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ABSTRACT

Incorrect handling of Software Application Programming Inter-

faces (APIs) errors results in bugs or security vulnerabilities that

are hard to trigger during regular testing. Most of the existing

techniques to detect such errors are based on static analysis and

fail to identify certain cases where API return values are incor-

rectly handled. Furthermore, most of these techniques suffer from

a very high false positive rate (≥50%), raising concerns regarding

their practical use. We propose a dynamic analysis approach to

detect API error handling bugs based on coverage-guided software

fault injection. Specifically, we inject faults into APIs and observe

how a program handles them. Our fault injection mechanism is

generic and targeted to explore a given program’s error handling

behavior effectively. We avoid false positives by proactively filter-

ing out crashes caused by infeasible faults. We implemented our

technique in an automated pipeline called FuzzERR and applied it

to 20 different programs spanning 444 APIs. Our evaluation shows

that FuzzERR found 31 new and previously unknown bugs result-

ing from incorrect handling of API errors. Moreover, a comparative

evaluation showed that FuzzERR significantly outperformed the

state-of-the-art tools.
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· Security and privacy → Software security engineering; Vul-

nerability scanners.
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1 INTRODUCTION

Application Programming Interfaces (APIs) form the building blocks

for modular software development by encapsulating complex func-

tionality. In this work, we focus on software libraries (i.e., shared

object or DLL) that expose certain functionality as external func-

tions. e.g., libpoppler.so library exposes various functions to

access PDF files. We call these external functions as API functions

or APIs. The complexity and requirements of APIs make it challeng-

ing to use them correctly, resulting in API misuse bugs. A recent

study [36] shows that 17% of bugs in application programs are be-

cause of API misuse. In this work, we focus on incorrect handling

of API errors (e.g., Listing 1), which is one of the major categories

of API misuse bugs.

Existing techniques to find API error handling or, more gen-

eral API misuse bugs can be broadly categorized into either specifi-

cation or anomaly-based. (i) The specification-based techniques [17,

35] check for violations of a given valid and precise usage specifi-

cation of API. However, as shown by a recent work [44], writing

precise specifications is tedious and requires considerable effort by the

developers. Furthermore, these specifications need to be written for

every API. (ii) The anomaly-based techniques [6, 14, 75, 78] exploit

the intuition that the misuse bugs are anomalous and will be in the

minority [24]. Given a set of API usages, these techniques identify

the minority usage patterns and consider them as bugs. However,

these techniques fail to precisely capture certain common usage

patterns and have a high false positive rate (∼50%) for complex APIs

(Section 7). Finally, as we explain in Section 2.2.1 (using a real-world

example), although an API appears to be used correctly in the local

context, there could be a misuse in the whole program context. In

a few cases, error handling itself could be invalid. For instance, the

return value of an API call is checked (i.e., used in an if condition),

but the check is semantically incorrect [1, 2].

Random testing, especially Fuzzing [32, 82], is shown to be an ef-

fective technique for software bug finding. However, triggering API

misuse bugs requires exploring deep program states, andmost often,

these bugs require changing the program environment. For instance,

to check misuses of fopen, we require it to fail and return NULL,

which depends on the external environment, i.e., file system, and

its permissions. Dynamic Software Fault Injection (SFI) [5, 65] is

one of the well-known techniques to inject faults during program

execution to mimic real failures. However, these techniques require

a specification of fault injection profile. Automated techniques are



ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Shashank Sharma, Sai Ritvik Tanksalkar, Sourag Cherupattamoolayil, and Aravind Machiry

either specific to a particular class of applications, such as Operating

System (OS) drivers [9, 10] or specific class of API methods [52].

Furthermore, existing SFI techniques suffer from causing infeasible

program states, resulting in false positives [40, 55]. Finally, we need

fine-grained control over fault injection to expose deeper issues. For

instance, the bug in Listing 1 requires the API function poppler_ ⌋

document_get_page to only fail when called from a specific context

and succeed in all other cases ś this is hard to achieve with many

existing SFI techniques. The recent technique Fifuzz [38] tries to

handle this by context-sensitive SFI, but it has false positives and

requires manual effort to filter out incorrect fault injection points.

Based on prior works [36, 56] and our observations, an effective

and practical SFI technique to detect API error handling bugs should

satisfy the following requirements:

• Generic. The technique should be able to handle different

APIs.

• False Positives Filtering. As automated fault injection might

inevitably result in false positives, we should have a way to

filter out potential false positives.

• Fine-grained Fault Injection. We should have fine-grained

control over fault injection and should be able to inject faults

at specific execution points.

We present FuzzERR, a dynamic analysis technique to detect API

error handling bugs based on coverage guided SFI. For a given pro-

gram (or program under test) and the target library implementing

a set of APIs, the goal of FuzzERR is to find bugs in the program

because of incorrect error handling of these APIs. The high-level

idea is to make APIs fail and observe how the program under test

handles these failures. We have designed FuzzERR to satisfy all the

desired requirements:

Generic SFI.We developed a generic fault injection mechanism us-

ing a library-centric technique. Specifically, we inject faults intoAPIs

by forcing their execution in the corresponding library along error

paths. This enables us to reuse existing API error behavior without

explicitly modeling their error behavior.

Filtering False Positives using Program Traces.We consider all

crashes that happen in the program as true positives, as we expect

the program to handle all API errors. However, as we explain in Sec-

tion 4.2.2, fault injection could violate certain invariants resulting

in false positive crashes. We developed a lightweight mechanism

based on program traces to detect potential false positives crashes.

Fully Context Sensitive SFI. Our fault injection technique is cov-

erage guided and fully context-sensitive. For instance, for an API

called in a loop, our techniques can inject fault only in the second

iteration of the loop. For a given program and an input, we repeat-

edly execute the program with the input. During each execution,

we inject faults into the target library at different fault injection

points, intending to improve the code coverage of the program.

The Table 1 summarizes existing tools and how FuzzERR satisfies

all the desired requirements.

We have implemented FuzzERR to be an automated pipeline and

demonstrate its effectiveness by evaluating on 20 programs span-

ning across 12 libraries and applicable bugs from APIMU4C [36]

dataset. FuzzERR found a total of 5,835 unique crashes resulting

from 31 previously unknown API error handling bugs. In summary,

the following are our contributions:

• We designed a novel and generic SFI mechanism by forcing

executions along error paths.

• We implemented FuzzERR an automated pipeline with all

our techniques, along with root cause identification.

• Our evaluation on 20 programs spanning across 12 libraries

and a bug dataset show that FuzzERR found a total of 31

previously unknown bugs, out of which 20 are already con-

firmed and fixed by the corresponding developers.

• We have made our implementation open-source and publicly

available at https://github.com/purs3lab/FuzzERR-final.

2 MOTIVATION

This section presents a motivating example and explains why exist-

ing techniques fail to identify the bug.

2.1 Motivating Example

The Listing 1 shows a real heap buffer overflow found by FuzzERR

in the latest version of apvlv PDF reader. The execution leading

to the bug is shown by the numbered symbol ·(1-5).

2.1.1 Root cause. The bug occurs when the call to libpoppler

API method poppler_document_get_page fails at line 33 in the func-

tion pagesize (indicated by �). This failure returns a nullptr,

which is consequently checked, and false is returned at line 39.

Note that in this failure case, the function does not modify the pa-

rameters x and y. In the success case, i.e.,when poppler_document_ ⌋

get_page returns a valid page corresponding to pn, which is used to

get the size and the parameters x and y are updated (code omitted

in the listing for brevity).

2.1.2 Execution flow. The function pagesize is called at line 12,

and the above-mentioned failure results in the variables tpagex

and tpagey being uninitialized. However, the return value of pagesize

is not checked, and subsequently, these uninitialized variables are

used to derive the size of a heap array dat at lines 17 and 19, result-

ing in an array of invalid size. This heap array dat is then passed as

an argument to the function setAnnot at line 24. The passed argu-

ment is accessed (via parameter buffer) using index p+1, which is

derived from ac->mFile. This index value p+1 can be larger than the

allocated size and thus results in heap buffer overwrite as indicated

by q.

2.2 Inadequacy of Existing Techniques

The bug in Listing 1 captures various aspects that make existing

techniques inadequate.

2.2.1 API Misuse Detection. As will be discussed in Section 7, these

techniques focus on identifying misuses of a given API function.

Specifically, these techniques [6, 13, 42, 44, 45, 57, 78] analyze the

local usage context of the target API function and check whether

it is valid. APISan [78], a recent work, checks for semantic pat-

terns, i.e., return value of an API function is checked before use.

However, these semantic patterns do not sufficiently capture API

usage semantics. There are several cases where an API return value

is checked, but the check is incorrect. APISan fails to find such
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Table 1: Comparision of FuzzERR to other tools. For each of the features, we indicate whether the technique fully supports (✓), or does not

support (✗) the feature

Tool Category Tool Generic
False Positives
Filtering

Fine Grained
Fault Injection

No manual
specification

No need
for valid uses

Systematic Static Approaches CodeQL [30] ✓ ✗ N/A ✗ ✓

Anomaly-based Static Approaches
ApiSan [78] ✓ ✗ N/A ✓ ✗

FICS [6] ✓ ✗ N/A ✓ ✗

Arbitrar [44] ✓ ✗ N/A ✓ ✓

Dynamic Fault Injection Approaches
FairFuzz [43] ✓ ✗ ✗ ✓ ✓

Fifuzz [38] ✓ ✗ ✗ ✓ ✓

Lfi [53] ✓ ✗ ✓ ✗ ✓

FuzzERR (Our Work) ✓ ✓ ✓ ✓ ✓

bugs. For our example in Listing 1, the target API is poppler_ ⌋

document_get_page. However, it is being used correctly by check-

ing the return value at line 34. Consequently, these techniques fail

to find the bug. In fact, executing APISan on apvlv resulted in

76 warnings, and the bug in Listing 1 was not detected. Further-

more, we selected the top 10 highly ranked warnings and found

9 of them to be completely false (i.e., the return value was either

handled correctly or the warnings were false given how the library

actually works). The other warning, although true in the general

case, was a false positive in the case of apvlv. The warning was

about the return value of g_signal_connect() not being checked.

The function g_signal_connect() returns a handler id, which is

needed (or to be checked) only if the id will be used later to discon-

nect using g_signal_handler_disconnect. However, apvlv does

not disconnect, so not checking the return values doesn’t affect it.

Similarly, anomaly-based detection techniques, such as FICS [6],

also fail to detect because of missing anomalies, i.e., the return

value of poppler_document_get_page is always checked, whereas

the return value of ApvlvPDF::pagesize is never checked.

2.2.2 Automated Testing or Fuzzing. We require that the call to

poppler_document_get_page at line 33 to fail (i.e., to return nullptr),

which depends on its arguments mDoc and pn. The value of the first

argument mDoc is a document object pointer (global variable), not a

function parameter, and thus cannot be controlled by input. The

value of the second argument pn can be controlled through external

input. However, the corresponding value is checked at line 6 to

be within a valid range. Consequently, the value that reaches the

call site will be valid. This makes it hard for the call to poppler_ ⌋

document_get_page to fail while fuzzing the corresponding pro-

gram. Consequently, as we show in Section 5.4, the bug was never

found by existing fuzzing techniques despite the corresponding

code being extensively covered during fuzzing runs.

2.2.3 Software Fault Injection (SFI). First, existing SFI techniques [22,

22, 27, 80] require explicit specification of fault profiles i.e., how and

where the faults should be introduced. For our example in Listing 1,

a developer needs to explicitly specify that fault should be injected

at line 33 by assigning nullptr only when called from line 12. Note

that, always injecting fault would terminate the program early with-

out executing the vulnerable code. This sort of context-sensitive fault

injection is not possible with the existing techniques. A recent work,

Fifuzz [38], tries to handle this by using context-sensitive fault

injection. But, Fifuzz focuses on identifying bugs in error handling

code, but not on API error handling bugs. In other words, Fifuzz can

find if an API error is incorrectly handled, but cannot find if an API

error is never handled (Listing 2). As expected and also shown by our

experiments in Section 5.6.2, Fifuzz fails to find several bugs found

by FuzzERR. Finally, Fifuzz suffers from false positives because of

imprecision in identifying fault injection points. Consequently, a

large number (7,973 (81%) (Identified - Realistic) from Table 4 of the

paper [38]) of these are required to be manually filtered out.

3 BACKGROUND

The goal of FuzzERR is to find error handling bugs in a given pro-

gram 𝑝 of APIs present in a given library 𝑙 . This section presents the

necessary technical background and explains the notations used in

the rest of the paper.

3.1 Coverage Guided Fuzzing (CGF)

This automated testing technique aims to generate inputs that

can improve the code coverage of the program under test. As ex-

plained in Section 7, there are many ways to generate inputs. We

use mutation-based generation, wherein new inputs are generated

by applying various mutations to the provided seed inputs. We

use AFL++ [26], an extensible coverage guided and mutation-based

fuzzing tool, to guide our fault injection.

3.2 Terms and Notations

3.2.1 Fault Injectable Program Points (FIPs). These are locations

in a library where faults can be injected by FuzzERR. Specifically,

a FIP is a marker to a control flow instruction (i.e., if, while, switch,

case, etc.) that checks for certain invalid conditions and conse-

quently control execution into an error handling path. Note that

not all functions will have FIPs. Each FIP has a unique id (a sequen-

tial positive integer) and is represented by a FIP record, which is

a tuple: <source file name, function name, line number, column

number, [true or false]>. For the following code:

281 // poppler-image.cpp

282 poppler::image::data(...) {

283 if (..) {

284 ....

285 return NULL;

286 }

287 }
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Listing 1 A real heap-overwrite found by FuzzERR in apvlv PDF reader

because of incorrect handling of poppler_document_get_page API

failure.

1 void

2 ApvlvDocCache::load (ApvlvDocCache *ac)

3 {

4 // mPagenum is checked to avoid the failure of

5 // poppler_document_get_page

6 if (ac->mPagenum < 0 || ac->mPagenum >= c) {

7 debug ("no this page: %d", ac->mPagenum);

8 return;

9 }

10

11 double tpagex, tpagey;

12 ·1 ac->mFile->pagesize (ac->mPagenum,

13 gint (ac->mRotate),

14 &tpagex, &tpagey);

15 // if pagesize fails

16 // tpagex, tpagey will be uninitialized.

17 ·3 ac->mSize = tpagex * tpagex * 3;

18 // dat allocated wrong size.

19 ·4 auto *dat = new guchar[2 * ac->mSize];

20 ...

21 for (...)

22 {

23 ...

24 ·5 ac->setAnnot (annot, dat, ac->mSize);

25 }

26 }

27

28 bool

29 ApvlvPDF::pagesize (int pn, int rot,

30 double *x, double *y)

31 {

32 PopplerPage *page =

33 � poppler_document_get_page (mDoc, pn);

34 if (page != nullptr) {

35 ...

36 // initialize x and y according to pn

37 ...

38 }

39 ·2 return false;

40 }

41

42 void

43 ApvlvDocCache::setAnnot (...,unsigned char *buffer,

44 size_t buf_size) const {

45 // p derived from ac->mPagenum

46 // Heap Buffer overwrite

47 ·6 qbuffer[p + 1] = ...

48 }

49

FIP(45) =<poppler-image.cpp, poppler::image::data, 283, 9, true>,

indicates the FIP with id 45, and it is present in poppler-image.cpp

file and in function poppler::image::data at line number 283 and

character number 9. This indicates that a fault can be injected at

the if condition by forcing execution along the true branch. Given

a library 𝑙 , we use FIP𝑙 to denote the set of all FIPs in it.

3.2.2 Fault Injectable Library (FILib). We call a library (i.e., mod-

ule or shared object) in which faults can be injected at FIPs as

the Fault Injectable Library (FILib). Given a library 𝑙 , we denote the

corresponding fault injectable variant as 𝑙𝑓 .

3.2.3 Reachable Faults List (RFList). This is the list of all FIPs

reached during an execution of the program. Specifically, for a

given program 𝑝 using a fault injectable library 𝑙𝑓 and an input

𝑖 , RFList(𝑝 , 𝑙𝑓 , 𝑖) indicates the sequence of FIPs in 𝑙𝑓 that are exe-

cuted (i.e., reached) when 𝑝 is run with 𝑖 . Formally, RFList(𝑝 , 𝑙𝑓 , 𝑖)

= < 𝐹𝐼𝑃1, 𝐹 𝐼𝑃2, ...., 𝐹 𝐼𝑃𝑛 >, where ∀𝑥 ∈ [1, 𝑛] | 𝐹𝐼𝑃𝑥 ∈ 𝐹𝐼𝑃𝑙 . For

example, RFList(apvlv, libpoppler, test2.pdf)=<12,45,45,45,9>

indicate FIP ids of libpoppler that are reached (in that order)

when apvlv is executed with test2.pdf. The repeated id 45 in-

dicates that the corresponding library function is called in a loop

or from multiple call sites. For simplicity, we assume deterministic

execution, i.e., executing the same program 𝑝 with the same 𝑖 and

𝑙𝑓 results in the same RFList. Formally,

(𝑝 = 𝑝1 ∧ 𝑖 = 𝑖1 ∧ 𝑙𝑓 == 𝑙1𝑓 ) =⇒ 𝑅𝐹𝐿𝑖𝑠𝑡 (𝑝, 𝑖, 𝑙𝑓 ) = 𝑅𝐹𝐿𝑖𝑠𝑡 (𝑝1, 𝑖1, 𝑙
1

𝑓 )

3.2.4 Fault Injection List (FIList). For a given RFList of length

𝑘 , an FIList is a sequence of 𝑘 bits that indicate which of the

corresponding faults should be injected. For the previously men-

tioned RFList i.e., <12,45,45,45,9>, a possible FIList is <0,0,1,0,1>,

which indicates that fault should be injected at two FIPs i.e., at

45 (only for the second time) and at FIP 9. As we explain in Sec-

tion 4.2.2, we execute the program repeatedly with the same input,

consequently having the same RFList. Providing a different FIList

every time enables us to have fine-grained control over where the

fault injection should happen during the execution of the program.

3.2.5 False positive or Infeasible crash. This is a crash (e.g., seg-

mentation fault) induced by fault injection, which is impossible to

occur during regular program execution. Consider the following if

condition:
if (p != NULL) { *p = 0; return NULL; }

Let’s assume that FuzzERR injected a fault which made the ex-

ecution reach *p = 0 even when p is NULL. This results in a pro-

gram crash because of NULL-ptr dereference. However, the crash

is impossible in real program runs and hence is a false positive or

infeasible crash.

4 FUZZERR

First, we will present an overview (Section 4.1) of different steps

in FuzzERR and how each works on our example in Listing 1. Sec-

ond, we describe each step in detail (Section 4.2). Finally, we will

present the implementation details (Section 4.2.4). Our system re-

quires the program under test (𝑝) and a library 𝑙 , which is used by 𝑝 .

As mentioned before, the goal of FuzzERR is to find error handling

bugs in 𝑝 related to APIs in 𝑙 .

4.1 Overview

The Figure 1 shows the overview of FuzzERR, which contains the

following two distinct phases.

4.1.1 Generating FILib of 𝑙 (i.e., 𝑙𝑓 ). This phase is performed once

for a given library. Given the source code of a library, we perform

the following two steps.

FIP Identification (Section 4.2.1) We use source-level analysis and

common error handling patterns to identify FIPs, which, as men-

tioned before (Section 3.2.1), are the conditional statements guard-

ing execution into error handling paths. This results in the set

of FIPs in 𝑙 i.e., FIP𝑙 . For libpoppler used in Listing 1, the FIP𝑙
contained 139 entries.

Library Instrumentation (Section 4.2.1) We instrument conditions

represented by each FIP (∈ FIP𝑙 ) so that execution can be forced

along the error path guarded by the corresponding condition. An

example of our instrumentation is shown below:

if ( has_fault(12) || !has_space()) {

*ptr = NULL; return -1; }

Here, 12 is the ID of the corresponding FIP. This instrumentation en-

ables us to force the execution inside the if condition based on the
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return value of the newly inserted call has_fault(). Consequently,

injecting fault into the corresponding API.

The function has_fault() will be implemented by our helper

library that also includes the necessary logic to inject faults in a

fully-context sensitive manner. Finally, we link the instrumented

library and our helper library to get FILib of the given library 𝑙 , i.e.,

𝑙𝑓 . Our instrumentation also adds a record-only mode in 𝑙𝑓 that

stores (without any fault injection) the list of FIPs reached during a

run, which is needed to get RFList.

4.1.2 Program Testing (Section 4.2.2). This phase will be performed

for each program that uses our target library 𝑙 .

Generating RFList. For a given program 𝑝 and an input 𝑖 , we get

the RFList by executing 𝑝 with 𝑖 and using 𝑙𝑓 (instead of 𝑙 ) in record

mode. As explained in Section 3.2.3, RFList gives the list of FIPs in

𝑙𝑓 reached during the execution of 𝑝 with 𝑖 .

Coverage Guided Fault Injection. Next, we iteratively execute 𝑝

with 𝑖 and 𝑙𝑓 . In each iteration, we provide a FIList corresponding

to the RFList to 𝑙𝑓 . The FIList precisely configures fault injection

at various FIPs resulting in failure of APIs executed by 𝑝 . We gen-

erate FIList using various mutation techniques, starting with a

no-op FIList (i.e., all bits set to 0). Although we execute 𝑝 with the

same input 𝑖 , failures of different API calls (caused by FIList) can

change the execution path in each iteration, resulting in additional

code coverage in 𝑝 . We use this as feedback to our mutation engine,

and mutations will be directed toward improving the code coverage.

Handling Crashes.We consider all crashes in the program code

as true crashes. Given a crash, we minimize the crash causing FIList

by identifying the minimal faults that also lead to the same crash.

Finally, we perform a lightweight root cause analysis to identify

the API errors at the corresponding locations in 𝑝 that resulted in

the crash.

Crash Filtering. As we mention in Section 3.2.5, crashes in the

library could be false positives because fault injection could violate

certain program constraints. We develop a filtering technique that

discards false positive crashes by performing a lightweight analysis

on execution traces.

For our example in Listing 1, we first run apvlv with a simple

PDF file (test.pdf) and libpoppler𝑓 (i.e., FILib) in record-

only mode. This initial run gave us RFList with 54 entries. Next, we

repeatedly executed apvlv with test.pdf and libpoppler𝑓
and every time we provided a different FIList with 54 bits (same

size as RFList), which we generate through coverage guided muta-

tions. Our crash filtering was able to filter out 25.68K false positive

crashes resulting in 1,099 true crashes, including the heap over-

write in Listing 1. Finally, our crash minimization and root cause

identification found that the crash is because of a fault injected

into poppler_document_get_page at line 33.

4.2 Design

4.2.1 Creating Fault Injectable Library (FILib). This is the first

phase that works on a given library’s source code. Here the goal is

to generate a fault injectable version of the given library 𝑙 .

a) Identifying FIPs. Based on existing works [39, 49, 51, 58, 70], we

identified a set of source idioms listed in Table 2 that indicate that

the corresponding program path encountered an invalid condition.

We call these error markers. Given the source code of the target

library, first, we get Abstract Syntax Trees (ASTs) of all the func-

tions defined in it. Second, we go through the list of error markers

in Table 2 to see if any of them is present in a function’s AST. Third,

given a matched error marker, we identify the immediate control

dependency conditional statement [25] and consider that as an FIP.

We also note whether the error marker is in the true or false branch

of the conditional statement. In the case of switch statements, we

note the value of the corresponding case clause. This immediate

control dependent conditional statement is considered as an FIP,

and we create a corresponding FIP record (Section 3.2.1). We call

the path from a FIP to the corresponding error marker an error

handling path.

The Figure 2 shows examples demonstrating our FIP identifica-

tion technique. The red blocks show Basic Blocks (BBs) in Control

Flow Graph (CFG) of various functions containing an error marker.

The light-colored blocks show the error markers’ control depen-

dency blocks, and we only select the immediate control dependency

as a FIP. An example of error marker (⋆) and corresponding con-

trol dependent (q) conditional statements and the FIP in libpng

is shown below:

static store_palette_entry *
store_current_palette(png_store *ps, int *npalette)

{

...

qif (...) {

qif (ps->current == NULL) <- FIP

{

...

store_log(...);

⋆return NULL;

...

}

In the above example, we only consider the inner if statement

(i.e., immediate control dependency) as a FIP. We do not consider

the non-immediate control dependent conditional statements (e.g.,

outer if) as FIPs because they do not exclusively control the entry to

the error marker and consequently might be related to the program

functionality. In the end, we collect all FIP records in a json file

(i.e., FIP𝑙 ), which becomes an input to the next instrumentation step.

b) Instrumenting FIPs.We instrument each FIP as shown in Ta-

ble 3. For switch-based FIP, our instrumentation will force the

execution along the case containing the error marker. Our instru-

mentation enables us to have a common fault injection mechanism

irrespective of the type of FIP. Specifically, we can inject fault by

making the call to has_fault return 1. This will cause the execu-

tion to reach an error marker, irrespective of where it is (i.e., true

or false branch or case label). For instance, if the error marker

is in the false branch, our instrumentation modifies original_ ⌋

condition as !has_fault(<FID>) && original_condition. Here,

if has_fault returns 1, execution will be forced along the false

branch irrespective of original_condition and eventually reaches

the corresponding error marker. The same reasoning applies to all

other types of FIPs.

The has_fault function is part of our helper library (ferrlib),

which handles several aspects of our fault injection. This additional

level of indirection through ferrlib enables us to modify our fault in-

jection logic without re-instrumenting 𝑙 . We also have a record-only
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Figure 1: Overview of FuzzERR.

Table 2: Description of various code idioms used as error markers in functions of corresponding type (Section 4.2.1).

Function Spec Marker Description

Function return type is pointer
return NULL;

The function returns a NULL pointer, an invalid address.
return 0;

Function return type is integer return <negative_number>;
The function is returning a negative number.
Which are commonly used to indicate the error status.

Function return type is void

{
return;

}
large number of statements

The function is returning abruptly while the other
mutually exclusive branch contains most of the function’s code.

All functions
goto <error_label>;

The execution is abruptly directed to an arbitrary location.
A common pattern used to handle error conditions in system’s code [64].

exit(..), abort(..)
These functions are used to terminate an execution.
Common pattern used to handle unrecoverable errors.

throw <exception>
The function is throwing an exception, a commonly used
paradigm to communicate error conditions.

FIP
FIP

FIP

(a) (b) (c)

BB with a
Error Marker

BB that controls execution
(control dependency)

reaching to a Error Marker

Figure 2: Examples demonstrating FIP identification technique.

mode in ferrlib, which can be enabled or disabled through an envi-

ronment variable. In this mode, no faults will be injected i.e., has_ ⌋

fault will always return 0, and in addition, all calls to has_fault

will be logged.

4.2.2 Program Testing Through Fault Injectable Library. This is the

second phase of FuzzERR, and it involves testing programs that

use the target library 𝑙 . For a given program, we first collect a set

of valid inputs from pre-existing test suites and augment them

with automated test-generation techniques. Next, we configure the

Table 3: Instrumentation of FIPs based on the edge leading to an

error marker. Here, FID is the id of the corresponding FIP.

Error Marker
Edge

Original Code Instrumentation

true <original_cond> has_fault(<FID>) || <original_cond>

false <original_cond> !has_fault(<FID>) && <original_cond>

val (switch case)
switch(var) {
case val:

}

if (has_fault(<FID>)) {
var = val;

}
switch(var) {
case val:

}

program to load 𝑙𝑓 (i.e., our instrumented version) instead of 𝑙 . We

achieve this by modifying the RPATH [68] in the header of the

program executable to include the file path containing 𝑙𝑓 . For each

valid input 𝑖 to the program, we perform the following three: (i) First,

we execute the program with 𝑖 by enabling record-only mode in

𝑙𝑓 . This gives us RFList, i.e., the ordered list of FIPs reached during

execution. (ii) Next, we create an initial no-op FIList as a file that

contains |RFList| number of 0 bits. (iii) Finally, we continuously

run the program with the same 𝑖 for a predefined time. In each

run, we provide a new FIList generated through various mutation

strategies starting from the initial no-op FIList. In every run, we
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also keep track of any additional code covered in the program and

pick mutations that are likely to improve code coverage and trigger

bugs. When a crash occurs, we use our crash filtering mechanism

(as will be explained in Section 4.2.2) to check whether it is true

or false and provide positive or negative feedback to our FIList

generation mechanism.

a) Filtering Infeasible Crashes. Our crash filtering mechanism

tries to filter out crashes caused because fault injection violated

certain program invariants. An example of a false positive crash is

shown in Section 3.2.5. However, precisely identifying whether a

fault violated certain program invariants requires analyzing inter-

procedural data dependencies, which is a known hard problem [81].

Furthermore, we want the filtering mechanism to be fast because it

will be used in-line during testing iterations. We propose a light-

weight mechanism based on program traces. As shown in Figure 3,

there are three possible crash scenarios because of fault injection.

• Program Crashes (Scenario 1): In this scenario, the crash occurs

in the program code. We expect the program to handle all possi-

ble API error cases. However, a crash in program code because

of a fault injected in the library indicates that the program failed

to handle certain error cases of an API. Hence we consider these

crashes as true and resulting from a potential improper error

handling bug.

• Library Crashes (Scenario 2 and 3): In this case, the crash occurs

in the library code. As shown in Figure 3, there are two possible

scenarios (2 and 3) on how such crashes can occur. In Scenario

2, the most recent fault was injected in the same library con-

text as the crash. This likely indicates that the fault violated

certain invariants, and hence we consider these as false positives.

In Scenario 3, the most recent fault injection is in a different

context than the crash. Here, the execution flows through the

program, indicating that an API error is propagating through the

program. This most likely indicates that the program is passing

certain error data from an API call to another. Hence, we con-

sider these as true crashes. For instance, consider that we injected

a fault in fopen call, which returned NULL. Next, the program

calls fwrite using the return value without checking whether

it is NULL. However, fwrite expects the file pointer argument to

be non-NULL. This results in a crash (SIGSEGV) in fwrite (i.e.,

library), which is a true crash, revealing an API (i.e., fopen) error

handling bug in the program.

We use runtime stack trace as the context for fault injection and

crashes. We install a signal handler as part of our helper library, i.e.,

ferrlib. When a crash occurs, our signal handler gets triggered,

which uses the stack trace to check if the crash occurred in the

program or library code. If the crash occurs in library code, we

compare the stack trace of the most recent fault injection with

the crash’s stack trace. If they are the same, we consider the crash

as a false positive and discard it. The crash is considered true in

all other cases, and corresponding FIList will be stored for further

processing. While the crash filtering approach can miss out on

certain kinds of API misuses and hence is unsound. However, as

we show in Section 5.4, the intuition described above works well

for a large number of API misuse bugs.

4.2.3 FIList minimization and Root Cause Identification. The goal

here is to find the minimal combination of faults (i.e., a combination

Lib Lib LibProg Prog Prog

Scenario 1 Scenario 2 Scenario 3

API Call API Return

Fault InjectionCrash

Program 
Crashes 

Library Crashes 

Figure 3: Summary of different crash scenarios.

of 1 bits) in FIList that cause the crash and represent a possible root

cause of it. However, finding the minimal combination of 1 bits in

a given FIList is a combinatorial problem.

To handle this, we propose a delta debugging [7] technique based

on simulated annealing [11] to reduce FIList. The goal here is to

minimize (i.e.,reduce the number of 1 bits) a crash causing FIList,

which still causes the crash. Our technique is iterative, and it works

as follows:
In every iteration, given the current 𝐹𝐼𝐿𝑖𝑠𝑡 of length 𝑛 bits, we

create a reduced 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 by setting each bit 𝑖 ∈ [1, 𝑛] based on
the following equation:

𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 (𝑖 ) =

{

1 if 𝐹𝐼𝐿𝑖𝑠𝑡 (𝑖 ) = 1 ∧ 𝑟𝑎𝑛𝑑 (0, 1) ≥ 𝐶

0 otherwise

Here, 𝑟𝑎𝑛𝑑 (0, 1) generates a random floating point value in [0, 1]

range, and 𝐶 represents the cooling factor and is also a floating

point value within the same range. The generated 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 will be

of the same length 𝑛 as the previous 𝐹𝐼𝐿𝑖𝑠𝑡 . However, the number

of 1 bits in 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 will be less than or equal to those in 𝐹𝐼𝐿𝑖𝑠𝑡 .

The cooling factor 𝐶 controls the reduction rate ś a higher value

indicates a lesser reduction rate.

After every iteration, we check if the newly reduced 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤
still causes the crash. If yes, then 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 is the newly reduced

𝐹𝐼𝐿𝑖𝑠𝑡 and will be used in subsequent iterations. We will also de-

crease the value of 𝐶 by 𝑠 (i.e., cooling schedule) and consequently

increase the reduction rate for subsequent iterations.

If 𝐹𝐼𝐿𝑖𝑠𝑡𝑛𝑒𝑤 does not cause the crash, we will retain the previous

𝐹𝐼𝐿𝑖𝑠𝑡 for subsequent iterations. We will also increase the value of

𝐶 by 𝑠 and reduce the reduction rate for subsequent iterations.

This process continues for 𝜏 iterations, after which the latest

𝐹𝐼𝐿𝑖𝑠𝑡 will be considered as the final reduced 𝐹𝐼𝐿𝑖𝑠𝑡 .

RC Identification. Given the minimized FIList, we use the stack

trace of fault injection points to identify the source location of

corresponding API calls in the program. These source locations

will be used to form our error report. For instance, łThe errors in

APIx called at Line 23, and APIy called at Line 43 results in a buffer

overflow at Line 145.ž. We wrote an additional helper script that

uses the stack trace and the kind of crash to identify the unique

bugs amongst the true crashes.

4.2.4 Implementation Details. We used Clang/LLVM compiler

framework version 12 to implement our analysis components. Our

library instrumentation is implemented as a LLVM pass. We get the

overall bitcode file of the target library by using wllvm [71], and
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run our instrumentation pass on the generated bitcode file. Our mu-

tation and testing techniques are implemented by modifying AFL++

using its post-processor support. Our helper library, ferrlib, is im-

plemented in C and provides various knobs to control different

aspects of fault injection. The crash filtering/root-cause identifi-

cation technique is implemented as a python module, which our

modified AFL++ will use during every crash. In total, our imple-

mentation involves 6.1K lines of C++ code and 5.3K lines of python

code.

5 EVALUATION

We pose the following research questions to guide our evaluation

of FuzzERR:

• RQ0: Effectivess of FIP Identification.How effectively does our

technique identify FIPs?

• RQ1: Effectiveness of FuzzERR. How effective is FuzzERR in

finding API error handling bugs? What is the contribution

of each of our techniques?

• RQ2: Impact of Code Coverage. Does coverage guidance im-

prove the effectiveness of FuzzERR? and does FuzzERR help

increase code coverage?

• RQ3: Comparison against the state-of-the-art.Howdoes FuzzERR

perform in comparison with the state-of-the-art techniques?

5.1 Dataset

Our goal is to collect a representative real-world dataset that enables

us to effectively evaluate different components of FuzzERR. Our

current implementation is based on Clang and consequently has

the following restrictions on the dataset. (i) The library must be

compilable using Clang. (ii) As with all dynamic techniques, these

programs should be easy to set up and run, i.e., not network servers

or other programs that require complex setup. We scrapped the

Debian package repository [28] and randomly picked 12 libraries

that satisfy our requirements. For each of the libraries, using reverse

search of apt-utils [37], we selected 1-3 programs that use API

functions in the corresponding library, which were easy to fuzz. In

total, we selected 20 programs. The first part of Table 4 shows the

list of libraries and corresponding programs along with source-level

statistics.

We also used APIMU4C [36], an existing API misuse bug dataset

that contains various synthetic bugs in 3 programs. However, the

dataset is targeted towards static tools and uses programs that are

hard to fuzz, especially network servers such as httpd. Out of the

three programs, only openssl was readily testable. The last row

of Table 4 shows the details of the program.

5.1.1 Collecting Programs’ Testcases. As explained in Section 4.2.2,

FuzzERR executes a program repeatedly with a fixed test case and

injects various faults in each run. We collect test cases for each

program by using the corresponding programs’ test suites. We

further augment these by running AFL++ for 24 hours on each

program with the initial inputs as seeds. The column Num.T of Ta-

ble 4 shows the total number of test cases collected for each of the

corresponding programs.

Table 4: Evaluation Dataset.

Libraries Programs

ID Name Size (Loc) APIs FIPs ID Name Size (Loc) Num. T

1 libelf 19.2K 25 151 1 eu-objdump 890 24

2 libpng 99K 55 97
2 contextfree 78.3K 24
3 optipng 5.7K 24

3 libxml2 332K 162 2,982
4 xmllint 3.9K 24
5 xgettext 84.4K 24

4 libzstd 112.5K 7 284
6 curl 178.8K 1
7 plocate 5.6K 1

5 libpoppler 143.7K 30 139
8 pdftotext 11.5K 24
9 apvlv 11.9K 24

6 libjpeg 85.7K 23 18
10 jpegoptim 2.5K 31
11 jp2a 2.7K 36
12 jpegqs 5K 19

7 libsqlite3 502K 56 381 13 lnav 178.9K 10

8 libavcodec 662.5K 10 6,778 14 shotdetect 2.1K 24

9 libavformat 225.4K 13 4,212 15 unpaper 4.6K 24

10 libavutil 71.7K 13 449 16 loudgain 2.6K 21

11 libcairo 234K 31 912
17 fntsample 1.1K 24
18 duc 14.3K 9

12 libfreetype 182.2K 19 534
19 logstalgia 18.8K 20
20 dvisvgm 234.9K 24

Total 2.669M 444 16,937 Total 848.4K 412

APIMU4C

ID Name Size (Loc) APIs FIPs ID Name Size (Loc) Num. T

13 libcrypto 182K 1065 3688 21 openssl 295k 3

5.2 Experimental Setup

We ran all our experiments on a AMD EPYC 7543P CPU machine

with 64 cores and 64GB memory. We run FuzzERR for 15 min-

utes on 30 cores in parallel mode, with instances sharing coverage.

Specifically, for a given program and a test case combination, we

run FuzzERR for 15 minutes on 30 cores. While it is recommended

that experiments related to fuzzing be run for 24 hours, we did a

preliminary experiment with more time on a subset of programs

but noticed that coverage did not improve after 15 minutes. This

is expected because we are only injecting faults on a fixed input.

Hence, we fuzz each (program, test case) combination for 15 min-

utes. We run our minimization technique with initial cooling factor

𝐶 = 0.1, reduction rate 𝑠 = 0.05, and run for 𝜏 = 50 iterations. These

values provide the best reduction rate, as shown in Section 5.4.1.

5.3 Effectiveness of FIPs Identification

For a given library, the first step in FuzzERR is FIPs identification.

As mentioned in Section 3.2.1, FIPs represent conditional state-

ments that control execution into error handling code. The FIPs

column in Table 4 shows the number of FIPs found in each of the

corresponding libraries. On average, our technique found 1,411 per

library with a total of 16,937.

To evaluate the accuracy of our technique, ideally, we need to

manually verify all the FIPs found by it. However, given the large

number of FIPs, we performed a random sampling. First, we ran-

domly picked 400 FIPs across all libraries and manually checked

whether each of these is a true FIP or not. Second, we randomly

picked 200 functions and manually identified all FIPs in it, and then

we checked if all of these FIPs were also found by our technique.

Table 5 shows the results of our evaluation. Our technique is able

to identify FIPs with a very high accuracy. This is expected because
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Table 5: Accuracy of FIPs identification.

Identified FIPs
True Positives False Positives

Randomly Selected
400 FIPs

95% 5%

FIPs Identified FIPs not Identified

Randomly Selected
200 functions

91% 9%

our FIP identification is precise as it is based on a strict set of error

markers (Section 4.2.1), which are mostly used in error-handling

code. However, there are few false positives (i.e., 5%). This is mainly

because few APIs use error markers to indicate functional cases. For

instance, return NULL to indicate the given array is already sorted.

Although an error marker, this does not indicate an error but a valid

return value and hence a false positive. However, as shown by the

small percentage, such cases are minimal.

As shown by the false negative column, our technique has false

negatives, i.e.,we missed identifying certain FIPs. The main reasons

for this are: (i) Conditional compilation: Few FIPs were guarded

by certain pre-processor directives that were not enabled in the

default build configuration of the corresponding programs. Conse-

quently, the pre-processor skipped these FIPs, although visible in

the source code. (ii) Value dependencies: In a few cases, identifying

error markers require value flow analysis [69]. For instance, in the

snippet if ((r = foo()) < 0) return r;, although, according to

our definition (Table 2), return r is an error marker as it is return-

ing a negative number. However, identifying this requires value

flow analysis, which we consider out of scope for our technique.

Missing FIPs does not greatly affect FuzzERR as it just reduces

fault injection points and does not necessarily eliminate fault in-

jection capability ś as faults in an API can be injected through

multiple FIPs.

5.4 RQ1: Effectiveness of FuzzERR

In this section, we evaluate the overall effectiveness of FuzzERR.

The first group of columns in Table 7 shows the overall performance

of FuzzERR on all the programs in the dataset. We have omitted

programs (e.g., curl) on which FuzzERR did not find any bugs.

The column Filtered Crashes shows the number of false posi-

tive crashes automatically filtered out by our lightweight filtering

technique (Section 4.2.2). All programs have a large number of

filtered crashes, highlighting one of the important problems with

software fault injection. This also emphasizes the importance of

having an automated filtering mechanism. The large number of

filtered crashes is also because many mutated FILists will trigger

the same false positive crash. We plan to improve this as part of

our future work (Section 6).

Next, column Final Crashes shows crashes that were collected

at the end of testing. Most of the programs have relatively few

total crashes except for xgettext (ID: 5), logstalgia (ID: 19),

and dvisvgm (ID: 20), which contain an unusually large number

of crashes. However, the number of bugs corresponding to these

crashes is relatively small. This large number of crashes is because

a few API error bugs in these programs result in using uninitialized

variables. An example of such a bug is shown in Listing 1. De-

pending on the value of these uninitialized variables, the program

crashes at different locations, leading to a huge number of crashes

for relatively few unique bugs. This large number of filtered crashes

highlights one of the important problems with software fault injec-

tion and emphasizes the importance of having an automated filtering

mechanism.

It is interesting to see that there are false positives in final crashes.

This is because certain invariants across API calls are violated

by fault injection. However, our crash filtering mechanism treats

these as true crashes (Scenario 3 in Figure 3). But, these cases are

relatively small, i.e., ∼ 0.7% (42). Finally, our crash minimization

and root cause identification technique mapped these true crashes

to 31 bugs across various programs. These bugs represent unique

locations in the corresponding program where an API error was

wrongly handled.

As shown by the last row, out of the five bugs in API4MU

dataset, FuzzERR found only three bugs. The main reason for miss-

ing the other two bugs is missing error markers (Table 2). Specifi-

cally, a few APIs (with integer return type) use value 0 to indicate

an error (i.e., return 0). However, we do not consider this an error

marker and fail to identify FIPs and miss fault injections. We plan

to address this in our future work (Section 6).

5.4.1 Sensitivity Study of FIList Minimization. We performed a

sensitivity study to understand the performance of our technique

better. We vary each of our parameters, i.e.,𝐶 , 𝑠 , and 𝜏 , and measure

how the minimization effectiveness varies.

The Figure 4 shows the results of this experiment. Each line

represents the percentage of reduction when the corresponding

parameter value is varied, as shown by the legend. Ideally, we want

our technique to stabilize quickly (i.e., should take less number of

iterations to achieve high reduction). As shown by the red line,

increasing 𝑠 (i.e., cooling schedule) helps in quick convergence and

improves the reduction rate, but higher values rapidly modify the

cooling factor and consequently decrease the reduction rate. As

shown by the green line, similar behavior is exhibited by varying

𝐶 (i.e., cooling factor). However, as the blue line shows, increasing

the number of iterations (𝜏) will increase the reduction rate. But

increasing the number of iterations also increases the time. As

shown by the topmost point of the green line, the parameter values

that provide the highest reduction rate are 𝐶 = 0.1, 𝑠 = 0.05, and

𝜏 = 50.

5.4.2 Types of Bugs found by FuzzERR. The Table 6 shows the

categorization of bugs. Although most bugs (20, 64%) are NULL-ptr

dereferences, the rest (11, 36%) are severe security vulnerabilities

that can lead to arbitrary code execution. The Table 10 in Appendix

shows the complete list.

Examples. The Listing 2 and 3 shows examples of the bugs

found by FuzzERR. In Listing 2, the fault of API call to jpeg_ ⌋

read_scanlines at line 4 is not handled (i.e., the return value is

not checked). The failure of this API call does not initialize jpg,

which is eventually used to compute y (line 16). A negative value

of y results in an infinite loop (line 20) and, consequently, a buffer

overwrite at line 23.

The Listing 3 shows a bug resulting from the Scenario 3 category

crash (Figure 3). Here, similar to the previous example, the fault

of API call to avformat_write_header at line 6 is not handled (i.e.,
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Figure 4: The impact of our minimization parameters on the FIList

minimization averaged across 150 crashes.

Table 6: Categorization of bugs found by FuzzERR.

Bug Type Num. of Bugs

Heap Buffer Overread 2

NULL-ptr dereference 20

Overallocation due to integer overflow 2

Floating Point Exception 1

Segmentation Fault 1

Use After Free 5

Total 31

the return value is not checked). This will cause out_ctx to be

uninitialized. Subsequently resulting in NULL deference at line 21.

5.4.3 Responsible Disclosure. We reported these to the maintainers

of the corresponding applications along with patches for 28 bugs,

out of which 20 are already accepted. We are still working on the

patches for the rest (3) of the bugs, as they require understanding

application logic to gracefully handle API failures.

5.5 RQ2: Impact of Fault Injection on Code
Coverage

To study the effect of coverage guidance in fault injection, we con-

figured FuzzERR for random fault injection, i.e., the FIList will be

generated randomly in every iteration (𝐹𝑢𝑧𝑧𝐸𝑅𝑅𝑟𝑎𝑛𝑑 ). We tested

on 𝐹𝑢𝑧𝑧𝐸𝑅𝑅𝑟𝑎𝑛𝑑 on four programs of varying sizes and repeated

the experiment multiple times. These programs were selected be-

cause they used the libraries covering characteristic representative

functions (pdf, audio, images). 𝐹𝑢𝑧𝑧𝐸𝑅𝑅𝑟𝑎𝑛𝑑 could identify only

2 out of 7 API Misuse bugs identified by FuzzERR. This shows

that coverage-guided considerably contributes to the effectiveness

of FuzzERR.

As mentioned in Section 4.2.2, we run FuzzERR for each program

and a test case combination. We repeatedly run the program with

the same test case, but different faults will be injected into the

target library (through FIList). For each test case, we measured the

amount of additional code covered because of our fault injection.

Table 7: Performance of FuzzERR in comparison with AFL++ (𝐹𝐿)

and FairFuzz (𝐹𝐹 ).

Prog
Id

FuzzERR Performance
Bugs also
found by

Filtered
Crashes

Final Crashes Unique
Bugs

FL FF
False True Total

5 25.68K 10 1,099 1,109 2 0 0

9 11.04K 0 106 106 1 0 0

10 4.18K 3 20 23 1 1 0

11 58.27K 0 2 2 1 0 0

12 0 0 2 2 1 0 0

14 55.65K 4 35 39 11 1 0

15 8.55K 3 27 30 3 0 0

16 215.68K 3 42 45 3 0 0

19 7.61K 5 1,955 1,960 1 1 0

20 11.59K 7 2,334 2,341 2 1 1

21 7.5K 7 3 10 3/5 0 0

Total 673.79K 54 5,838 5,892 34 3 1

The Figure 5 displays a box plot of the additional code covered by

various test cases for programs that FuzzERR has detected bugs.

Except for a couple of programs (i.e., ID: 10 and 11), the additional

code covered because of fault injection is relatively less (≤ 6%). But

still FuzzERR was able to find bugs in these programs. This shows

that fault injection in libraries does not necessarily improve program

code coverage but helps in exploring interesting program states, as

demonstrated by the several bugs found by FuzzERR. An example

of this can be seen in Listing 3. Here, fault injection did not cover

additional code but explored an interesting program state by not

initializing out_ctx.
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Figure 5: Additional code covered because of fault injection

by FuzzERR.

5.6 RQ3: Comparative Evaluation

We selected the following state-of-the-art techniques for our com-

parative evaluation.

• AFL++ [26] (𝐹𝐿): This is a re-engineered fork of the popular

coverage-guided fuzzer AFL [79]. Furthermore, AFL++ incor-

porates techniques from several other fuzzing tools, such as

REDQUEEN [8], AFLSmart [62], and MOPT [50].

• FairFuzz [43] (𝐹𝐹 ): This is a fuzzing tool that uses novel muta-

tion techniques to generate inputs effective at exploring error

handling code.

• Fifuzz [38]: This is a fuzzing tool that uses a context-sensitive

SFI approach, in order to cover error handling code in different
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Listing 2 A real bug found by FuzzERR in jp2a because of incorrect

handling of jpeg_read_scanlines API return value.

1 // file: jp2a/src/image.c

2 // ----------------------

3 // A fault in this API does not initialize jpg.

4 � jpeg_read_scanlines(&jpg, buffer, 1);

5 // this uninitialized jpg is passed as argument

6 process_scanline_jpeg(&jpg, buffer[0], &image);

7

8 void

9 process_scanline_jpeg(

10 const struct jpeg_decompress_struct *jpg,

11 const JSAMPLE* scanline,

12 Image* i

13 ){

14 ...

15 // y becomes negative since jpg->output_scanline was 0

16 const int y = ROUND(i->resize_y *
17 (float) (jpg->output_scanline-1) );

18 ...

19 // loops infinitely since y is negative

20 while (lasty <= y) {

21 ...

22 // Buffer overwrite of pixel.

23 q pixel[x] += adds>1 ? v / (float) adds : v;

24 ...

25 }

26 ...

27 }

Listing 3 A NULL pointer dereference bug found by FuzzERR in unpaper

because of incorrect handling of avformat_write_header API return

value.

1 // file: unpaper/file.c

2 // --------------------

3 AVFormatContext *out_ctx;

4 ...

5 // A fault in this API does not initialize out_ctx.

6 � avformat_write_header(out_ctx, NULL);

7 ...

8 // flow continues with the out_ctx uninitialized

9 av_write_frame(out_ctx, &pkt);

10 // this function internally calls other functions,

11 // which finally call compute_muxer_pkt_fields

12 ....· compute_muxer_pkt_fields(out_ctx, st, &pkt)

13 // file: ffmpeg/libavformat/mux.c

14 // ------------------------------

15 static int

16 compute_muxer_pkt_fields(

17 AVFormatContext *s, AVStream *st, AVPacket *pkt){

18 ...

19 // st->internal->priv_pts is derived from s and

20 // it will be NULL.

21 q pkt->dts = st->internal->priv_pts->val;

22 ...

23 }

contexts, with the aim of finding bugs in error handling code

with complicated contexts.

These tools represent the state-of-the-art in two categories ś first,

tools that aim to increase code coverage by exploring rare branches

(AFL++ and FairFuzz) and second, tools to increase code coverage

by directing execution towards error handling code (Fifuzz). As

suggested by the recent work [41], we tested each program for 24

hours to normalize the effects of randomness.

5.6.1 Comparison withAFL++ and FairFuzz. The last two columns

of Table 7 show this experiment’s results on programs that FuzzERR

has detected bugs. AFL++ found 3 bugs of those found by FuzzERR,

whereas FairFuzz found only 1 bug. On APIMU4C dataset, neither

AFL++, nor FairFuzz found bugs. This is expected because the

above tools are coverage guided and focus on improving the code

coverage. However, the bugs found by FuzzERR require a thorough

Table 8: Performance of FuzzERR in comparison with FIFUZZ.

Prog Id
Bugs Found by

FIFUZZ
Crashes

FuzzERR FIFUZZ
False True Total

Exclusive Total Exclusive Total

10 1 1 0 0 9 0 9

11 1 1 0 0 0 0 0

12 1 2 3 4 0 4 4

15 3 3 1 1 0 10 10

16 1 3 0 2 20 5 25

21 0 3 0 3 159 9 168

Total 7 13 4 10 188 28 216

state exploration rather than covering additional code (as shown

in Figure 5).

5.6.2 Comparison with Fifuzz. We also compared FuzzERR with

Fifuzz [38], a recent tool that also uses SFI to test the error han-

dling code of applications. We want to emphasize that Fifuzz is

not designed to find API misuse bugs but to improve code coverage

by forcefully executing error-handling code. As a consequence of

this, Fifuzz might find API error-handling bugs. Unfortunately,

the tool binary or its source code is not available, and we also

failed to get any response from the authors. We re-implemented

Fifuzz by following instructions from the paper. As explained in

the original paper [38], Fifuzz error point detection is specialized

for C programs. To ensure a fair comparison, we ran Fifuzz only

on C programs (as described in Sec 8 of the original paper [38])

and ran Fifuzz for 24 hours on each application (as suggested

in 5.3 of the original paper [38]). The Table 8 shows the results

of comparing FuzzERR with Fifuzz on only C programs. In to-

tal, FuzzERR found thirteen bugs, three more than Fifuzz, and

interestingly, FuzzERR exclusively found seven out of ten bugs.

The Listing 3 shows a bug exclusively detected by FuzzERR but

not Fifuzz. However, Fifuzz also exclusively found four bugs that

were missed by FuzzERR. We found that none of these bugs are

because of improper API error handling but rather in the clean-up

code. Furthermore, on Prog 16, Fifuzz resulted in 20 (80%) false

positive crashes, which required considerable manual effort to filter

them out. On APIMU4C dataset (Prog Id 21), Fifuzz was able to

find all three found by FuzzERR. However, Fifuzz resulted in 159

(94%) false positive crashes. Table 9 shows the coverage obtained

by FuzzERR and Fifuzz in these programs. The coverage for Fifuzz

is over a run of 24 hours, whereas the coverage for FuzzERR is over

a run of 6 hours (as mentioned in Section 5.2, increasing the time

does not affect coverage). Despite the lower code coverage obtained

by FuzzERR, it could identify more bugs than Fifuzz, further con-

firming our observations in Section 5.5. This shows that FuzzERR

is more effective at exploring error handling code and triggering

API misuse bugs.

In summary, FuzzERR is more effective than the state-of-the-art

tools in finding API error-handling bugs by exploring interesting

program states through fault injection.

6 LIMITATIONS AND FUTUREWORK

Wepresent the limitations of the current implementation of FuzzERR,

along with our future plans to address them:
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Table 9: Comparision of coverage obtained by FIFUZZ and FuzzERR

Prog Id
FIFUZZ coverage

(24 hrs)
FuzzERR coverage

(6 hours)

10 28.76% 26.71%
11 23.22% 20.72%
12 11.13% 7.69%
15 7.04% 34.98%
16 11.79% 5.65%

• Compiler Dependency. We require the target library to be compil-

able with Clang as our implementation (Section 4.2.4) is based

on it. Few libraries, such as glibc, require considerable effort to

be compilable with Clang [54]. Consequently, FuzzERR cannot

be used to find the error handling bugs of corresponding APIs.

• Dynamic Analysis and Testcase Requirements. FuzzERR benefits

from the availability of an exhaustive set of test cases. Generating

effective test cases is becoming relatively easy with the advances

in automated testing techniques. We envision that FuzzERR will

be used as an additional step on top of existing automated testing

techniques to effectively explore API error handling code.

• False Negatives. The current design choices of FuzzERR are fo-

cused on precision and can potentially miss certain bugs, result-

ing in false negatives. There are two cases where this can happen.

(I) We use a pre-defined set of pre-defined error markers to iden-

tify FIPs. These markers may be missing in certain libraries. (ii)

Our filtering mechanism uses stack traces to check that the fault

injection point is different from the crash point for library crashes

and discards them (if same) ( Section 4.2.2). However, there can

be cases when the stack trace is the same, even when both are

different (e.g., loops). As part of our future work, we will improve

our FIP identification using learning techniques and extend our

filtering mechanism to perform additional post-processing.

7 RELATED WORK

Software Fault Injection (SFI). SFI techniques [22, 27, 80] are

shown to be very effective in testing error-handling code. Bai et

al., [9, 10] developed techniques to inject faults into device handling

functions while testing device drivers to detect bugs in error han-

dling code. LFI [52] is one of the first works that try to inject faults

in library functions and see how the program behaves. However,

LFI mainly focuses on returning the failure return value without

capturing the entire error semantics of library functions. e.g., clear-

ing or freeing the pointers passed through arguments. This can

lead to false positives or infeasible crashes. FuzzERR avoids this by

forcing execution to error blocks, thereby leveraging existing error

semantics.

False positives or reaching infeasible states [40, 55] is one of the

known problems with SFI. Another problem with existing SFI tech-

niques is location-based injection rather than execution based. Re-

cent work, Fifuzz [38] tries to avoid this by using context-sensitive

fault injection, wherein they use the combination of error location

information along with the execution context as a fault injection

point. FuzzERR is more precise, and we use a filtering mechanism

to avoid any resulting false positive crashes. Furthermore, as shown

in Table 8, FuzzERR is more effective at finding API error-handling

bugs than FIFUZZ. Software faults can also be mimicked by directly

mutating the program, commonly called mutation analysis [4] or

mutation testing. There exist techniques, such as SlowCoach [20],

to generate mutations [59]. FuzzERR is similar in principle to mu-

tation testing, where targeted mutations are performed in libraries.

API Misuse Detection. Most of the work [36] on API misuse

bug detection is based on static approaches. Some of these tech-

niques [17, 31, 35] check for violations of API usage rules. But

techniques to automatically generate API usage rules [3, 13, 42,

45, 47, 57, 60] are hard to scale and require a large corpus of valid

API uses. There are other techniques based on Anomaly Detection

(AD) [16, 24]. The recent work ApiSan [78] encodes common pat-

terns as semantic beliefs and looks for violations of these beliefs.

There are also machine learning-based techniques [14, 46, 48, 61,

72, 74, 75], such as the recent work FICS [6], that cluster API usage

patterns and consider minority clusters as API misuses. These static

automated techniques have a lot of false positives. For instance, Ar-

bitrar [44], ApiSan [78] and FICS [6] have false positive rates of

51.5%, 87.9% and 88%, respectively. These techniques are impractical

for real use [12, 21].

Fuzzing. Generational fuzzers [19, 33, 73, 76] require a specifi-

cation, and inputs will be generated based on the specification.

These techniques are helpful for testing programs that expect well-

structure input, such as compilers [19], interpreters [73] and device

drivers [23]. Mutational fuzzers [8, 15, 26, 29, 34, 43, 63, 77] gener-

ate inputs by performing mutations on a given set of seed inputs.

There are other techniques, such as Driller [67] and Angora [18],

that use hybrid approaches of combining mutations with symbolic

execution.

Most of the existing fuzzing techniques use code coverage [66]

as the feedback. In our work, we use an existing coverage-guided

mutational fuzzer, i.e., AFL++ [26], as our base and use it to direct

fault injection.

8 CONCLUSION

We present FuzzERR, a generic dynamic analysis approach to detect

API error handling bugs based on coverage-guided software fault

injection. We inject faults into APIs by forcing execution along

error paths and then observe how the program under test handles

these failures. We also filter out false positives by using a light-

weight technique based on program traces. Our evaluation shows

that FuzzERR found 31 new and previously unknown bugs resulting

from incorrect handling of API errors, significantly outperforming

the state-of-the-art.
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A LIST OF BUGS
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Table 10: List of bugs identified by FuzzERR

S.No. Library Program Type Source File
Line

Number
Remarks

1 libjpeg jpegqs Null ptr deref quantsmooth.c 530 Return value of jpeg_read_coefficients() not checked. It can be NULL in certain conditions.

2 libxml2 xgettext Null ptr deref locating-rule.c 92 Return value of xmlGetProp() not checked. It can be NULL in certain conditions.

3 libxml2 xgettext Null ptr deref locating-rule.c 313 Return value of xmlDocGetRootElement() not checked. It can be NULL in certain conditions.

4 libavutil loudgain Null ptr deref scan.c 203 Return value of swr_alloc() not checked. It can be NULL in certain conditions.

5 libavutil loudgain Null ptr deref scan.c 442 Return value of av_malloc() not checked. It can be NULL in certain conditions.

6 libavutil loudgain

overallocation

due to integer

overflow
scan.c 438

Return value of av_samples_get_buffer_size() not checked (negative error code in case of failure).

This is passed as an argument to av_malloc(). This value can be negative in case of error, which

would lead to overallocation.

7 libfreetype dvisvgm use-after-free FontEngine.cpp 224

Return value of FT_Load_Glyph() not checked, leading to use-after-free bugs in certain conditions.

8 libfreetype dvisvgm use-after-free FontEngine.cpp 233

9 libfreetype dvisvgm use-after-free FontEngine.cpp 244

10 libfreetype dvisvgm use-after-free FontEngine.cpp 253

11 libfreetype dvisvgm use-after-free FontEngine.cpp 262

12 libfreetype dvisvgm Null ptr deref Font.cpp 197 Return value of FontEngine::setFont() not checked (false on failure). In case its unsuccessful,

it can lead to a null-pointer-dereference later in the code.13 libfreetype dvisvgm Null ptr deref Font.cpp 239

14 libfreetype logstalgia Null ptr deref fxfont.cpp 81
Return value of FT_Glyph_To_Bitmap() is not checked (non-zero return on error), which can

lead to null-pointer-dereference later.

15 libavcodec shotdetect Null ptr deref main.cc 216
Retrun value of film::process() is not checked (negative return on error). A failure in

film::process() can lead to a null-pointer-dereference later.

16 libavcodec shotdetect Null ptr deref graph.cpp 300
data.size() can be 0 in certain conditions, which would leade to integer underflow in the loop

condition. This would eventually lead to a null-ptr-dereference.

17 libavcodec shotdetect Null ptr deref film.cpp 295 Return value of av_frame_alloc() not checked, which will lead to null-ptr-dereference later.

18 libavcodec shotdetect Null ptr deref film.cpp 296 Return value of av_frame_alloc() not checked, which will lead to null-ptr-dereference later.

19 libavcodec shotdetect Null ptr deref film.cpp 297 Return value of av_frame_alloc() not checked, which will lead to null-ptr-dereference later.

20 libavcodec shotdetect

overallocation

due to integer

overflow
film.cpp 302

Return value of avpicture_get_size() not checked (non-zero return on error). This can lead to

integer underflow in the argument passed to malloc() later.

21 libavcodec shotdetect Null ptr deref film.cpp 304
Return value of malloc() is not checked, which can lead to null-ptr-dereference later.

22 libavcodec shotdetect Null ptr deref film.cpp 305

23 libavcodec shotdetect Null ptr deref film.cpp 310 Return value of avpicture_fill() not checked (negative return on error). Failure in avpicture_fill()

can later lead to null-ptr-dereference.24 libavcodec shotdetect Null ptr deref film.cpp 312

25 libavcodec shotdetect Null ptr Deref film.cpp 346
Return value of avcodec_decode_video2() not checked (negative return on error). Failure in

avpicture_fill() can later lead to null-ptr-dereference.

26 libjpeg jp2a Heap overflow image.c 705
Return value of jpeg_read_scanlines() not checked. In certain conditions, this can lead to an

integer overflow, which eventually leads to a heap overflow (in process_scanline_jpeg()).

27 libavformat unpaper Null ptr deref file.c 228*
Return value of avformat_write_header() is not checked and context is passed onto

av_write_frame(). This can lead to a null-ptr-dereference in compute_muxer_pkt_fields() inside

libavformat itself, at libavformat/mux.c:580.

28 libavformat unpaper FPE file.c 228*
Return value of avformat_write_header() is not checked and context is passed onto

av_write_frame(). The context can be in a state that is not properly intitialized. This can

lead to a FPE in frac_add() in libavformat itself, at libavformat/mux.c:84.

29 libavformat unpaper SEGV file.c 43
Return value of avformat_find_stream_info() not checked. This can lead to a segmentation

fault later.

30 libpoppler apvlv Heap overflow ApvlvDoc.cc 2203

Return value of library API function is checked. However the return value of application’s

own function that wraps the call to the api is not checked. Under certain conditions, this

can lead to heap buffer overflow.

31 libjpeg jpegoptim Null ptr deref jpegoptim.c 711 Return value of jpeg_read_cofficients() not checked. This can lead to null-ptr-dereference later.

* Depending on the location and context at the time of fault, the same API misuse causes different faults in the library.
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