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In this paper, we formulate a geometric nonlinear
theory of the mechanics of accreting–ablating
bodies. This is a generalization of the theory of
accretion mechanics of Sozio & Yavari (Sozio
& Yavari 2019 J. Nonlinear Sci. 29, 1813–1863
(doi:10.1007/s00332-019-09531-w)). More specifically,
we are interested in large deformation analysis of
bodies that undergo a continuous and simultaneous
accretion and ablation on their boundaries while
under external loads. In this formulation, the natural
configuration of an accreting–ablating body is a
time-dependent Riemannian 3-manifold with a metric
that is an unknown a priori and is determined after
solving the accretion–ablation initial-boundary-value
problem. In addition to the time of attachment
map, we introduce a time of detachment map
that along with the time of attachment map, and
the accretion and ablation velocities, describes the
time-dependent reference configuration of the body.
The kinematics, material manifold, material metric,
constitutive equations and the balance laws are
discussed in detail. As a concrete example and
application of the geometric theory, we analyse a
thick hollow circular cylinder made of an arbitrary
incompressible isotropic material that is under a
finite time-dependent extension while undergoing
continuous ablation on its inner cylinder boundary
and accretion on its outer cylinder boundary. The
state of deformation and stress during the accretion–
ablation process, and the residual stretch and stress
after the completion of the accretion–ablation process,
are computed.

This article is part of the theme issue ‘Foundational
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mechanics’.
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1. Introduction
There are numerous examples of structures in Nature and engineering that are built through an
accretion process and/or during their lifetime experience ablation. As examples in Nature one can
mention growth of biological tissues and crystals, formation of planetary objects, volcanic and
sedimentary rock formations, snow and ice cover build-up, glacier accumulation and ablation,
etc. As engineering applications, one can mention additive manufacturing and three-dimensional
printing, metal solidification, construction of concrete structures in successive layers, construction
of masonry structures, the deposition of thin films, ice accretion on an aircraft wing that may lead
to degradation of aerodynamic performance, laser ablation of polymers, etc.

The first accretion mechanics problem was solved by Southwell [1], namely the analysis of
thick-walled cylinders manufactured by wire winding of an initial elastic tube. The problem of
a growing planet subject to self-gravity was studied in a seminal paper by Brown & Goodman
[2]. Their analysis was done in the setting of linear elasticity and it was observed that accretion
may induce residual stresses. In the seminal work of Skalak et al. [3,4], the kinematics of surface
growth was formulated and a time of attachment map was introduced. Another notable work
is the paper of Metlov [5], who formulated a large-deformation theory of ageing viscoelastic
solids undergoing accretion. He also introduced a time of attachment map as part of the kinematic
description of accretion. There have been many more works on the mechanics of surface growth
in the literature [6–28], see [21,29] for more detailed reviews.

In classical nonlinear elasticity, the reference configuration is a fixed manifold (a fixed set of
material points equipped with a metric inherited from the Euclidean ambient space). Motion is
a one-parameter family of maps from the fixed reference configuration to the Euclidean ambient
space. In anelasticity (in the sense of Eckart [30]), the reference configuration is a fixed manifold
equipped with a metric that explicitly depends on the source of anelasticty, e.g. temperature
changes, swelling, bulk growth, remodelling, defects, etc. In this more general setting, motion
is still a map from the fixed reference configuration to the Euclidean ambient space. However,
the natural distances in the reference configuration are measured using the non-flat metric of
the material manifold. Theory of anelasticity has been used in modelling a very large class
of problems, e.g. thermoelasticity [31–33], mechanics of distributed defects [34–39], swelling
and cavitation [40–44] and bulk growth [45–48]. Anelasticity has traditionally been formulated
using the multiplicative decomposition of deformation gradient into an elastic and an anelastic

part: F= e
F
a
F.1 This leads to the notion of the so-called ‘intermediate configuration’, which is

usually defined only locally.2 A more natural approach would be to follow Eckart [30] and
Kondo [52,53] and use a Riemannian material manifold, which is a fixed manifold with a
possibly time-dependent metric if the source of anealsticity is time dependent [54].3 For example,
in the case of bodies undergoing bulk growth the reference configuration is a Riemannian
manifold (B,Gt), where B is a fixed 3-manifold with a time-dependent Riemannian metric
Gt [48].

For accreting–ablating bodies, the set of material points is time-dependent; the reference
configuration is a time-dependent set Bt. In the absence of any other anelastic source, the initial
body B0 has a flat metric G0 that is inherited from the Euclidean ambient space (the induced
Euclidean metric). A point on the boundary of the body is either non-active or active. At an active
point of the boundary and at a given time t there is either accretion (addition of new material)
or ablation (removal of material); accretion and ablation cannot occur simultaneously at the same
point and at the same time. Stress-free or pre-stressed material can be added on the accretion
boundary. The material metric is controlled by both the state of stress of the material before joining

1For detailed historical accounts of this decomposition, see [49,50].

2See [50,51] for discussions on global intermediate configurations (manifolds).

3Anelastic bodies are non-Euclidean in the sense that their reference configurations are not Euclidean, in general. The term
Non-Euclidean solids has been used interchangeably for anelastic bodies in the recent literature [25,27,28] (this term was coined
by Henri Poincaré [55]). Also, anelastic plates have been called non-Euclidean plates in the literature [56].
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the body and the state of deformation of the body at the time of attachment. It is known that
accretion may induce residual stresses due to the non-flatness of the material metric [21,22], and
this is the nonlinear analogue of Brown & Goodman [2]’s observation.

Most of the existing works in the literature of surface growth mechanics are restricted to
accretion problems without ablation. Exceptions are [9,57,58]. Naghibzadeh et al. [57] considered
both accretion and ablation in a Eulerian large-deformation setting and analysed accretion
and ablation problems without explicitly using an evolving reference configuration. They used

the governing equations in a Eulerian setting with
e
F (the elastic part of the deformation

gradient) as their kinematic descriptor. They recovered some of the results from [21] in their
Eulerian formulation for an infinite thick hollow cylinder accreting on its outer surface with a
hydrostatic pressure applied on its inner surface. They also analysed a thick hollow spherical
shell undergoing accretion through its fixed inner boundary while ablation takes place on its
traction-free outer boundary.

Recently, the nonlinear geometric accretion theory developed in [21,22] was used to solve
two classes of problems: (i) time-dependent finite extension of incompressible isotropic accreting
circular cylindrical bars [26] and (ii) time-dependent finite torsion of incompressible isotropic
accreting circular cylindrical bars [59]. In the absence of accretion, these deformations are subsets
of Family 3 universal deformations [60]. It was shown that even in the presence of cylindrically
symmetric accretion these deformations are universal [26,59].

Let us consider a body in a time-dependent motion. This body while undergoing large
deformations is simultaneously growing on part of its boundary by absorbing mass while it is
losing mass on another part of its boundary. We are interested in understanding the mechanics
of such accreting–ablating systems. There are four questions that any mechanical/mathematical
model of accretion–ablation should be able to answer:

(i) What is the state of deformation and stresses during a process of accretion–ablation?
(ii) At the end of an accretion–ablation process and after removing the external loads, what

is the state of deformation and internal stresses (residual stresses) in the body?
(iii) Now the final structure is put under service loads. How can one analyse such a residually

stressed structure?
(iv) How should an accretion–ablation process be designed in order to build structures with

the desired distribution of residual stresses, and the optimum stiffness/compliance under
service loads?

In the second part of this paper, we show how our theory can be used in answering the first three
questions. The fourth problem will be studied in a future communication.

This paper is organized as follows. In §2, a geometric theory of accretion–ablation mechanics
is formulated. The kinematics, material manifold, material metric, constitutive equations and the
balance laws are discussed in detail. An example is analysed in detail in §3 as an application
of the geometric theory. More specifically, a thick hollow cylinder under finite time-dependent
extension while undergoing simultaneous accretion and ablation is analysed. Both displacement
and force-control loadings are considered. The state of deformation and stress during accretion–
ablation and the effect of loading during accretion-ablation on the residual stress distribution are
analysed. Several numerical examples are presented in the case of incompressible neo-Hookean
solids. The conclusion is given in §4.

2. A continuum theory of accreting–ablating bodies
In this section, we formulate a large-deformation continuum theory of accreting–ablating bodies.
This theory is a generalization of the accretion theory of Sozio & Yavari [22]. More specifically, we
are interested in the state of deformation and internal stresses of a body that while under external
loads undergoes simultaneous ablation and accretion on its boundary, see figure 1.
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Figure 1. Motion of an accreting–ablating elastic body. The material manifold is a time-dependent Riemannian manifold
(Bt , G) whose metric is to be determined. The deformed body is embedded in the Euclidean ambient space (S , g), where g
is a time-independent background metric.

(a) Riemannian geometry and kinematics of finite deformations
In this section, we tersely review some basic concepts of Riemannian geometry that are used
in the description of the kinematics of accreting–ablating bodies. A smooth 3-manifold B is a
topological space that locally looks like the three-dimensional Euclidean space R

3. A coordinate
chart {XA} : B →R

3 is a local diffeomorphism. The body in its reference configuration is identified
with the 3-manifold B. The tangent space of B at a point X ∈B is a three-dimensional linear space
and is denoted by TXB. The three-dimensional Euclidean ambient space is denoted by S. A local
chart on S is denoted by {xa}. Motion ϕt : B → S is a one-parameter family of smooth, invertible
and orientation preserving maps between the reference configuration and the ambient space
(more precisely, motion is a curve t �→ ϕt in the space of all configurations of B). The derivative
(tangent) map of ϕt is denoted by Ft = Tϕt, and is a two-point tensor, i.e. is a linear map between
tangent spaces of two different manifolds, F(X, t) : TXB → TxCt, where x= ϕ(X) and Ct = ϕt(B). In
the continuum mechanics literature F is called deformation gradient. This term may be misleading
as gradient is a metric-dependent operator while the tangent map is not. With respect to the local
coordinate charts {XA} and {xa} for B and S, respectively, deformation gradient has the following
representation:

F= FaA
∂

∂xa
⊗ dXA and FaA = ∂ϕa

∂XA . (2.1)

The set of vectors {∂/∂xa} and co-vectors (1-forms) {dXA} are bases for the tangent space TxC and
co-tangent space T∗

XB, respectively. A smooth vector field on B is a smooth assignment of vectors
(elements of the tangent space) to points of B. Thus, for a smooth vector field W on B, WX ∈ TXB,
X �→WX ∈ TXB varies smoothly. Push-forward of a vector field on B by the deformation mapping
is a vector field in the ambient space and is defined as ϕ∗W= Tϕ · W ◦ ϕ−1. Pull-back of a vector
field w on C = ϕ(B) is a vector field on B and is defined as ϕ∗w= T(ϕ−1) · w ◦ ϕ. The push-forward
and pull-back of vectors have the following coordinate representations: (ϕ∗W)a = FaA WA, and
(ϕ∗w)A = Fa−A wa.

A bilinear map T : TXB × TXB →R is a (0
2)-tensor at X ∈B. In a local coordinate chart {XA}

for B and arbitrary vectors U and W, one writes T(U,W) = TAB UA WB. Let us consider an inner
product GX on the tangent space TXB that varies smoothly, i.e. if U and W are vector fields on B,
then X �→GX(UX,WX) is a smooth function. A positive-definite bilinear form G is called a metric.
The inner product induced by the metric GX is denoted by 〈〈., .〉〉GX . The manifold B equipped
with a smooth metric G is called a Riemannian manifold and is denoted as (B,G). Distances in the
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ambient space are calculated using the background Euclidean metric g. The Riemannian manifold
(S, g) is called the ambient space manifold. In elasticity, the reference configuration inherits a flat
metric G0 from the ambient space and the material manifold (B,G0) is flat. In anelasticity, the
natural distances explicitly depend on the source of anelasticity and so does the material metric
G, which is non-flat, in general. For the two Riemannian manifolds (B,G) and (C, g), and the
deformation mapping ϕ : B → C, push-forward of the metric G is denoted by ϕ∗G, which is a
metric on C = ϕ(B), and is defined as

〈〈ux,wx〉〉(ϕ∗G)x = 〈〈(ϕ∗u)X, (ϕ∗w)X〉〉GX , (2.2)

where x= ϕ(X). It has components (ϕ∗G)ab = Fa−A Fb−B GAB. Similarly, the pull-back of the metric
g is denoted by ϕ∗g and is a metric in ϕ−1(C) =B defined as

〈〈UX,WX〉〉(ϕ∗g)X = 〈〈(ϕ∗U)x, (ϕ∗W)x〉〉gx . (2.3)

It has components, (ϕ∗g)AB = FaA FbB gab. The two Riemannian manifolds (B,G) and (C,g) are
called isometric if G= ϕ∗g, or equivalently, g= ϕ∗G. In this case, ϕ is called an isometry.

The adjoint of deformation gradient F�(X, t) : T∗
xCt → T∗

XB is defined such that

〈α, FW〉 = 〈F�α,W〉, ∀W ∈ TXB, α ∈ T∗
xCt, (2.4)

where 〈., .〉 is the natural paring of 1-forms and vectors, e.g. 〈α,w〉 = αa wa, and T∗
XB and T∗

xCt
are the co-tangent spaces of B at X and Ct at x, respectively. F� has the following coordinate
representation

F�(X, t) = ∂ϕa(X, t)
∂XA dXA ⊗ ∂

∂xa
. (2.5)

The transpose of the deformation gradient FT(X, t) : TxCt → TXB is defined such that

〈〈FU,w〉〉g = 〈〈U, FTw〉〉G, ∀U ∈ TXB,w ∈ TxCt. (2.6)

It has the components (FT)Aa =GABFbB gba, or FT =G�F�g.
The Jacobian of deformation J(X, t) relates the undeformed and deformed volume elements as

dv ◦ ϕ(X, t) = J(X, t) dV(X, t).4 It is defined as

J(X, t) =
√

detg(ϕ(X, t))
detG(X)

detF(X, t). (2.8)

For incompressible materials, J(X, t) = 1.
The material velocity is defined as V(X, t) = ∂ϕ(X, t)/∂t ∈ Tϕt(X)Ct. The spatial velocity is

defined as vt(x) =Vt ◦ ϕ−1
t (x) ∈ TxCt, where x= ϕt(X). The material acceleration is defined as

A(X, t) =Dg
t V(X, t) = ∇g

V(X,t)V(X, t) ∈ Tϕt(X)Ct, where Dg
t is the covariant derivative along the curve

ϕt(X) in Ct. In components, Aa = (∂Va/∂t) + γ a
bcVbVc. The spatial acceleration is defined as

at(x) =At ◦ ϕ−1
t (x) ∈ TxCt. It has components, aa = (∂va/∂t) + (∂va/∂xb)vb + γ a

bcv
bvc. Equivalently,

the spatial acceleration is the material time derivative of v, i.e. a= v̇= (∂v/∂t) + ∇g
vv.

(b) Kinematics of accreting–ablating bodies
Consider an initial stress-free body B0 that inherits the (flat) metric G0 from the Euclidean ambient

space. The boundary of the initial body is partitioned as ∂B0 = +
Ω0 � −

Ω0 �Π0, where
+
Ω0,

−
Ω0 and

Π0 are the accretion, ablation and inactive parts of the boundary, respectively, and � denotes the
disjoint union of sets (figure 2). It should be noted that B0 is the initial body prior to the onset

4Any Riemannian manifold has a natural volume form. For the Riemannian manifolds (B,G) and (C,g), the volume 3-forms
are denoted by μG and μg, respectively. With respect to the coordinate charts {XA} and {xa} for B and C, respectively, they
have the following representations

μG =
√

detGdX1 ∧ dX2 ∧ dX3 and μg =
√

detgdx1 ∧ dx2 ∧ dx3, (2.7)

where ∧ is the wedge product of differential forms. In terms of the volume forms, the Jacobian is defined as ϕ∗μg = JμG.
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0

Ω0

�0

Ω0
+

–

Figure 2. An initial bodyB0 in the material ambient spaceM and partitioning of its boundary into accretion, ablation and
inactive surfaces.

of accretion–ablation,
+
Ω0 represents the portion of ∂B0 where accretion is about to occur, and

−
Ω0

comprises the points that are about to leave once the process starts at t= 0. In other words, as

soon as accretion–ablation begins, the body ceases to be the set B0; the points on
−
Ω0 leave and

new points are attached onto
+
Ω0.

Let M⊃B0 be a connected and orientable 3-manifold with boundary embeddable in R
3. This

is called the material ambient space. The accretion–ablation process occurs in the time interval t ∈
[0,T], where T is the final time. Let us define a time of attachment map

+
τ : (M \ B0)∪ +

Ω0→ [0,T]

and a time of detachment map
−
τ :

−
AT⊂M→ [0,T], where

−
AT is the subset of M that is ablated

in the time interval [0,T]. Note that
+
τ

−1
(0) = +

Ω0, and
−
τ

−1
(0) = −

Ω0. Let us define the reference
configuration at time t as

Bt := (B0∪ +
τ

−1
(0, t])\ −

τ
−1

[0, t), ∀ t ∈ [0,T], (2.9)

which is constructed by removing all the points that have been ablated out before time t from the

union of B0 and the points accreted onto B0 up to time t.5 It is assumed that the differentials d
+
τ

and d
−
τ never vanish. Let us introduce the level sets

+
Ω t=+

τ
−1

(t),
−
Ω t=−

τ
−1

(t), t ∈ [0,T], (2.10)

and define

+
At=

⋃
+
τ∈[0,t]

+
Ω+

τ
and

−
At=

⋃
−
τ∈[0,t]

−
Ω−

τ
, t ∈ [0,T]. (2.11)

It is assumed that
+
Ω t and

−
Ω t are 2-manifolds. It is also assumed that all

+
Ω t’s are diffeomorphic

to
+
Ω0 and all

−
Ω t’s are diffeomorphic to

−
Ω0.6 Since accretion and ablation cannot take place at a

given point and at the same time, it is required that

+
Ω t ∩

−
Ω t= ∅, ∀ t ∈ [0,T]. (2.12)

5Note that
+
τ

−1
[0,T] = +

τ
−1

(0) ∪ +
τ

−1
(0,T] = +

Ω0 ∪(M \ B0) = M \ (intB0∪
−
Ω0 ∪Π0), and

−
τ

−1
(0,T] = −

τ
−1

[0,T] \ −
τ

−1
(0) =

−
AT \ −

Ω0.
6Clearly, this is a restrictive assumption. One way to remove this restriction is to divide the analysis into time intervals in

which there is no change in the topology of either
+
Ω t or

−
Ω t.
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t = t1 t = t2

t = t2

Ωt1
t1 t20

+
Ωt2

+

Ωt1

–

Ωt2

–

At2

+
At2

–

At2

+
At2

–

Figure 3. The material manifold is shown at times t1 and t2 where t1 < t2. The accretion boundaries are shown in green and
the ablation boundaries are shown in red. It should be noted that the set of all those points that have been ablated until time t2
may include points other than those in the initial body.

It should be emphasized that the intersection
+
At ∩

−
At may be non-empty,7 see figure 3. Note that

M= (
+
AT \ +

Ω0) ∪ B0, and

Bt = (B0 ∪ (
+
At \

+
Ω0)) \ (

−
At \

−
Ω t), t ∈ [0,T]. (2.13)

The deformation mapping ϕt : Bt → Ct is assumed to be a C1 homeomorphism for each t, where
Ct = ϕt(Bt) is the current configuration of the accreting–ablating body. The deformed level sets

are defined as
+
ωt= ϕt(

+
Ω t), and

−
ωt= ϕt(

−
Ω t). We denote the non-active portion of the boundary by

Πt = ∂Bt \ (
+
Ω t ∪

−
Ω t) in the reference configuration and πt = ϕt(Πt) in the deformed configuration,

so that

∂ϕt(Bt) = ϕt(
+
Ω t ∪

−
Ω t ∪Πt) = +

ωt ∪ −
ωt ∪πt. (2.14)

For X ∈M and
+
τ (X) ≤ t<

−
τ (X), denote ϕ(X, t) = ϕt(X). Let us define the following two time-

independent maps

+
ϕ (X) := ϕ(X,

+
τ (X)) and

−
ϕ (X) := ϕ(X,

−
τ (X)), (2.15)

where
+
ϕ is defined on

+
AT and

−
ϕ is defined on

−
AT. Note that for t ∈ [0,T]

+
ϕ (

+
At) =

⋃
+
τ∈[0,t]

+
ω+

τ
and

−
ϕ (

−
At) =

⋃
−
τ∈[0,t]

−
ω−

τ
. (2.16)

It should be noted that
+
ϕ and

−
ϕ need not be injective. Next, we define the following two-point

tensors
+
F (X) := F(X,

+
τ (X)) and

−
F (X) := F(X,

−
τ (X)), (2.17)

7For a point X ∈ +
At ∩

−
At, which is accreted and subsequently ablated out,

+
τ (X) <

−
τ (X). This also implies that as soon as a

layer has been ablated it cannot be reattached to the body.
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and call them the accretion and ablation frozen deformation gradients, respectively. The derivative

maps T
+
ϕ and T

−
ϕ are neither injective nor invertible, in general. They are related to

+
F and

−
F as

(T
+
ϕ)iJ = ∂ϕi(X,

+
τ (X))

∂XJ = FiJ(X,
+
τ (X)) + Vi(X,

+
τ (X))

∂
+
τ (X)
∂XJ =+

F
i

J+
+
V
i ∂

+
τ

∂XJ ,

(T
−
ϕ)iJ =−

F
i

J+
−
V
i ∂

−
τ

∂XJ ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.18)

where
+
V (X) :=V+

τ (X)
(X), and

−
V (X) :=V−

τ (X)
(X). The coordinate-free forms of (2.18) read

T
+
ϕ=

+
F +

+
V⊗d

+
τ and T

−
ϕ=

−
F +

−
V⊗d

−
τ . (2.19)

For t ∈ [0,T], on each layer, one has
+
F |

T
+
Ω t

= T
+
ϕ |

T
+
Ω t

= Ft|
T

+
Ω t

, and
−
F |

T
−
Ω t

= T
+
ϕ |

T
−
Ω t

= Ft|
T

−
Ω t

.

(c) The growth velocity and the material metric
The material metric of an accreting–ablating body at a given material point depends on the state
of stress of the accreting particles, the growth velocity and the state of deformation of the body at
the time of attachment of the new material point. One can define an accretion tensor via the frozen
deformation gradient and a material growth velocity. Material metric is then defined to be the
pull-back of the ambient space metric by the accretion tensor [21]. The time dependence of an
accreting body can be modelled as a material motion in the material ambient space. It turns out
that given a time of attachment map such material motions are not unique; instead one can define
an equivalence class of material motions. Using any member of the equivalence class results in
the same material metric. In the presence of ablation, one has two material motions. Again, these
are not unique. For calculating the material metric, only the accretion material motion is needed
as we are not concerned with the material metric of a particle after it has left the body. In the
following, we briefly review the construction of the material metric.

In an accreting–ablating body, what is given is the rate at which material points are added
to the body on the accretion boundary and the rate at which material points are removed from
the ablation boundary. These two vector fields may be unknown fields in the presence of phase
change, for example. In this paper, we assume that they are given. It should be emphasized that
the material analogues of the accretion and ablation velocities are not defined uniquely.

Recall that we have assumed that for t ∈ (0,T],
+
Ω t is diffeomorphic to

+
Ω0 and

−
Ω t is

diffeomorphic to
−
Ω0. This guarantees the existence of 1-parameter families of diffeomorphisms

+
Φ:

+
Ω0 ×[0,T] →M, and

−
Φ:

−
Ω0 ×[0,T] →M, such that

+
Φ (

+
Ω0, t) = +

Ω t, and
−
Φ (

−
Ω0, t) = −

Ω t, ∀t ∈
[0,T]. However, these diffeomorphisms are not unique. Let us fix two diffeomorphisms

+
Φ and

−
Φ.

For X ∈+
AT, there is a unique

+
X0∈

+
Ω0 such that

+
Φ (

+
X0,

+
τ (X)) = +

Φ+
τ (X)

(
+
X0) =X. Similarly, for X ∈−

AT

there is a unique
−
X0∈

−
Ω0 such that

−
Φ (

−
X0,

−
τ (X)) = −

Φ−
τ (X)

(
−
X0) =X.8 The maps

+
Φ and

−
Φ define a pair

of motions of layers in the material manifold, with which we associate the following velocities:

+
U (

+
X0, t) = ∂

∂t

+
Φ (

+
X0, t) and

−
U (

−
X0, t) = ∂

∂t

−
Φ (

−
X0, t). (2.20)

Differentiating the relations
+
τ (

+
Φ (

+
X0, t)) = t, and

−
τ (

−
Φ (

−
X0, t)) = t with respect to time, one obtains

the following constraints:

〈
d

+
τ (X),

+
U (

+
X0, t)

〉= 1 and
〈
d

−
τ (X),

−
U (

−
X0, t)

〉= 1, (2.21)

8We use the notation
±
Φt (X) = ±

Φ (X, t).
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where
+
Φ (

+
X0, t) =X= −

Φ (
−
X0, t). It should be emphasized that for a given pair of time of attachment

and time of detachment maps, material motion is not uniquely defined; there are infinitely many

material motions corresponding to a given pair (
+
τ ,

−
τ ). These equivalent material motions satisfy

the constraint (2.21)1 [22] and correspond to isometric material metrics.

One can define a material motion (
+
Φt,

−
Φt) using foliation charts (Ξ1, Ξ2,

+
τ ) on

+
AT, and

(Θ1, Θ2,
−
τ ) on

−
AT, where (Ξ1, Ξ2) and (Θ1, Θ2) are the in-layer coordinates on

+
Ω+

τ
and

−
Ω−

τ
,

respectively, while
+
τ and

−
τ are globally defined on

+
AT and

−
AT, respectively. The material

motion preserves the in-layer coordinates (Ξ1, Ξ2) and (Θ1, Θ2). This means that if X0 ∈ +
Ω0 has

coordinates (Ξ1, Ξ2, 0), then
+
Φt maps it to the point Xt with coordinates (Ξ1, Ξ2, t). Similarly, if

X0 ∈ −
Ω0 has coordinates (Θ1, Θ2), then

−
Φt maps it to the point Xt with coordinates (Θ1, Θ2, t).

Trajectories of the material motion are the curves with constant layer coordinates, i.e.
+
τ -lines and

−
τ -lines. The growth and ablation velocities corresponding to

+
Φt and

−
Φt, respectively, are defined

as
+
U= ∂

∂
+
τ

∣∣∣∣∣
Ξ 1,Ξ 2

and
−
U= ∂

∂
−
τ

∣∣∣∣∣
Θ1,Θ2

. (2.22)

Notice that 〈d +
τ , (∂/∂

+
τ )〉 = 1, and 〈d−

τ , (∂/∂
−
τ )〉 = 1.

Let us next calculate the total velocities of
+
ωt and

−
ωt. The map

+
ϕ ◦ +

Φ:
+
Ω0 ×[0,T] → S tracks the

deformed accretion surface
+
ωt, and

−
ϕ ◦ −

Φ:
−
Ω0 ×[0,T] → S tracks the deformed ablation surface

−
ωt.

The total velocities are calculated as
+
W (X) = d

dt
+
ϕ
( +
Φ (

+
X0, t)

)= [
+
F (X)+

+
V (X) ⊗ d

+
τ (X)]

+
U (

+
X0, t) =

+
F (X)

+
U (

+
X0, t)+

+
V (X)

and
−
W (X) = d

dt
−
ϕ
( −
Φ (

−
X0, t)

)= [
−
F (X)+

−
V (X) ⊗ d

−
τ (X)]

−
U (

−
X0, t) =

−
F (X)

−
U (

−
X0, t)+

−
V (X).

⎫⎪⎪⎬
⎪⎪⎭
(2.23)

The spatial velocities are defined as
+
w ◦ϕ = +

W and
−
w ◦ϕ = −

W. Let
+
ut be a vector field describing the

velocity at which material is being added onto
+
ωt, i.e. − +

ut is its relative velocity with respect to
+
ωt

just before attachment, and let − −
ut be a vector field describing the velocity at which material is

being removed from
−
ωt, i.e.

−
ut is its relative velocity with respect to

−
ωt just after detachment. If nt

denotes the unit normal to ϕt(∂Bt), then we must have (− +
ut) · nt < 0 for accretion, i.e.

+
ut ·nt > 0,

as the material would be moving towards the body. Similarly, in the case of ablation we need
−
ut ·nt > 0 as the material removed would be moving away from the body.

For X ∈M, let us define the following time-independent tensor field

Q(X) =
+
F (X) +

[ +
u+

τ (X)

( +
ϕ (X)

)− +
F (X)

+
U
( +
Φ

−1
+
τ (X) (X),

+
τ (X)

)]⊗ d
+
τ (X), (2.24)

where
+
Φ

−1
+
τ (X) (X) can be understood as the pull back of X ∈M to

+
Ω0 along the trajectory induced

by
+
Φ. Q is called the accretion tensor [22]. Note that Q(

+
Φ (

+
X0, t))

+
U (

+
X0, t) =+

u ((
+
ϕ ◦ +

Φ)(
+
X0, t), t),

∀
+
X0∈

+
Ω0. Let g be the metric of the Euclidean ambient space S. Assuming that the new material

points are stress-free at their time of attachment the material metric on
+
AT is defined to be the

pull-back of g using Q, i.e.,9

G(X) =Q�(X) g
( +
ϕ (X)

)
Q(X), (2.25)

9Generalizing the analysis to pre-stressed added material is straightforward [21].
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or in components, GIJ(X) =Qi
I(X) gij(

+
ϕ (X))Qj

J(X). Therefore, the material metric is written as

G(X) =
⎧⎨
⎩
G0(X) for X ∈B0,

Q�(X) g
( +
ϕ (X)

)
Q(X) for X ∈+

AT .
(2.26)

The natural distances in the accreting–ablating body are measured using the material metric G.
Note that, for the layers that are joining the body, the material metric depends on the state of
deformation of the body at the time of attachment. However, we are not interested in the state
of deformation and stress of those layers that have already left the body. The material metric of
those points after leaving the body has no effect on the rest of the body and does not appear in
our accretion–ablation theory.

Remark 2.1. The map
+
τ partitions the accreted manifold (

+
AT,G) into a collection of

submanifolds {( +
Ω+

τ
, G̃+

τ
) :

+
τ∈ [0,T]}. Similarly,

−
τ partitions the ablated manifold (

−
AT,G) into

another collection of submanifolds {( +
Ω−

τ
, G̃−

τ
) :

−
τ ∈ [0,T]}. Here, G̃+

τ
and G̃−

τ
are the first

fundamental forms inherited from G by
+
Ω+

τ
and

−
Ω−

τ
, respectively. Let

+
N+

τ
and

−
N−

τ
be the unit

normals to
+
Ω+

τ
and

−
Ω−

τ
, respectively, where orthonormality is with respect to the metric G. Let

+
n+

τ

and
−
n−

τ
be the unit normals to

+
ω+

τ
and

−
ω−

τ
, respectively (here orthonormality is with respect to the

ambient metric g). Let us decompose the accretion and ablation velocities as

+
U=

+
U

‖
+ +
U

+
N +
N and

−
U=

−
U

‖
+ −
U

−
N −
N, (2.27)

in the material manifold and

+
u=+

u
‖
+ +
u

+
n +
n and

−
u=−

u
‖
+ −
u

−
n −
n, (2.28)

in the deformed configuration, where we have
+
u

+
n
,

−
u

−
n
> 0. Note that, if Y is tangent to

+
Ω , then

QY is tangent to
+
ω. Notice that 〈〈Y,Q−1 +

n〉〉G = 〈〈QY,
+
n〉〉g = 0, and 〈〈Q−1 +

n,Q−1 +
n〉〉G = 〈〈+n,

+
n〉〉g = 1.

Thus, it can be deduced that Q
+
U

‖
=+
u

‖
, Q

+
N=+

n, and hence
+
U

+
N

=+
u

+
n

◦ϕ.

(d) Stress, strain and constitutive equations
(i) Strain

A few different but related measures of strain are usually used in nonlinear elasticity and
anelasticity [47,50,61,62]. The right Cauchy–Green strain is defined as C� = ϕ∗g= F�gF, which
is the pull-back of the spatial metric to the reference configuration. Here, � : TxC → T∗

xC is
the flat operator that maps a vector to its corresponding co-vector (1-form): w=wa(∂/∂xa) �→
w� = gabwb dxa. In components, CAB = FaA gabFbB. The familiar definition of the right Cauchy–
Green stain is C= FTF : TXB →B, which has components CA

B =GAMCMB = (GAMFaM gab)FbB =
(FT)Ab FbB. The spatial analogue of the right Cauchy–Green strain is defined as c� = ϕ∗G=
F−�GF−1. The left Cauchy–Green strain is defined as B� = ϕ∗g�, where � : T∗

xC → TxC is the
sharp operator that maps a co-vector (1-form) to its corresponding vector: ω = ωa dxa �→ ω� =
gabωb (∂/∂xa). The left Cauchy–Green strain has components BAB = F−A

a F−B
b gab, where gab are

components of the inverse spatial metric such that gacgcb = δab . The spatial analogue of B� is
defined as b� = ϕ∗G� = FG�F�, which has components bab = FaAFbB GAB. The tensor b : TxC →
TxC is defined as b= b�g. Similarly, c= g�c�. Notice that cb= g�c�b�g= g�F−�GF−1FG�F�g=
g�F−�GG�F�g= g�F−�F�g= g�g= idS , and hence b= c−1. Similarly, B=C−1.
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(ii) Stress

For a hyper-elastic solid there exists an energy function W =W(X, F,G, g). Material-frame-
indifference (objectivity) implies that W = Ŵ(X,C�,G). The Cauchy σ , the first Piola–Kirchhoff
P, and the second Piola–Kirchhoff S stress tensors are related to the energy function as

P= g� ∂W
∂F

, σ = 2
J

∂W
∂g

and S= 2
∂W

∂C�
. (2.29)

They are also related as S= F−1P, and P= JσF−�. Let us consider a surface element dA in
the reference configuration with unit normal vector N. This surface element is mapped to its
deformed surface element da with unit normal n. Traction t is related to the Cauchy stress as
t= σ · n= 〈〈σ ,n〉〉g. In components, ta = σ abgbc nc. The force acting on the deformed area element
is f= tda. From the Piola identity n� da= JF−�N� dA, or in components, na da= J F−A

aNA dA—
Nanson’s formula. Thus, f= t0 dA= P · NdA.

(iii) Material symmetry

For an elastic body, the material symmetry group GX at X ∈B with respect to the reference
configuration (B,G) is defined as

W(X,K∗F,K∗G, g) =W(X, FK,G, g) =W(X, F,G, g), ∀K ∈ GX ≤ Orth(G), (2.30)

for any deformation gradient F, where K : TXB → TXB is an invertible linear transformation,
Orth(G) = {Q : TXB → TXB | Q�GQ=G}, and GX ≤ Orth(G) means that GX is a subgroup of
Orth(G). Equivalently,

Ŵ(X,K∗C�,K∗G) = Ŵ(X,K�FK,G) = Ŵ(X,C�,G), ∀ K ∈ GX ≤ Orth(G). (2.31)

In this paper, for the sake of simplicity, we restrict our calculations to isotropic solids. However,
it should be emphasized that our accretion–ablation theory is not restricted to isotropic solids.

(iv) Isotropic solids

For an isotropic solid, the symmetry group is the orthogonal group, i.e. the energy function is
invariant under rotations in the reference configuration. For an isotropic solid, W depends only
on the principal invariants of C�, i.e. W =W(X, I1, I2, I3), where

I1 = trG C=CA
A =CAB GAB,

I2 = 1
2

(I21 − trG C2) = 1
2

(I21 − CA
B CB

A) = 1
2

(I21 − CMB CNA GAMGBN)

and I3 = detC= detC�

detG
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.32)

For an isotropic solid, the Cauchy stress has the following representation [63,64]:

σ = 2√
I3

[(I2 W2 + I3 W3)g� + W1 b� − I3 W2 c�], (2.33)

where Wi = ∂W/∂Ii, i= 1, 2, 3. For an incompressible isotropic solid I3 = 1, and hence

σ = −pg� + 2W1 b� − 2W2 c�, (2.34)

where p is the Lagrange multiplier associated with the incompressibility constraint J = √
I3 = 1.

(e) The balance laws
(i) Balance of mass

Let ρ0(X) be the mass density field in the material configuration M and ρ(X, t) be the mass density
field in the deformed configuration ϕt(Bt). For a body undergoing accretion and ablation, mass
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is not conserved globally. However, local mass conservation still holds for X ∈Bt, away from
+
Ω t

and
−
Ω t, i.e.,

ρ0(X) = ρ
(
ϕ(X, t), t

)
J(X, t). (2.35)

The total mass of the body at time t is given by

m(t) =
∫
ϕt(Bt)

ρ
(
x, t

)
dv =

∫
Bt

ρ0
(
X
)

dV. (2.36)

In terms of the material foliations, one has

m(t) =
∫
B0

ρ0 dV +
∫ t

0

( ∫
+
Ω+

τ

ρ0
+
U

+
N

dA
)

d
+
τ −

∫ t

0

( ∫
−
Ω−

τ

ρ0
−
U

−
N

dA
)

d
−
τ . (2.37)

The rate of change of mass can be expressed as

ṁ(t) =
∫

+
Ω t

ρ0
+
U

+
N

dA −
∫

−
Ω t

ρ0
−
U

−
N

dA=
∫

+
ωt

ρ0
+
u

+
n

da −
∫

−
ωt

ρ0
−
u

−
n

da. (2.38)

(ii) Balance of linear and angular momenta

The local form of the balance of linear momentum in terms of the Cauchy stress reads:

divg σ + ρb= ρa, (2.39)

where divg is divergence with respect to the spatial metric. In components, (divgσ )a = σ ab|b =
(∂σ ab/∂xb) + σ acγ b

cb + σ cbγ a
cb, where γ a

bc is the Christoffel symbol of the Levi–Civita connection
∇g. In a local coordinate chart {xa}, ∇g

∂b∂c = γ a
bc ∂a, where γ a

bc = (1/2)gak(gkb,c + gkc,b − gbc,k).
b is the body force, and a is the spatial acceleration. The local form of the balance of angular
momentum is the symmetry of the Cauchy stress, i.e. σ ab = σ ba.

The rate of change of linear momentum for the whole body is written as

d
dt

∫
ϕt(Bt)

ρvdv = d
dt

∫
Bt

ρ0 VdV

= d
dt

[ ∫
B0

ρ0 VdV +
∫ t

0

( ∫
+
Ω+

τ

ρ0
+
U

+
N
VdA

)
d

+
τ −

∫ t

0

( ∫
−
Ω−

τ

ρ0
−
U

−
N
VdA

)
d

−
τ

]
dV

=
∫

+
At

ρ0 AdV +
∫

+
Ω t

ρ0
+
U

+
N
VdA −

∫
−
At

ρ0 AdV −
∫

−
Ω t

ρ0
−
U

−
N
VdA

=
∫
Bt

ρ0AdV +
∫

+
Ω t

ρ0
+
U

+
N
VdA −

∫
−
Ω t

ρ0
−
U

−
N
VdA. (2.40)

Thus

d
dt

∫
ϕt(Bt)

ρ vdv =
∫
ϕt(Bt)

ρ adv +
∫

+
ωt

(ρ0 ◦ ϕ)
+
u

+
n
vda −

∫
−
ωt

(ρ0 ◦ ϕ)
−
u

−
n
vda. (2.41)

Since divg σ + ρb= ρa, one writes

d
dt

∫
ϕt(Bt)

ρ vdv =
∫
ϕt(Bt)

ρ bdv +
∫
∂ϕt(Bt)

tdv +
∫

+
ωt

(ρ0 ◦ ϕ)
+
u

+
n
vda −

∫
−
ωt

(ρ0 ◦ ϕ)
−
u

−
n
vda, (2.42)

where b is the body force and t is traction.
Let us decompose the traction vector as t= te + t±, where te is due to external loads and

constraints, t+ is the effect of new particles being added and t− is the effect of particles leaving
the body. Since accretion and ablation cannot take place at the same point and at the same time,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 N

ov
em

be
r 2

02
3 



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220373

...............................................................

the traction on
+
ω is te + t+ and that on

−
ω is te + t−. For a new particle that is being added to the

body, the balance of linear momentum in the time interval [t, t + �t] implies that

[(ρ0 ◦ ϕ)
+
u

+
n

da ∧ dt](v− +
u) + (−t+ da) ∧ dt= [(ρ0 ◦ ϕ)

+
u

+
n

da ∧ dt]v. (2.43)

Similarly, for a particle that is leaving the body, the balance of linear momentum in the interval
[t, t + �t] implies that

[(ρ0 ◦ ϕ)
−
u

−
n

da ∧ dt]v= [(ρ0 ◦ ϕ)
−
u

−
n

da ∧ dt](v+ −
u) + (−t−da) ∧ dt. (2.44)

The joining particles exert the force t+da= −(ρ0 ◦ ϕ)
+
u

+
n +
u da on the body, while the leaving

particles exert the force t−da= (ρ0 ◦ ϕ)
−
u

−
n −
u da on the body. Thus, the rate of change of the linear

momentum of the body is written as

d
dt

∫
ϕt(Bt)

ρ vdv =
∫
ϕt(Bt)

ρ bdv +
∫
∂ϕt(Bt)

tedv +
∫

+
ωt

(ρ0 ◦ ϕ)
+
u

+
n

[v− +
u] da

−
∫

−
ωt

(ρ0 ◦ ϕ)
−
u

−
n

[v− −
u] da. (2.45)

Notice that the traction due to accretion/ablation is t± = ∓(ρ0 ◦ ϕ)
±
u

±
n ±
u.

3. Analysis of an accreting–ablating hollow cylindrical bar under finite
extension

In this section, we present a detailed analysis of a thick hollow cylinder that, while under a time-
dependent finite extension, undergoes accretion on its outer cylinder boundary and ablation on
its inner cylinder boundary.

(a) Kinematics
Let us consider a hollow circular cylindrical bar with initial length L, inner radius R1 and
outer radius R2 >R1. We assume a homogeneous isotropic and incompressible material with
an energy function W =W(I1, I2), and use the cylindrical coordinates (R, Θ ,Z) in the reference
configuration, and cylindrical coordinates (r, θ , z) in the current configuration. The metric of the
current configuration has the following representation:

g=

⎡
⎢⎣1 0 0

0 r2 0
0 0 1

⎤
⎥⎦ . (3.1)

Accretion is assumed to occur on the outer cylindrical boundary in the current configuration. The
outer radius of the deformed body is denoted by s2(t) (figure 4). Ablation is assumed to occur
on the inner cylindrical boundary of the current configuration that has the radius s1(t). Let us

assign a time of attachment
+
τ (R) and a time of detachment

−
τ (R) to each layer with the radial

coordinate R>R1 in the reference configuration. Notice that for R1 ≤R≤R2,
+
τ (R) = 0. Hence,

+
τ (R) is invertible for R≥R2, while

−
τ (R) is invertible for R≥R1. We assume that

−
τ and

+
τ are

diffeomorphisms with non-vanishing derivatives. Their inverses are denoted by S1 = −
τ

−1
, and
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S
2 (t) + U

2 (t)�t

S
2 (t)

s
2 (t)

S1 (t)
s1 (t)

S
1 (t) + U

1 (t)�
t

s 1(t
) + u 1(t

)�t

s2 (t) + u
2 (t)�t

R1

ϕt

R2

t
r (R

2 , t)
ϕt (  t)

(a) (b)

Figure 4. Cross sections of the reference and current configurations of an accreting–ablating thick hollow cylinder. (a) The
material manifold (Bt , G) at time t has inner radial coordinate S1(t) and outer radial coordinate S2(t). Accretion is occurring on
the outer surface and ablation on the inner surface. At time t + �t, the inner radial coordinate is S1(t) + U1(t)�t and the
outer radial coordinate is S2(t) + U2(t)�t. (b) The deformed bar at time t has inner radius s1(t) and outer radius s2(t). At time
t + �t, the inner radius is s1(t) + u1(t)�t and the outer radius is s2(t) + u2(t)�t.

S2 =+
τ

−1
, so that

s1(t) = r(S1(t), t) and s2(t) = r(S2(t), t). (3.2)

We also assume that accretion and ablation take place continuously in the time interval t ∈ [0,T].
It is assumed that the accreting–ablating body has non-vanishing volume at all times, i.e. S1(t) <

S2(t), ∀ t ∈ (0,T]. Let us consider a time-dependent finite extension of the bar such that it is slow
enough for the inertial effects to be negligible and assume the following deformation mapping:

r= r(R, t), θ = Θ , z= λ2(t)Z, (3.3)

where λ2(t) is the axial stretch and is an unknown function to be determined.10 The deformation
gradient reads

F= F(R, t) =

⎡
⎢⎣r,R(R, t) 0 0

0 1 0
0 0 λ2(t)

⎤
⎥⎦ . (3.4)

(b) The material metric
Let us define the following functions:

−
r (R) = r(R,

−
τ (R)),

+
r (R) = r(R,

+
τ (R)),

−
λ (R) = λ(

−
τ (R)),

+
λ (R) = λ(

+
τ (R)). (3.5)

We assume that the accreted cylindrical layer at any instant of time t is stress-free. In other words,
stress-free cylindrical layers are continuously added to the outer cylindrical boundary of the bar.11

10In a displacement-control loading λ(t) is given.

11It is straightforward to extend this analysis to pre-stressed accreting cylindrical layers [21].
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This implies that the material metric at R= S2(t) is the pull-back of the metric of the (Euclidean)
ambient space, i.e.

G(S2(t)) = ϕ∗
t g(r(S2(t), t)), or G(R) = ϕ∗

+
τ (R)

g(r(R,
+
τ (R))). (3.6)

In components, GAB(S2(t)) =GAB(R) = FaA(R,
+
τ (R))FbB(R,

+
τ (R)) gab(r(R,

+
τ (R))). For this accretion–

ablation problem, the material manifold (the natural configuration of the body) is an evolving
Riemannian manifold (Bt,G) with

Bt = {(R, Θ ,Z) : 0 ≤ Θ < 2π , S1(t) ≤R≤ S2(t), 0 ≤Z≤ L}. (3.7)

The reference configuration is equipped with the following material metric:

G(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

1 0 0

0 R2 0

0 0 1

⎤
⎥⎥⎦ , S1(t) ≤R<R2,

⎡
⎢⎢⎢⎣

[r,R(R,
+
τ (R))]2 0 0

0
+
r

2
(R) 0

0 0 λ4(
+
τ (R))

⎤
⎥⎥⎥⎦ , R2 ≤R≤ S2(t).

(3.8)

Observe that tablation :=−
τ (R2) is the time when the initial body is completely ablated.12

(c) The incompressibility constraint
The Jacobian is calculated as

J(R, t) =
√

detg
detG

detF=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2(t) r(R, t) r,R(R, t)
R

, S1(t) <R≤R2,

λ2(t) r(R, t) r,R(R, t)
+
λ

2
(R)

+
r (R) r,R(R,

+
τ (R))

, R2 ≤R< S2(t).
(3.9)

When t< tablation, incompressibility in the region S1(t) ≤R≤R2 gives us

r(R, t) r,R(R, t) = R
λ2(t)

, (3.10)

thus implying that

r2(R, t) = s2
1(t) + R2 − S2

1(t)
λ2(t)

. (3.11)

Similarly, for the region R2 ≤R≤ S2(t), incompressibility requires that

λ2(t) r(R, t) r,R(R, t) =+
λ

2
(R)

+
r (R) r,R(R,

+
τ (R)), (3.12)

which can be integrated to obtain

r2(R, t) = r2(R2, t) + 2
λ2(t)

∫R

R2

+
λ

2
(ξ )

+
r (ξ ) r,R(ξ ,

+
τ (ξ )) dξ , (3.13)

for t< tablation. Equivalently, one may integrate (3.12) from R to S2(t) to obtain:

r2(R, t) = s2
2(t) − 2

λ2(t)

∫S2(t)

R

+
λ

2
(ξ )

+
r (ξ ) r,R(ξ ,

+
τ (ξ )) dξ , (3.14)

for R≥R2. Note that (3.14) holds for all t> 0.

12Note that S1(t) <R2 is equivalent to t< tablation.
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(d) The accretion and ablation velocities
The accretion surfaces in the reference and the current configurations have the following
representations:

+
Ω t= {(S1(t), Θ ,Z) : 0 ≤ Θ < 2π , 0 ≤Z≤ L}

and
+
ωt= {(s1(t), Θ , λ2(t)Z) : 0 ≤ Θ < 2π , 0 ≤Z≤ L}.

⎫⎪⎬
⎪⎭ (3.15)

The ablation surfaces in the reference and the current configurations are represented as:

−
Ω t= {(S2(t), Θ ,Z) : 0 ≤ Θ < 2π , 0 ≤Z≤ L}

and
−
ωt= {(s2(t), Θ , λ2(t)Z) : 0 ≤ Θ < 2π , 0 ≤Z≤ L}.

⎫⎪⎬
⎪⎭ (3.16)

Thus
ṡ1(t) = r,R(S1(t), t) U1(t) + V(S1(t), t),

and ṡ2(t) = r,R(S2(t), t) U2(t) + V(S2(t), t),

}
(3.17)

where U1(t) = Ṡ1(t) > 0, and U2(t) = Ṡ2(t) > 0, i.e. both accretion and ablation surfaces are moving
radially outward. Here, V = ∂r/∂t is the radial component of the material velocity on the
accretion/ablation surface. We denote the ablation and accretion velocities by u1(t) and u2(t),
respectively, which are defined as

u1(t) = r,R(S1(t), t)U1(t) and u2(t) = r,R(S2(t), t)U2(t). (3.18)

The choices U1(t) = u1(t), and U2(t) = u2(t) impose the following constraints on r(R, t):13

r,R(S1(t), t) = 1, or r,R(R,
+
τ (R)) = 1

and r,R(S2(t), t) = 1, or r,R(R,
−
τ (R)) = 1.

⎫⎬
⎭ (3.19)

In particular, the choice (3.19)1 makes the material metric G(R, t) and the Jacobian J(R, t)
continuous at R=R2. Now, (3.19)1 and (3.13) imply that for t< tablation

r2(R, t) = r2(R2, t) + 2
λ2(t)

∫R

R2

+
λ

2
(ξ )

+
r (ξ ) dξ . (3.20)

Since r(R, t) is continuous at R=R2, (3.11) and (3.20) imply that

r2(R, t) = s2
1(t) + R2

2 − S2
1(t)

λ2(t)
+ 2

λ2(t)

∫R

R2

+
λ

2
(ξ )

+
r (ξ ) dξ , (3.21)

for R2 ≤R≤ S2(t) with t< tablation. Substituting R= S2(t) in (3.21), one obtains

s2
1(t) = s2

2(t) − R2
2 − S2

1(t)
λ2(t)

− 2
λ2(t)

∫S2(t)

R2

+
λ

2
(ξ )

+
r (ξ ) dξ . (3.22)

Now, one may substitute (3.22) into (3.11) and combine with (3.14) to write the kinematics in

terms of
+
r and

+
λ. As s2(t) = r(S2(t), t) =+

r (S2(t)), when t< tablation:

r2(R, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+
r

2
(S2(t)) − R2

2 − R2

λ2(t)
− 2

λ2(t)

∫S2(t)
R2

+
λ

2
(ξ )

+
r (ξ ) dξ , R≤R2,

+
r

2
(S2(t)) − 2

λ2(t)

∫S2(t)
R

+
λ

2
(ξ )

+
r (ξ ) dξ , R≥R2.

(3.23)

For t≥ tablation:

r2(R, t) =+
r

2
(S2(t)) − 2

λ2(t)

∫S2(t)

R

+
λ

2
(ξ )

+
r (ξ ) dξ . (3.24)

13Other choices will lead to isometric material manifolds, and hence identical stresses [21,26,59].
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In a force-control problem, the functions r(R, t) and λ(t) are not known. However, it can be inferred

from (3.23) to (3.24) that the knowledge of
+
r (R) and λ(t) is sufficient to calculate r(R, t). Since

+
τ (R)

is assumed to be given,
+
λ (R) = λ(

+
τ (R)) is not an independent function. Thus,

+
r (R) and λ(t) are

the only independent functions. Since λ(t) is given in a displacement-control problem,
+
r (R) is the

only independent unknown function in displacement-control problems.

(e) Stress calculation
In this section, we compute the stresses for both t< tablation and t> tablation. The stresses
are calculated separately for the initial and the accreted parts of the body. The radial
equilibrium equation reads (∂σ rr/∂r) + (1/r)σ rr − rσθθ = 0.14 In terms of reference coordinates,
(1/r,R)(∂σ rr/∂R) + (σ rr/r) − rσθθ = 0. Thus, we have

σ rr
,R(R, t) = [r2(R, t)σθθ (R, t) − σ rr(R, t)]

r,R(R, t)
r(R, t)

. (3.25)

Recall that b� has components bab = FaA FbB GAB and c� has components cab = gamgbncmn, where
cab = F−A

a F−B
b GAB. For S1(t) ≤R≤R2, and t< tablation:

b�(R, t) =

⎡
⎢⎢⎣
r2

,R(R, t) 0 0

0
1
R2 0

0 0 λ4(t)

⎤
⎥⎥⎦ , c�(R, t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

r2
,R(R, t)

0 0

0
R2

r4(R, t)
0

0 0
1

λ4(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.26)

The principal invariants of b read

I1(R, t) = r2
,R(R, t) + r2(R, t)

R2 + λ4(t)

and I2(R, t) = r2
,R(R, t) λ4(t) +

r2
,R(R, t) r2(R, t)

R2 + r2(R, t) λ4(t)
R2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.27)

The Cauchy stress has the following non-zero components:15

σ rr(R, t) = −p(R, t) + α(R, t) r2
,R(R, t) − β(R, t)

r2
,R(R, t)

,

σθθ (R, t) = − p(R, t)
r2(R, t)

+ α(R, t)
R2 − β(R, t)R2

r4(R, t)

and σ zz(R, t) = −p(R, t) + α(R, t) λ4(t) − β(R, t)
λ4(t)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.28)

where α = 2(∂W/∂I1) and β = 2(∂W/∂I2). Using the incompressibility constraint (3.10) each of the
components of σ (R, t) can be expressed solely in terms of the kinematic quantities r(R, t) and λ(t),
i.e. one can eliminate r,R(R, t) in (3.28)1 to obtain

σ rr(R, t) = −p(R, t) + R2α(R, t)
r2(R, t)λ4(t)

− β(R, t)r2(R, t)λ4(t)
R2 . (3.29)

Substituting (3.29) and (3.28)2 in (3.25), one obtains

σ rr
,R(R, t) = r4(R, t)λ4(t) − R4

R r4(R, t)λ2(t)

[
α(R, t)
λ4(t)

+ β(R, t)
]

. (3.30)

14The other two equilibrium equations imply that p= p(R, t).

15Notice that σ θθ does not have the dimension of stress. Its physical component is σ̂ θθ = r2σ θθ .
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Since σ rr(S1(t), t) = 0, it is implied that

σ rr(R, t) =
∫R

S1(t)

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ , (3.31)

for S1(t) ≤R≤R2 and t< tablation.16 Thus, (3.29) gives the following expression for pressure:

p(R, t) = R2α(R, t)
r2(R, t)λ4(t)

− β(R, t)r2(R, t)λ4(t)
R2 −

∫R

S1(t)

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ . (3.33)

Substituting (3.33) into (3.28)2−3, one obtains

σ̂ θθ (R, t) = r4(R, t)λ4(t) − R4

R2 r2(R, t)

[
α(R, t)
λ4(t)

+ β(R, t)
]

+
∫R

S1(t)

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ

and σ zz(R, t) = α(R, t)

[
λ4(t) − R2

r2(R, t)λ4(t)

]
+ β(R, t)

[
r2(R, t)λ4(t)

R2 − 1
λ4(t)

]

+
∫R

S1(t)

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.34)

For {R2 ≤R≤ S2(t), t< tablation} or {t≥ tablation, S1(t) ≤R≤ S2(t)}:

b�(R, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ r,R(R, t)

r,R(R,
+
τ (R))

⎤
⎦

2

0 0

0
1

+
r

2
(R)

0

0 0
λ4(t)

+
λ

4
(R)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c�(R, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ r,R(R,

+
τ (R))

r,R(R, t)

⎤
⎦

2

0 0

0
+
r

2
(R)

r4(R, t)
0

0 0
+
λ

4
(R)

λ4(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.35)

The principal invariants of b read

I1(R, t) = r2
,R(R, t) + r2(R, t)

+
r

2
(R)

+ λ4(t)
+
λ

4
(R)

and I2(R, t) =
r2

,R(R, t) r2(R, t)

+
r

2
(R)

+ r2(R, t) λ4(t)
+
r

2
(R)

+
λ

4
(R)

+
r2

,R(R, t)λ4(t)

+
λ

4
(R)

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.36)

16Alternatively, one may integrate (3.30) from R to R2 to obtain

σ rr(R, t) = σ rr(R2, t) −
∫ R2

R

r4(ξ , t)λ4(t) − ξ 4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ , (3.32)

for S1(t) ≤R≤R2, and t< tablation.
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The non-zero components of the Cauchy stress are

σ rr(R, t) = −p(R, t) + α(R, t)r2
,R(R, t) − β(R, t)

r2
,R(R, t)

,

σθθ (R, t) = − p(R, t)
r2(R, t)

+ α(R, t)
+
r

2
(R)

− β(R, t)
+
r

2
(R)

r4(R, t)

and σ zz(R, t) = −p(R, t) + α(R, t) λ4(t)
+
λ

4
(R)

− β(R, t)
+
λ

4
(R)

λ4(t)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.37)

Using the constraints (3.12) and (3.19), each of the components of σ (R, t) can be expressed solely in
terms of the kinematic quantities r(R, t) and λ(t), i.e. one can eliminate r,R(R, t) in (3.37)1 to obtain

σ rr(R, t) = −p(R, t) + α(R, t)
+
r

2
(R)

+
λ

4
(R)

r2(R, t)λ4(t)
− β(R, t)r2(R, t) λ4(t)

+
r

2
(R)

+
λ

4
(R)

. (3.38)

Substituting (3.37)1−2 in (3.25), one obtains

σ rr
,R(R, t) =

+
λ

2
(R)[r4(R, t)λ4(t)− +

r
4

(R)
+
λ

4
(R)]

r4(R, t)λ2(t)
+
r (R)

⎡
⎣α(R, t)

λ4(t)
+ β(R, t)

+
λ

4
(R)

⎤
⎦ . (3.39)

Since σ rr(S2(t), t) = 0, it is implied that

σ rr(R, t) = −
∫S2(t)

R

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ , (3.40)

whenever {R2 ≤R≤ S2(t), t< tablation}, or {t≥ tablation, S1(t) ≤R≤ S2(t)}. Thus, (3.38) gives the
following expression for the pressure field:

p(R, t) = α(R, t)
+
r

2
(R)

+
λ

4
(R)

r2(R, t)λ4(t)
− β(R, t)r2(R, t)λ4(t)

+
r

2
(R)

+
λ

4
(R)

+
∫S2(t)

R

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ . (3.41)

Substituting (3.41) into (3.37)2−3, one obtains

σ̂ θθ (R, t) = r4(R, t)λ4(t)− +
r

4
(R)

+
λ

4
(R)

r2(R, t)
+
r

2
(R)

⎡
⎣α(R, t)

λ4(t)
+ β(R, t)

+
λ

4
(R)

⎤
⎦

−
∫S2(t)

R

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ

and σ zz(R, t) = α(R, t)

⎡
⎢⎣ λ4(t)

+
λ

4
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ4(t)r2(R, t)

⎤
⎥⎦+ β(R, t)

⎡
⎢⎣ λ4(t)r2(R, t)

+
λ

4
(R)

+
r

2
(R)

−
+
λ

4
(R)

λ4(t)

⎤
⎥⎦

−
∫S2(t)

R

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.42)
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for {R2 ≤R≤ S2(t), t< tablation}, and {t≥ tablation, S1(t) ≤R≤ S2(t)}. Note that σθθ (S2(t), t) = 0, and
σ zz(S2(t), t) = 0, i.e. σ (S2(t), t) = 0. Since σ rr(R, t) has to be continuous in R at R2 at any time t<
tablation, we must have

∫R2

S1(t)

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ

+
∫S2(t)

R2

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦ dξ = 0, (3.43)

for all 0 < t< tablation.17

Remark 3.1. Using (3.40), one obtains

σ rr(R2, t) = −
∫S2(t)

R2

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦ dξ , (3.45)

which can be substituted into (3.32) to give

σ rr(R, t) = −
∫R2

R

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ

−
∫S2(t)

R2

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ , (3.46)

where S1(t) ≤R≤R2, and t< tablation.18 Thus, (3.29) gives the following expression for the
pressure field:

p(R, t) = R2α(R, t)
r2(R, t)λ4(t)

− β(R, t)r2(R, t)λ4(t)
R2

+
∫R2

R

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ

+
∫S2(t)

R2

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ , (3.47)

17For t≥ tablation, the boundary condition σ rr(S1(t), t) = 0 yields a similar constraint

∫ S2(t)

S1(t)

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣ α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦ dξ = 0, (3.44)

in view of (3.40).
18Setting σ rr(S1(t), t) = 0 in (3.46) provides an alternative approach to recover (3.53).
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where S1(t) ≤R≤R2. Substituting (3.47) into (3.28)2−3 one obtains

σ̂ θθ (R, t) = r4(R, t)λ4(t) − R4

R2 r2(R, t)

[
α(R, t)
λ4(t)

+ β(R, t)
]

−
∫R2

R

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ

−
∫ S2(t)

R2

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ

and σ zz(R, t) = α(R, t)

[
λ4(t) − R2

r2(R, t)λ4(t)

]
+ β(R, t)

[
r2(R, t)λ4(t)

R2 − 1
λ4(t)

]

−
∫R2

R

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ

−
∫ S2(t)

R2

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.48)
for S1(t) ≤R≤R2.19 On the ablation boundary

σ̂ θθ (S1(t), t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
s2

1(t)λ4(t)

S2
1(t)

− S2
1(t)

s2
1(t)

][
α(S1(t), t)

λ4(t)
+ β(S1(t), t)

]
, t< tablation,

⎡
⎢⎣ s2

1(t)λ4(t)
+
r

2
(S1(t))

−
+
r

2
(S1(t))

+
λ

4
(S1(t))

s2
1(t)

⎤
⎥⎦
⎡
⎣α(S1(t), t)

λ4(t)
+ β(S1(t), t)

+
λ

4
(S1(t))

⎤
⎦ t≥ tablation,

and σ zz(S1(t), t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
s2

1(t)λ4(t)

S2
1(t)

− 1
λ4(t)

][
α(S1(t), t)S2

1(t)

s2
1(t)

+ β(S1(t), t)

]
, t< tablation,

α(S1(t), t)

⎡
⎢⎣ λ4(t)

+
λ

4
(S1(t))

−
+
λ

4
(S1(t))

+
r

2
(S1(t))

λ4(t)s2
1(t)

⎤
⎥⎦

+ β(S1(t), t)

⎡
⎣ λ4(t)s2

1(t)
+
λ

4
(S1(t))

+
r

2
(S1(t))

−
+
λ

4
(S1(t))
λ4(t)

⎤
⎦ , t≥ tablation.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.49)

Notice that σθθ and σ zz do not vanish on the ablation boundary.20

Remark 3.2. In [26], it was shown that the finite extension of an accreting circular cylindrical
bar made of an arbitrary incompressible isotropic solid is a universal deformation even in the
presence of radially symmetric accretion. We have observed here that this result holds even
when there is simultaneous radially symmetric accretion and ablation on the outer and inner
boundaries, respectively.

(i) The applied axial force

The axial force at the two ends of the bar is given by

F(t) = 2π

∫S2(t)

S1(t)
PzZ(R, t)RdR, (3.50)

19It is clear from (3.48) and (3.42) that σ θθ and σ zz are continuous at R2.

20In a similar problem, Naghibzadeh et al. [57] observed non-zero σ θθ and σφφ on the ablation boundary of a hollow spherical
body undergoing accretion through its fixed inner boundary while ablation takes place on its traction-free outer boundary.
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where PzZ(R, t) = σ zz(R, t)
λ2(t)

is the zZ-component of first Piola–Kirchhoff stress. For S1(t) ≤R≤R2

and t< tablation:

PzZ(R, t) = α(R, t)

[
λ2(t) − R2

r2(R, t)λ6(t)

]
+ β(R, t)

[
r2(R, t)λ2(t)

R2 − 1
λ6(t)

]

−
∫R2

R

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ4(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ

−
∫S2(t)

R2

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ4(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ . (3.51)

For {R2 ≤R≤ S2(t), t< tablation} and {t≥ tablation, S1(t) ≤R≤ S2(t)}:

PzZ(R, t) = α(R, t)

⎡
⎢⎣ λ2(t)

+
λ

4
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ6(t) r2(R, t)

⎤
⎥⎦+ β(R, t)

⎡
⎢⎣ λ2(t) r2(R, t)

+
λ

4
(R)

+
r

2
(R)

−
+
λ

4
(R)

λ6(t)

⎤
⎥⎦

−
∫S2(t)

R

+
λ

2
(ξ )[r4(ξ , t) λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t) λ4(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦dξ . (3.52)

Remark 3.3. Observe that (3.43) and (3.44) can be combined to define the following function21:

Υ (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫R2

S1(t)

r4(ξ , t)λ4(t) − ξ4

ξ r4(ξ , t)λ2(t)

[
α(ξ , t)
λ4(t)

+ β(ξ , t)
]

dξ

+
∫S2(t)

R2

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦ dξ , t≤ tablation,

∫S2(t)

S1(t)

+
λ

2
(ξ )[r4(ξ , t)λ4(t)− +

r
4

(ξ )
+
λ

4
(ξ )]

r4(ξ , t)λ2(t)
+
r (ξ )

⎡
⎣α(ξ , t)

λ4(t)
+ β(ξ , t)

+
λ

4
(ξ )

⎤
⎦ dξ , t≥ tablation.

(3.53)

In a displacement-control problem, where λ(t) is given, Υ (
+
τ (R)) = 0 is to be solved with

+
r (R2) =

R2 to find the unknown function
+
r (R) for R>R2.

(f) The accretion–ablation initial-boundary-value problem for a neo-Hookean solid
Let T ≤ tablation. Consider a homogeneous neo-Hookean material for which α(R, t) = μ(R) = μ0 > 0
and β(R, t) = 0. In order to simplify the calculations, assume that the spatial accretion/ablation

velocities are constant, i.e. u1(t) =−
υ> 0 and u2(t) =+

υ> 0. The signs of
+
υ and

−
υ indicate that both

accretion and ablation interfaces are moving radially outward. Thus,

S1(t) =R1+ −
υ t, or

−
τ (R) = R − R1

−
υ

,

and S2(t) =R2+ +
υ t, or

+
τ (R) = R − R2

+
υ

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.54)

21Υ is continuous at tablation. Equivalently, Υ ◦ +
τ is continuous at R2.
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The non-zero physical components of the Cauchy stress for this problem are listed as follows:22

σ rr(R, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ0

λ2(t)

∫R

S1(t)

dξ

ξ
− μ0

λ6(t)

∫R

S1(t)

ξ3dξ

r4(ξ , t)
, R<R2,

− μ0

λ2(t)

∫S2(t)

R

+
λ

2
(ξ )dξ

+
r (ξ )

+ μ0

λ6(t)

∫S2(t)

R

+
r

3
(ξ )

+
λ

6
(ξ )dξ

r4(ξ , t)
, R≥R2,

σ̂ θθ (R, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ0

[
r2(R, t)
R2 − R2

λ4(t) r2(R, t)

]
+ σ rr(R, t), R<R2,

μ0

⎡
⎢⎣ r2(R, t)

+
r

2
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ4(t)r2(R, t)

⎤
⎥⎦+ σ rr(R, t), R≥R2,

and σ zz(R, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ0

[
λ4(t) − R2

λ4(t)r2(R, t)

]
+ σ rr(R, t), R<R2,

μ0

⎡
⎢⎣ λ4(t)

+
λ

4
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ4(t)r2(R, t)

⎤
⎥⎦+ σ rr(R, t), R≥R2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.56)

Traction continuity equation (3.53) simplifies to read

λ4(t)

⎡
⎢⎣∫R2

S1(t)

dξ

ξ
+

∫S2(t)

R2

+
λ

2
(ξ ) dξ

+
r (ξ )

⎤
⎥⎦=

∫R2

S1(t)

ξ3dξ

r4(ξ , t)
+

∫S2(t)

R2

+
r

3
(ξ )

+
λ

6
(ξ ) dξ

r4(ξ , t)
. (3.57)

Now, one can differentiate (3.57) with respect to t and use (3.11) and (3.21) to deduce that (the
detailed calculations are given in appendix A)

+
r (R) = R2 + ∫R

R2

+
λ (ξ ) dξ

+
λ (R)

, (3.58)

and

r(R, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R
λ(t)

, S1(t) ≤R≤R2,

+
λ (R)

+
r (R)

λ(t)
, R2 ≤R≤ S2(t),

(3.59)

which when substituted into (3.56) implies that σ rr(R, t) = σθθ (R, t) = 0. Moreover,

PzZ(R, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ0

[
λ2(t) − 1

λ4(t)

]
, S1(t) ≤R≤R2,

μ0

⎡
⎢⎣ λ2(t)

+
λ

4
(R)

−
+
λ

2
(R)

λ4(t)

⎤
⎥⎦ , R2 ≤R≤ S2(t),

(3.60)

using which the axial force can be expressed as

F(t)
2πμ0

= R2
2 − S2

1(t)
2

[
λ2(t) − 1

λ4(t)

]
+ λ2(t)

∫S2(t)

R2

RdR
+
λ

4
(R)

− 1
λ4(t)

∫S2(t)

R2

R
+
λ

2
(R) dR. (3.61)

22On the ablation boundary,

σ̂ θθ (S1(t), t) = μ0

[
s2

1(t)
S2

1(t)
− S2

1(t)
λ4(t)s2

1(t)

]
and σ zz(S1(t), t) = μ0

[
λ4(t) − S2

1(t)
λ4(t)s2

1(t)

]
. (3.55)
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Figure 5. Solution to the displacement-control problem described in example 3.4 for a= 1. For λ(t)= 1 + (t/T)n

(an increasing function) the variation of the axial stress σ zz(R, t) with R at t = T/4 for the cases n ∈ {(1/2), 1, 2}
is shown.
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8
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T

t λ(t) = 1 –
T
t λ(t) = 1 –

T
t

2

μ0

σzz (R,  T)4

Figure 6. Solution to the displacement-control problem described in example 3.4 for a= −1. For λ(t)= 1 − (t/T)n

(a decreasing function) the variation of the axial stress σ zz(R, t) with R at t = T/4 for the cases n ∈ {(1/2), 1, 2}
is shown.

In a force-control problem F(t) is given (with F(0) = 0), and S1(t), S2(t) are both known. All one
needs to find is the unknown function λ(t) that satisfies (3.61).

Example 3.4. Consider a displacement-control problem with R2 = 2R1,
−
υ= 2(R1/T),

+
υ=

3(R1/T), and λ(t) = 1 + a(t/T)n, where n≥ 0, and a ∈R. Then tablation = T/2 and S2(tablation) =
3.5R1. We solve this problem for a ∈ {±1} and n ∈ {(1/2), 1, 2} assuming the numerical values R1 = 1
and T = 1. At any given t< tablation, σ zz(R, t) is constant in the initial body (R≤R2), as we have
assumed the material to be homogeneous and the deformation to be uniform (figures 5 and 6).
As foreseen, σ zz ≥ 0 for λ ≥ 1 (figure 5) and σ zz ≤ 0 for λ ≤ 1 (figure 6). Further, σ zz is non-zero
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Figure 7. The axial stress on the ablation boundary for the displacement-control problem described in example
3.4. The variation of σ zz(S1(t), t) with t(<tablation) for λ(t)= 1 + a(t/T)n, where a ∈ {±1} and n ∈ {(1/2), 1, 2}
is shown.

on the ablation boundary (figure 7). Note that λ̇(t) taken in this example blows up near t= 0 for
n< 1 and a> 0. This is why when the bar is subjected to the elongation λ(t) = 1 + √

t/T, we first

observe a reduction in the outer diameter
+
r (R), or equivalently s2(t), see figure 5. Later, as the rate

of elongation reduces, this effect is overshadowed by accretion and
+
r (R) increases monotonically.

Example 3.5. Consider a force-control problem with R2 = 2R1,
−
υ=R1/T,

+
υ= 2(R1/T). Then

tablation = T and S2(T) = 4R1. To find solutions of the form (3.59), first define h(t) :=∫S2(t)
R2

(RdR/
+
λ

4
(R)), and k(t) := ∫S2(t)

R2
R

+
λ

2
(R) dR, so that ḣ(t) = (

+
υ S2(t)/λ4(t)) and k̇(t) =+

υ S2(t)λ2(t).
Differentiating (3.61) with respect to t, one obtains

[
2λ(t)

[
R2

2 − S2
1(t)

2
+ h(t)

]
+ 4

λ5(t)

[
R2

2 − S2
1(t)

2
+ k(t)

]]
λ̇(t)+ −

υ S1(t)
[

1
λ4(t)

− λ2(t)
]

= Ḟ(t)
2πμ0

.

(3.62)

Thus, we need to solve the following system of nonlinear ODEs:

λ̇(t) = f (t)+ −
υ S1(t)[λ2(t) − (1/λ4(t))]

2λ(t)[((R2
2 − S2

1(t))/2) + h(t)] + 4
λ5(t)

[
R2

2−S2
1(t)

2 + k(t)
] ,

ḣ(t) =
+
υ S2(t)
λ4(t)

,

k̇(t) =+
υ S2(t)λ2(t)

and λ(0) = 1, h(0) = 0, k(0) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.63)

where f (t) := Ḟ(t)/2πμ0. Assume the numerical values R1 = 1 and T = 1. The time-dependent force
F(t) is taken as a polynomial function of t in figure 8, and an error function of t in figure 9, and a
sinusoidal function of t in figure 10. The sign of σ zz is the same as that of F for monotonic loads
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Figure 8. Solution to the force-control problem described in example 3.5 with F(t)= ±5μ0πR21 (t/T)
n, where n ∈ {1, 2}.

The function λ(t) reported here is the solution to the integral equation (3.61). The variation of the axial stress σ zz with R
at t = T/2 is shown.

λ(t) σzz (R, T2)
μ0

1.10 0.5

0.4

0.3

0.2

0.1

0
1.5 2.0 2.5 3.0

1.08

1.06

1.04

1.02

1.00
0 0.2 0.4 0.6 0.8 1.0

t
T

F(t) = erf
μ0πR2

1

2t
T

F(t) = erf
μ0πR2

1

5t
T

F(t) = erf
μ0πR2

1

8t
T

R
R1

Figure 9. Solution to the force-control problem described in example 3.5 with F(t)= μ0πR21 erf(At/T), where A ∈ {2, 5, 8}.
The function λ(t) reported here is the solution to the integral equation (3.61). The variation of the axial stress σ zz with R at
t = T/2 is shown.

(figure 8). In figure 9, as F(t) increases from 0 until the asymptotic value μ0πR2
1 is reached, λ̇(t)

(and hence the axial strain rate) decreases until an asymptotic limit is reached. In figure 10, we
look at three different time-dependent loads with F(0) = F(T) = 0, but all of them have different
stretches at t= T because their loading histories are different. Similarly, F(t) = μ0πR2

1 sin(π t/T)
and F(t) = μ0πR2

1 sin2(π t/T) have the same load at t= T/2, but different radial variation of σ zz at
that instant because of their different loading histories.

(g) Residual stress
We assume that the body is unloaded after the accretion and ablation processes end. Let T <

tablation. For t> T, λ(t) = 1, and F(t) = 0. The material metric of the resulting body has the following
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Figure 10. Solution to the force-control problem described in example 3.5. The function λ(t) reported here is the solution to
the integral equation (3.61) with F(t)= μ0πR21 sin

m(ωt/T), where m ∈ {1, 2} andω ∈ {π , 2π}. Further, the variation of
the axial stressσ zz with R at t = T/2 is shown.

representation:23

G=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

1 0 0

0 R2 0

0 0 1

⎤
⎥⎥⎦ , S1(T) ≤R<R2,

⎡
⎢⎢⎢⎣

1 0 0

0
+
r

2
(R) 0

0 0
+
λ

4
(R)

⎤
⎥⎥⎥⎦ , R2 ≤R≤ S2(T),

(3.64)

wherein the case R<R2 is present only if T <
−
τ (R2). Let ϕ̃ : BT → S map the material manifold to

the residually stressed configuration. Let us consider the map ϕ̃(R, Θ ,Z) = (r̃, θ̃ , z̃) with r̃= r̃(R),
θ̃ = Θ and z̃= λ̃2Z. Incompressibility constraint can be expressed as

λ̃2r̃(R)r̃′(R)
R

= 1, R≤R2

and
λ̃2r̃(R)r̃′(R)
+
λ

2
(R)

+
r (R)

= 1 R2 ≤R,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.65)

which implies that

r̃2(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
r̃2(S1(T)) + R2 − S2

1(T)

λ̃2
R≤R2,

r̃2(S2(T)) − 2

λ̃2

∫S2(T)

R

+
λ

2
(ξ )

+
r (ξ ) dξ , R2 ≤R.

(3.66)

The continuity of r̃(R) at R2 requires that

r̃2(S2(T)) − r̃2(S1(T)) = 1

λ̃2

[
R2

2 − S2
1(T) + 2

∫S2(T)

R2

+
λ

2
(ξ )

+
r (ξ ) dξ

]
. (3.67)

23The constraint (3.19)1 has been used in calculating the metric of the accreted portion of the body.
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Observe that the knowledge of either r̃(S1(T)) or r̃(S2(T)) is sufficient to calculate r̃(R). Let us take
r̃(S1(T)) as the only independent variable (other than λ̃), in terms of which

r̃2(R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
r̃2(S1(T)) + R2 − S2

1(T)

λ̃2
, R≤R2,

r̃2(S1(T)) + 1

λ̃2

[
R2

2 − S2
1(T) + 2

∫R

R2

+
λ

2
(ξ )

+
r (ξ ) dξ

]
, R2 ≤R.

(3.68)

The deformation gradient reads

F̃(R) =

⎡
⎢⎣r̃

′(R) 0 0
0 1 0
0 0 λ̃2

⎤
⎥⎦ . (3.69)

For R≤R2:

b�(R) =

⎡
⎢⎢⎣

[r̃′(R)]2 0 0

0
1
R2 0

0 0 λ̃4

⎤
⎥⎥⎦ and c�(R) =

⎡
⎢⎢⎢⎢⎢⎣

1
[r̃′(R)]2 0 0

0
R2

r̃4(R)
0

0 0
1

λ̃4

⎤
⎥⎥⎥⎥⎥⎦ . (3.70)

The principal invariants of b read

I1(R) = [r̃′(R)]2 + r̃2(R)
R2 + λ̃4 and I2(R) = [r̃′(R)]2 λ̃4 + [r̃′(R)]2 r̃2(R)

R2 + r̃2(R) λ̃4

R2 . (3.71)

Using (3.65)1, the non-zero physical components of the residual Cauchy stress can be expressed
as24

σ̃ rr(R) = −p(R) + α(R)R2

λ̃4r̃2(R)
− β(R)λ̃4r̃2(R)

R2 ,

ˆ̃σθθ (R) = −p(R) + α(R)r̃2(R)
R2 − β(R)R2

r̃2(R)
,

and σ̃ zz(R) = −p(R) + α(R) λ̃4 − β(R)

λ̃4
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.72)

For R<R2, the radial equilibrium equation and the traction boundary condition σ̃ rr(S1(T)) = 0
imply that

σ̃ rr(R) =
∫R

S1(T)

[
α(ξ )

λ̃4
+ β(ξ )

][
λ̃2

ξ
− ξ3

λ̃2 r̃4(ξ )

]
dξ ,

ˆ̃σθθ (R) =
[

α(R)

λ̃4
+ β(R)

][
λ̃4r̃2(R)

R2 − R2

r̃2(R)

]
+ σ̃ rr(R)

and σ̃ zz(R) = α(R)

[
λ̃4 − R2

λ̃4r̃2(R)

]
+ β(R)

[
λ̃4r̃2(R)

R2 − 1

λ̃4

]
+ σ̃ rr(R).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.73)

Now for R≥R2:

b�(R) =

⎡
⎢⎢⎢⎢⎢⎢⎣

[r̃′(R)]2 0 0

0
1

+
r

2
(R)

0

0 0
λ̃4

+
λ

4
(R)

⎤
⎥⎥⎥⎥⎥⎥⎦

and c�(R) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
[r̃′(R)]2 0 0

0
+
r

2
(R)

r̃4(R)
0

0 0
+
λ

4
(R)

λ̃4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.74)

24Note that ˆ̃σ θθ = r̃2σ̃ θθ .
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The principal invariants of b read

I1(R) = [r̃′(R)]2 + r̃2(R)
+
r

2
(R)

+ λ̃4

+
λ

4
(R)

and I2(R) = [r̃′(R)]2 r̃2(R)
+
r

2
(R)

+ λ̃4r̃2(R)
+
r

2
(R)

+
λ

4
(R)

+ λ̃4[r̃′(R)]2

+
λ

4
(R)

.

(3.75)

Using (3.65)2, the non-zero physical components of the residual Cauchy stress can be expressed
as

σ̃ rr(R) = −p(R) + α(R, t)r̃2
,R(R) − β(R)

r̃2
,R(R)

,

ˆ̃σθθ (R) = −p(R) + α(R)r̃2(R)
+
r

2
(R)

− β(R)
+
r

2
(R)

r̃2(R)

and σ̃ zz(R) = −p(R) + α(R) λ̃4

+
λ

4
(R)

− β(R)
+
λ

4
(R)

λ̃4
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.76)

For R≥R2, the radial equilibrium equation and the traction boundary condition σ̃ rr(S2(T)) = 0
give us

σ̃ rr(R) = −
∫S2(T)

R

+
λ

2
(ξ )

⎡
⎣α(ξ )

λ̃4
+ β(ξ )

+
λ

4
(ξ )

⎤
⎦
⎡
⎢⎣ λ̃2

+
r (ξ )

−
+
r

3
(ξ )

+
λ

4
(ξ )

λ̃2 r̃4(ξ )

⎤
⎥⎦dξ ,

ˆ̃σθθ (R) =
⎡
⎣α(R)

λ̃4
+ β(R)

+
λ

4
(R)

⎤
⎦
⎡
⎢⎣ λ̃4r̃2(R)

+
r

2
(R)

−
+
r

2
(R)

+
λ

4
(R)

r̃2(R)

⎤
⎥⎦+ σ̃ rr(R)

and σ̃ zz(R) = α(R)

⎡
⎢⎣ λ̃4

+
λ

4
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ̃4r̃2(R)

⎤
⎥⎦+ β(R)

⎡
⎢⎣ λ̃4r̃2(R)

+
λ

4
(R)

+
r

2
(R)

−
+
λ

4
(R)

λ̃4

⎤
⎥⎦+ σ̃ rr(R).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.77)

The continuity of σ̃ rr(R) at R2 requires that25

Υ̃ :=
∫R2

S1(T)

[
α(ξ )

λ̃4
+ β(ξ )

][
λ̃2

ξ
− ξ3

λ̃2 r̃4(ξ )

]
dξ

+
∫S2(T)

R2

+
λ

2
(ξ )

⎡
⎣α(ξ )

λ̃4
+ β(ξ )

+
λ

4
(ξ )

⎤
⎦
⎡
⎢⎣ λ̃2

+
r (ξ )

−
+
r

3
(ξ )

+
λ

4
(ξ )

λ̃2 r̃4(ξ )

⎤
⎥⎦ dξ = 0. (3.79)

The absence of an axial force in the residually stressed state implies that

∫S2(T)

S1(T)
2πR P̃zZ(R) dR= 0, (3.80)

25Alternatively, σ̃ rr for R≤R2 can be expressed as:

σ̃ rr(R) = −
∫ R2

R

λ̃4 r̃4(ξ ) − ξ 4

λ̃2ξ r̃4(ξ )

[
α(ξ )

λ̃4
+ β(ξ )

]
dξ −

∫ S2(T)

R2

+
λ

2
(ξ )[λ̃4 r̃4(ξ )− +

r
4

(ξ )
+
λ

4
(ξ )]

λ̃2 r̃4(ξ )
+
r (ξ )

⎡
⎣α(ξ )

λ̃4
+ β(ξ )

+
λ

4
(ξ )

⎤
⎦ dξ , (3.78)

in which case the condition (3.79) is recovered from the traction boundary condition σ̃ rr(S1(T)) = 0.
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where P̃zZ(R) = σ̃ zz(R)/λ̃2 is the zZ-component of the residual Piola–Kirchhoff stress, calculated
as

P̃zZ(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α(R)

[
λ̃2 − R2

λ̃6r̃2(R)

]
+ β(R)

[
λ̃2r̃2(R)

R2 − 1

λ̃6

]
+ σ̃ rr(R)

λ̃2
, R≤R2,

α(R)

⎡
⎢⎣ λ̃2

+
λ

4
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ̃6r̃2(R)

⎤
⎥⎦+ β(R)

⎡
⎢⎣ λ̃2 r̃2(R)

+
λ

4
(R)

+
r

2
(R)

−
+
λ

4
(R)

λ̃6

⎤
⎥⎦+ σ̃ rr(R)

λ̃2
, R2 ≤R.

(3.81)

(i) Residual stress in the case of a neo-Hookean solid

Consider a homogeneous neo-Hookean material for which α(R) = μ(R) = μ0 > 0 and β(R) = 0 as
in the previous section. The non-zero components of the residual Cauchy stress are written as

σ̃ rr(R) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ0

λ̃2

∫R

S1(T)

dξ

ξ
− μ0

λ̃6

∫R

S1(T)

ξ3dξ

r̃4(ξ )
, R<R2,

−μ0

λ̃2

∫S2(T)

R

+
λ

2
(ξ ) dξ

+
r (ξ )

+ μ0

λ̃6

∫S2(T)

R

+
r

3
(ξ )

+
λ

6
(ξ ) dξ

r̃4(ξ )
, R≥R2,

ˆ̃σθθ (R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ0

[
r̃2(R)
R2 − R2

λ̃4 r̃2(R)

]
+ σ̃ rr(R), R<R2,

μ0

⎡
⎢⎣ r̃2(R)

+
r

2
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ̃4r̃2(R)

⎤
⎥⎦+ σ̃ rr(R), R≥R2,

and σ̃ zz(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ0

[
λ̃4 − R2

λ̃4r̃2(R)

]
+ σ̃ rr(R), R<R2,

μ0

⎡
⎢⎣ λ̃4

+
λ

4
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ̃4r̃2(R)

⎤
⎥⎦+ σ̃ rr(R), R≥R2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.82)

Continuity of σ̃ rr, i.e. (3.79) simplifies to read

λ̃4

⎡
⎢⎣log

(
R2

S1(T)

)
+

∫S2(T)

R2

+
λ

2
(ξ ) dξ

+
r (ξ )

⎤
⎥⎦−

⎡
⎢⎣∫R2

S1(T)

ξ3 dξ

r̃4(ξ )
+

∫S2(T)

R2

+
r

3
(ξ )

+
λ

6
(ξ ) dξ

r̃4(ξ )

⎤
⎥⎦= 0. (3.83)

Further,

P̃zZ(R) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ0

[
λ̃2 − R2

λ̃6r̃2(R)

]
+ σ̃ rr(R)

λ̃2
, R≤R2,

μ0

⎡
⎢⎣ λ̃2

+
λ

4
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ̃6r̃2(R)

⎤
⎥⎦+ σ̃ rr(R)

λ̃2
, R2 ≤R,

(3.84)

so that the zero axial force condition (3.80) implies that

μ0

∫R2

S1(T)

[
λ̃2 − R2

λ̃6r̃2(R)

]
RdR

+ μ0

∫S2(T)

R2

⎡
⎢⎣ λ̃2

+
λ

4
(R)

−
+
λ

4
(R)

+
r

2
(R)

λ̃6r̃2(R)

⎤
⎥⎦RdR + 1

λ̃2

∫S2(T)

S1(T)
R σ̃ rr(R) dR= 0. (3.85)
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Note that

∫S2(T)

S1(T)
R σ̃ rr(R) dR= μ0

λ̃2

∫R2

S1(T)

[∫R

S1(T)

dξ

ξ

]
RdR − μ0

λ̃6

∫R2

S1(T)

[∫R

S1(T)

ξ3dξ

r̃4(ξ )

]
RdR

− μ0

λ̃2

∫S2(T)

R2

⎡
⎢⎣∫S2(T)

R

+
λ

2
(ξ ) dξ

+
r (ξ )

⎤
⎥⎦RdR

+ μ0

λ̃6

∫S2(T)

R2

⎡
⎢⎣∫S2(T)

R

+
r

3
(ξ )

+
λ

6
(ξ ) dξ

r̃4(ξ )

⎤
⎥⎦RdR, (3.86)

or equivalently,

∫S2(T)

S1(T)
R σ̃ rr(R) dR= μ0

2λ̃2

[
R2

2 log
(

R2

S2(T)

)
− R2

2 − S2
1(T)

2

]
− μ0

2λ̃6

∫R

S1(T)

[R2
2 − ξ2]ξ3dξ

r̃4(ξ )

− μ0

2λ̃2

∫S2(T)

R2

[ξ2 − R2
2]

+
λ

2
(ξ ) dξ

+
r (ξ )

+ μ0

2λ̃6

∫S2(T)

R2

[ξ2 − R2
2]

+
r

3
(ξ )

+
λ

6
(ξ ) dξ

r̃4(ξ )
. (3.87)

This in view of (3.83) implies that

∫S2(T)

S1(T)
R σ̃ rr(R) dR= −μ0[R2

2 − S2
1(T)]

4λ̃2
+ μ0

2λ̃6

∫R

S1(T)

ξ5dξ

r̃4(ξ )

− μ0

2λ̃2

∫S2(T)

R2

ξ2 +
λ

2
(ξ ) dξ

+
r (ξ )

+ μ0

2λ̃6

∫S2(T)

R2

ξ2 +
r

3
(ξ )

+
λ

6
(ξ ) dξ

r̃4(ξ )
. (3.88)

Thus, (3.85) can be rewritten as

λ̃2

⎡
⎣R2

2 − S2
1(T)

2
+

∫S2(T)

R2

RdR
+
λ

4
(R)

⎤
⎦− 1

λ̃6

⎡
⎢⎣∫R2

S1(T)

R3 dR
r̃2(R)

+
∫S2(T)

R2

R
+
λ

4
(R)

+
r

2
(R) dR

r̃2(R)

⎤
⎥⎦

− 1

2λ̃4

⎡
⎢⎣R2

2 − S2
1(T)

2
+

∫S2(T)

R2

ξ2 +
λ

2
(ξ ) dξ

+
r (ξ )

⎤
⎥⎦+ 1

2λ̃8

⎡
⎢⎣∫R2

S1(T)

ξ5 dξ

r̃4(ξ )
+

∫S2(T)

R2

ξ2 +
r

3
(ξ )

+
λ

6
(ξ ) dξ

r̃4(ξ )

⎤
⎥⎦= 0.

(3.89)

Determining the residual stretch and stress requires calculating the unknowns r̃(S1(T)) and λ̃ that
satisfy (3.83) and (3.89).

Remark 3.6. The functions
+
λ (R) and

+
r (R) are known from the deformation history of the bar

prior to the removal of external loads, and hence, are treated as given quantities while solving for
the residually stressed state. Observe that

r̃(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R

λ̃
R≤R2,

+
λ (R)

+
r (R)

λ̃
, R2 ≤R

(3.90)
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is a solution that satisfies (3.65), (3.83) and (3.89). The residual Cauchy stress components σ̃ rr and
ˆ̃σθθ vanish for this solution. Moreover,

P̃zZ(R) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ0

[
λ̃2 − 1

λ̃4

]
, R≤R2,

μ0

⎡
⎢⎣ λ̃2

+
λ

4
(R)

−
+
λ

2
(R)

λ̃4

⎤
⎥⎦ , R2 ≤R,

(3.91)

so that the zero axial force condition (3.80) requires that

∫R2

S1(T)
μ0R

[
λ̃2 − 1

λ̃4

]
dR +

∫S2(T)

R2

μ0R

⎡
⎢⎣ λ̃2

+
λ

4
(R)

−
+
λ

2
(R)

λ̃4

⎤
⎥⎦dR= 0. (3.92)

This implies that

λ̃6 =
R2

2 − S2
1(T) + 2

∫S2(T)

R2

R
+
λ

2
(R) dR

R2
2 − S2

1(T) + 2
∫S2(T)

R2

RdR
+
λ

4
(R)

. (3.93)

Example 3.7. Consider a displacement-control problem with R2 = 2R1 ,
−
υ=R1/2T,

+
υ=R1/T

and λ(t) = 1 + a(t/T)n, where n≥ 0, and a ∈R. Then tablation = 2T > T, S1(T) = 1.5R1 and S2(T) =
3R1. First we need to find

+
r : [R2, S2(T)] →R as in example (3.4). With the knowledge of

+
λ and

+
r

(figure 11), we need to find r̃(S1(T)) and λ̃ that satisfy the following nonlinear integral equations:

λ̃2

⎡
⎣R2

2 − S2
1(T)

2
+

∫S2(T)

R2

RdR
+
λ

4
(R)

⎤
⎦− 1

λ̃6

⎡
⎢⎣∫R2

S1(T)

R3 dR
r̃2(R)

+
∫S2(T)

R2

R
+
λ

4
(R)

+
r

2
(R) dR

r̃2(R)

⎤
⎥⎦

− 1

2λ̃4

⎡
⎢⎣R2

2 − S2
1(T)

2
+

∫S2(T)

R2

ξ2 +
λ

2
(ξ ) dξ

+
r (ξ )

⎤
⎥⎦

+ 1

2λ̃8

⎡
⎢⎣∫R2

S1(T)

ξ5 dξ

r̃4(ξ )
+

∫S2(T)

R2

ξ2 +
r

3
(ξ )

+
λ

6
(ξ ) dξ

r̃4(ξ )

⎤
⎥⎦= 0

and λ̃4

⎡
⎢⎣log

(
R2

S1(T)

)
+

∫S2(T)

R2

+
λ

2
(ξ ) dξ

+
r (ξ )

⎤
⎥⎦−

⎡
⎢⎣∫R2

S1(T)

ξ3 dξ

r̃4(ξ )
+

∫S2(T)

R2

+
r

3
(ξ )

+
λ

6
(ξ ) dξ

r̃4(ξ )

⎤
⎥⎦= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.94)
where

r̃2(R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
r̃2(S1(T)) + R2 − S2

1(T)

λ̃2
, R≤R2,

r̃2(S1(T)) + 1

λ̃2

[
R2

2 − S2
1(T) + 2

∫R

R2

+
λ

2
(ξ )

+
r (ξ )dξ

]
, R2 ≤R.

(3.95)

We solve this system numerically in Matlab for a ∈ {±1/2} and n ∈ {(1/2), 1, 2} (with the numerical
values R1 = 1 and T = 1). Since the numerical values of σ̃ rr(R) and σ̃ θθ (R) are negligible, they are
not reported here. The values of λ̃2 (table 1) and σ̃ zz (figure 12) obtained numerically agree with
those described in remark 3.6. From figure 12, we observe that even if a bar is subjected only to
elongation, the residual axial stresses in the initial portion of the final body are compressive due
to stress redistribution after the bar is set free. Similarly, tensile residual axial stress is observed in
the initial portion of a bar shortened during accretion–ablation.
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Figure 11. Solution of the displacement-control problem described in example 3.7 during the loadingprocess.
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Figure 12. Residual stress σ̃ zz(R) in the body (example 3.7) after the removal of the external forces for the displacement-control
loadingλ(t)= 1 + a(t/T)n, where a ∈ {±1/2} and n ∈ {(1/2), 1, 2}.

Table 1. Residual stretch λ̃2 in the body when it is set free after the displacement-control loading described in example 3.7.

n= 1/2 n= 1 n= 2

a= 1/2 1.4733 1.3547 1.2349
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a= −(1/2) 0.4727 0.5514 0.6477
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 3.8. Consider a force-control problem with R2 = 2R1,
−
υ=R1/2T, and

+
υ=R1/T. Then

tablation = 2T > T, S1(T) = 1.5R1 and S2(T) = 3R1. First we find the functions λ(t) and
+
r (R) as

in example 3.5, which are then used to solve (3.94) and (3.95) for r̃(S1(T)) and λ̃. Assume the
numerical values R1 = 1 and T = 1. We report σ̃ zz as a function of R in the residually stressed
configuration taking F(t) as polynomial (figure 13), error (figure 14) and sinusoidal (figure 15)
functions of time t. The residual stretches λ̃2 for the same choices of F(t) are given in table 2.
In figure 13, we compare the axial residual stress for loads varying monotonically as linear and
quadratic functions of time. A monotonically increasing tensile F(t) induces a compressive σ̃ zz in
the initial portion of the body, although λ̃2 > 1. Similarly, a monotonically increasing compressive
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Figure 13. Residual stress σ̃ zz(R) in the body (example 3.8) when it is set free after the loading F(t)= ±5μ0πR21 (t/T)
n,

where n ∈ {1, 2}.
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Figure 14. Residual stress σ̃ zz(R) in the body (example 3.8) when it is set free after the loading F(t)= μ0πR21 erf(At/T),
where A ∈ {2, 5, 8}.

F(t) leaves a tensile σ̃ zz in the initial portion of the final body along with a residual contraction
λ̃2 < 1. In figure 14, σ̃ zz is observed to be almost the same towards the outermost accreted layers
for all the three loading paths. This is probably because the load when those outermost layers
were accreted was very close to the asymptotic limit of F(t) in all the three cases. As a result, all
those layers experience the same state of stress during loading as well as when they are set free.
In figure 15, we look at the residual stress print left after different sinusoidal loading cycles and
observe that σ̃ zz remains zero on the outer boundary even after the bar is unloaded.
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Figure 15. Residual stress σ̃ zz(R) in the final body (example 3.8). During the accretion–ablation process, this body was under
a sinusoidal axial force.

Table 2. Residual stretch λ̃2 in the body when it is set free after the force-control loading described in example 3.8.

F(t)/μ0πR21 λ̃2

erf(At/T) A= 2 1.0603
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 5 1.0835
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 8 1.0910
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a(t/T)n a= 5, n= 1 1.2158
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a= 5, n= 2 1.1166
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a= −5, n= 1 0.8479
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a= −5, n= 2 0.9051
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sinm(ωt/T) m= 1,ω = π 1.0617
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m= 1,ω = 2π 1.0219
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m= 2,ω = π 1.0468
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(h) Response of a three-dimensional-printed bar under axial loads
Let us assume that T1 and T2 are such that 0 < T < T1 < T2, and consider a three-dimensional-
printed thick hollow cylinder in the time interval [0,T2]. Accretion/ablation occurs during the
interval [0,T] under some time-dependent axial load, after which the body is in an unloaded
state until t= T1, and service loads are applied during [T1,T2]. The motion map has the following
representation:

ϕt(R, Θ ,Z) =

⎧⎪⎪⎨
⎪⎪⎩
(
r(R, t), Θ , λ2(t)Z

)
, t≤ T,(

r̃(R), Θ , λ̃2Z
)
, T < t< T1,(

rs(R, t), Θ , λ2
s (t)λ̃2Z

)
, T1 ≤ t≤ T2,

(3.96)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 N

ov
em

be
r 2

02
3 



36

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220373

...............................................................

where S1(t) ≤R≤ S2(t), and λ2
s (t) is the axial stretch due to the service load. The functions λ, λs are

assumed to satisfy the following conditions: λ(0) = 1, λs(T1) = 1. Further, notice that

S1(t) =
⎧⎨
⎩R1+ −

υ t, t≤ T,

S1(T), t> T,
and S2(t) =

⎧⎨
⎩R2+ +

υ t, t≤ T,

S2(T), t> T,
(3.97)

so that they are invertible only in [0,T], with their inverses being
−
τ and

+
τ , respectively. Axial force

and the Cauchy stress are written as

F(t) =

⎧⎪⎪⎨
⎪⎪⎩

μ0πR2
1 fl(t), t≤ T,

0, T < t< T1,

μ0πR2
1 fs(t), T1 ≤ t≤ T2,

σ (R, t) =

⎧⎪⎪⎨
⎪⎪⎩

σ l(R, t), t≤ T,

σ̃ (R), T < t< T1,

σ s(R, t), T1 ≤ t≤ T2,

(3.98)

where the functions fl, fs are the dimensionless axial forces during the accretion–ablation process
and service loading, respectively, and are assumed to satisfy the following conditions: fl(0) = 0,
fs(T1) = 0. The zZ-component of the Cauchy stress during service loading is written as

σ zz
s (R, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ4
s (t)λ̃4 − 1

λ2
s (t)λ̃2

, S1(T) ≤R≤R2,

λ4
s (t)λ̃4

+
λ

4
(R)

−
+
λ

2
(R)

λ2
s (t)λ̃2

, R2 ≤R≤ S2(T),
(3.99)

which implies that

F(t)
2πμ0

= R2
2 − S2

1(T)
2

[
λ2
s (t)λ̃2 − 1

λ4
s (t)λ̃4

]
+ λ2

s (t)λ̃2
∫S2(T)

R2

RdR
+
λ

4
(R)

− 1

λ4
s (t)λ̃4

∫S2(T)

R2

R
+
λ

2
(R) dR,

(3.100)
where T1 ≤ t≤ T2. This can be rearranged as

F(t)
2πμ0

= λ2
s (t)λ̃2

⎡
⎣R2

2 − S2
1(T)

2
+

∫S2(T)

R2

RdR
+
λ

4
(R)

⎤
⎦− 1

λ4
s (t)λ̃4

[
R2

2 − S2
1(T)

2
+

∫S2(T)

R2

R
+
λ

2
(R) dR

]
,

(3.101)
with

λ̃6 =
R2

2 − S2
1(T) + 2

∫S2(T)
R2

R
+
λ

2
(R) dR

R2
2 − S2

1(T) + 2
∫S2(T)
R2

R
+
λ

4
(R)

dR
. (3.102)

This implies the following force–stretch relationship:

fs(t) = a
[
λ2
s (t) − 1

λ4
s (t)

]
, (3.103)

where

a= 1

R2
1

[
R2

2 − S2
1(T) + 2

∫S2(T)

R2

R
+
λ

2
(R)dR

]1/3
⎡
⎣R2

2 − S2
1(T) + 2

∫S2(T)

R2

R
+
λ

4
(R)

dR

⎤
⎦

2/3

. (3.104)

(i) A stress-free elastic body with the same size as the three-dimensional-printed body

First observe that in the absence of accretion/ablation (i.e.
+
υ=−

υ= 0) equation (3.100) simplifies to
read

F(t)
2πμ0

= R2
2 − R2

1
2

[
λ2(t) − 1

λ4(t)

]
. (3.105)

In this problem, we replace R1 by r̃(S1(T)), R2 by r̃(S2(T)), and L by λ̃2L. Consider a stress-free
thick cylinder of inner radius r̃(S1(T)) = S1(T)/λ̃, outer radius r̃(S2(T)) = λ(T)s2(T)/λ̃, initial length
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λ̃2L and subject it to the same service load during the time interval [T1,T2]. For this new problem,
let the motion be denoted as

◦
ϕt (R, Θ ,Z) = ( ◦

rs (R, t), Θ ,
◦
λ

2

s (t)Z
)
, (3.106)

where S1(T)/λ̃ ≤R≤ λ(T) s2(T)/λ̃, and 0 ≤Z≤ λ̃2L. Let the axial force be Fs(t) = μ0πR2
1 fs(t), and

denote the Cauchy stress by
◦
σ s. For r̃(S1(T)) ≤ R̃≤ r̃(S2(T)),

◦
σ
zz
s (R̃, t) = μ0

⎡
⎣◦

λ
4

s (t) − 1
◦
λ

2

s (t)

⎤
⎦ , (3.107)

which implies that the axial force can be expressed as

Fs(t)
2πμ0

= λ2(T)s2
2(T) − S2

1(T)

2λ̃2

⎡
⎣◦

λ
2

s (t) − 1
◦
λ

4

s (t)

⎤
⎦ . (3.108)

Thus, we have the following force–stretch relationship:

fs(t) =◦
a

⎡
⎣◦

λ
2

s (t) − 1
◦
λ

4

s (t)

⎤
⎦ , (3.109)

where

◦
a=

[λ2(T)s2
2(T) − S2

1(T)]

[
R2

2 − S2
1(T) + 2

∫S2(T)
R2

R
+
λ

2
(R)dR

] 1
3

R2
1

[
R2

2 − S2
1(T) + 2

∫S2(T)
R2

R
+
λ

4
(R)

dR

]1/3 . (3.110)

Note that if a>
◦
a, then the three-dimensional-printed body is stiffer in comparison with a stress-

free body of the same dimensions, and vice versa.

Example 3.9. Consider R2 = 2R1,
−
υ=R1/2T,

+
υ=R1/T, T1 = 2T and T2 = 3T. Then, tablation =

2T > T, S1(T) = 1.5R1 and S2(T) = 3R1, where we assume the numerical values R1 = 1, and T = 1
as in example 3.8. The values of a and

◦
a for several loads (same as those from example 3.8) are

given in table 3. The force–stretch relationship during the service loading is shown in figure 16
for two particular cases. It is observed that the three-dimensional-printed body is less stiff than
a stress-free body of the same size and made of the same material provided that it was subjected
to monotonic tensile loading during the accretion–ablation time interval. Similarly, a body that
was under monotonic compressive loading during the accretion–ablation time interval is stiffer
(in tension) than a stress-free body of the same size and made of the same material.

Example 3.10. Let R2 = 2R1,
−
υ=R1/2T,

+
υ=R1/T, T1 = 2T, and T2 = 3T as in example 3.9. When

the service load is constant, the Cauchy stress is a function of the radial coordinate alone. We
consider the time-dependent loads fl(t) = ±5t/T during the accretion–ablation process, and the
constant service loads fs(t) = ±10. The solid-blue curves in figure 17 represent the following sets{(

r̃(R),
σ zz
s (R)
μ0

)
: S1(T) ≤R≤ S2(T)

}
, (3.111)

which show the radial variation of σ zz
s resulting from a constant axial force applied to the three-

dimensional-printed body. When a stress-free body of the same size as the three-dimensional-

printed one is subjected to the same service load, it develops a constant
◦
σ
zz
s across the cross-section

(this is shown by the dashed-red curves in figure 17).
The three-dimensional-printed body manufactured under the tensile load fl(t) = 5t/T has

tensile residual stress in its inner layers and compressive residual stress in the outer layers. As
a result, when a tensile service load is applied, it always develops tensile stress in its inner layers
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Figure 16. Force–stretch relationship for service loading (example 3.9). In the case of fl(t)= 5t/T , the three-dimensional-
printed body is less stiff when compared with its corresponding body without any residual stress. When fl(t)= −(5t/T), the
three-dimensional-printed body is stiffer than its corresponding stress-free body of the same size.

Table 3. The coefficients of the force–stretch relations (see equations (3.103) and (3.109)) for a three-dimensional-printed bar
(see (3.104)) and a stress-free bar of the same size and made of the same material (see (3.110)).

fl(t) a
◦
a

erf(At/T) A= 2 6.3782 6.5900
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 5 6.2486 6.5388
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 8 6.2076 6.5233
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a(t/T)n a= 5, n= 1 5.7295 6.2902
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a= 5, n= 2 6.1431 6.4657
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a= −5, n= 1 8.0862 7.3032
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a= −5, n= 2 7.5304 7.0902
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sinm(t/T) m= 1,ω = π 6.3695 6.5918
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m= 1,ω = 2π 6.6185 6.7104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m= 2,ω = π 6.4570 6.6276
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

while the stress in the outer layers can be compressive for very small service loads. For larger

loads that cause tensile σ zz
s throughout the cross-section, σ zz

s is greater than
◦
σ
zz
s in the inner layers,

while it is the opposite for the outer layers. If this body manufactured under the tensile load
is subjected to compression, σ zz

s can still be tensile in the inner layers for small enough loads.
It is possible to have a slightly larger compressive service load so that the inner layers have
compressive stress, but lesser than that of a stress-free body of the same size subjected to the
same load, while the outer layers follow the opposite trend. However, if the compressive service
load is large enough, the stresses in the three-dimensional-printed body are more compressive
than those of the stress-free body throughout the cross-section.

The residual stress in the three-dimensional-printed body manufactured under the
compressive load fl(t) = −(5t/T) is compressive in its inner layers and tensile in the outer layers. If
tensile service loads are large enough, σ zz

s in the three-dimensional-printed body is always tensile
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Figure 17. The zZ-component of the Cauchy stress generated by a constant service load (example 3.10). The solid-blue curves
show the radial variation of the zZ-component of the Cauchy stress in the three-dimensional-printed body. The dashed-red
curves represent the same for a stress-free body of the same size and made of the same material as the three-dimensional-
printed one.

(with the inner layers being less stressed than the outer ones) but less stressed than the stress-
free body of the same size subjected to the same service load. Similarly, if compressive service
loads are large enough, σ zz

s in the three-dimensional-printed body is always compressive (with
the inner layers being more stressed than the outer ones) but less stressed than the stress-free
body of the same size subjected to the same service load.

4. Conclusion
In this paper, we presented a geometric formulation of the nonlinear mechanics of accreting–
ablating bodies. This theory models the large deformations of bodies that undergo simultaneous
accretion and ablation on their boundaries. This is a generalization of the accretion theory that
was formulated in [22]. In this formulation, the natural (stress-free) configuration of the body
is a time-dependent Riemannian manifold. Formulating the accretion–ablation boundary-value
problem requires the construction of the material metric for the accreted portion of the body. For
ablation, we simply need a map to track the points on the boundary being ablated at any given
time. However, we do not need to track the particles after they have left the body. The material
metric is an unknown field a priori and is determined after solving the accretion–ablation initial-
boundary-value problem. This theory is not restricted to isotropic materials; the initial body can
be made of any anisotropic material. The accreting particles can be anisotropic as well. Also, the
material points joining the body can be stressed at their time of attachment.

In the second part of the paper, we considered an incompressible thick hollow cylinder
undergoing accretion on its outer boundary and ablation on its inner boundary while it is being
loaded axially. For the sake of simplicity, we assumed a homogeneous and isotropic material both
in the initial body and accreting particles. Also, to simplify kinematics we assumed that the initial
body is made of an incompressible solid. It is also assumed that the material that is added to the
body during the accretion process is incompressible as well. We derived the governing equations
for two cases: (i) when t< tablation a portion of the initial body is still present, and (ii) the initial
body has been completely ablated. Assuming constant accretion and ablation velocities we solved
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the problem for case (i). We considered two different loading scenarios: displacement-control and
force-control loadings. In the case of displacement-control loading, we obtained a semi-analytical
solution for the problem. Further, we calculated the residual stresses after the completion of the
accretion–ablation processes and the removal of external forces. Given a time-dependent axial
stretch during loading, we provided analytical expressions for both the residual stretch and axial
residual stress.

A future extension of this work would be to study problems where the accretion and ablation
velocities are dictated by mass transport and heat transfer. Studying large elastic deformations
in accretion–ablation problems coupled with phase changes will be the subject of a future
communication.
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Appendix A. The relationship between r(R, t) andλ(t) for an accreting–ablating
incompressible thick hollow cylinder under finite extension
The traction continuity equation (3.57) can be rearranged as follows:

∫R2

S1(t)

[
1
R

− R3

r4(R, t)λ4(t)

]
dR +

∫S2(t)

R2

+
λ

2
(R)

+
r (R)

⎡
⎢⎣1 −

+
r

4
(R)

+
λ

4
(R)

r4(R, t)λ4(t)

⎤
⎥⎦dR= 0. (A 1)

For the sake of convenience, let us denote

A(t) :=
∫R2

S1(t)

[
1
R

− R3

r4(R, t)λ4(t)

]
dR and B(t) :=

∫S2(t)

R2

+
λ

2
(R)

+
r (R)

⎡
⎢⎣1 −

+
r

4
(R)

+
λ

4
(R)

r4(R, t)λ4(t)

⎤
⎥⎦dR= 0.

(A 2)
Observe that (3.11) and (3.21) can be combined to write

r2(R, t)λ2(t) =

⎧⎪⎨
⎪⎩
s2
1(t)λ2(t) − S2

1(t) + R2, R≤R2,

s2
1(t)λ2(t) − S2

1(t) + R2
2 + 2

∫R

R2

+
λ

2
(ζ )

+
r (ζ ) dζ , R≥R2.

(A 3)

Let us define the following two functions:

χ (t) := s2
1(t)λ2(t) − S2

1(t), ψ(R) :=

⎧⎪⎨
⎪⎩
R2, R≤R2,

R2
2 + 2

∫R

R2

+
λ

2
(ζ )

+
r (ζ ) dζ , R≥R2,

(A 4)

so that r2(R, t)λ2(t) = χ (t) + ψ(R). Further,

ψ ′(R) =
⎧⎨
⎩

2R, R≤R2,

2
+
λ

2
(R)

+
r (R), R≥R2.

(A 5)
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Now, one can write

Ȧ(t) =
∫R2

S1(t)

∂

∂t

[
1
R

− R3

r4(R, t)λ4(t)

]
dR −

[
1

S1(t)
− S3

1(t)
r4(S1(t), t)λ4(t)

]
Ṡ1(t)

= −
∫R2

S1(t)

∂

∂t

[
R3

[χ (t) + ψ(R)]2

]
dR− −

υ

[
1

S1(t)
− S3

1(t)

s4
1(t)λ4(t)

]

=
∫R2

S1(t)

2χ̇ (t)R3

[χ (t) + ψ(R)]3 dR− −
υ

[
1

S1(t)
− S3

1(t)

s4
1(t)λ4(t)

]

= χ̇ (t)
4

∫R2

S1(t)

[ψ ′(R)]3dR
[χ (t) + ψ(R)]3 − −

υ

[
1

S1(t)
− S3

1(t)

s4
1(t)λ4(t)

]
, (A 6)

and

Ḃ(t) = −
∫S2(t)

R2

∂

∂t

⎡
⎢⎣

+
r

3
(R)

+
λ

6
(R)

r4(R, t)λ4(t)

⎤
⎥⎦dR +

+
λ

2
(S2(t))

+
r (S2(t))

⎡
⎢⎣1 −

+
r

4
(S2(t))

+
λ

4
(S2(t))

r4(S2(t), t)λ4(t)

⎤
⎥⎦ Ṡ2(t)

= −
∫S2(t)

R2

∂

∂t

⎡
⎢⎣

+
r

3
(R)

+
λ

6
(R)

[χ (t) + ψ(R)]2

⎤
⎥⎦dR

=
∫S2(t)

R2

2χ̇ (t)
+
r

3
(R)

+
λ

6
(R)

[χ (t) + ψ(R)]3 dR

= χ̇ (t)
4

∫S2(t)

R2

[ψ ′(R)]3dR
[χ (t) + ψ(R)]3 . (A 7)

Differentiating (A 1) with respect to time and using (A 6) and (A 7) one obtains

χ̇ (t)
4

∫S2(t)

S1(t)

[ψ ′(R)]3dR
[χ (t) + ψ(R)]3 =−

υ

[
1

S1(t)
− S3

1(t)

s4
1(t)λ4(t)

]
. (A 8)

Note that
1

S1(t)
− S3

1(t)

s4
1(t)λ4(t)

= χ (t) [χ (t) + 2S2
1(t) ]

S1(t) [χ (t) + S2
1(t)]2

, (A 9)

and hence
χ̇ (t)

4

∫S2(t)

S1(t)

[ψ ′(R)]3dR
[χ (t) + ψ(R)]3 =

−
υ χ (t) [χ (t) + 2S2

1(t) ]

S1(t) [χ (t) + S2
1(t)]2

. (A 10)

Let us define

γ (t) := −
∫ t

0

4
−
υ [χ (τ ) + 2S2

1(τ )] dτ

S1(τ ) [χ (τ ) + S2
1(τ ) ]2

∫S2(τ )
S1(τ )

[ψ ′(R)]3

[χ (τ )+ψ(R)]3 dR
. (A 11)

Thus, we have

χ̇ (t) + γ̇ (t)χ (t) = 0, or
d
dt

[eγ (t)χ (t)] = 0. (A 12)

Integrating this ODE, one obtains
eγ (t)χ (t) = eγ (0)χ (0). (A 13)

Now since γ (0) = 0, and χ (0) = 0 (as s1(0) = S1(0) =R1 and λ(0) = 1), we conclude that χ (t) = 0, i.e.
s2
1(t)λ2(t) = S2

1(t) for all t< tablation. Thus,

r2(R, t)λ2(t) =

⎧⎪⎨
⎪⎩
R2, R≤R2,

R2
2 + 2

∫R

R2

+
λ

2
(ζ )

+
r (ζ ) dζ , R≥R2,

(A 14)
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is independent of time. Further, substituting t=+
τ (R) one obtains

+
r

2
(R)

+
λ

2
(R) =R2

2 + 2
∫R

R2

+
λ

2
(ζ )

+
r (ζ ) dζ , (A 15)

which when differentiated with respect to R gives

d
dR

[
+
r (R)

+
λ (R)] =+

λ (R). (A 16)

Integrating this along with
+
r (R2) =R2, we finally obtain

+
r (R) = R2 + ∫R

R2

+
λ (ξ ) dξ

+
λ (R)

, (A 17)

and hence

r(R, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R
λ(t)

, S1(t) ≤R≤R2,

+
λ (R)

+
r (R)

λ(t)
, R2 ≤R≤ S2(t).

(A 18)
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