units: Given the CORDIC algorithm’s ability to
perform various computational tasks using two fundamental
inexpensive operations (shift and add), it is used to realize the
MAC computations in the proposed architecture. As noted from
Table I, operating in the linear rotation mode yields the sum
of the product (xinzin) and the input yin. For the CORDIC
algorithm to converge to the desired results, the initial value
of zin should be within [−1, 1]. The limited convergence range
is one of the major shortcomings of the CORDIC algorithm.
The authors in [37] proposed expanding the set of iteration
index to i = −M,−M + 1, . . .,−1, 0, 1, 2, . . ., N to expand
the convergence range to [−2M+1, 2M+1]. Such an expansion

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

MOHAMED AND CAVALLARO: UNIFIED PARALLEL CORDIC-BASED HARDWARE ARCHITECTURE FOR LSTM 2757

comes at the cost of increased data word length or roundoff error
in a fixed-point hardware implementation.

Expanding the convergence range may not necessarily be
needed for neural network implementation. Feature scaling, an
essential preprocessing step in many machine learning algo-
rithms, including deep neural networks, would scale the range of
the input features. More specifically, normalization transforms
feature values to a standard range, usually [0,1] or sometimes
[−1, 1]. Accordingly, the convergence range of the CORDIC
algorithm should not be a limitation for the input features.
Similarly, the output range of the most commonly used activation
functions in DNN models is also within the [−1, 1] range.
Therefore, the internal results between the hidden layers are
also within the required [−1, 1] range. Furthermore, when the
output range of the activations is not within the [−1, 1] range,
a batch norm layer is usually inserted between a hidden layer
and the next layer. The inserted batch norm layer normalizes
the outputs from the first hidden layer before passing them as
input to the next layer. Hence, the range of the passed input
would also be within the CORDIC algorithm range. Given
that the main focus of this paper is the LSTM network, the
LSTM cell formulation in (1) is used to demonstrate the MAC
units’ input range within the cell. Assuming the LSTM cell
input, xt is normalized to zero mean and unit variance, and
the ht vector is initialized to zero. Passing xt and ht vector
elements as zin in the CORDIC MAC units would satisfy the
CORDIC algorithm convergence range requirement. In addi-
tion, given that the two main activation functions used in the
LSTM cell structure are the sigmoid and tanh, the output of
ft, it, ut, ot ∈ [−1, 1]. Consequently, the newly computed ht,
which would also be used as an input in the following MAC com-
putations, would also be in the required [−1, 1] range. Thus, the
CORDIC algorithm could efficiently be used to perform the re-
quired MAC computations within the LSTM cell and other gen-
eral neural network types without expanding the convergence
range.

The recursive nature of the CORDIC algorithm creates an-
other hard lower limit on the algorithm latency. As noticed from
the generalized iterative equations in (4), the direction of the
subsequent microrotation depends on the current iteration result.
Consequently, the standard CORDIC implementation is sequen-
tial and therefore slow. This work adopts a prediction-based
approach to speed up the serial CORDIC implementation in the
linear rotation mode. The main idea is to examine the binary
representation of the input zin and generate the bipolar values
corresponding to the rotation directions δi. To explain the under-
lying idea, we will assume that the initial value of zin is given
in 2’s complement binary notation. Using the binary-to-bipolar
recoding (BBR) method, the corresponding rotation directions
are obtained as follows:

zin = (−bo) +
N−1∑
j=1

bj2
−j

= (−bo) +

N−1∑
j=1

[2−j−1 + (2bj − 1)2−j−1]

=

N∑
i=1

δi2
−i − 2−N (6)

where bj ∈ {0, 1}, δi ∈ {−1, 1} and{
δ1 = 2b0 − 1
δi = 1− 2bi−1, i = 2, 3, . . ., N

(7)

Using (6), (7), the N rotation directions (δ1 to δN) could directly
be derived in parallel eliminating the z-datapath, hence reducing
the implementation area. In addition, the speed of the proposed
algorithm could further be improved using tree-structured adders
for the y microrotations. Compared to conventional fixed-point
MAC units, consisting of a multiplier and an adder block, the
proposed CORDIC-based MAC could be fully pipelined, elimi-
nating the adder block idle time in the conventional MAC units.
Additionally, it could support various precision to achieve the
best possible trade-off between accuracy and design efficiency.

3) Activation Functions: The nonlinear activation function
is one of the main components of the artificial neural network
computational units. Each neuron in the LSTM cell and FC
layers needs an activation function. The output of the MAC units
passes through the activation function to compute the final output
of each neuron. Sigmoid and hyperbolic tangent functions are
the most widely used activation functions and are the primary
activation functions in the LSTM cell. The sigmoid and tanh
functions are mathematically defined as follows:

tanh(z) =
sinh(z)

cosh(z)
=

ez − e−z

ez + e−z
(8)

sigmoid(z) =
1

1 + cosh(z) + sinh(z)
=

1

1 + e−z
(9)

The straightforward implementation of these functions on hard-
ware is costly, given that both require computing the exponential
and division. Various methods have been proposed to achieve
high-fidelity approximations [39]. These methods generally fall
into two main categories, piecewise linear approximation and
look-up table-based (LUT) approaches. In both categories, the
implementations tend to use more resources and latency to
achieve high-accuracy approximations. This work focuses on
the efficient hardware implementation of the activation func-
tions using an optimized CORDIC algorithm that simplifies the
approximation method without sacrificing the network accuracy.
The CORDIC algorithm in the hyperbolic rotation mode allows
the computation of the hyperbolic sinh and cosh functions,
and in the linear vectoring mode, it could be used to perform
division. The integration of the two modes allows the compu-
tation of the sigmoid and tanh activation functions using two
relatively inexpensive operations.

a) CORDIC Hyperbolic sinh and cosh:
i) Expanding the basic range of convergence: The CORDIC

hyperbolic convergence range reported in Table I is not large
enough to cover the range of the sigmoid and tanh activa-
tions where the activations are not saturated. The tanh acti-
vation function saturates to −1 for inputs less than −3 and
1 for inputs greater than 3. On the other hand, the sigmoid
activation converges to 0 for inputs less than −5 and 1 for

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

2758 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

inputs greater than 5. The approach presented in [37] is adopted
to expand the hyperbolic CORDIC convergence range. The
authors in [37] proposed expanding the set of iteration index to
i = −M,−M + 1, . . .,−1, 0, 1, 2, . . ., N and thus augmenting
the iteration angle list with θi = tanh−1(1− 2i−2) for i ≤ 0.
Based on the new augmented θi’s list, the algorithm iterations
presented in (4) are modified to,

for i ≤ 0[
xi+1

yi+1

]
=

[
1 −δi(1− 2i−2)

−δi(1− 2i−2) 1

][
xi

yi

]
(10)

zi+1 = zi + δi tanh
−1(1− 2i−2)

for i > 0 [
xi+1

yi+1

]
=

[
1 −δi2

−i

−δi2
−i 1

][
xi

yi

]
(11)

zi+1 = zi + δi tanh
−1(2−i)

Accordingly, the new convergence range is obtained using,

|zin| ≤
0∑

i=−M

tanh−1(1− 2i−2)

+ tanh−1(2−N) +
N∑
i=1

tanh−1(2−i)

|zin| ≈ 3.44 (for M = 1)

|zin| ≈ 5.16 (for M = 2) (12)

Including negatively indexed iterations in finite word-length
implementation may introduce larger arithmetic errors than
those caused by only the positively indexed iterations. Therefore,
the scale factor Kh introduced in (5) should be extended to
accommodate the amplification introduced by the negatively
indexed iterations. The Kh factor could be redefined as,

Kh =

[
0∏

i=−M

√
1− (1− 2i−2)2

][
N∏
i=1

√
1− (2−i)2

]

Kh ≈ 0.2652 (for M = 1)

Kh ≈ 0.0923 (for M = 2) (13)

As noticed from (13), the constant Kh is less than one in
magnitude, and the inclusion of more iterations makes Kh

even smaller. In a fixed-point implementation, the hyperbolic
CORDIC results computed using the smaller Kh will use less
of the dynamic range of the three CORDIC variables,x, y, and z,
detailed in Table I. Because the CORDIC output’s relative error
depends on the LSB’s weight, the smallerKh will lead to a higher
error. Therefore, the number of negatively indexed iterations
should be limited to as few as possible. In our implementa-
tion of the CORDIC-based activation function, we evaluate the
sigmoid activation as a scaled version of the tanh using the
relationship detailed next.

tanh(z) =
ez − e−z

ez + e−z

=
ez + e−z − 2e−z

ez + e−z

= 1− 2e−z

ez + e−z

= 1− 2

e2z + 1
(14)

Since the sigmoid function is symmetric around the origin,

1− sigmoid(z) = sigmoid(−z) =
1

1 + ez
(15)

Using (14) and (15),

tanh(z) = 1− 2sigmoid(−2z)

sigmoid(z) =
1 + tanh(z2)

2
(16)

The above-detailed relationship enables the implementation of
the two activation functions using a single configurable hardware
unit that requires only two additional bit shifters and an adder. In
addition, it limits the number of the negatively indexed iterations
to M = 1, thus limiting the increase in the relative error caused
by the additional negatively indexed iteration required to cover
the sigmoid input range.

ii) Partitioning the radix set: As pointed out earlier, the
sequential determination of the value δi limits the speed of
the conventional CORDIC rotation. In this article, we show
that the computation of the positively indexed rotation direc-
tions in the hyperbolic class could be partially parallelized,
thus reducing the overall latency without affecting the accu-
racy. The CORDIC algorithm performs rotation iteratively by
breaking the rotation angle zin into a set of predefined small
angles that could be implemented using low hardware costs
(4). For the hyperbolic class, this set is: {θ1, θ2, . . ., θN} =
{tanh−1 2−1, tanh−1 2−2, . . ., tanh−1 2−N}. The θ terms are
referred to as Arc Tangent Radix (ATR) constants. The hy-
perbolic ATR constants approach the linear radix-2 constants
gradually for increasing values of the CORDIC iteration index.
Fig. 4 compares the hyperbolic ATR and the linear radix-2
constants. The error in assuming that the hyperbolic ATRs are
the same as the linear radix-2 constants for the large iteration
index i in fixed-point representation is negligible. Therefore, if
the linear radix-2 is assumed for the least significant part of the
rotation directions, the precision in the least significant part will
be about the same as the conventional ATRs. Accordingly, the
prediction-based approach adopted in the CORDIC MAC for
the parallel generation of the rotation directions could also be
utilized for the least significant part of the hyperbolic rotations.

Using the earlier observation on hyperbolic ATRs approxi-
mation using linear radix-2 constants, we define the
Hybrid Hyperbolic ATR :⎧⎪⎨

⎪⎩
most significant part︷ ︸︸ ︷

tanh−1 2−1, tanh−1 2−2, . . ., tanh−1 2−n+1, 2−n, . . ., 2−N︸ ︷︷ ︸
least significant

⎫⎪⎬
⎪⎭

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

MOHAMED AND CAVALLARO: UNIFIED PARALLEL CORDIC-BASED HARDWARE ARCHITECTURE FOR LSTM 2759

Fig. 4. Hyperbolic ATR and linear radix-2 constants. The top plot compares
the actual values of the hyperbolic ATRs and the linear radix-2 constants. The
bottom plot displays the approximation error assuming that radix-2 constants
are the same as hyperbolic ATRs.

The defined set is a mix of conventional hyperbolic ATRs for
the most significant part and the linear radix-2 constants for the
least significant part. The most significant part iterations, along
with the negatively indexed iterations introduced in the previous
part, are performed using the conventional sequential CORDIC
iterations. On the other hand, the iterations corresponding to the
least significant part are parallelized using the binary-to-bipolar
recoding method as in the linear mode. Because the CORDIC
iterations related to the most significant part may change the
value of the bits in the least significant part, the evaluation of
the least significant part rotation directions is performed after the
rotations of the most significant parts to avoid errors. To identify
the partitioning index that will preserve the full accuracy, the
error introduced by assuming that the hyperbolic ATR is the
same as the linear radix-2 constant is used.

εi = tanh−1 2−i − 2−i
(17)

Using the Taylor series approximation of tanh−1 2−i,

εi =

[
2−i +

1

3
2−3i +

1

5
2−5i + · · ·

]
− 2−i

=
1

3
2−3i +

1

5
2−5i + · · · (18)

This error should be less than the smallest representable angle,
2−N+1 for N bits fixed-point representation with N − 1 bits in
the fractional part. Given that 1

32
−3i + 1

52
−5i + · · · < 2−3i−1,

2−N+1 ≥ 2−3i−1 > εi =
1

3
2−3i +

1

5
2−5i + · · · (19)

Solving for i,

2−N+1 ≥ 2−3i−1

i ≥ N − 2

3
(20)

Hence, the minimum index value i that will preserve the full
accuracy is i � N−2

3 and is approximately close to the minimum
index reported in [38] which focused only on the CORDIC
circular mode.

TABLE II
SUMMARY OF CASES TO CONSIDER IN THE PARALLEL GENERATION OF

HYPERBOLIC REPEATED ITERATION DIRECTIONS

In order to use the binary-to-bipolar recoding method pre-
sented in Section III-B2 in the parallel generation of the least
significant part rotation directions, the recording method should
be extended to accommodate for the hyperbolic repeated it-
erations. Assuming that the rotation angle is in the standard
binary representation, Table II summarizes the cases to consider
in the parallel generation of the hyperbolic repeated iteration
directions. It has been noticed that the incomplete represen-
tation of the hyperbolic rotation angles may affect the binary
representation of the most significant part of the z output used
in the parallel generation of the rotation directions in the least
significant part. More specifically, the most significant part of
the z output may not be zero. This usually happens when the
first iteration in the least significant part is one of the iterations
to be repeated, case 1. Therefore, the bit at iteration index i− 1
should be compared against the sign bit. If the two bits match,
the prediction of the repeated iteration direction will be based
on the bit at iteration index i.

δi (Repeated) = (1− 2bi) (21)

On the other hand, if the bit at iteration index i− 1 did not
match the sign bit, then the direction of the repeated iteration
should be obtained using,

δi (Repeated) = (1− 2b0) · (1− 2bi−1) · (1− 2bi) (22)

The second case details the generation of the rotation direction
when the repeated iteration is not the first in the least significant
part. This case is straightforward and only requires evaluating
the bit at the iteration index of the repeated iteration as in (20).
For all the abovementioned cases, the rotation direction of the
iteration following the repeated iteration will always depend on
the inverse of the bit at the index of the repeated iteration.

δi+1 = (2bi − 1) (23)

b) CORDIC linear division: Given the limited range of the
sigmoid and tanh activation functions, which also fall within the
CORDIC linear mode’s convergence range, the hyperbolic sinh
and cosh division is implemented using the CORDIC algorithm
in linear vectoring mode. Unlike the CORDIC rotation mode,
the CORDIC vectoring mode rotation direction depends on both

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

2760 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

Fig. 5. The hardware architecture of the proposed unified parallel CORDIC-
based accelerator. The main modules consist of an array of computationally
independent Processing elements, a parallel-in serial-out shift register, a single
activation function block, and a control module.

x and y components, making it more challenging to derive the
rotation directions in parallel. Therefore, the CORDIC divider in
this work is implemented using the standard iterative CORDIC
method. It is worth mentioning that the CORDIC divider could
be fully pipelined to reduce the overall latency, making it a
practical choice for low-power edge computing solutions.

IV. HARDWARE IMPLEMENTATION

This section presents the FPGA implementation details of the
proposed hardware architecture introduced in Section III. The
architecture was coded in C++ using the Xilinx Vivado HLS tool
targeting the Xilinx PYNQ-Z1 FPGA development board. The
development board consists of an XC7Z020 ZYNQ series FPGA
containing a Dual ARM Cortex-A9 core processor. In addition,
it is a hardware platform for the PYNQ open-source framework,
which comprises software running on the ARM CPUs and a
base hardware library. After verifying the functionality of our
custom-designed accelerator modules, the designed hardware
accelerator was exported to Xilinx Vivado Design Suite for
synthesis and implementation. A simplified block diagram of the
implemented hardware architecture is shown in Fig. 5. The main
modules consist of an array of computationally independent
processing elements, a parallel-in serial-out shift register, a
single activation function block, and a control module.

Each processing element consists of two main parts: a sin-
gle port on-chip Block RAM (BRAM) and a CORDIC-based
MAC unit. The BRAM holds the stationary network param-
eters (weights, biases), and the CORDIC-MAC unit performs
the corresponding MxV computations. Each PE BRAM holds
the parameters of one neuron unit per layer. The on-chip BRAMs
are used in the implementation to reduce the external I/O com-
munication and to enable concurrent operation of the PEs. The
AFB is a configurable CORDIC-based activation block. It could
be configured to handle LSTM gates activations, cell state up-
dates, hidden state computations, and FC layer activations. Last
is the control module, which encodes instructions and controls

Algorithm 1: CORDIC-Based MAC Unit Using BBR
Method.

Require:−1 ≤ zin ≤ 1
Input: xin, yin, zin
Output: yin + xinzin
n ← number of fractional bits
dir[n] ← 0
y ← yin
if zin < 0 then dir[0] = +1 else dir[0] = −1
for i = 1, i < n do
if zin[n− i] == 0 then dir[i] = +1 else dir[i] = −1
end for
for j = 0, j < n do
xreg ← xin >> (j + 1)
if dir[j] == +1 then xreg ← −xreg

y ← y + xreg

end for
return y

the order of operations, data movements, and storage. Given that
the LSTM layers and cells reuse the hardware, the architecture
described above is generic and could be extended in terms of the
number of hidden units in the LSTM gates and the input vector
size as long as the hardware resources are available.

The general data flow in the proposed architecture is as
follows; the network input data are sequentially introduced and
concurrently multiplied by their corresponding weights in each
PE. The multiplication results are added to the accumulator
register in each PE. The final sums of products from all PEs
are passed to the PISO shift register to be shifted through the
activation function block. The outputs of the activation function
block (ct, ht) are stored in internal memory to be used in the
next-time step computations or passed to the output.

A. CORDIC MAC Units

As described earlier, the architecture PEs include CORDIC-
based MAC units implemented using the binary-to-bipolar
recoding method presented in Section III-B2. Algorithm 1
describes the CORDIC-MAC computations using the BBR
method. The iterations in the first loop, which corresponds
to rotation direction prediction, are independent; accordingly,
the loop could be unrolled to obtain the rotation directions in
parallel. The obtained rotation directions are then used in the
second loop implemented using bit shifting and tree-structured
adders to compute the corresponding multiply and accumulate
computations.

The implemented parallel CORDIC MAC unit using a 16-bit
fixed-point representation, 4 bits for the signed integer part, and
12 bits for the fractional part has a latency of 3 clock cycles
with single-cycle data throughput. Comparing the performance
of the implemented CORDIC-based MAC unit against the Xilinx
DSP48E using the same data representation and with reference
to floating-point multiplication gives relative mean absolute
error (MAE) results. The MAE of the CORDIC-based MAC
is ∼5.8× 10−4, while it is ∼4.5× 10−4 for the DSP48E. The

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

MOHAMED AND CAVALLARO: UNIFIED PARALLEL CORDIC-BASED HARDWARE ARCHITECTURE FOR LSTM 2761

Fig. 6. The absolute error heat maps of the CORDIC-based MAC unit and the
Xilinx DSP48E using 16 bits fixed-point data representation. The x and z are
the multiplication operands.

absolute error heat maps of the two implementations are shown
in Fig. 6. The output quantization error in the CORDIC-based
implementation is higher than the DSP48E. The quantization
error in the CORDIC-based implementation can be split into
two parts; the first part is due to the input samples quantization,
while the second is caused by the truncation of x and y after
shifting them to the right at each iteration. The truncation
error is equivalent to adding random variables to each of the
newly computed x and y in addition to the accumulated error
terms from the prior stage. In Section V-E, we will show that
the accuracy loss in the designed network using the proposed
CORDIC-based MAC units is negligible.

B. CORDIC AFB

Implementing the CORDIC-based activation functions con-
sists of cascading three CORDIC processors, as illustrated in
Fig. 7. The first two processors are for the hyperbolic sinh
and cosh computations, while the third processor performs the
division. The first hyperbolic processor generates and applies the
rotation directions sequentially as in the conventional CORDIC
algorithm using negatively indexed microrotation angles and an-
gles defined in the most significant part of the Hybrid Hyperbolic
ATR set introduced in the previous section. This first processor
uses the input rotation angle zin in addition to initial vector
coordinates xin and yin, to compute zn, xn, and yn at the end
of first n iterations. The input rotation angle zin is connected to
the output of the CORDIC-MAC unit and PISO unit as shown
in Fig. 5, while xin is set to 1/Kh and yin = 0. The second
hyperbolic processor eliminates the z data path through the
parallel generation of the rotation directions using zn. The imple-
mentations of the on-the-fly converter and the second hyperbolic
processor are based on the approach detailed in Section III-B3.
The generated rotation directions by the on-the-fly converter are
applied to xn and yn to compute the final value of the hyperbolic
sinh and cosh. The third CORDIC processor uses the computed
sinh and cosh and performs the division using the conventional
CORDIC algorithm in linear vectoring mode.

The implemented CORDIC-based activation functions using
16-bit fixed-point representation have a latency of 21 clock
cycles. Furthermore, if we were also to pipeline the first hy-
perbolic and the third linear processors, then this would enable

a single-cycle data throughput and reduce the latency to 13 clock
cycles at the cost of additional hardware resources. Evaluating
the performance of the implemented CORDIC-based activation
functions gives MAE of ∼2.8× 10−4 for the tanh activation
and ∼1.6× 10−4 for the sigmoid using (15). Fig. 8 shows the
similarity in shape between the real-valued and the CORDIC-
based approximation, along with the absolute error for both
activations over the range of interest. The output quantization
error in the hyperbolic CORDIC implementation includes, in ad-
dition to input sample quantization and truncation errors, angle
approximation error caused by the quantized representation of
the CORDIC rotation angle using a finite number of elementary
angles. Compared with the activation function implementations
reported in [39], the proposed CORDIC-based activation func-
tion achieves higher approximation accuracy, making it suitable
in applications with minimal accuracy loss requirements.

As pointed out earlier, the activation function block is a config-
urable activation block that handles the LSTM gates activation,
the cell state update, the hidden state computations, and the dense
fully-connected layer activation. To reduce the implementation
complexity and enable activation function and arithmetic units
reuse, the LSTM gates activation and point-wise operations are
pipelined as shown in Fig. 9. The LSTM cell formulation in (1)
is divided into six pipeline stages S0− S5. The inputs to the
activation pipeline are the matrix-vector multiplication results
of the forget gate, input gate, and output gate shown in Fig. 1
and expressed in the LSTM cell formulation in (1). The outputs
are the cell state and the hidden state. In the cases when the layer
is of a fully-connected type, only the first pipeline stage would
be activated, and the computed activation result is passed to the
output.

V. EVALUATION AND ANALYSIS

A. Experimental Setup

The Grand St. Bernard open-source dataset [40] is used to
demonstrate the performance of the designed hardware accelera-
tor in a real-case application. The dataset consists of temperature
measurements and other metrological characteristics of the envi-
ronment collected for two months from multiple wireless sensor
nodes deployed at the Grand St. Bernard pass, located between
Switzerland and Italy. The performance and the flexibility of the
designed unified computing kernel in performing recurrent and
non-recurrent fully connected layers computations are validated
using an Autoencoder-LSTM network trained in Keras Tensor-
flow using the dataset mentioned above [34], [42]. The trained
network integrates Autoencoder and LSTM neural networks
for real-time temperature forecasting on resource-constrained
devices. Table III summarizes the trained Autoencoder-LSTM
network model. The autoencoder consists of two FC dense layers
(FC1, FC2), while the LSTM network comprises an LSTM layer
followed by two fully connected dense layers (FC3, FC4). The
LSTM layer has a hidden size of 40 and an input dimension (or
sequence length) of 30-time steps.

The LSTM layer computations dominate the number of
computations in the trained network. The number of MAC

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

2762 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

Fig. 7. The implemented CORDIC- based activation function consists of cascading three CORDIC processors. The first two processors are used to compute the
hyperbolic sinh and cosh, while the third performs the division to compute the final result of tanh(zin). The input rotation angle zin is connected to the output
of the CORDIC-MAC unit, while xin is set to 1/Kh and yin = 0.

Fig. 8. CORDIC-based activation functions performance. The top plot shows
the real-valued tanh and the CORDIC-based approximation along with the
corresponding absolute error. The bottom plot shows the same but for the
sigmoid activation function.

TABLE III
SUMMARY OF THE TRAINED AUTOENCODER-LSTM NETWORK MODEL

computations processed by our accelerator for the LSTM layer
only is approximately ∼0.2 M while it is ∼8 K for the rest
of the network. Therefore, to reduce the latency and increase
the throughput, the number of processing elements in the im-
plemented design is set to four times the LSTM layer hid-
den size to enable the parallel computation of the LSTM cell

Fig. 9. CORDIC Activation function block pipeline. The inputs to the
CORDIC AFB pipeline are the matrix-vector multiplication results of the forget
gate, input gate, and output gate. The outputs are the cell state and the hidden
state.

Fig. 10. Top-level diagram of the implemented accelerator on Xilinx PYNQ-
Z1 FPGA development board.

gates. Furthermore, to maintain the trained network accuracy
while considering the limited hardware resources on resource-
constrained devices, a 16-bit fixed-point data representation,
4 bits for the signed integer part, and 12 bits for the frac-
tional part is adopted in the implementation. After verifying
the functionality of our custom-designed accelerator modules
in Xilinx’s Vivado HLS tool, the designed hardware acceler-
ator is exported to Xilinx Vivado Design Suite to build the
hardware overlay. The resulting hardware overlay is loaded
on the PYNQ-Z1 board. The top-level diagram of the hard-
ware overlay on the PYNQ-Z1 board is shown in Fig. 10.
A python code is developed to interface with the hardware
overlay. The quantized network parameters are loaded into the
programmable logic (PL) distributed BRAMs using the AXI

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

MOHAMED AND CAVALLARO: UNIFIED PARALLEL CORDIC-BASED HARDWARE ARCHITECTURE FOR LSTM 2763

TABLE IV
RESOURCE UTILIZATION OF THE PROPOSED DESIGN ON XILINX PYNQ-Z1

FPGA DEVELOPMENT BOARD

high-performance (HP) interface. Then, sensor readings are
transferred from the ARM core processing system (PS) to the
accelerator using the AXI general-purpose (GP) interface. The
accelerator outputs are extracted and evaluated offline to mea-
sure the performance.

B. Hardware Resource Utilization

Table IV shows the PL resource utilization of the AE-LSTM
network using the proposed unified parallel CORDIC-based
implementation with reference to sequential floating-point im-
plementation and fixed-point implementation presented in [34].
In the reference sequential floating-point implementation and
fixed-point implementation from [34], the network layers are
stacked as presented in Table III. Each Dense layer is imple-
mented using one MAC unit and a single tanh activation. On the
other hand, the LSTM layer consists of one reusable LSTM cell
of 4 MACs, two sigmoid activations, and one tanh activation. Of
the 111 DSPs used in the floating-point implementation, 35 are
used for the MAC computations, while the activation functions
use the rest. Each exponential computation in the floating-point
activation requires 7 DSPs in addition to Flip-Flops (FF) and
LUTs. In the fixed-point implementation, the DSP utilization
has substantially been reduced using 20-bit fixed-point repre-
sentation and piece-wise linear approximation of the activation
functions.

Given that the proposed parallel CORDIC-based implemen-
tation is multiplier-less, DSP units are not utilized. The shift
and add nature of the CORDIC-based PEs and AFB increases
the LUT, slice logic, and FF utilization. Around 30% of the LUT
utilization and 50% of the slice logic are caused by the PEs, and
the rest are used by the activation functions, control module, and
internal results storage. The outer product-based implementation
of the matrix-vector multiplication in which each PE comprises
an internal BRAM unit increases the utilization of distributed
BRAMs compared to the reference designs in which each layer’s
parameters are kept together either in a single BRAM unit or
multiple units.

The estimated response time of the proposed parallel
CORDIC fixed-point implementation using the global 100MHz
clock that drives the PL from the PS is ∼114μs, achieving
∼1.8 GOPS throughput. Compared to the sequential floating-
point implementation with an estimated response time of ∼5 ms

TABLE V
PROPOSED ARCHITECTURE POWER CONSUMPTION BREAKDOWN ON PYNQ-Z1

XC7Z020 CHIP USING XILINX POWER ANALYZER

Fig. 11. Total power measurement using a USB power meter. When the
accelerator is up and running, the whole PYNQ-Z1 system board burns at most
∼ 2W .

and the fixed-point implementation with ∼1.13 ms response
time, the reduction is substantial considering the slight increase
in the hardware resources detailed in Table IV.

C. Power Measurement

The Xilinx Power Analyzer is used to estimate the dynamic
and static power of the proposed architecture on the PYNQ-Z1
XC7Z020 chip. Table V shows the analyzer breakdown. As per
the breakdown, the accelerator consumes∼0.438 W on average.
A USB power meter is used to verify the analyzer’s total power
consumption, including other board components. As shown
experimentally in Fig. 11, the whole PYNQ-Z1 system board
burns at most ∼2 W when the accelerator is up and running.
The meter reported power consumption is very close to the Zynq
chip total noted in Table V.

D. Efficiency Comparison

To illustrate the benefit of our proposed architecture, a com-
parison with an existing LSTM accelerator [41] designed using
a comparable benchmark and implemented on the same FPGA
board is detailed in Table VI. The table lists the chip name, target
frequency, data type, number of operations, inference latency,
throughput, and power consumption. It should be noted that the
architecture in [41] has only accelerated the LSTM gates MxV
and unloaded the results to the PS for activation. On the other
hand, our proposed design accelerates both the LSTM MxV and
activation performing all the required computations on the PL,
thus reducing the I/O communication to parameters loading and

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

2764 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

TABLE VI
EFFICIENCY COMPARISON WITH PREVIOUS LSTM IMPLEMENTATION ON

PYNQ-Z1 FPGA

TABLE VII
PROPOSED ARCHITECTURE LOGIC SYNTHESIS RESULTS USING 45 NM

TECHNOLOGY

final result unloading. With reference to the scheme described
above, the latency and throughput reported in Table VI for [41]
are based on the MxV computation time, the I/O communication,
and the activation computations delay were not reported in the
paper.

In terms of design scalability, while considering the available
resources on the PYNQ-Z1 FPGA, the authors in [41] reported
that with 180 DSP-based PEs, the architecture utilizes around
97% of the available LUTs. Therefore, the maximum parallel
MAC operations could not be extended beyond 180. On the other
hand, our architecture could be expanded, given the available
resources detailed in Table IV. More specifically, with each PE
consuming on average 63 LUT, 55 FF, and 35 slice logic, the
number of PEs could be raised to 216. The utilization report of
our expanded architecture on PYNQ-Z1 FPGA shows that the
expansion resulted in 90.6%, 30%, and 99.8% utilization of the
available LUT, FF, and Slice Logic, respectively.

To further demonstrate the proposed architecture’s efficiency,
the architecture’s RTL is synthesized, and Design Compiler-
Synopsys produced results presented in Table VII. It can be
observed that the proposed design achieves sufficiently low area
and power compared to the FPGA-based implementation.

E. Network Accuracy

The accuracy of the implemented prediction network is eval-
uated on the test set from the Grand St. Bernard dataset to
study the impact of using CORDIC-based computing units on
the overall network prediction performance. The implemented
CORDIC-based prediction network achieves a mean absolute
error of 20× 10−3. Compared with the reference floating-point
version, with 16× 10−3 MAE, the performance degradation

Fig. 12. Prediction network results collected from the PYNQ-Z1 board. The
bottom plot shows actual sensor readings (orange), corresponding CORDIC-
based accelerator predictions (green), and reference floating-point predictions
(black). The top plot presents the absolute difference between sensor observa-
tions and the network prediction for the CORDIC and floating-point implemen-
tations.

may be acceptable in many applications given reduced bit width
and CORDIC quantization error. Fig. 12 presents an example of
system response collected from the PYNQ-z1 board to sensor
readings from the same dataset. The results are presented in
the [−1, 1] scale, which is the scale the AE-LSTM network
uses for prediction. The absolute difference between the sensor
data and the AE-LSTM system prediction is also presented
in both plots. With reference to the floating-point implemen-
tation, the effect of quantization noise on network prediction
is more evident in the region where the sensor data are less
noisy.

VI. CONCLUSION

This article presented a novel unified configurable parallel
CORDIC-based architecture for accelerating recurrent LSTM
and non-recurrent fully connected computations in DNN ar-
chitectures. The implemented solution consists of a systolic
ring of outer product-based processing elements and a single
reusable activation function block. The outer product gener-
ates and accumulates partial sums in parallel, eliminating data
dependencies and increasing hardware utilization and system
throughput. The serial processing nature of the input vector in the
outer product-based scheme enables a single activation function
block (AFB) to serve the whole network, decreasing overall sys-
tem complexity. The CORDIC implementation of the PEs and
activation function block makes the proposed solution generic
for FPGA and ASIC platforms. In addition, given the CORDIC
algorithm’s ability to perform many elementary functions using
the same shift and add scheme, the utilization of the proposed
CORDIC-based computing kernels could further be extended
to other functionality beyond the MAC units and activation
functions. Experimental validation of the proposed hardware
architecture on a resource-constrained Xilinx PYNQ-Z1 devel-
opment board using an open-source time-series dataset achieves
low average latency and power consumption, making the pro-
posed solution suitable for resource-constrained IoTs and edge
platforms. Future work could exploit automating the generation
of efficient CORDIC-based architecture for accelerating recur-
rent LSTM and non-recurrent fully connected computations in

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

MOHAMED AND CAVALLARO: UNIFIED PARALLEL CORDIC-BASED HARDWARE ARCHITECTURE FOR LSTM 2765

DNN architectures while considering application requirements
and available hardware resources.

REFERENCES

[1] I. Arel, D. C. Rose, and T. P. Karnowski, “Research frontier: Deep machine
learning-a new frontier in artificial intelligence research,” Top Comput.
Technol. Gaming Mag., vol. 5, no. 4, pp. 13–18, Nov. 2010.

[2] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms, appli-
cations and emerging research trends,” IEEE Access, vol. 6, pp. 24411–
24432, 2018, doi: 10.1109/ACCESS.2018.2830661.

[3] S. Shamshirband, T. Rabczuk, and K. -W. Chau, “A survey of deep learning
techniques: Application in wind and solar energy resources,” IEEE Access,
vol. 7, pp. 164650–164666, 2019, doi: 10.1109/ACCESS.2019.2951750.

[4] T. W. S. Chow, X.-D. Li, and Y. Fang, “A real-time learning control
approach for nonlinear continuous-time system using recurrent neural net-
works,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 478–486, Apr. 2000,
doi: 10.1109/41.836364.

[5] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech recog-
nition using deep neural networks: A systematic review,” IEEE Access,
vol. 7, pp. 19143–19165, 2019, doi: 10.1109/ACCESS.2019.2896880.

[6] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing [Review Article],”
IEEE Comput. Intell. Mag., vol. 13, no. 3, pp. 55–75, Aug. 2018,
doi: 10.1109/MCI.2018.2840738.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.
1997.9.8.1735.

[8] N. P. Jouppi et al., “A domain-specific supercomputer for training
deep neural networks,” Commun. ACM, vol. 63, no. 7, pp. 67–78,
Jun. 2020.

[9] J. Wang, J. Lin, and Z. Wang, “Efficient hardware architectures
for deep convolutional neural network,” IEEE Trans. Circuits Syst.
I: Regular Papers, vol. 65, no. 6, pp. 1941–1953, Jun. 2018,
doi: 10.1109/TCSI.2017.2767204.

[10] T. Yuan, W. Liu, J. Han, and F. Lombardi, “High performance CNN
accelerators based on hardware and algorithm co-optimization,” IEEE
Trans. Circuits Syst. I: Regular Papers, vol. 68, no. 1, pp. 250–263,
Jan. 2021, doi: 10.1109/TCSI.2020.3030663.

[11] Y. Lin and T. S. Chang, “Data and hardware efficient de-
sign for convolutional neural network,” IEEE Trans. Circuits Syst.
I: Regular Papers, vol. 65, no. 5, pp. 1642–1651, May 2018,
doi: 10.1109/TCSI.2017.2759803.

[12] F. Conti, P. D. Schiavone, and L. Benini, “XNOR neural engine: A
hardware accelerator IP for 21.6-fJ/op binary neural network inference,”
in IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 11,
pp. 2940–2951, Nov. 2018, doi: 10.1109/TCAD.2018.2857019.

[13] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An architec-
ture for ultralow power binary-weight CNN acceleration,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 1, pp. 48–60,
Jan. 2018, doi: 10.1109/TCAD.2017.2682138.

[14] E. Nurvitadhi et al., “Accelerating recurrent neural networks in analytics
servers: Comparison of FPGA,” in Proc. 26th Int. Conf. Field Cite Appl.,
2016, pp. 1–4, doi: 10.1109/FPL.2016.7577314.

[15] D. Kalamkar et al., “A study of BFLOAT16 for deep learning training,”
2019, arXiv:1905.12322.

[16] N. Ho and W. Wong, “Exploiting half precision arithmetic in nvidia GPUs,”
in Proc. IEEE High Perform. Extreme Comput. Conf., 2017, pp. 1–7,
doi: 10.1109/HPEC.2017.8091072.

[17] Q. He et al., “Effective quantization methods for recurrent neural net-
works,” 2016, arXiv:1611.10176.

[18] M. Z. Alom, A. T. Moody, N. Maruyama, B. C. Van Essen, and
T. M. Taha, “Effective quantization approaches for recurrent neural
networks,” in Proc. Int. Joint Conf. Neural Netw., 2018, pp. 1–8,
doi: 10.1109/IJCNN.2018.8489341.

[19] L. Hou, J. Zhu, J. Kwok, F. Gao, T. Qin, and T.-Y. Liu, “Normalization
helps training of quantized LSTM,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 7344–7354.

[20] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135–1143.

[21] S. Han, H. Mao and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning trained quantization and huffman coding,”
in Proc. Int. Conf. Learn. Representations, 2016, pp. 1–14.

[22] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolu-
tional neural networks,” ACM J. Emerg. Technol. Comput. Syst., vol. 13,
no. 3, pp. 1–18, 2017, Art. no. 32.

[23] S. Han et al., “ESE: Efficient speech recognition engine with sparse LSTM
on FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
2017, pp. 75–84.

[24] S. Cao et al., “Efficient and effective sparse LSTM on FPGA with bank-
balanced sparsity,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2019, pp. 63–72.

[25] D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti, and J. Seo, “An
8.93 TOPS/W LSTM recurrent neural network accelerator featuring
hierarchical coarse-grain sparsity for on-device speech recognition,”
IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1877–1887, Jul. 2020,
doi: 10.1109/JSSC.2020.2992900.

[26] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network computing,”
in Proc. IEEE/ACM 49th Annu. Int. Symp. Microarchitecture, 2016,
pp. 1–12, doi: 10.1109/MICRO.2016.7783722.

[27] O. Bilaniuk, S. Wagner, Y. Savaria, and J. David, “Bit-slicing
FPGA accelerator for quantized neural networks,” in Proc. IEEE
Int. Symp. Circuits Syst., 2019, pp. 1–5, doi: 10.1109/ISCAS.2019.
8702332.

[28] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approxi-
mate arithmetic circuits: A survey, characterization, and recent appli-
cations,” Proc. IEEE, vol. 108, no. 12, pp. 2108–2135, Dec. 2020,
doi: 10.1109/JPROC.2020.3006451.

[29] M. S. Kim, A. A. Del Barrio H. GarciaKim, and N. Bagherzadeh, “The
effects of approximate multiplication on convolutional neural networks,”
IEEE Trans. Emerg. Topics Comput., vol. 10, no. 2, pp. 904–916, Second
Quarter, 2022, doi: 10.1109/TETC.2021.3050989.

[30] M. S. Ansari, B. F. Cockburn, and J. Han, “An improved logarithmic
multiplier for energy-efficient neural computing,” IEEE Trans. Com-
put., vol. 70, no. 4, pp. 614–625, Apr. 2021, doi: 10.1109/TC.2020.
2992113.

[31] J. N. Mitchell, “Computer multiplication and division using binary log-
arithms,” IRE Trans. Electron. Comput., vol. EC-11, no. 4, pp. 512–517,
Aug. 1962, doi: 10.1109/TEC.1962.5219391.

[32] Y. -J. Chang, Y. -C. Cheng, S. -C. Liao, and C. -H. Hsiao, “A low
power Radix-4 booth multiplier with pre-encoded mechanism,” IEEE
Access, vol. 8, pp. 114842–114853, 2020, doi: 10.1109/ACCESS.2020.
3003684.

[33] H. Zhang, H. Xiao, H. Qu, and S. -B. Ko, “FPGA-Based approxi-
mate multiplier for efficient neural computation,” in Proc. IEEE Int.
Conf. Consum. Electron. Asia, 2021, pp. 1–4, doi: 10.1109/ICCE-A-
sia53811.2021.9641971.

[34] N. A. Mohamed and J. R. Cavallaro, “Real-time FPGA-Based
outlier detection using autoencoder and LSTM,” in Proc. 55th
Asilomar Conf. Signals Syst. Comput., 2021, pp. 1195–1199,
doi: 10.1109/IEEECONF53345.2021.9723300.

[35] J. E. Volder, “The CORDIC trigonometric computing technique,”
IRE Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, 1959,
doi: 10.1109/TEC.1959.5222693.

[36] J. S. Walther, “A unified algorithm for elementary functions,” in Proc. May
18–20, 1971, Spring Joint Comput. Conf., 1971, pp. 379–385.

[37] X. Hu, R. G. Harber, and S. C. Bass, “Expanding the range of convergence
of the CORDIC algorithm,” IEEE Trans. Comput., vol. 40, no. 1, pp. 13–21,
Jan. 1991, doi: 10.1109/12.67316.

[38] S. Wang, V. Piuri, and E. E. Swartzlander, “Hybrid CORDIC algo-
rithms,” IEEE Trans. Comput., vol. 46, no. 11, pp. 1202–1207, Nov. 1997,
doi: 10.1109/12.644295.

[39] T. Yang et al., “Design space exploration of neural network ac-
tivation function circuits,” IEEE Trans. Comput.-Aided Des. In-
tegr. Circuits Syst., vol. 38, no. 10, pp. 1974–1978, Oct. 2019,
doi: 10.1109/TCAD.2018.2871198.

[40] G. Barrenetxea, “Sensorscope data [data set],” 2019. [Online]. Available:
https://doi:org/10.5281/zenodo.2654726

[41] X. Zhang, W. Jiang, and J. Hu, “Achieving full parallelism in LSTM
via a unified accelerator design,” in Proc. IEEE 38th Int. Conf.
Comput. Des., 2020, pp. 469–477, doi: 10.1109/ICCD50377.2020.
00086.

[42] N. A. Mohamed and J. R. Cavallaro, “Design and implementa-
tion of Autoencoder-LSTM accelerator for edge outlier detection,”
in Proc. IEEE Workshop Signal Process. Syst., 2021, pp. 134–139,
doi: 10.1109/SiPS52927.2021.00032.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

2766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 10, OCTOBER 2023

Nadya A. Mohamed (Student Member, IEEE)re-
ceived the BS degree in information technology com-
puter system engineering major from United Arab
Emirates University, Al Ain, UAE, in 2008, and the
MS degree in microsystems engineering from the
Masdar Institute of Science and Technology, Abu
Dhabi, UAE, in 2012. She is currently working toward
the PhD degree with the Department of Electrical
and Computer Engineering, Rice University, Hous-
ton, TX, USA. Her current research interests include
deep learning hardware acceleration with a focus on

time series applications and resource management in wireless sensor networks
and Internet-of-Things systems.

Joseph R. Cavallaro (Fellow, IEEE) received the BS
degree from the University of Pennsylvania, Philadel-
phia, Pa, in 1981, the MS degree from Princeton
University, Princeton, NJ, in 1982, and the PhD de-
gree from Cornell University, Ithaca, NY, in 1988,
all in electrical engineering. In 1988, he joined the
faculty of Rice University, Houston, TX, where he
is currently a professor of electrical and computer
engineering. His research interests include computer
arithmetic, and DSP, GPU, FPGA, and VLSI archi-
tectures for applications in wireless communications.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 22,2024 at 21:45:24 UTC from IEEE Xplore. Restrictions apply.

