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Abstract 

Commonly used constitutive laws for crystalline and viscous materials have been compared to 

predict the densification behavior under hot-pressing and sinter-forging. Experimental results, 

from literature for one loading condition, have been used to extract the constitutive laws for 

amorphous and crystalline materials and, these in-turn, have been used to predict behavior under 

a different set of loading conditions. Ideally, the constitutive parameters obtained from one set of 

loading conditions and thermal history should apply to a different set of conditions. However, there 

is a lack of systematic experimental studies in which this can be checked. In this paper, we use 

constitutive parameters obtained from one set of conditions to predict the densification response 

under a different set of loading conditions. For both sintering of amorphous and crystalline 

materials, we use two different constitutive parameters and compare the predictions of these for 

the case where experimental results are not available. In addition, the effect of temperature on 

densification behavior for stress-assisted sintering has been investigated. It is shown that the two 

commonly used constitutive models for viscous sintering (Scherer and Skorohod–Olevsky) predict 

similar behavior for amorphous materials. However, for crystalline materials, the predictions of 

the Riedel–Svoboda (RS) and the Kuhn–Sofronis–McMeeking (KSM) models are different. 

Finally, it is shown that the dependence of the normalized densification on temperature, under 
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constant heating rate conditions, with parameters obtained from isothermal experiments, is a good 

test for the models. 

 

Keywords: Stress-assisted densification, power-law creep model 

 

 

1. INTRODUCTION  

 

Thermo-mechanical processes are commonly used to consolidate ceramic powders. Hot-pressing 

and hot-forging are two examples of significant application and intensive research 1,2. An external 

pressure increases the sintering driving force leading to faster densification. Thus, pressure-

assisted sintering is a means to densify materials which are normally resistant to sintering. Because 

of the enhanced densification, and by implication improved performance, sintering with an 

external pressure has been used in demanding applications in aerospace, biomedical, and electronic 

applications where high density is a requirement 3. 

Hot-pressing and sinter-forging have been reported on a variety of structural and electronic 

ceramics 4-11. For example, hot-pressing has been used in the development of composites with 

significantly higher thermal conductivities and in the densification of ultrahigh temperature 

ceramics 12-15. Guillon 16 carefully studied the effect of applied stress on field assisted sintering. 

Stress assisted grain growth has also been a topic of interest 17,18. Modeling efforts for a better 

understanding and control of these processes has also received significant attention 19-26. For 

example, Wakai et al. 27 modeled the elimination of strength-limiting defects by pressure assisted 

sintering at low stress levels. 

Simulation has proved to be a useful tool to characterize powder densification. For example, 

Bragnisky et al. 28 developed numerical model capable of simulating microstructural evolution and 

macroscopic deformation during sintering of complex powder compacts. Van Nguyen et al. 29 

developed a model for powder metal hot-isostatic-pressing (PM-HIP) where the contribution of 

several mechanisms to densification is analyzed. Theoretical and numerical models have been 

developed for microwave-assisted sintering 30 and spark-plasma sintering 31. Yin et al. 32 describe 

the effect of molding pressure on densification of microwave-sintered ceramic tool material by 

simulations and experiments. Bouvard et al. 33-35 have reported the use of micromechanical 
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modeling, as well as phenomenological and power law creep approaches, to develop constitutive 

laws for powder compacts. 

The densification during stress assisted sintering of ceramics is attributed to a combination of pore-

curvature-driven diffusion 36-38, stress-driven diffusion 4, and/or plastic flow 39. The intrinsic 

driving force for densification is often represented by the so-called sintering pressure 40,41. The 

application of an external pressure acts as an additional driving force for densification 42, which 

can be used to further reduce sintering time and temperature. The sensitivity of the densification 

to applied uniaxial stress for hot-pressing and sinter-forging has been reported by Camacho-

Montes et al. 43. 

Reiterer and Ewsuk 44 have reviewed and compared four widely used approaches to study 

sintering: i) The Riedel and Svoboda model (RS) for solid state sintering 45,46; ii) Skorohod and 

Olevsky viscous sintering (SOVS) model for viscous sintering 47; iii) Kinetic Monte Carlo model 

(KMC) 28,48,49; and iv) the master sintering curve approach (MSC) 50,52. Each one has its own 

strengths and weaknesses. As shown in Ref. 44, the KMC model provides a description for 

structural evolution. The RS, SOVS, and KMC models are good approaches for the prediction of 

the densification response. However, the RS model is more difficult to use than the other ones; the 

SOVS model cannot predict microstructural evolution; and the KMC and MSC models do not 

consider stress in their mathematical description making them unsuitable for stress assisted 

sintering. 

In a comprehensive review of sintering, Bordia, Kang, and Olevsky analyzed the status and the 

challenge of sintering science and technology 53. The continuum mechanics formulation 40,47,54 of 

sintering is reported as the tool to investigate the macroscopic factors involved in the response of 

a sintering body to a general stress state. For the investigation of sintering under either external or 

internal stresses, a basic continuum mechanics approach has been developed in Refs. 40,41,47. An 

essential element of this approach is the constitutive laws which govern the material response to 

both constrained and stress-assisted sintering. In the literature, several constitutive laws have been 

proposed and used for specific systems or cases. However, further critical evaluation for the same 

problem or the same material system, using different proposed constitutive laws is needed to 

determine the broader applicability of the constitutive laws. 

 In the present work, comparison of four constitutive models is presented. The power-law creep 

model developed by Kuhn and McMeeking 22 and Sofronis and McMeeking 23 are considered. The 
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implementation proposed here for the Khun-Sofronis-McMeeking model is similar to that reported 

by Bhattacharya et al. 21. The Riedel-Svoboda model 45,46,55 for diffusion-controlled deformation 

for polycrystalline materials is also considered. These two constitutive laws are appropriate for 

crystalline materials. For the constitutive relations of viscous materials, the Scherer cell model 56 

and the Skorohod-Olevsky model 47 are applied. Published experimental results, under one set of 

loading conditions, are used to extract the constitutive parameters for both amorphous and 

crystalline materials and these are applied to predict the densification behavior under a different 

set of loading conditions. In addition, the effect of temperature on the sensitivity of constitutive 

parameters is explored during stress assisted sintering.  

 

2. PROBLEM SETUP 

 

The prediction of densification and stress distribution during the sintering process is performed 

using four constitutive behaviors that are implemented into the user defined subroutine CREEP of 

ABAQUS, using a similar algorithm to that proposed by Bhattacharya et al. 21. Because of the 

axisymmetry along the z-axis, an axisymmetric finite element model is developed for the 

cylindrical sample. A bilinear axisymmetric element (C0AX4) is chosen. The friction between the 

die walls and the compact has been neglected. Figure 1 is a schematic of the problem setup. 

 

Fig. 1. (a) Hot-pressing situation for case I and (b) sinter-forging situation for case II (uniaxial 

stress applied through the piston). 
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For the numerical experiments, two macroscopic cases, labeled as case I or hot-pressing (Fig. 1(a)) 

and case II or sinter-forging (Fig 1 (b)), are performed. For case I, the powder compact is confined 

inside a die under uniaxial stress, aP , applied by the piston (Fig. 1(a)). For case II, the powder 

compact is not confined in the radial direction perpendicular to the direction in which the stress is 

applied (Fig. 1(b)). 

Fundamentally, the sintering simulation consists of two steps: A general static step followed by a 

viscous step. The load and the boundary conditions are applied in the general static step. The elastic 

stress distribution within the powder compact is calculated by ABAQUS, followed by transferring 

the stress tensor into the viscous analysis. In this step, the CREEP subroutine is called to calculate 

the creep strain and update the dimensions and the relative density. The newly computed values 

are returned to ABAQUS, where the stress tensor is redetermined. Material properties in ABAQUS 

need to be updated with the evolution of the density. This function is performed by the USDFLD 

subroutine 57. This sequence is repeated for each time step. The flow chart of the simulation is 

presented in Fig. 2. 

 

Fig. 2. Schematic flow chart for the computation of density evolution. H is the powder compact 

height, R is its radius, ij is the stress tensor and ij is the strain tensor  
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The user defined CREEP subroutine is based on the following equation: 

( )3

2 3

ij ij m ij
ij cr sw

I

q

  
  
• • •
=  +  ,                     (1) 

where ij
•

, cr
•

, and sw
•

 are the strain rate tensor, the creep rate, and the volumetric strain rate, 

respectively. The increments cr
•

 , and sw
•

  are functions of the von Mises stress q , and the 

hydrostatic stress m , respectively. The mathematical symbol   in front of term ij m   represents 

a generalization and it adapts to each specific model as shown below. The functions can be 

implemented in the ABAQUS user subroutine. Solution-dependent state variables can also be 

employed. For the herein considered constitutive behaviors, density is taken as a state variable. 

For the non-isothermal cases, the temperature is found as a function of time, and the temperature–

dependent properties can be obtained. ijI  is the identity matrix because swelling components are 

considered isotropic 58. Finally, cr
•

 , and sw
•

  are defined for each one of the constitutive 

behaviors and they are calculated for each ABAQUS CREEP personalized subroutine 58. 

Four constitutive behaviors have been considered: The Scherer (identified as the S) model 56 and 

the SOVS model 47 are used to describe the linear viscous behavior of amorphous ceramics. For 

polycrystalline ceramics, the non-linear extension 55 of the Riedel-Svoboda (RS) model 19,46 and 

the power law creep behavior described by a combination of Kuhn-McMeeking 22 and Sofronis-

McMeeking 23 (KSM) have been used. The combinations of Case I (hot-pressing) and II (sinter-

forging) with the four previously mentioned constitutive behaviors lead to the eight numerical 

experiments shown in Table 1. 

 

Table 1. Four different constitutive behaviors identified in the first column are considered for 

cases I and II resulting in eight numerical experiments.  

 

 

Cases Case I (see Fig. 1(a)) Case II (see Fig. 1(b)) 

Kuhn–Sofronis–McMeeking 
(KSM) 

KSM-I KSM-II 

Riedel-Svoboda (RS) RS-I RS-II 

Scherer (S) S-I S-II 

Skorohod – Olevsky  (SOVS) SOVS-I SOVS-II 
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2.1 Elastic stress equilibrium 

The continuum equilibrium equation is defined by 

, 0ij j = ,             (2) 

where ij  is the stress tensor of second order and the comma notation indicates the partial derivate 

relative to the jx  component at the Cartesian coordinate system ( )1 2 3, ,x x x=x ; i.e., ,i j i jf f x=   . 

The strain tensor of second order, ij , is given in terms of displacements, iu , as 

 ( ), , 2ij i j j iu u = + ,          (3) 

and the Hooke law is taken as the constitutive relation where the dependence of elastic modulus 

0( )pE  and elastic Poisson’s ratio 0( )p  on porosity,  f, have the form 59: 

2.23

0 0 1
0.652

p

f
E E

 
= − 

 
,         (4) 

( )
1.22

0 0.14 1 0.14
0.5

p s

f
 

 
= + − − 

 
,         (5) 

where 0E  and s  are the elastic modulus and Poisson ratio for a fully dense body.  

The boundary conditions may be stated as: 

1ij BS
 = ,           (6) 

2i BS
u = ,            (7) 

where BS denotes the boundary surface for the powder compact. The Eqs. (2)-(7) define a 

mathematical stress equilibrium problem that has a unique solution if the boundary conditions, 

Eqs. (6) and (7), are properly stated. The calculations are implemented through the software 

ABAQUS CAE/16.14. The expressions 1  and 2  take their values depending on the loading case, 

as shown in Table 2. 
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Table 2. Boundary conditions for the hot-pressing experiments (I) and the sinter-forging 

experiments (II) associate to the stress equilibrium problem. 

 

 

2.2 The Scherer Model 

The stress distribution calculated in the elastic problem (Eqs. (2)-(7)) is imported in a viscous 

problem defined by the constitutive equations presented, for instance in Ref. 40,41: 

( )1

x f p x p y zE     
• •

−  = + − +
  ,  (8) 

( )1

y f p y p x zE     
• •

−  = + − +  ,  (9) 

( )1

z f p z p x yE     
• •

−  = + − +
  ,  (10) 

where pE , p  and f
•

 are the uniaxial viscosity, the viscous Poisson coefficient, and the free 

sintering strain rate, respectively of the porous body. Re-writing Eqs. (8)-(10) in compact form, 

we have: 

( )1

2 3

ij m s S

ij ij

p p

q

G q K

  
 
•  − 
= + 

 
,  (11) 

where, pG  and pK  are the shear and bulk viscosity respectively.  'ij is the deviatoric stress. 

By comparing the first and second terms of Eq. (1) with those of Eq. (11), the following strain 

increments can be obtained: 

( )3cr pq G
•

 = ,  (12) 

( )sw m s pK  
•

 = − ,  (13) 

 

 Hot-pressing experiments I Sinter-forging experiments II 

    

    

( )1 z Hf = aij Pd aij Pd

( )2
, 0r R zf = = 0, 0,r zu u= = free, 0zu =
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where q is the Von Mises equivalent stress, m  is the mean or hydrostatic stress calculated in the 

elastic step, ( )s S  is the sintering stress for the Scherer model, and ij  is the Kronecker delta. In 

addition, pK  and pG  can be computed by:  

( )2 2p p pG E = + ,  (14) 

( )3 6p p pK E = − .  (15) 

The uniaxial viscosity pE  and the viscous Poisson ratio p  for the Scherer model can be found in 

Ref. 56. The sintering stress, ( )s S , is related to the free sintering rate through the bulk viscosity 

as reported in Ref. 40: 

( ) 3 fs S K 
•

= .  (16) 

The free sintering rate, f
•

, can be calculated using the equations reported by Scherer 56 or the one 

reported by Mackenzie-Shuttleworth 60: 

2/31/3 1/31 4 1
1

2 3
f

n 


 

•    
= − −    

    
,  (17) 

where   is the relative density,   the surface energy, n  the number of particles per unit volume, 

and   the uniaxial viscosity for the fully dense material .   

The effect of temperature is through the temperature dependence of viscosity  , that is, 

0 exp
Q

RT
 

 
=  

 
,  (18) 

where Q  is the activation energy, RT is the molar gas constant times the absolute temperature, 

and 0  is the pre-exponential factor for viscosity. Furthermore, the densification rate 
•

 is 

calculated as follows: 

kk
  
• •

= − ,  (19) 

where 
kk


•

 is the trace or the hydrostatic strain rate of the sample (repeated indices imply 

summation). 

 

2.3 The Skorohod-Olevsky viscous sintering model 
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For the Skorohod-Olevsky (SOVS) model 47, the macroscopic strain tensor is calculated by: 

( )(SOVS)

SOVS SOVS2 3

m sij

ij ij
G K

 
 
• −
= + ,  (20) 

where (SOVS)s  is the sintering stress for the SOVS model. SOVSG  and SOVSK  represent the effective 

shear and bulk viscosities for the SOVS model, which depends on the normalized viscosities   

(bulk) and   (shear), and on the material viscosity   whose temperature dependence is given by 

Eq. (18). After calculating the strain rate components from Eq. (18), they are written in terms of 

cr  and sw  using Eq. (1) which in turn are related to the bulk and shear viscosity as given in 

Eqs. (12) and (13). The density increment is given by Eq. (19).  

The effective shear and bulk viscosity are defined as: 

SOVSG = ,  (21) 

SOVS 2K = .  (22) 

Here, the bulk normalized viscosity   and the sintering stress (SOVS)s  can be computed as follows 

( ) 22

2 1
cb

a  = − ,  (23) 

3

(SOVS) 33
b

s a r  = ,  (24) 

where 2a , 2b , 2c , 3a , and 3b  are adjustable parameters. Also, in Eq. (24), the symbols   and r  

represent the surface energy and the grain radius, respectively. 

Finally, the density increment is given by Eq. (19) as a function of the strain rate (Eq. (20)). 

 

2.4 The Riedel-Svoboda Model 

For the Riedel-Svoboda Model, the constitutive equation is defined as follows: 

( )

2 3

ij m s RS RS

ij ij

RS RS

p

G K

  
 
•  − + 
= + ,  (25) 

where  RSp  is the gas overpressure which may develop in closed pores. ( )s RS  is the sintering stress 

for the RS model. RSK  and RSG  represent the bulk and shear viscosities, which are related to the 

linear viscosities linK  and linG , see for instance Refs. 55, through the following relations: 
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2
1RS linK K

r





 
= + 

 
,  (26) 

2
1RS linG G

r





 
= + 

 
,  (27) 

where   is a free parameter which determine the deviation from linearity, r is the grain radius 

size, and   is the effective stress defined by the expression 

( )

1 1

2 2
m s RS RSp q  = − +  + .  (28) 

In addition, for crystalline materials, both effective viscosity and the sintering stress depend on the 

structural evolution. Evolution of structural parameters such as grain boundary contact area and 

pore radius are controlled by various diffusions mechanisms: surface, grain boundary, and bulk 

diffusion, which are thermally activated process and have the form: 

( )
0

sQ RT

s sD D e 
−

= , ( )

0

bQ RT

b bD D e 
−

= , and ( )

0

VQ RT

V VD D e
−

= .  (29) 

where sQ , bQ  and VQ  are the activation energy for surface, grain boundary, and volume diffusion, 

respectively. 
0sD  is the reference surface diffusion times surface layer thickness, 

0bD  is the 

reference grain boundary diffusion times grain boundary thickness, and 
0VD  is the reference bulk 

diffusion coefficient. 

Grain boundary mobility is also a key structural evolution parameter described by a thermally 

activated process, as: 

( )
0

t gQ R T

b bM M e
−

= ,  (30) 

where tQ  is the activation energy for boundary mobility. 

After calculating the strain rate components from Eq. (25) considering Eqs. (26)-(28), they are 

written in terms of cr  and sw  using Eq. (1). The density increment is given by Eq. (19). 

Connection between lineal viscosity modulus ( linK  in Eq. (26)) and ( linG  in Eq. (27)) with the 

diffusion and mobility coefficients can be found in Ref. 55 and Appendix A. 

 

2.5 The Kuhn-Sofronis-McMeeking Model 

In this model, the densification has been studied considering creep as the dominant mechanism. 

Kuhn and McMeeking 22 studied the stage when porosity is open and interconnected with discrete 
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necks bridging adjacent particles. Sofronis and McMeeking 23 studied the case when pores are 

closed and isolated from each other. Bhattacharya et al. 21 proposed a connection between Kuhn–

McMeeking model (open porosity) and Sofronis–McMeeking model (close porosity). In the 

present work, we propose a transition assuming that for 0.9 = , half of the porosity is closed. 

Close porosity starts to appear for 0.85 =  and all the pores are closed for 0.95 = .  

The constitutive relations of stage I (open pore) and II (closed pores) are given by 

3

2 3

ij m ij I ij
I ij I I

b I
E a

q

  


• • + 
− 

 
= ,  (31) 

3
( )

2 3

m
ijII II II ij m ij II ijE a b I


   

• •  
+ − 

 
= ,  (32) 

where ijI E
•

 and ijII E
•

 are the components of the creep strain rate tensor of stage I and II, respectively. 

The dependences for 
I 
•

, Ia  and Ib  for the KM model, as well as, the functions ,II 
•

 IIa  and IIb  

are taken from Ref. 21. Appendix B shows the connection with the temperature-dependent 

coefficients. 

The blending of the two stages is computed by 

( ) ( )ij ijij KM I SM IIA E A E  
• • •

= + .  (33) 

In Eq. (33), it is expected that ijI E
•

 is dominant when 0.9   and ijII E
•

 when 0.9  . Also, 

( )KMA   and ( )SMA   are the weight coefficients which determine the contributions relative to 

open and closed porosity for the overall densification. They can be determined as 

( ) 1 ( )KM sA f = − ,  (34) 

( ) ( )SM sA f = ,  (35) 

where ( )
( ) 1

a c

sf b e



− − = +

 
 with 100a = , 1b =  and 0.9c = . 

As in the previous cases, the stress distribution is calculated in the elastic problem, the stress state 

is imported into the CREEP subroutine in which are implemented the Kuhn-McMeeking and 

Sofronis-McMeeking densification model 22,23. 

After calculating the strain rate components from Eqs. (31) and (32) for each stage, they are written 

in terms of cr  and sw  using Eq. (1). The density increment is given by Eq. (19). 
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The temperature dependence of the strain rates for stages I and II (Eqs. (31) and (32)) are described 

by coefficients 1A  and 2A  (see Appendix B and Ref. 21): 

( )0

1 1 1exp /A A Q RT= − , ( )0

2 2 2exp /A A Q RT= − ,  (36) 

where 1Q  and 2Q  are the activation energy for stage I (Kuhn-McMeeking) and II (Sofronis-

McMeeking). 

 

3. MODELS PARAMETERS 

 

For the numerical experiments, three materials were selected: (a) Sodium-borosilicate glass (very 

similar to Corning glass 7740); b) alumina; and  c) zirconia. These materials were chosen because 

stress-assisted densification data,  is available in the literature, for one set of loading conditions 

for each one of them, as described below. 

 

3.1 Elastic constitutive behaviors 

The Eqs. (4) and (5) are used to describe the dependence of the elastic properties on porosity for 

alumina, zirconia and the glass. For alumina, the elastic modulus ( )0E  and the Poisson ratio ( )0 p  

for the fully dense body are assumed equal to 375 GPa and 0.24, respectively 61, and the 

corresponding values for the glass (Corning glass 7740) are  62.8GPa and 0.20 62, respectively. 

For zirconia 0E  and 0 p , values of 220 GPa and 0.27 respectively are used 63. 

 

3.2 Constitutive parameters for viscous materials 

For the Scherer and SOVS models, two model parameters are needed. They are the reference 

viscosity, 0 , and the activation energy, Q .  

Günay 64 studied the hot-pressing of gel derived and melt derived sodium-borosilicate glass-

powder very similar to Corning glass 7740. In the present work, we adjust the Scherer model 

parameters (
1/3n  and viscosity 0  (given by Eqs. (17) and (18) respectively)) to describe the 

dependence of the relative density on the sintering time for the gel derived sodium borosilicate 

glass under uniaxial applied stress of 25MPa at 625oC and 675oC. Arhenius temperature 
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dependence for viscosity (Eq. (18)) is used to fit the experimental data. Good fit was obtained for 

1/3 31 /n J m = , 
10 1

0 2.48 10 Pa s − −=    and 
1290Q KJ mol−=  . 

The SOVS model is also used to describe densification of the same glass powder. The constants 

2a , 2b , 2c , 3a , and 3b  are taken from Ref. 44. Table 3 shows the parameters for Eqs. (23) and 

(24). The SOVS model density dependence is fitted to the Scherer model density curve by 

adjusting the reference viscosity to 
13 1

0 3.78 10 Pa s − −=    and the activation energy 

1250Q KJ mol−=   following Eq. (18). The difference in the numerical values for the reference 

viscosity and the activation energy between the “S” and “SOVS” models is a result of the 

differences in how viscosity has been introduced in the two models. The “S” model is based on 

the energy balance between surface energy reduction and viscous flow dissipation. The “SOVS” 

model is based on a continuum phenomenological description. 

 

Table 3. Skorohod–Olevsky parameters taken from Ref. 45. The radius r is taken from Ref. 65, and 

the surface energy   is an estimation. 

 

 

3.3 Constitutive parameters for crystalline materials 

Reiterer et al. 65 studied the sinter-forging of Reaction Bonded Alumina (RBAO) with addition of 

ZrO2 and 2Y-ZTP, considering the Riedel-Svoboda model. Excellent fit between theoretical and 

experimental data is reported. The model parameters of Ref. 65 are considered in the present work 

as the starting values. Then using the experimental results from Ref. 21 on the hot pressing of 

alumina, the surface, volume, and grain boundary diffusion coefficients, corresponding activation 

energies (see Eqs. (29)), grain boundary mobility (Eq. (30)) and the interface reaction parameters, 

 , are adjusted and the best fit values are shown in Table 4. It can be seen that the numbers of 

parameters to be fitted for the Riedel-Svoboda model is considerably higher than those for the 

other three models. Therefore, it is possible that different combinations of parameters will provide 

similar fit to the experimental data. To partially address this, we use physical considerations.  

Specifically, we consider volume diffusion to have higher activation energy than grain boundary 

 

Parameters for the Skorohod – Olevsky model 

       

2/3 2.26 1.12 1.7 0.26 8.4 1.0 

2a 2b 2c 3a 3b ( )mr µ ( )2J/cmg
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diffusion which is higher than that for surface diffusion (based on atomic packing considerations). 

We also consider the interface reaction parameter,  , to be considerably high as reported in Ref. 

65 since non-linear effects may appear due to the applied stress.  The KSM parameters are also 

adjusted to experimental data reported by S. Bhattacharya et al. 21 and reported in Table 5. For 

each sintering stage, only two parameters are needed. They are the reference coefficient 0A  and 

the thermal activation energy pQ .  

Table 4. Fitted parameters for the Riedel-Svoboda constitutive law. 

 

Table 5. Fitted parameters for the Kuhn-Sofronis-McMeeking model from Ref. 21 to match the 

densification obtained by the RS model for the hot-pressing case with the parameters of Table 4. 

 

Parameter Symbol Pure RBAO 

Initial grain size  0.15  

External gas pressure  0.1 MPa 

Molecular volume   

Grain boundary  
diffusion 

  

 475 000 J/mol 

Surface  
diffusion 

 9´10-8 m3/s 

 475 000 J/mol 

Volume  

diffusion 

 7.8´10-15 m2/s 

 800 000 J/mol 

Grain boundary  

mobility 

 1.6 m2/s 

 572 000 J/mol 

Surface energy  0.75 J/m2 

Dihedral angle  600 

Initial deviation of the Hillert grain size 

distribution 
 0 

Pore detachment  1.3 

Interface reaction parameter  8.25´10-7 N 
 

0R mµ

pD

W 29 31 2 10 m.4 -´

0bDd 36m / s

bQ

0sDd

sQ

0VD

VQ

0
/ 4b bMg

mQ

sg
y

d

0b
a

Model 
Fitted parameters 

 (MPa-2 s-1)  (KJ mol-1) n 

Kuhn-McMeeking 0.0244 133.6 2 

Sofronis-McMeeking 6977 284 1 
 

0A pQ
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Sinter-forging experimental data, on zirconia, is also selected to be described by the chosen two 

models. For this case II, density, as a function of time for zirconia powder, reported by K.T. Kim 

et al. has been used 26. Table 6 reports fitted parameters for the Riedel-Svoboda model and Table 

7 shows the fitted parameters for the Kuhn-Sofronis-McMeeking model. The sinter-forging 

experiment reported in Ref. 26 is an isothermal case for T = 1300oC. Therefore, the activation 

energies for diffusion coefficients cannot be obtained. Hence, the fitted RS parameters are: grain 

boundary diffusion, bD , surface diffusion, sD , and volume diffusion, VD ; and for the KSM 

model are: 1A  and 2A . K.T. Kim et al. 26 reports grain size as a function of time and this dependence 

is included in the RS model. Therefore, grain boundary mobility considered in the RS model does 

not have to be fitted. 

Table 6. Fitted parameters for the Riedel-Svoboda constitutive law. 

 

Table 7. Fitted parameters for the Kuhn-Sofronis-McMeeking model from Ref. 21 to match the 

densification obtained by the RS model for the hot-pressing case with the parameters of Table 4. 

 

Parameter Symbol Pure RBAO 

Initial grain size  0.15  

External gas pressure  0.1 MPa 

Molecular volume   

Grain boundary  

diffusion 
  

Surface  

diffusion 
 1.52´10-23 m3/s 

Volume  
diffusion 

 6.85´10-11 m2/s 

Surface energy  0.75 J/m2 

Dihedral angle  550 

Initial deviation of the Hillert grain size 
distribution 

 0 

Pore detachment  2.0 

Interface reaction parameter  1.0´10-14 N 

 

0R mµ

pD

W 29 31 2 10 m.4 -´

bDd 18 31.192  10 m / s-´

sDd

V
D

sg
y

d

0b

a

Model 
Fitted parameters  

 (MPa-2 s-1) n 

Kuhn-McMeeking 3.86´10-6 2 

Sofronis-McMeeking 6.71´10-6 1 

 

A
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4. RESULTS AND DISCUSSIONS 

4.1 Isothermal Hot-pressing and Sinter-forging 

Fig. 3 shows the dependence of the relative density on time considering the Scherer cell model and 

the Skorohod – Olevsky model for two different temperatures T = 625oC and 675oC, for sodium-

borosilicate glass. Figs. 3(a) and 3(b) illustrate case I (hot-pressing) and case II (sinter-forging), 

respectively. It can be seen in Fig. 3(a) that both the Scherer (S) and the Skorohod–Olevsky 

(SOVS) models can be used to fit the experimental results for two temperatures and get the needed 

constitutive parameters. These parameters can be used to predict densification at a different hot-

pressing temperature. As can be observed, the predictions of the Scherer and the Skorohod–

Olevsky models are very close to each other and in good agreement with experimental data 64. 

Fig. 3(b) depicts the density as a function of time for sinter-forging (case II) with the model 

parameters that were obtained from the hot-pressing case (case I). It can be observed that the 

difference between Sherer and SOVS models for 625oC is small. However, as the temperature 

increases, for 675o C, this difference becomes more noticeable reaching a maximum relative 

difference of about 6%. Since experimental results are not available for his case, it is not possible 

to say which model is better. According to the model considerations, the densification behavior is 

a result of the combined effect of the thermal dependence of viscosity and the stress state during 

sintering.  
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Fig. 3(a). Dependence of the relative density on the sintering time for amorphous powder compact 

for case I (hot-pressing). Lines with squared markers correspond to the temperature T = 675 oC; 

lines with circular markers to T = 625 oC. The experimental results are for hot-pressing of gel 

derived sodium borosilicate at 25 MPa considering 675 oC and 625 oC 65. 
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Fig. 3(b). Predicted dependence of the relative density on the sintering time for amorphous powder 

compact for case II (sinter-forging). Lines with squared markers correspond to the temperature T 

= 675 oC; lines with circular markers  to T = 625 oC. The uniaxial stress for sinter-forging is 10 

MPa. 

 

Figure 3 clearly shows the effect of the state of the stress on the densification. As can be seen, the 

densification under hot-pressing conditions is higher than under sinter-forging conditions. This is 

primarily due to the higher level of uniaxial stress for the hot-pressing.  An additional effect is that 

due to die confinement in hot-pressing, the hydrostatic compressive stress is higher (for the same 

applied uniaxial stress). The hydrostatic compressive stress is the driving force for enhanced 

densification in stress-assisted sintering.  

 

Fig. 4 shows the densification dependences for crystalline materials considering the Riedel–

Svoboda model and the Kuhn–Sofronis–McMeeking model for the temperatures T equals to 1400o 

C and 1450o C. Fig. 4(a) is obtained using the RS model for the fitted parameters reported in Table 

4 under isothermal conditions. For the KSM model, the parameters listed in Table 5 were used. As 
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can be seen, good fit is obtained for both temperatures between the experimental results and the 

RS and KSM model predictions. We then use these parameters to predict the densification during 

sinter-forging. As can be observed in Fig. 4(b), the densification behavior described by KSM and 

RS is similar with a maximum relative difference of about 6%. Since experimental results are not 

available for his case, it is not possible to say which model is better.  

 

Fig. 4(a). Dependence of the relative density on the sintering time for Alumina polycrystals powder 

compact for case I (hot-pressing). Lines with squared markers correspond to the temperature T = 

1450oC; lines with circular markers to T = 1400oC. For both models, the hot-pressing stress is 10 

MPa. 
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Fig. 4(b). Predicted dependence of the relative density on the sintering time for Alumina 

polycrystals powder compact for case II (sinter-forging).  Lines with circular markers correspond 

to the temperature T = 1400oC;  lines with squared markers to T = 1450oC. The sinter-forging 

stress is 10 MPa. 

 

As for amorphous materials, Figure 4 also clearly shows the effect of the state of the stress on the 

densification. The densification under hot-pressing conditions is higher than under sinter-forging 

conditions, for the same applied axial stress.  This is due to the die confinement in hot-pressing 

leading to higher hydrostatic compressive stresses which is the driving force for enhanced 

densification in stress-assisted sintering.  

 

In Figure 5, we plot the density as a function of time for zirconia powder compact during sinter-

forging at two different stresses and one temperature.  The experimental results and the predictions 

of the RS and KSM models are presented. It can be seen that the RS model predicts the density 

quite well up to about 0.95 relative density. The model over estimates the density beyond 0.95 
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relative density. This difference maybe due to factors not considered in the model (e.g., friction 

between the sample and the piston leading to barreling of the sample). For high enough stress 

values, cracks can be also observed at the cylindrical faces.  

It can be also observed that, a good fitting is obtained for P = 8.8 MPa for the Kuhn–Sofronis–

McMeeking (KSM) model. However, when the applied stress is P = 17.9 MPa, the KSM model 

prediction is not as good. The possibilities to improve this result are low because only few 

parameters are needed for the KSM model as seen in Table 7. To better understand this result, it 

is useful to recall that RS model is based on the physical mechanics of sintering and the KSM 

model is a phenomenological description. Hence, it is possible to conclude that RS model provides 

a more realistic description. However, a possible disadvantage is the large number of parameters 

to be found. Finally, Fig. 5(b) reports the dependence of relative density as a function of time for 

hot pressing. It can be seen that the predictions of the RS model and KSM model are different. The 

reason is the above-mentioned differences between these two models.  

 

Fig. 5(a). Dependence of the relative density on the sintering time for Zirconia polycrystals powder 

compact for case II (snter-forging). Lines with squared markers correspond to the applied stress 

P = 8.8 MPa; lines with circular markers to P = 17.9 MPa. For both cases, the temperature is 

equal to 1300oC. 
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Fig. 5(b). Dependence of the relative density on the sintering time for Zirconia polycrystals powder 

compact for case I (hot pressing). Lines with squared markers correspond to the applied stress P 

= 8.8 MPa; lines with circular markers to P = 17.9 MPa. For both cases, the temperature is equal 

to 1300oC. 

 

Figure 5 clearly shows the effect of the level of applied stresses. As expected, for both sinter-

forging and hot pressing, the densification increases as the stress level increases. 

 

4.2 Constant Heating Rate Hot-pressing 

Densification under constant heating rates is also of interest. Due to the different nature of the 

materials, i.e., amorphous, and crystalline, the temperature change needs to be normalized. In Fig. 

6, the relative density is plotted as a function of homologous temperature for two heating rates 

equal to 10 K/min and 15 K/min for the case I, i.e., hot-pressing. Homologous temperature is 

defined as / rT T , where rT  is a reference temperature (in Kelvin) taken as the glass transition 

temperature, fT , for glasses and the melting temperature, mT , for ceramics. For borosilicate 
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(Corning glass 7740) the glass transition temperature is reported to be 1525 K. The melting point 

for alumina we use the known melting point of  2233 K. 

 

Fig. 6(a). Relative density as function of homologous temperature for amorphous powder compact 

for case I (hot-pressing) at different heating rates. 
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Fig. 6(b). Relative density as function of homologous temperature for polycrystalline ceramics 

powder for case I (hot-pressing) at different heating rates. 

 

For amorphous materials, hot-pressed at constant heating rate (Figure 6(a)), it can be observed that 

the predictions of both SOVS and Scherer models are quite similar. This is expected since their 

predictions for the isothermal hot-pressing are similar and both of them have only one temperature 

dependent parameter, viscosity, which has identical Arrhenius dependences. 

In contrast, as seen in Fig. 6(b), for crystalline materials, the RS model is more sensitive to the 

change in the heating rate than the KSM model. This may be because the RS constitutive model 

involves the activation of several mechanisms and their statistical weight changes as temperature 

changes. On the other hand, KSM considers creep as the only one thermally activated process. 

Both models predict density dependences close to each other for heating rate = 15 K/min. 

However, for heating rate = 10 K/min, the difference between predictions is considerable and 

becomes even larger as the temperature increases. Experimental data will be needed to identify 

which model can provide the better prediction.  
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CONCLUSIONS 

 

In the literature, different constitutive laws have been proposed and used to investigate stress-

assisted sintering. In this work, we have investigated, numerically, the predictions of the 

densification behavior using four commonly used constitutive laws (two for polycrystalline 

ceramics and two for amorphous) for two stress assisted sintering cases: hot-pressing and sinter-

forging temperature. The following conclusions can be drawn from this study: 

1. Using experimental data from isothermal hot pressing to obtain the constitutive parameters,  

the response of the two models for amorphous materials, the Scherer and the Skorohod–Olevsky 

models, is quite similar and matches the experimental results well. However, when the same 

parameters are used to predict the densification during sinter-forging, the match between models 

is sensitivity to temperature. For example, for 625 oC, the densification behaviors described by 

Scherer and Skorohod–Olevsky are close to each other, but, at 675 oC, there is significant 

difference between the two models reaching as high as 6% of relative density difference. 

2. For crystalline material using experimental data from isothermal hot pressing to obtain the 

constitutive parameters, the two models, the Riedel–Svoboda and the Kuhn–Sofronis–McMeeking 

predict similar densification response at two different temperatures for the hot-pressing case. 

However, when the same parameters are used to predict the densification during sinter-forging, 

the match between models is not as good with the difference reaching as high as 5% of relative 

density difference. 

3.  Experimental data from a sinter-forging Zirconia powder compact allows finding fitted 

parameters that provides a good description for polycrystals materials considering the Riedel–

Svoboda model, but, for density values higher than 95%, a discrepancy can be observed for both 

applied stresses. The Kuhn–Sofronis–McMeeking model can provide a good description for P = 

8.8 MPa, but not for P = 17.9 MPa. This leads us to conclude that RS model is better for 

polycrystalline ceramics.  

4. Using isothermal hot-pressing to obtain constitutive parameters and applying them to 

constant heating rate hot-pressing at different heating rate, the Scherer and the Skorohod–Olevsky 

model have almost identical predictions. However, the predictions are quite different for the case 

of RS and KSM models. 
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The overall conclusion is that for amorphous materials, parameters can be obtained using one set 

of experiments (e.g., isothermal hot pressing) and applied to a different loading and thermal history 

and the two models give comparable results. The exception is the large difference between models 

for the case of sinter-forging at 675 oC.  The reasons for this are not clear.  On the other hand, for 

crystalline materials, good fits are only obtained when the model is applied to the loading and 

thermal history under which parameters have been obtained.  This is rather limiting for a general 

model.  Additional research needs to be conducted to densify crystalline materials under a broader 

set of loading and thermal history and constitutive parameters extracted under these different 

conditions.  A comparison between these constitutive parameters will be illustrative of the range 

of conditions under which the models can be used.   
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APPENDIX A 

Eqs. (26) and (27) shows the relation of the bulk and shear viscosities with the linear coefficients:  

 ( )( )
3

1 21lin

b

kTr
K k k U

D
 


= − +


 

 ( )( )
3

1 21lin

b

kTr
G g g U

D
 


= − +


 

where 1k , 2k , 1g , and 2g  are defined as normalized bulk viscosity and shear viscosity. They 

depend on the relations: /b sD D  and /b vD D  as can be seen in Ref. 55 and can be described as 

thermal activated process according to Eq. (29). 



28 

 

The evolution of grain size, r , is also a thermal activated process that can be described by the 

relation: 

4

b b d

p

M F
r

r F

•

=  

dF  and pF  are factors that describe the deviation from the classical Hillert law as reported in Ref. 

55. dF  accounts for the fact that the powder usually does not have the steady-state grain size 

distribution. pF arises from the drag that pores exert on migrating grain boundaries. Further details 

can be seen in Ref. 55. Grain boundary mobility, bM , is also a thermal activated process following 

the Eq. (30). 

 

APPENDIX B 

Eqs. (31) and (32) depends on I 
•

 and II 
•

respectively. I 
•

 are related to 1A  and I 
•

 to 1A  as can 

be seen in Eqs. 
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The parameters Ia , Ib , IIa  and IIb are functions of p and m as reported in Ref. 21. 1A  and 2A

describe thermal activated process as observed in Eqs. (36). 
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Figure Captions 

 

Fig. 1. (a) Hot-pressing situation for case I and (b) sinter-forging situation for case II (uniaxial 

stress applied through the piston). 

 

Fig. 2. Schematic flow chart for the computation of density evolution. H is the powder compact 

height, R is its radius, ij is the stress tensor and ij is the strain tensor  

 

Fig. 3(a). Dependence of the relative density on the sintering time for amorphous powder compact 

for case I (hot-pressing). Lines with squared markers correspond to the temperature T = 675 oC; 

lines with circular markers to T = 625 oC. The experimental results are for hot-pressing of gel 

derived sodium borosilicate hot-pressed at 25 MPa 64. 

 

Fig. 3(b). Predicted dependence of the relative density on the sintering time for amorphous powder 

compact for case II (sinter-forging). Lines with squared markers correspond to the temperature T 

= 675 oC; lines with circular markers  to T = 625 oC. The uniaxial stress for sinter-forging is 10 

MPa. 

 

Fig. 4(a). Dependence of the relative density on the sintering time for alumina powder compact 

for case I (hot-pressing). Lines with squared markers correspond to the temperature T = 1450oC; 

lines with circular markers to T = 1400 oC. For both models, the hot-pressing stress is 10 MPa. 

 

Fig. 4(b). Predicted dependence of the relative density on the sintering time for alumina powder 

compact for case II (sinter-forging).  Lines with circular markers correspond to the temperature 

T = 1400oC;  lines with squared markers to T = 1450 oC. The sinter-forging stress is 10 MPa. 

 

Fig. 5(a). Dependence of the relative density on the sintering time for zirconia powder compact 

for case II (sinter-forging). Lines with squared markers correspond to the applied stress P = 8.8 

MPa; lines with circular markers to P = 17.9 MPa. For both cases, the temperature is equal to 

1300oC. 
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Fig. 5(b). Dependence of the relative density on the sintering time for zirconia powder compact 

for case I (hot pressing). Lines with squared markers correspond to the applied stress P = 8.8 

MPa; lines with circular markers to P = 17.9 MPa. For both cases, the temperature is equal to 

1300 oC. 

 

Fig. 6(a). Relative density as function of homologous temperature for amorphous powder compact 

for case I (hot-pressing) at different heating rates with a 10 MPa applied stress. 

 

Fig. 6(b). Relative density as function of homologous temperature for polycrystalline ceramics 

powder for case I (hot-pressing) at different heating rates with a 10 MPa applied stress. 
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Table Captions 

 

Table 1. Four different constitutive behaviors identified in the first column are considered for 

cases I and II resulting in eight numerical experiments.  

 

Table 2. Boundary conditions for the hot-pressing experiments (I) and the sinter-forging 

experiments (II) problem. 

 

Table 3. Skorohod–Olevsky parameters taken from Ref. 44. The radius r is taken from Ref.44, and 

the surface energy   is an estimation. 

 

Table 4. Fitted parameters for the Riedel-Svoboda constitutive law for alumina powder compact 

densification reported in Ref. 21 during hot-pressing. 

 

Table 5. Fitted parameters for the Kuhn-Sofronis-McMeeking model to match the alumina powder 

compact densification reported in Ref. 21 during hot-pressing.  

 

Table 6. Fitted parameters for the Riedel-Svoboda constitutive law for zirconia powder compact 

densification reported in Ref. 26 during sinter-forging. 

 

Table 7. Fitted parameters for the Kuhn-Sofronis-McMeeking model to match the zirconia powder 

compact densification reported in Ref. 26 during sinter-forging. 

 


