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ARTICLE INFO ABSTRACT

Keywords: In this paper, we revisit the mathematical foundations of nonlinear viscoelasticity. We study
Nonlinear viscoelasticity the underlying geometry of viscoelastic deformations, and in particular, the intermediate
Multiplicative decomposition configuration. Starting from the direct multiplicative decomposition of the deformation gradient

Intermediate configuration

) ‘ ; F= FF into elastic and viscous distortions F and F respectively, we pomt out that F can be
Anisotropic solids

either a material tensor (F is a two-point tensor) or a two-point tensor (F is a spatlal tensor).
We show, based on physical grounds, that the second choice is unacceptable. It is assumed that
the free energy density is the sum of an equilibrium and a non-equilibrium part. The symmetry
transformations and their action on the total, elastic, and viscous deformation gradients are
carefully discussed. Following a two-potential approach, the governing equations of nonlinear
viscoelasticity are derived using the Lagrange-d’Alembert principle. We discuss the constitutive
and kinetic equations for compressible and incompressible isotropic, transversely isotropic,
orthotropic, and monoclinic viscoelastic solids. We finally semi-analytically study creep and
relaxation in three examples of universal deformations.

1. Introduction

The linear theory of viscoelasticity was formulated 150 years ago by Boltzmann (1874) for isotropic solids (and by Volterra, 1909
for anisotropic solids), see Gurtin and Sternberg (1962) and Coleman and Noll (1961). The nonlinear theories of viscoelasticity
appeared much later. Rivlin and Ericksen (1955) formulated a theory of viscoelasticity for isotropic solids in which stress at a
material point depends on the deformation gradient and gradients of velocity, acceleration, and higher order accelerations up to
some finite order at that point.! Most of the early studies of finite viscoelasticity (Pipkin, 1964; Rivlin, 1965; Pipkin and Rogers,
1968) were based on the theory of fading memory (Green and Rivlin, 1957; Green et al., 1959; Green and Rivlin, 1959; Wang,
1965).

Much of the recent developments in the literature of viscoelasticity stem from the pioneering work of Green and Tobolsky (1946)
on rubber-like viscoelastic relaxation and its subsequent extension by Lubliner (1985) to finite rubber-like viscoelasticity using the
Bilby—Kroner-Lee decomposition following (Sidoroff, 1974). As detailed in (Sadik and Yavari, 2017b), although largely credited
to Lee and Liu (1967) and Lee (1969), the multiplicative decomposition of the deformation gradient was first formally introduced
by Bilby et al. (1955) and Kroner (1959). In the context of nonlinear viscoelasticity, it was first introduced by Sidoroff (1974)
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1 There are some recent works on “nonlinear viscoelasticity of strain rate type” (Sengiil, 2021; Mielke and Roubi¢ek, 2020; Badal et al., 2023), which is
a very special case of the Rivlin—Ericksen theory. Apparently, the authors of these recent papers were not aware of the seminal paper of Rivlin and Ericksen
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inspired by its use in elasto-plasticity (Berdichevskii and Sedov, 1967; Lee and Liu, 1967; Lee, 1969; Sidoroff, 1973).? Sidoroff
(1974) formulated a finite deformation viscoelastic model by assuming a free energy that depends explicitly on both the total
deformation gradient and its elastic (or viscous) part. Constraining the free energy by the Clausius—-Duhem inequality, he found the
constitutive relations—including an additive split of the stress into elastic and viscoelastic parts without assuming any such split
of the free energy. He then introduced a quadratic dissipation potential following the Casimir-Onsager’s reciprocity principle to
obtain evolution equations. Following Green and Tobolsky (1946) and Sidoroff (1974), Lubliner (1985) considered the nonelastic
part of the deformation gradient as an additional internal variable governed by a linear rate equation. Without assuming isotropy,
he formulated a constitutive model such that the free energy is additively split into an elastic part uncoupling the volumetric and
deviatoric contributions of the deformation, and a viscous part that depends on the additional internal variable. Latorre and Montans
(2016) explicitly acknowledged that the intermediate configuration in viscoelasticity is not stress free (after their Eq. (20) they write
“(i.e., the intermediate configuration is not strictly speaking a “stress-free” conﬁguratlon)”) Latorre and Montans (2016) suggested
using a reverse decomposition of deformation gradient in viscoelasticity, i.e., F = FF = T (see also Bahreman et al., 2022 who
compared the direct and reverse decompositions for viscoelasticity. It should be noted that these authors assumed the elastic and
viscous distortions to be compatible (see Egs. (8) & (12)), which is incorrect.). Similar to anelasticity (Yavari and Sozio, 2023), the
reverse decomposition is expected to result in an equivalent theory.

Based on the generalized one-dimensional linear Maxwell rheological model, Simo (1987) first sketches an alternative for-
mulation of the standard linear solid that he subsequently generalizes to a nonlinear formulation of viscoelastic solids. In his
formulation, he assumes an additive split of the free energy into an initial (elastic) and a non-equilibrium contribution. Similarly
to Lubliner (1985), he uncouples the bulk and deviatoric components of the deformation gradient to forgo the isotropy assumption
in his constitutive model. The viscous response is introduced by considering a strain-like tensor as an internal variable in the non-
equilibrium part of the free energy; a variable whose evolution is governed by a linear rate constitutive equation. When specialized
to the particular case of neo-Hookean solids, he shows that his theory is consistent with the Bilby-Kroner-Lee decomposition with
the internal variable related to the non-elastic contribution of the deformation gradient as in (Lubliner, 1985). It is worth mentioning
that Simo’s finite linear convolution model has never been demonstrated to conform to the second law. For a recent relevant study,
see Liu et al. (2021).

Le Tallec et al. (1993) assumed the multiplicative decomposition of the deformation gradient into elastic and viscous parts.
For incompressible viscoelastic solids, they assumed that both the total deformation gradient and the viscous deformation gradient
(or equivalently both the elastic and viscous deformation gradients) are volume preserving (the same assumption had been made
earlier by Leonov, 1976) They assumed an additive split of the free energy density into equilibrium and non- equlhbrmm parts
that depend on C and C respectively. Finally, they assumed a dissipation potential that explicitly depends on C ie, ¢ = ¢(C)
For fiber-reinforced viscoelastic composites, Nguyen et al. (2007) used an 1sotrop1c dissipation potential written in terms of C and
identical to that used by Reese and Govindjee (1998b). When written in terms of C the quadratic dissipation potential is expressed
in terms of two positive viscosities (deviatoric and volumetric).

Without any mention of the Bilby—Kroner-Lee decomposition, Holzapfel and Simo (1996) introduced an additive decomposition
of the free energy into a purely thermoelastic contribution and a non-equilibrium contribution; where, following Coleman and
Gurtin (1967), the latter is described as a configurational free energy dependent on a set of additional internal variables, akin to
strain, characterizing the irreversible viscoelastic response of the material. Starting from the generalized one-dimensional linear
Maxwell rheological model (Holzapfel, 1996), they introduced an evolution equation for the conjugate internal non-equilibrium
stresses following (Valanis, 1972).

Starting with the generalized linear Maxwell rheological model and generalizing the constitutive model of Lubliner (1985), Reese
and Govindjee (1998a,b) proposed an additive split of the free energy into an equilibrium and a non-equilibrium part. The
equilibrium part depends on the total deformation gradient and gives the free energy in the thermodynamic equilibrium state
at infinite time. The non-equilibrium part of the free energy depends however solely on the elastic part of the Bilby-Kréner-Lee
deformation gradient decomposition and eventually vanishes as the body relaxes in the thermodynamic equilibrium state. In the
framework of Holzapfel and Simo (1996), they effectively took the inelastic part of the deformation gradient to be the internal
variable of interest, and instead assumed its evolution to be given by a positive semi-definite quadratic dissipation potential;
a sufficient condition to fulfill the second law of thermodynamics. More recently, Kumar and Lopez-Pamies (2016) formulated
nonlinear viscoelasticity using a two-potential approach. They critically reviewed some of the previous works in the literature on the
kinetic equations and pointed out some inconsistencies regarding objectivity (material-frame-indifference) of some of the proposed
kinetic equations.

There have been attempts in the literature to model anisotropic nonlinear viscoelastic solids. Biot (1954) presented a Lagrangian
treatment of anisotropic viscoelasticity based on Onsager’s reciprocal relations (Onsager, 1931) using potential energy and
dissipation function and introduced operational tensors to relate stress and strain. For a viscoelastic solid reinforced by one family of
fibers (a transversely isotropic viscoelastic solid), Merodio (2006) assumed that the Cauchy stress depends on the fiber orientation,
the right Cauchy-Green strain, and its time derivative, i.e., 6 = 6(N, C, C), where N = N(X) is the unit tangent vector to the fiber
at the material point X. There have been several efforts in the literature in modeling nonlinear viscoelasticity of fiber-reinforced

2 Note, however, that the difference in the underlying conceptual rational for the use of the multiplicative decomposition of the deformation gradient in
viscoelasticity as opposed to anelasticity has been to the best of our knowledge so far ignored—or at best not explicitly discussed—in the literature. As we later
point out, this does have important consequences on the nature of the so-called intermediate configuration and the validity of the model otherwise.
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viscoelastic solids using the multiplicative decomposition of the deformation gradient (Nedjar, 2007; Nguyen et al., 2007; Liu et al.,
2019). They assumed separate multiplicative decompositions of the deformation gradient for the matrix and the fibers. Nguyen et al.
(2007) assumed that the equilibrium and non-equilibrium free energies have the same symmetry group. There have also been recent
efforts in modeling viscoelasticity of nematic liquid crystal elastomers (Wang et al., 2022). We should also mention that there are
several reviews of viscoelasticity in the literature (Schapery, 2000; Drapaca et al., 2007; Banks et al., 2011; Wineman, 2020; Sengiil,
2021).

This paper is organized as follows. In Section 2, kinematics of viscoelasticity is discussed. In particular, we assume the
multiplicative decomposition F = FF and the tensorial characters of F and F are carefully investigated. Additive decomposition
of the free energy density into an equilibrium and a non- equlhbrlum part is assumed. In Section 3, balance of mass, balance of
linear and angular momenta, and the kinetic equation for F are derlved and the constitutive relations are discussed. The balance
of linear and angular momenta, and the kinetic equations for F are derived using a two-potential approach and the Lagrange—
d’Alembert principle. The first and second laws of thermodynamics are discussed and used to find the constitutive relations for
viscoelastic solids. Material symmetry in viscoelasticity is studied in Section 4. In particular, it is seen that the symmetry group acts
on both the equilibrium and non-equilibrium parts of the free energy, as well as the dissipation potential. The representation of the
Cauchy stress in terms of the material integrity basis is derived for transversely isotropic, orthotropic, and monoclinic solids both
in the compressible and incompressible cases. The dissipation potential and its functional form for both isotropic and anisotropic
solids is discussed. Three examples of universal deformations of isotropic and anisotropic viscoelastic solids are analyzed in detail
in Section 5. Concluding remarks are given in Section 6.

2. Kinematics, free energy, and dissipation potential
2.1. Kinematics

Let us consider a body that is made of a viscoelastic solid. We identify the body with an embedded 3-submanifold B of the
Euclidean ambient space S = R3. We adopt the standard convention to denote objects and indices by uppercase characters in the
material manifold 5 (e.g., X € B) and by lowercase characters in the spatial manifold S (e.g., x € S). We denote by {X*}, and {x?},
the local coordinate charts on B and S, respectively; by {0 A= 333 } and {6 = , we denote the corresponding local coordinate
bases, respectively; and by {dX“} and {dx“}, we denote the corresponding dual bases. We also adopt Einstein’s repeated index
summation convention, e.g., u'v; := X, u'v;.

Motion is represented by a one-parameter family of maps ¢, : B — C, C S, where C, = ¢,(B) is the current configuration of the
body. A material point X € B is mapped to x = x(X,1) = ¢,(X) = @ (). The Euclidean ambient space has the flat metric g, which
has the representation g = g,, dx? ® dx”. For example, if {x?} are Cartesian coordinates, the metric reads off g = §,, dx* ® dx". Given
two vectors u,w € T, S—the tangent space of S at x, their dot product is denoted by (u, w), = u® w? g,,. Given a vector u € T, S
and a 1-form ® € T S—the cotangent space of S at x, their natural pairing is denoted by (®,u) = w(u) = w, u’. The spatial volume
form reads dv = v/det gdx' A dx* A dx>. Let V2 be the Levi-Civita connection of (S,g). We denote its Christoffel symbols by y%,. in
the local coordinate chart {x?}. The Euclidean metric g induces the Euclidean metric G on B. The natural distances in the body
before deformation are calculated using the metric G; this is the material metric and has the representation G = G,z d X4 ® d X B.
For example, if { X4} are Cartesian coordinates, the metric reads off G = 6,5 d X4 ® d X?; in cylindrical coordinates {R,0, Z}, it
reads off G=dR®dR+ R*dO ® dO +dZ ® dZ. Given two vectors U,W € T 'y B—the tangent space of 3 at X, their dot product
is denoted by (U, W) = UA W2 G . Given a vector U € Ty B and a 1-form Q € Ty B—the cotangent space of B at X, their natural
pairing is denoted by (2,U) = 2(U) = 2, UA. The material volume form reads dV = V/detGdX' A dX?> A dX>. Let V€ be the
Levi-Civita connection of (3, G). We denote its Christoffel symbols by I'4 5 in the local coordinate chart {X4}.

A local elastic deformation is measured with respect to a local stress-free state and induces change of distances. It may be
quantified by the derivative of the deformation mapping—the so-called deformation gradient, denoted by F(X,t) = To,(X) : TyB —
T, (x)Cr» which has components F*) = d¢? /0XA. The dual F* of F is defined as F*(X,?) : Ty, 00C = Tx B, {a, FU) (F*a,U),
VU € TxB,Va € T} S, and reads in components (F*)," = F*,. The transpose FT of F is defined as FT(X,1) : T,, (x,C, = Tx B,
(FU,u), = (U,FTu)g, YU € TxB, Yu € T xS, and has components (FT) , = G*3F’pg;,. Note that FT = G'F*g, where ()
denotes the musical isomorphism for raising indices. The right Cauchy-Green—also known as Green—deformation tensor is defined
as C := F'F, and reads in components C4 , = GAK F?;. g , F? ,. Note that C” agrees with the pull-back of the spatial metric g by ¢,
ie., C' = p*g = F*gF, where ()’ denotes the musical isomorphism for lowering indices. The Piola deformation tensor is defined
as B := C~! = F-!F~7, and has components B4, = (F-1)4, g®(F~1)C, G . Note that B agrees with the pull-back of the inverse
material metric g* by ¢, i.e., B! = ¢*g? = F-!g'F~*. The left Cauchy-Green—also known as Finger—deformation tensor is defined
as b := FF', and reads in components 5%, = F?,GABF¢,g.,. Note that b’ agrees with the push-forward of the inverse of the
material metric G# by ¢, ie., bf = ¢,G* = FGnF* The 1nverse Finger deformation tensor is denoted by ¢ := b™! = F-TF~!,
and has components C4, = g®(F )4, G,z(F 1)B,. Note that ¢’ agrees with the push-forward of the material metric G by ¢,
ie, ¢” = ¢,G = F*GF~!. The Jacobian of the motion relates the material and spatial volume elements as dv = JdV, and it

can be shown that J = y/det C = v/det g/ det GdetF.?

3 Denoting the Riemannian volume 3-forms corresponding to the Riemannian metrics g and G by H, and pg, respectively, they are related as ¢*p, = J pg.
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stressed local configuration stress-free local configuration

(a) Viscoelasticity (b) Anelasticity

Fig. 1. Local intermediate configurations in viscoelasticity and anelasticity. Blue and pink squares indicate locally stress-free and locally stressed configurations,
respectively. (a) In viscoelasticity, the local intermediate configuration is stressed, and the material manifold is the Euclidean manifold (3, G). (b) In anelasticity,
the local intermediate configuration is stress-free, and the material manifold is (/3,G), where G is the non-flat material metric, which is related to the Euclidean
metric G via pull-back.

The material velocity V of the motion is defined as V : BX Rt - TS, V(X,1) := 0p(X,1)/0t, and in components reads V¢ = 9o
The spatial velocity is defined as v : ¢,(B) X Rt - TS, v(x,1) = V((p," (x),1). The material acceleration is definedas A : BxRt - TS,
A(X,1) := DEV(X, 1), where D? denotes the covariant derivative along gy : t — @(X,1). In components, A? = % + 7% VO Ve,
The spatial acceleration is defined as a : ¢,(B) x R* - TS, a(x,f) := A((p,_l(x), 1) € T,S, and in components reads, a’ =
— + ﬁ _— + 7% VO Ve

2.2. Multiplicative decomposition of the deformation gradient

Let us consider a viscoelastic body in its loaded deformed state. If we proceed to unload the body, we observe an instantaneous
partial relaxation into an intermediate stressed state (that is embedded in the Euclidean ambient space), followed by a slower
relaxation back into its initial undeformed state. Note that in this experiment, the intermediate state may, in general, still contain
unresolved residual elastic strain. As a mater of fact, while the instantaneous partial relaxation is purely elastic, the slow relaxation
is, in general, not purely viscous and may involve some residual elastic deformation that might have been prevented from resolving
instantaneously.*

Instead of the global picture above, let us look at this thought experiment locally by considering a volume element in a viscoelastic
body in its loaded state, i.e., a small neighborhood of a spatial point—generally deformed and stressed. We let this volume element
be isolated and proceed to unload it independently of the rest of the body. We then observe an instantaneous purely elastic relaxation
of the total elastic strain in the isolated volume element into an intermediate stressed state,® followed by a slow viscous relaxation
into its initial undeformed state. The instantaneous local purely elastic unloading map is denoted by F-!. The slow final local purely
VlSCOuS relaxation map 1s denoted by Fl. Therefore, one has a local multlphcauve decomposition of the deformation gradient
F = FF. The two maps F and F are 1ncompat1b1e in general, i.e., global maps ¢, : B — Band ¢, : B— C, (or ¢, : B — C, and
@, : C, > () such that F=T @, and F = T, do not exist, in general. Notice that the local configuration that results after an
instantaneous local elastic unloading is not stress-free, in general (see Section 3.4). This is in contrast with anelasticity for which a
locally unloaded configuration is stress-free. This is the fundamental difference between viscoelasticity and anelasticity (see Fig. 1).

It should be noted that in the decomposition F = FF there are two possibilities:

() FX):TyB—TyB, F(X):TyB-T.C, (2.1a)

(i) F(X):TyB—T.C, Fx) :T,C—T.C, (2.1b)
where x = ¢(X). In the next section, we show that the second choice will have physically-inconsistent consequences, and hence, it
is not acceptable.

2.3. Additive decomposition of the free energy into equilibrium and non-equilibrium parts

We assume that the constitutive model of a nonlinear viscoelastic solid is described by a pair of functlonals (¥, ¢), where
Y =¥(X,0,F, F G, g) is the free energy density functional (per unit undeformed volume) and ¢ = ¢(X, O,F, F F G, g) is a dissipation

4 This is essentially an expression of the incompatibility of the elastic strain in the body.

5 The union of all such partially relaxed volume elements constituting the body does not, in general, result in a body embeddable in the Euclidean ambient
space. It can, however, be described as an abstract manifold with a non-trivial metric; and it is, in general, different from the partially relaxed intermediate
state embedded in the Euclidean ambient space discussed in the global experiment above.
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potential density (per unit undeformed volume)—or Rayleigh functional, where © = (X, 1) is the temperature field. In the literature,
it has usually been assumed that the free energy can be additively decomposed into an equilibrium part and a non-equilibrium
part: ¥ = ¥q + Pypg, Where the equilibrium free energy depends on the total deformation gradient, and the non-equilibrium free
energy depends on the instantaneous elastic contribution of the deformation gradient ¥ (Reese and Govindjee, 1998b; Kumar and
Lopez-Pamies, 2016). For either choice in (2.1), one may write ¥rg = Yro(X, 0.F, G, g); and material frame indifference® implies
that VPro(X,F,0,G,g) = lf’EQ(X ,0,C’, G). However, the functional form of the non-equilibrium free energy depends on the choices
in (2.1):

() Papg = PhoX.0.F.G.g), (2.2a)
(i) Pngo = NEQ(x 0,F,g), (2.2b)
where x = ¢(X) and § = @og;!. Considering (2.2a), objectivity implies that Y/IE:];Q = TI(\EQ(X ,0,C".G), where C = FTF.” For
the second choice, material frame indifference forces ¥? o be isotropic. More specifically, for (2.2b), spatial covariance (an

NEQ
assumption that implies material frame indifference) of the non-equilibrium free energy ‘I’ISIZIQQ holds if under a spatial diffeomorphism
& 1 S — S (such that T¢ is an isometry in the case of a Euclidean ambient space) one has

Vo (E(0).£,0.6,F.6,8) =W (x.0.F.9), (2.3)
where &,0 = o¢, £, F = T¢-F - (TE)™!, and &,g = (T¢)~! g(T&)~*. This implies that

e e ;
Yo X'+ 0: F.g) = Vo (x: 0. E°F.E'g), 2.9

where x' = £(x), for all such &, which hence means that T&)Q is an isotropic functional of .8 1t follows that the non-equilibrium free
energy is isotropic for any viscoelastic solid; and consequently, viscoelastic materials experience creep (deformation increase under
constant load) and relaxation (stress decrease under constant deformation) in an isotropic fashion. However, experimental evidence
contradicts this hypothetical situation since viscoelastic creep and relaxation have experimentally been observed to be anisotropic
in different classes of materials, e.g., skin in vivo (Khatyr et al., 2004), some single-crystal superalloys (Segersill et al., 2014), and
soft soil (S1va51thamparam et al., 2015). Therefore we conclude that the physically consistent decomposition is indeed (2.1a). From
here on, we assume that F(X ) TxyB — TyB, F(X ) : TyB - T,C and write

¥ = ¥(X,0,F.F,G,g) = o (X, 0,F,G,g) + Pypo(X.0.F.G.g). (2.5)
or equivalently

¥ = #(X,0,C",C",G) = Yo (X, 0,C", G) + Vo (X, 6,C°,G) . (2.6)

Remark 2.1. One may argue that (2 la) and (2.1b) are not the only possibilities for the direct decomposition F = FF. In the most
general case, one may assume that F : TyB — V, and F:p - T C, for some arbitrary vector space V. In such a case, we ought to
have ¥\gpo = PxNEo(X, O, F.m, g), for some metric m on V as F is a two- -point tensor. This then implies that ¥ygq is independent of
the material configuration B and its metric G. Hence, unless V is isometric to Ty B, it would follow that one may not enforce any
material symmetry constraint on ¥ygq- This would consequently preclude ¥ygq —and subsequently the material’s creep and viscous
relaxation behaviors—from reflecting the material symmetry, which is not physical. It follows then that ¥ has to be isometric to
Ty B. Therefore, one may assume that V = Ty B without any loss of generality.

Remark 2.2. Instead of looking at the deformed body and a local unloading, let us start with the stress-free undeformed body.
Consider a material volume element (a small neighborhood of a material point—undeformed and stress-free) and imagine that it is
locally loaded, i.e., it is isolated and deformed independently from the rest of the body. This element undergoes an instantaneous
elastic deformation followed by a slow viscous relaxation. It should be noted that both the elastically deformed intermediate state and
the final deformed state are generally stressed. This thought experiment motivates the [Teverse decomposition of the deformation
gradient: F = IFIF It should also be noted that if the reverse decomposition F = FIF is used, it may be proved—similarly to
Section 2.3—that IF : TyB - T,C, and I T.C - T,C. It is observed, in both the direct and reverse decompositions, that the elastic
deformation gradient is a two-point tensor. In the direct decomposition, the viscous deformation gradient is a material tensor while
it is a spatial tensor in the reverse decomposition. We expect this decomposition to lead to an equivalent theory of viscoelasticity.’
In this paper, we work with the direct decomposition.

6 Material frame indifference, objectivity, or invariance under the ambient space rigid body motions of ¥rq are equivalent in the case of a Euclidean ambient
space to ¥po(X,qF,0,G,g) = lI’EQ(X F,0,G,g) for all deformation gradients F and any arbitrary g-orthogonal second-order tensor q : T,.S - T, S, i.e., q"q = ids,
which is equlvalent to wrltrng q g =g, where q*g = q*gq.

7 Note that ¢’ = F*g = F*gF.

8 Note that material symmetries put constraints on S”( ) but not on 5”(2)

9 It has been shown that the direct and inverse decomposmons are equlvalent for anelasticity (Yavari and Sozio, 2023), and we expect a similar result for
viscoelasticity.
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2.4. Dissipation potential for isotropic and anisotropic viscoelastic solids

The dissipation potential complements the free energy functional ¥ to form the full constitutive model of a viscoelastic solid; it

is assumed to have the functional form ¢ = ¢(X, O,F, 12“ X f‘ ,G,g) and is such that the generalized force driving the evolution of the
viscous deformation is given by

%
6F
Notice that for a general viscoelastic solid, while the dependence of ¢ on F can be reduced to a dependence on the symmetric

B= @27

tensor C’ following from material frame indifference, i.e., ¢ = #(X,0, C, F F G), the dependence of ¢ on F and F cannot always
be reduced to a dependence on the symmetric tensors €’ and C’. This implies that the model used by Le Tallec et al. (1993) is

applicable to only a subset of viscoelastic solids. It is assumed that ¢ is a convex functional of F (Ziegler, 1958; Ziegler and Wehrli,
1987; Germain et al., 1983; Goldstein et al., 2002; Kumar and Lopez-Pamies, 2016), which is equivalent to

2% _ 0% (k- F ) 20, 2.8)
oF, 0F,

for any ﬁl and 1172

3. Balance laws

3.1. Conservation of mass

We denote the material and spatial mass densities by p,(X) and p(x, 1), respectively. The conservation of mass in local form reads
pJ = p,, which yields the continuity equation

dp .
— 4+ pdivv=0,
7 p divv

where div = div, denotes the spatial Levi-Civita divergence operator corresponding to the metric g.
3.2. The Lagrange—d’Alembert principle

The configuration of a viscoelastic body is given by a pair (¢, l(:‘), and we denote the configuration space containing all such pairs
by €. The governing equations of the viscoelastic body can be derived as the Fuler-Lagrange equations associated with a variational
principle defined as follows: Let us fix a time interval [t,,,], and look at paths ¢ : [ty,#;] — € in the configuration space such that
c(ty) and c(t,) are fixed. We define an action functional S on the space of paths as

1
S(c):/ /Sfdwz, 3.1)
g JB

where £ is the Lagrangian density per unit undeformed volume, defined as &£ =9 — ¥, where I = %pollVllé is the kinetic energy
density per unit undeformed volume. One may hence choose the following functional dependence!’

L= ZX.0V.C.C.G.p = 1p|VIE - 7(X,6.C.C.6). 3.2)

y p
Variations of the generalized configurations (¢, F) are represented by a one-parameter family (¢, ., F, ) of motions ¢, and viscous
deformation gradients F, . such that

((Pro’ Fo) = (¢.F). vt € [15,141, (3.32)
(e Frye) = w,o,F,O) Ve >0, (3.3b)
(@, 0 F, 0= (0, F,).  Ve>o0. (3.30)

Notice that 6¢ = dg, (X)/de|._ is a vector in the ambient space, whereas 5F = dll:“,Ve(X )/del,— is a material tensor, i.e., a tensor
in the material manifold. The Lagrange—d’Alembert variational principle states that the physical configuration of the body satisfies
the following identity (Marsden and Ratiu, 2013)"!

51 I v v 31 I
5/ /ngdt+/ /B : 5Fdth+/ /po(B,ﬁ(p)ngdt+/ / (T,&(p)gdAdt=0, (3.4)
1 JB ty JB tn JB 1y JoB

10 One instead may equivalently choose the functional dependence L-F (X,0,V,F, F, G,g).
11 1n this work, we assume that the temperature field remains unaltered by perturbations of the deformation mapping, i.e., §0 = 0. Otherwise, in the case of
thermoelasticity, we ought to consider variations of the temperature field—see Sadik and Yavari (2017a).
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for all variation fields ¢ and SF. The vector fields B = B(X,r) and T = T(X,t) are the body force per unit mass and the boundary
traction fields per unit undeformed area, respectively. It follows from the Lagrange—d’Alembert variational principle (3.4) that

// —6V+— 5C" + oL :6C° + ot 5G+a;? g | avar
1o c Ple] G og

| | (3.5)
+/ /f; : 51L7dth+/ /po<B,5(p>ngdz+/ / (T.69)gdAdt=0.
1w JB 1o JB 1o JoB
Using (2.7), (A.2), (A.4), and (A.8)-(A.10) as detailed in Appendix A, the above identity is simplified to read
i e P v P
/ / (=p A + D1V< ale Xid ) +p,B.60), + 2C”£F—* - % : 6F| dvar
0w JB aC Fled oCc oF (3.6)

// ( ;Z)N T, 60)gdAdt =0,

where N is the G-unit normal to d/3. Since (3.6) above is valid for all variations 6¢ and 6115, one finds the balance of linear momentum
together with its boundary conditions'?

Div [2F£ Lo ] +0,B=pA (3.7)
oC? ac
[2F£ Xid N =T, (3.7b)
oCP acb

where Div denotes the two-point Levi-Civita divergence operator.'® One also finds the kinetic equation governing the evolution of
the internal variable F:

9 e M v g (3.8)

The initial condition for the kinetic equation is Ii‘(X ,0) = I. For the deformation map, ¢(X,0) = i15(X) and dp(X,0)/0t = V,, where
1 is the inclusion map and V, is the initial velocity field of the viscoelastic body.

Incompressible viscoelastic solids. For an incompressible viscoelastic solid, one assumes both the total deformation and its purely
viscous part to be volume preserving (Leonov, 1976; Le Tallec et al., 1993), i.e.,

detg
det G
The free energy is hence augmented by the above constraints and their corresponding Lagrange multipliers, i.e., the free energy for
the incompressible solid is modified to read ¥, = ¥ —p(J —1)— q(.I 1), where p = p(X, 1) and ¢ = ¢(X, 1) are the Lagrange multlphers
corresponding to the constraints given in (3.9). Therefore, the Lagrangian (3.2) is modified to read &, = L+ p(J — 1) + q(J - 1.
Now, the Lagrange—d’Alembert principle reads

J =detF =1, J=detF=1. (3.9)

i v v v 1
/ /<5$+p5J|J:1 +qblly +B: 5F+p0(B,5(p)g> dth+/ / (T.6¢)gdAdt =0. (3.10)
B = 1 Jon
Consequently, by using (2.7), (A.2), (A.4), (A.8)-(A.10), (A.12), and (A.14) as detailed in Appendix A, (3.10) yields
Div [ o a'}/ pgﬂF_*] +p,B=p,A (3.11a)
[ oY a'P ] N=T. (3.11b)
och B
and
9 2 O fr _ g (3.12)

oF oC

Remark 3.1. Note that if one considers the equivalent functional dependence for ¥ in terms of F ie.,¥ =%(X,F, F G,g) =¥Y(X,F,
FF-! ,G, g), it may be seen that

280 O o OV (3.13)

oCP OF

12 The balance of angular momentum will later be discussed in Section 3.3.3.
13 For a two-point tensor with components Q%4, DivQ has components Q% , = Q% , + I' ,;, Q°F +y%, F" , Q4.
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This consequently transforms the kinetic equations (3.8) and (3.12), respectively, to

2 +—=0 for compressible viscoelastic solids, (3.14a)
oF OF

0¢> A . . . . .

— + —U =q4F for incompressible viscoelastic solids. (3.14b)
oF OF

Eq. (3.14a) is identical to Eq. (7-b) as it appears in (Kumar and Lopez-Pamies, 2016), (3.14b) is equivalent to Eq. (3.10) as it appears
in (Le Tallec et al., 1993).

3.3. Thermodynamics of viscoelasticity

3.3.1. The first law of thermodynamics
The first law of thermodynamics postulates the existence of a state functional, namely the internal energy, which satisfies the
balance of energy (Truesdell, 1952; Gurtin, 1974; Marsden and Hughes, 1983; Yavari et al., 2006)

d

= (£+ po||V||) /Upo((B,V)g+R)dV+/(W((T,V)g+H)dA, (3.15)

where € = &(X, N, C, éb,G) is the material internal energy density (per unit undeformed volume), R = R(X,1) is the heat supply
per unit mass, and H is the heat flux across a material surface; which may be written as H = —(Q,N)q, where Q = Q(X, 0,40, C,G)
is the external heat flux per unit material area, N is the G-unit normal to the boundary d/3, and © = (X, 1) is the temperature field.
In local form, the energy balance (3.15) reads'*

€=8:D-DivQ+p,R+ (DivP+p,(B—A),V),, (3.16)
where a dotted quantity denotes its total time derivative, P is the first Piola—Kirchhoff stress tensor—T = PN, S = F~!P is the second

Piola—Kirchhoff stress tensor, and D = %Cb is the material rate of deformation tensor.

3.3.2. The second law of thermodynamics
The second law of thermodynamics postulates the existence of a state functional, namely the entropy, which satisfies the material
Clausius-Duhem inequality (Truesdell, 1952; Gurtin, 1974; Marsden and Hughes, 1983)

—/ J\/dv>/ po—dv+/ ZdA, (3.17)

where N' = N (X,0, Cb,Cb,G) is the material entropy density (per unit undeformed volume). In localized form, the material
Clausius-Duhem inequality (3.17) reads

ﬁ:N@+@Div<%)—poR20, (3.18)
where 7 is the rate of energy dissipation.

3.3.3. Constitutive relations and balance laws
The free energy density ¥ is the Legendre transform of the internal energy density £ with respect to the conjugate variables of
temperature © and N, i.e.,

Y=£-0ON, (3.19)
where € = &(X, N, C*’,éb,G), N = N(X,0, Cb,éb,G), and ¥ = ¥(X, 0, Cb,éb,G). It hence follows from (3.18) that

ﬁ:S—T—@N+Din—é(d@,Q)—poRZO. (3.20)
Using (3.16) in (3.20) and expanding ¥, one finds

1 4 AR I AN T 1 .

=-S:¢C-=6- - — :C -ON - =(dO, DivP B-A),V), >0. 3.21

n=3 0° " 30 o N = 5(d6.Q) +(DivP + p,( ), Vg (3.21)
It can be seen that'®

L S & Y i & S

aC’ acb aC’

14 Note that the localization of the energy balance (3.15) is typically presented without the last term appearing in (3.16) that vanishes after imposing the
balance of linear momentum. At this point in this work, even though we have already proven the balance of linear momentum (3.11) in terms of the tensorial
derivatives of the free energy, we have not yet proven the Doyle-Ericksen formula (the stress constitutive equation) relating them to the stress tensors, and may
hence not yet 1mpose that the last term in (3.16) vanishes.

15 Note that €’ = F-*C’F-! — C’FF-! — F*FC’, which follows from €’ = F.C' =F*CF.
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and it follows that (3.21) is simplified to read

<N+ >@+ <s 29 _ 21’1*-1£ﬁ-*):C"+<DivP+po(B—A),V>g

ach (b
. 1 oC (3.22)
120 % g+ ¥ - Lo,y >0.
acb 2]
The inequality (3.22) above must hold for all deformations ¢ and temperature fields 6. Hence, it follows that'®
o
N =- 3.23
36 (3.232)
p oW P
§=24F _pTEQ , pp-1 TTNEQ oy (3.23b)
e ac’ Fre
The first Piola—Kirchhoff P, the Cauchy o, and the convected stress X tensors'” may hence be written as
ay aTEQ aq’NEQ v
pogtd¥ _ ot # > 3.24
EaF T8 ToF TP g : (3.24a)
0%, JY,
=2dF _27% 217, (3.24b)
Jdg J og J og
A o7, ,  0¥NEQ
L A e (3.24¢)

U400 T

Substituting the stress constitutive Eq. (3.24a) for P into (3.7) yields the balance of linear momentum in the two-point tensorial
form and the traction boundary condition:

DivP +p,B=p,A, (3.25a)
P,;N=T. (3.25b)

From (3.23b), and since C* = C, one finds the balance of angular momentum in two-point tensorial form
P*F*=F!P. (3.26)

In spatial form, the balance of linear and angular momenta and the traction boundary condition read

divo + pb = pa, (3.27a)
c* =0, (3.27b)
oljgn=t, (3.27¢)

where b = B°(/’z_l’ t= JTo(pt_l, and n = NO(pt“. In convected form, the balance of linear and angular momenta and the traction
boundary condition read

Divey 2 + ¢ (pb) = ¢} (pa), (3.28a)
I*=X, (3.28b)
215N = o't (3.28¢)

where Div(, denotes the convected Levi-Civita divergence operator, i.e., the divergence operator associated with the Levi-Civita
connection of the convected manifold (3, C?).

Within the scope of this work, we assume that the viscoelastic body undergoes an isothermal process, i.e., d® = 0; hence, using
(3.23) and (3.25), the Clausius-Duhem inequality (3.22) reduces to read

o, MNEQ o
i =20 —Q -
aC’

Incompressible viscoelastic solids. For an incompressible viscoelastic solid, the Legendre transform (3.19) is modified to take into
account the volume preserving constraints (3.9) as follows

X F>0. (3.29)

T =) =g —D)=E—ON. (3.30)

16 Following (3.8), one has 2C”(6‘1’NEQ/0C”)F‘ =Jdp(X,F, F,F,G g)/dF and recall that Q = Q(X,0,d0,C,G). Therefore, the coefficients of F and dO in the
inequality (3.22) depend on F and do, respectively; hence, they may not be identically equal to zero in spite of the arbitrariness of F and do. Also, recall from
(2.6) that #(X,0,C",C,G) = (X, 0.C",G) + Pypo(X. 6, C.G).

17 Recall that S=F~'P=JX = JF'oF*.
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Similarly to (A.11) and (A.13), one finds
JC £:¢" and J=JF*:F. (3.31)

One hence simplifies the constitutive relations (3.23) and (3.24) to read

I 3.32
00 (3.32a)
7 o, o 0o o
S= 2% —pC =2 EQ 4 o ﬂr* —pC, (3.32b)
Ple
o, Mo o
P=gt Tl _prf P = gf 2 gf Tt pgfpr (3.320)
o o,
6= 2% —pgt=2 B;Q +2 ;;Q — e, (3.32d)
p o 0PNEO v
>= 2% _pC =2 EQ 4 op-! E”;Q F* — pCt. (3.32¢)
aC
The Clausius—Duhem inequality (3.29) is rewritten as
., 0P, v i v
=20 —EQF% 4 gF* > 0. (3.33)

aC’

Remark 3.2. From the convexity of the dissipation potential ¢ as defined in (2.8), if one assumes that for fixed F, ¢ is minimized
for F = 0, it follows that

% .
6F
which is consistent with the Clausius-Duhem inequality stating that the rate of energy dissipation is non-negative, i.e., 77 > 0.8

(F> 0, (3.34)

From here on, consistent with the isothermal process assumption, we may drop the temperature dependance in both the free
energy and the dissipation potential, i.e., ¥ = ¥(X,F, F G,g)=¥x,C, Cb G) and ¢ = ¢(X,F, F F G, = $(X,C, F F G).

3.4. Stress in the intermediate configurations in anelasticity versus viscoelasticity

Anelasticity. In anelasticity, the energy density has the form W = W (X, F G, g). The first Piola—Kirchhoff stress is calculated as

$OW _ g OW OF _ oW by

P-g 4 (3.35)
JoF oF oF 3F
In components P94 = g W /B> M (F-HA - Stress in the intermediate configuration is calculated as
P=g | oo, (3.36)
OF lizia

as oW /0F vanishes in the absence of a local elastic deformation.

Viscoelasticity. In viscoelasticity, recall that the free energy density is written as ¥ (X, F, F G,g) = Pro(X,F,G, g) + Pypo(X, F G,g),
and hence stress is calculated as

ibg dY, y
g dl _ g B | TINEQ fo (3.37)
dF OF oF
Stress in the intermediate configuration is then calculated as
2%, dY, v 2%,
Pou=gin| =g ego|  Frog—f| (3.38)
F=id F=F oF  [f=ia F=F

e
as 0¥ygq/JF vanishes when there is no local elastic deformation. This clearly shows that in viscoelasticity the local intermediate
configuration is, in general, not stress-free (see Fig. 1).

Remark 3.3. If a small neighborhood of a material point in the current configuration is unloaded, the instantaneous unloaded length

is calculated using the metric F, G. However, this is not the natural length; the natural length is found in the reference configuration
5

and is measured by G. In the intermediate configuration, the natural length is calculated using the metric F,G. As the intermediate

18 As a matter of fact, (3.34) may be alternatively found following (3.8) and (3.29)—or (3.12) and (3.33) for the incompressible case.

10
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Fig. 2. Standard solid: ¥yo, Pxpo, and ¢ are the nonlinear analogues of Egg, Eygg, and 7, respectively.

U
configuration is not stress-free, the metric F,G is not of much physical significance and does not appear anywhere in the present
theory. However, there is another metric that is of physical significance for the non-equilibrium free energy, see Section 4.2.1.

Remark 3.4. Let us consider a viscoelastic body that undergoes a motion in the time interval [0, o). At time 7 = T, the applied
loads (and/or boundary displacements) are held fixed. Thus, for t > T, F(X,t) = F(X,T) =: F(X). However, note that the elastic
and viscous deformation gradients are still time dependent, i.e.,

FOO =FXCnF(X.n,  1>T. (3.39)
~ 2 o ~a 24 . 4 v
In terms of the physical components, F(X) = F(X,)F(X,1), where F , = 1/g,,GA F*,, F , = \/g,,GAF°,, and F 5 = F,

(no sum[rnation on repeated indices) (Trueesdell, 1953). We are interested in the evolution of F and F when ¢t — . Recall that
¥Y(X,F.F,G,g) = Vpo(X,F,G, g) + Prpo(X, F, G, g), and that stress has consequenctly the following additive decomposition

W0 0PNgo v
P=Py+Pug. Pro=€—r. Puo= gﬁ? . (3.40)

For t — oo, P = Py, i.e., Pygg = 0. This implies that

o,
NEQ _o (3.41)

lim -

Therefore, lim,_, f?(X ,t) = I, and hence lim,_, IIIT(X 1) = ﬁ(X ). This is the nonlinear analogue of what is observed in a stress-
relaxation experiment for the standard solid model (Zener, 1948) that is briefly revised next (see Simo and Hughes, 2006),
see Fig. 2. The non-equilibrium stress has the following relation with the viscous strain: Pypo(f) = #1é,(). From equilibrium,
Pyeo(1) = Engg €,(1) = Engg (€() — €,(1)). Thus, from these two equations, one obtains

e+ Lo, =Ltey, =1 (3.42)
n n Engg

Also, note that P(t) = Pag (1) + Pypo(?) = Egg €(t) + Exgg (€(1) — €,(1)) = Ee(t) — Exgq €,(t), where E = Egg + Eygo- Now, suppose that
the total strain is fixed, i.e., e(t) = ¢, and ¢,(0) = 0. Hence, ¢,(t) = ¢, [1 — e’i], and €,(t) = ¢ e’f. It is observed that lim,_, , €,(1) =0
and lim,_, o, €,(1) = €.

4. Material symmetry
In this section, we discuss material symmetry in both anelasticity and viscoelasticity.
4.1. Material symmetry in nonlinear anelasticity
For an elastic solid, let us assume an energy functional of the form W = W(X,F, G,g), where g is the metric of the Euclidean

ambient space and G is the induced metric on the body, which is the material metric in the absence of eigenstrains. The material
symmetry group Gy at a point X with respect to the Euclidean reference configuration (5B, G) is defined as'’

K. W(X.F,G 8 = WX KFKG §=WUX,F.G§, VKely<OrthG), (4.1)

for all deformation gradients F, where Orth(G) = {Q Ty B - TxB| Q*GQ = é}. Note that K*F = FK and K*G = K*GK = G.
Thus

W(X,FK,G,§) = W(X.F.G.§), VKeCy<Orth(G). (4.2)

19 G, < Orth(G) indicates that Gy is a subgroup of Orth(G).

11
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K'F = K'FK K'F = K-'FK

(a) Viscoelasticity (b) Anelasticity

Fig. 3. The actions of the symmetry group on the total, elastic, and non-elastic (anelastic or viscoelastic) deformation gradients. The blue and pink squares
indicate locally stress-free and locally stressed configurations, respectively.

For an anelastic body, F = FF where F and F are the local elastic and anelastic deformations, respectively. Energy explicitly
depends on the local elastic deformation, i.e., W = WX, F G, g). Yavari and Sozio (2023) defined the following energy functional®®

ea a o

W(X,F,F,G,g) = W(X,FF,F,G,g) = WX,FF!,G,2) = W(X,F,G.g). (4.3)

The following is Eq. (3.20) in (Yavari and Sozio, 2023):

aa a o

WX, FF.F, G, 8 = WX, F,G 8 = WX, FK, G, 8 = WX, FKF,F,G, 8 = W(X,FF'KF, F, G, )

i . 4.4
=W(X.FK,F,G,8), VKegy.

The first equality is the deﬁnmon of W, and the second equality is a consequence of material symmetry (4.2). The third equality
is incorrect; instead of F K*F K- lFK should be used in the second and the third dependent variable entries (see Fig. 3b). Thus,
their Eq. (3.20) should be corrected to read
W (X,FF,F,G,8 = W(X,F, 6,8 = W(X,FK, G, = W (X, FKK~'FK, K" 'FK, G, %)
(4.5)
=W(X.FK.K'FK.G.3), VKedly.

Yavari and Sozio (2023) suggested a connection between (4.4) and Noll’s rule; but it turns out that the corrected Eq. (4.5) bears
no such connection. Noll’s rule states that under a material diffeomorphism, the symmetry group of an elastic body transforms
naturally, i.e., through push forward. More specifically, consider a transformation F(X) : TyB — Ty B. Let us denote the material
symmetry group of the elastic solid with respect to (Ty B, G) by Cy, and that with respect to (T B, F,G) by Gy. Noll’s rule says that
Gy = F.Cy = FGyF~'. However, notice that (4.5) has nothing to do with Noll’s rule. It simply tells us how symmetry group acts
on deformation gradient and the anelastic local deformation. It should be noted that Egs. (3.21)-(3.23) in (Yavari and Sozio, 2023)
are incorrect as well. However, what follows after their Eq. (3.23) is correct. This mistake did not affect any of the conclusions in
section §3.5 of (Yavari and Sozio, 2023).

4.2. Material symmetry in nonlinear viscoelasticity

The material symmetry group Gy of a viscoelastic solid with the equilibrium free energy functional ¥pg = ¥go(X,F, G, g), the

non-equilibrium free energy Pneg = Pnrg(X F G, g), and the dissipation potential ¢ = ¢(X,F, F F G, g) at a point X with respect

20 In (Yavari and Sozio, 2023), § was used for the metric of the Euclidean ambient space and g was reserved for the metric of the spatial intermediate
configuration.

12
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to the Euclidean reference configuration (53, G) is defined as?!

K*TEQ(X, F.G, g) = TEQ(X, FK., G, g) = TEQ(X, F.G, g) B
K. Pypo(X. F. G.g) = Pypo(X, FK, G, g) = po (X, F, G, ), VK € Gy <Orth(G), (4.6)

K,4(X.F.F.F.G.g) = ¢(X.FK, K*F,K*F,G,g) = ¢(X.F.F.F.G.g),

v

for all deformation gradients F and viscous deformation gradients l<v‘, where K*F = K~'FK (see Fig. 3a) and Orth(G) =
{Q: TyB - TxB|Q*GQ=G}.

4.2.1. Structural tensors, viscous metric, and viscous structural tensors

The u"* power Kronecker product (Q) . of a G-orthogonal transformation Q for a u'™ order tensor A is defined as ((Q) ﬂA)’i Ay =
Q’XIA1 QAuA‘ AA1Au In particular, (Q),, (W, ®...0W,) =QW,;®...Q QW, , where W, € Ty B, i = 1,...,m. A symmetry group
G < Orth(G) may be characterized via a finite collection of structural tensors A; of order y;, i = 1,..., N as follows (Liu, 1982;
Boehler, 1987; Zheng and Spencer, 1993; Zheng, 1994; Lu and Papadopoulos, 2000; Mazzucato and Rachele, 2006)

QEeG<OrthG) = (Q), A= 4, Vi=1,..N. 4.7)

In other words, the set of structural tensors is a basis for the space of G-invariant tensors. We denote the collection of structural
tensors by A. When A is added to the arguments of the (free or dissipation) energy functional, the energy functional becomes
an isotropic functional of its arguments—the so-called principle of isotropy of space (Boehler, 1979). Now, the energy functional
being isotropic, the corresponding set of isotropic invariants can be used to simplify its dependence on its arguments. A theorem
proved by Hilbert in 1890 (Hilbert, 1993) (see also Olive et al., 2017) tells us that any finite collection of tensors has a finite
set of isotropic invariants—the integrity basis for the set of isotropic invariants of the collection (Spencer, 1971). Therefore, since
the free energy functionals ¥go and Pygq are isotropic functionals of symmetric tensors, i.e., ¥gq = lIA/EQ(X ,0,C" Ay, ..., Ay, G),
and ¥Yypo = Papo(X, O, (. A,..... Ay.G), one writes Yo = ¥(X.I,.....1,), where {I,,....1,} is the integrity basis for the set of
isotropic invariants of {Cb,Al, ...,Ay}; and PrNEQ = P(X, fl, ,fm), where {fl fm} is the integrity basis for the set of isotropic
invariants of {éb A, .. Ay } However, the dissipation potential ¢ = $(X,0,C*, Ay, ..., Ay, F.F, G) is an isotropic functional of the

symmetric tensors {Cb, A, ... A N} and two generally non-symmetric material tensors F and le; hence, the classical representation
theorems cannot be used. ’

Next, we show that the dependence of the non-equilibrium feree energy on F can be reduced to a dependence on the total
deformation gradient F. From (2.5), recall that ¥neo = Paeg(X, O, F, G, g). For an anisotropic solid we have a collection of structural
tensors denoted by A. Let us add this collection to the list of arguments of the non-equilibrium free energy and write

Pneg = Preo(X. 0.F,G, A, 2). (4.8)

Now, ¥ygq is a materially-covariant functional (Lu, 2012; Yavari and Sozio, 2023), i.e., for any invertible linear transformation
T : TyB — Ty 3, one has

Ppo(X, 0, TF, T*G, T* A, g) = Pypo (X, 0,F,G, A, ). (4.9)
Noting that F= lv?‘*F, and choosing T = ﬁ‘, material covariance implies that

Prpo(X, 6, F, G, A, g) = po(X, 0, F'F,F.F*G,F* A,g) = Pypo(X, 0.F, G, A, 9), (4.10)
where G = F*G and A = F* A. Thus, in summary, we have

¥ = ¥(X,0,F,F,G, A g) = Vo (X,0,F,G, A,g) + Pypo(X, 6,F,G, A, g). (4.11)

v
This means that the non-equilibrium free energy is a function of the total deformation gradient as long as the viscous metric G and
v 55
viscous structural tensors A are used. Objectivity implies that*>

¥ = P50 (X, 0,C", G, A) + Pypo(X.0,C, G, A). (4.13)

Next, we use the integrity basis for isotropic, transversely isotropic, orthotropic, and monoclinic viscoelastic solids, and explicitly
write their respective stress constitutive relations and kinetic equations.

2L G, < Orth(G) indicates that Gy is a subgroup of Orth(G).
22 This is consistent with (2.6) when structural tensors are included. First, note that C = F,C’. Thus

Ppo = Prpo (X, 0, €, G, A) = Ppo (X, 0,F,C", G, A) = Yo (X, 0, C F*G, F* ) = V(X 6. C", G, A). (4.12)

13
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4.2.2. Isotropic solids
Stress constitutive equations. For isotropic solids, ¥go and Pygg depend only on the principal invariants of C" and C?, respectively,
ie.,

Yoo =¥(X. 1), 1. I3),  ¥npo = P(X, 11,1, 13), (4.14)
where?®
I, =trC=C",, 12:1(12-tr02):1(12-cABCBA), Iy =detC,
2\t 2 V1
e e e e 1 e e 1 e e e e e (4'16)
f=uC=C1,, 12:§<If-tr02):§(1§-cABcBA), iy = det C.

Note that ¢’ = F*C? = Il;‘*éblu?, or equivalently C” = F*C’F~'. The second Piola-Kirchhoff stress is written as

P d¥ d¥ o7, o, G ayf s WPygo v
s=2d¥ _,T7EQ  ,TTNEQ _,TTEQ  ,TINEQ 0CT _ 5 TTEQ ot TTNEQ o (4.17)
ac’ ac ac ac’ aCr  aCP acb Ch

In terms of the principal invariants, one writes

3 e
‘”’ 22 -—+F‘ [z i] - (4.18)

j=1 0Cb
where
7 X.I,.1,. 1) = %7 ¥ =000 iy =22 =123 (4.19)
J a1,
Therefore*
S =2, G+ 27, (L, CF = ;€ 4 20 1, CF 4+ B |2, GF 42, (L, CF = [5,E7%) 42 [ CF| B (4.20)

Note that F~!G*F~* = F*G¥, F-|C*F~* = F*C¥, and F~!C-#F~* = F*C2. Thus
S =2W, G' + 2¥, (I, C* — I; C%) + 20, I, C* + 2%, F*G* + 27, F* (fzé-n - f3é—2”) +20, [, G (4.21)

The Cauchy stress is related to the second Piola—Kirchhoff stress as ¢ = \/LTFSF*. Recall that FG'F* = ¢,G = b, FCfF* =
3
FC'G'F* = FF'FT)FTg’ = g¥, and

FC¥F* =FC'C"'G*F* =FF 'F HF'FF'g") =F TF g = cf. (4.22)
Thus

o= \/L_ (L7, + 1) ¢ + 7, - 17, ¢ + Lf[ﬁl G+ (LT, + I, 7,) €4 = 1,7, €%
T T
23 _ L _vR _ L (4.23)

- [(1211/2+I3W3 +12W2+131113)g"+af/l b+ b - [P, o —Iﬂ@éﬂ] .
I3
For an incompressible isotropic solid I5 = ;3 =1, and hence
o=—pg +2¥ b +2F, bf — 2%, ct — 2%, &, (4.24)

where p is the Lagrange multiplier associated with the incompressibility constraint J = /I3 = 1.
Dissipation potential. For an isotropic viscoelastic solid, the dissipation potential must be invariant under the orthogonal group, i.e.,
H(X,FK,K~'FK,K"'FK,G,g) = ¢(X,F,F,F,G,g), VK € Orth(G), (4.25)

for all deformation gradlents F and viscous deformation gradients F. Notice that even for an isotropic viscoelastic solid, the
dependence of ¢ on F and F cannot always be reduced to a dependence on the symmetric tensors ¢’ and Cb Let /12 (i=123)
be the eigenvalues of the symmetric tensor C*. Let us denote the corresponding unit eigenvectors by W, (i = 1,2, 3). Thus,

23 The characteristic polynomial of C reads:

PB-L A +LAi-1,=0, I,=trC, I, =(detC)trC™', Iy =detC. (4.15)

The Cayley-Hamilton theorem tells us that C*> -1, C>+ I, C—I; I = 0. Multiplying both sides by C~! one concludes that I; C~! = C*—1, C+1, I This, in particular,
implies that I, = 1 (I —tr C?).
24 See Appendix B for the derivatives of the principal invariants of C and C.
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C'=22W, @ W, + 22W, ® W, + 22W; ® W;. The dissipation potential will be a functional of I,,I,, I3, and the following 18
spectral invariants (Shariff, 2022):

Fy=(W,FW))s,  F;=(W.FW))¢, ij=123, (4.26)
Le, =, I, I3, Fyy, Fia, ..., Fyg, Fry, Frg, o Fp).®
Remark 4.1. If one assumes that the dissipation potential has the functlonal form ¢(X, F F G), then for an isotropic solid, ¢ is an
1sotrop1c functlonal of two non-symmetric material tensors F and F. Let u; (i =1,2,3) be the eigenvalues of the symmetric tensor

Cﬁ, where € = FTF. Let us denote the corresponding eigenvectors by U; (i = 1,2,3). Thus, Cf = Uy U +4,U, @ Uy + 3 U3 @ Us.
The dissipation potential will be a functional of the following 18 spectral invariants (Shariff, 2022):

=(U;,FU))g, Fij =(U,FU))g, i,j=12,3, (4.27)
ie, ¢ =¢(F . Fipn.... Fy Fyp Frps o Fp).

Kinetic equation. Following (B.14), one may write

o, ~ol, .~ o, ~ ol ~e.
o _TNR _g 2§, 02 5 05 gy, (IZC - C—Z”)+~P313c—ﬁ. (4.28)
aC’ aC’ aC aC’ Ple
Hence, it follows from (3.8) that the kinetic equation for compressible isotropic viscoelastic solids reads*
%_Neb ﬁvi*_N e _e - ”,*_ e~ v L
= = 2%, C’GHF* -2, | L1 - LGCTH F* — 2L, 7 F* = 0; (4.30)
JF
and in the case of incompressible isotropic viscoelastic solids, the kinetic equation (3.12) is written as
0 ~ e v ~ [e e v v
9 o, &G -2, [121 - Gc-ﬂ] F* = gF (4.31)
JoF

4.2.3. Transversely isotropic solids
A transversely isotropic solid at a material point X € 3 has a material preferred direction that is specified by a unit vector N(X),
which is normal to the plane of isotropy at that point.

Stress constitutive relation. The equilibrium and non-equilibrium free energies become isotropic functionals of their arguments
when the structural tensor A = N ® N is added to the list of their arguments (Doyle and Ericksen, 1956; Spencer, 1982; Lu and
Papadopoulos, 2000).”” Equivalently,

Voo = P(X. 11, I, I3, I 1), Wapo = P(X. 1y, Iy I, Iy, 1), (4.32)
where
I, =trC=C4,, I, = det C tr C™!' =det(CAp)(CHPp, I = detC = det(C* p), 433)
I,=N-C-N=NANBC,,, Is=N-C>.N=NANBCg, CM |
and
I =trC=CA,, I, =det € tr €' = det(CA ) C )P ). I = detC = det(C4 ), 430

I,=N-C-N=NANBC,,, I;=N-C>-N=NANBC,, CM,.
Note that for the extra invariants
ol, ol

—2 =N®N, — =N® (G'C"N) + (G*C’N) ® N, (4.35)
3Ch 3Ch ( )+ ( )
and
ol ol . .
—2=N®N, —=N®(G'CN)+(G'C’N)®N. (4.36)
oCch oCh

25 This functional form essentially means that, even in the isotropic case, while the dissipation potential depends only on the three principal invariants of
the right Cauchy-Green deformation tensor instead of its 6 components, there is no reduction in its dependence on the non-symmetric tensors F and F; it still
depends on all their 18 components. Note, however, that when these components are written with respect to the eigenbasis {W,,W,, W, }, they are invariant
under the orthogonal group.

26 Similarly to what was observed earlier in Footnote 23, the Cayley-Hamilton theorem for C tells us that qu1— foI“ = I,L — €2, which then changes the
kinetic equation to the following equivalent form

@di

— 2P, O G + 27, [c - C"] GHF* — 20,7 F* = 0. (4.29)
oF

27 The functionals ¥po(X, 0, F, A, G), ¥ypo(X.0.F.A,G), and ¥(X,0,F.F,A,G,g) are isotropic.
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The second Piola—Kirchhoff stress has the following representation

g ] e
_ZE 22 jﬁw [Z‘Tzlpjg]p . (4.37)
where
¥, =W (X, 1 0y, 0y, T5) o= Z?, P =P (X 1,1, 1,1, I5) := ; i=1,..5 (4.38)
J
Thus
S=2¥,G"+2¥, (I, C* = I, C) + 29, I, € + 27, N @ N + 27’5 [N ® (G'CN) + (G'C'N) ® N]
+ 20, BG4 27, (L P CF - [ C%) 2 [ € 4 2, B NN
+ 2 ! [N ® (G'C'N) + (G'C'N) ® N] F* .
=27, G} 4+ 20, (I, CF — [, C2) + 27, I, CF + 2P, N® N + 274 [N@(GﬁchH(G"CbN)@N] (*:39
+2F, F*G? + 27, (12 F*c-” -1 F*C‘Zﬂ) +2, [ F*C* + 20, (F-'N) ® (F~'N)
+ 2, [(i«*-lN) ® FIGIC'N) + (FIGIC'N) ® (ﬁ-lN)] .
Note that F [N ® (G*C’N) + (G*C’N) ® N] F* = n ® F(G*C’N) + F(G*C’N) ® n. Also notice that
F(G*C’N) = FG*F*gFN = (FG*F*)gn = bgn. (4.40)
Similarly
F(G'C'N) = bgh, (4.41)
where i = FN. The Cauchy stress has the following representation
P { <12?2+I3¢3 +f257'2+f3f’3)g”+97] b+ bt - LW, - [ F, ¢
vh (4.42)
+?4n®n+?5 [n®(bngn) + (bngn) ®n] +§’4ﬁ®ﬁ+§’5 [ﬁ@ (i)ﬁgﬁ) + (i)ngﬁ) ®ﬁ] } .
For an incompressible isotropic solid, I3 = 193 =1, and hence
6 =—pgh+2%, bt + 20, bt — 20, ¢! 2%, & + 2P, n@n +2¥5 [n@(bﬁgn)ﬂb“gn) ®n] +2F,0®n 45

+ 275 [ @ (bheh) + (b @ 4
where p is the Lagrange multiplier associated with the incompressibility constraint J = \/I_ =1.

Dissipation potential. For a transversely isotropic viscoelastic solid, when the structural tensor A = N® N is added to the list of the
arguments of the dissipation potential ¢, it becomes an isotropic functional of its arguments ¢ = ¢(X, C, le le A, G, g). Although one
may not use the standard representation theorem as for the free energy functionals, the dissipation potential will be a functional of
some standard invariants and a set of spectral invariants, similarly to the dissipation potential of isotropic viscoelastic solids.

Kinetic equation. Following (B.14) and (4.36), one may write

%, ~ol, ~ o, ~ oIy ~ oI, ~ oI
£=$EQ P + P+ P P
aC? aC? oC? 0Cb 6Cb oCh aCch (4.44)

=G+ 7, (fzé-ﬁ - 130—2“) + P, LCT + FNQN+F(N® (CN) + (CN) ® N) .

Hence, it follows from (3.8) that the kinetic equation for compressible transversely isotropic viscoelastic solids reads

9 o, EGHE -2, [f21 - éGé‘ﬂ] ¥ 20 F - 2F,CN@FIN
oF (4.45)

— 2, [ébN ® F'EN) + (GC2N) ® ﬁ—lN] =0;
and in the case of incompressible transversely isotropic viscoelastic solids, the kinetic equation (3.12) is written as

@—24/ CGIF™* - 27, [ LI - GC*| F* - 2F,O’N@ FIN - 27, ("N ® (F!CN) + (GC?N) @ FIN| = gF* 4.46
2 |12 4 5 (4.46)

OF
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4.2.4. Orthotropic solids

An orthotropic solid at a material point X € B has reflection symmetry with respect to three mutually perpendicular planes
with G-orthonormal vectors N;(X), N,(X), and N5(X), i.e., (N;(X), N;(X)g = ;.- A choice for structural tensors is the set
A={A; =N, ®N,A;, =N, ®N,,A; =N; ® N3 }. However, A| + A, + A; =1, and hence only two of them are independent.

Stress constitutive equations. One can take A, and A, to be the independent structural tensors of the set A. When these two tensors
are added to the list of the arguments of the equilibrium and non-equilibrium free energies, they become isotropic functionals of
their arguments.?® This is equivalent to the free energy functions each depending on seven invariants:

Voo = P(X. 11, I I3, I Is, I 1), Wapo = P(X, 1y, Dy, I, Iy, 05, 0, 1), (4.47)
where
I, =trC, I, =detCtr C!, I3 =det C,
I,=N;-C-Ny, Is=N;-C*-N;, (4.48)
Ig=N, - C-N,, I, =N,-C?-N,,
and
flztré, Iez=detétré‘l, Ie3=deté,
I,=N,-C-N,, I;=N,-C2-N,, (4.49)
Ig=N,-C-N,, I,=N,-C2-N,,

The Cauchy stress has the following representation

o=—2 { <12¢2+I3?3 +f25'72+le3§’3)g”+9_/1b"+¥~’1i)”—13?2c”—f3§’25”

N

+2¥,n, ®n, +2%; [nl ® (b'gn)) + (bgn)) ® nl] +2¥¢n, @n, + 2, [nz ® (b'gn,) + (bign,) ® nz] (4.50)
+27, 6, @y + 2, [ﬁl ® (bgh) + (b'gh,) ® ﬁl] +2F 1, ® by + 2, [ﬁz ® (bgh,) + (b'gh,) ® ﬁz] } ,

. .
where n; = FN;, n, = FN,, and

o

— — oY ~ ~ e e e e e e e .
Tj=Tj(X7llaIZ;I3»I4’ISsIﬁaI7) :=ﬁ’ Tj =’I’j(X,Il,IZ,I3,I4,15,16,I7) Z=§, j=1..,7. (4.51)
J s
J
For an incompressible isotropic solid, I3 = Ie:; =1, and hence
o=—pgh+20 b+ 27, b — W, — 2, &
+2¥,n; @n, +2¥; [n1 ® (b'gn)) + (bPgn)) ® nl] +2¥ n, @n, + 2, [n2 ® (b'gn,) + (b'gn,) ® “2] (4.52)

+2F, 0, @, + 2 [ﬁ] ® (bgh,) + (bgh,) ® ﬁ,] + 2 hy ® 1y + 2, [ﬁ2 ® (bigh,) + (bgh,) ® ﬁz] ,
where p is the Lagrange multiplier associated with the incompressibility constraint J = /I3 = 1.
Dissipation potential. For an orthotropic viscoelastic solid, when two elements of the set of structural tensors A are added to the list of
the arguments of the dissipation potential ¢, it becomes an isotropic functional of its arguments, e.g., ¢ = d(X, C’,F, F.A,A,,G, 9.
Although one may not use the standard representation theorem as for the free energy functionals, the dissipation potential will

be a functional of some standard invariants and a set of spectral invariants, similarly to the dissipation potential of the isotropic
viscoelastic solids.

Kinetic equation. Following (B.14) and (4.36), one may write

O, o, ~ o, ~ o, ~ oI, ~ ols ~ oI, ~ oI
£=$EQ=7’171 P2+ V2 + P+ + P+ —
acr  aC ac aC» aCP aCP aCP oCP oCP

. f ey e el .~ - . . 4.53
=P, G+, (Izc-‘i - 130—2“) + P, L,CP+ PN, @N, + P (N, ® (CN)) + (CN)) ® N)) (4.53)

+ PN, ® N, + 7,(N, ® (CN,) + (CN,) ® N,).

28 The functionals ¥po(X,0.F,A,A,. G), Pypo(X. 0.1, A, A,,G), and ¥(X,0,F.F,A,.A,.G,g) are isotropic.
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Hence, it follows from (3.8) that the kinetic equation for compressible orthotropic viscoelastic solids reads

9 o, EGHE -2, |1 - L,GEH] b — 21,73 F
JF
~ ey v = e Ve o v (4'54)
- 2%,CN, @ F!N, — 2%(C"'N, ® (F'CN)) + (GC2N))  F'N))
— 2%, ("N, @ F'N, — 27,(C’N, ® (F'CN,) + (GC2N,) @ F'N,) = 0;
and in the case of incompressible orthotropic viscoelastic solids, the kinetic equation (3.12) is written as
a—‘f 29, GHF — 2, [1”21 - Gé—ﬂ] F* — 2F,0N, @ FIN, - 27, (C'N, ® (F~'CN,) + (GC2N,) @ FIN))
oF (4.55)

— 27, ("N, @ F7IN, — 2,(C’N, ® (F-'CN,) + (GC?N,) @ F~'N,) = gF* .

4.2.5. Monoclinic solids
A monoclinic solid at a material point X € B has three material preferred directions {NI(X ), No(X), N3 (X )} such that N; -N, #0
and Nj is normal to the plane of N; and N, (Merodio and Ogden, 2020).

Stress constitutive equations. The equilibrium and non-equilibrium free energies of a monoclinic solid depend on nine invari-
ants (Spencer, 1986):

Voo = PpoX. 1) I I3, Iy, Is I I7. 05, Ig) . Wngo = Ppo(X. 1y, 1y, I3 Iy 15, I, 1, I, 1) . (4.56)

For each free energy, the first seven invariants are identical to those of orthotropic solids (4.48) and (4.49). The three extra invariants
are

Ig=IN,-C-N,, Iy=1IN,-C:N,, Iy=I,=1>, I=N,-N,. (4.57)
Note that

s _ L7 (N, ® N, +N, ®N,) Mo _y ol _ L7 (N, ® N, +N, ®N,) oly =0 (4.58)

¢ 2 1 21t N 1) 5C , 2o 2 1 2t N 1) 56 : .

The Cauchy stress has the following representation

6=—— { (12?2+13?3+f297’2+f3¥~’3)g”+?1bﬁ+¥~’1i)ﬁ—l3%cﬁ—f3¥~’zé”

+2¥,n, @n, +2¥; [nl ® (b'gn)) + (bPgn)) ® nl]
+2¥¢n, ®n, + 27, [n2 ® (b¥gn,) + (b¥gn,) ® nz] +I¥;(n; ®ny+n,Qn,) (4.59)
+20, 0, @, + 27 [ﬁl ® (bgh,) + (b'gh)) ® ﬁl]
+2F hy @y + 20, [ﬁz ® (bgh,) + (b'ghy) ® ﬁz] +I% (0, @N2+n,®n) } :
For an incompressible monoclinic solid

6=—pgh+27, b + 27, b — ¥, ¢! —2%, & + 2%, n, ®n, +2F [nl ®(bﬁgn])+(bﬁgn])®n,]

+2P n, ®n, + 2%, [nz ® (bPgn,) + (bPgn,) ® n2] +I¥;(n; ®n,+m,@n;)

(4.60)
+2F, 1, @n, + 275 [ﬁl ® (bgh,) + (bgh)) ® ﬁl]
+2Fs 1y @ iy + 2, [ﬁz ® (b'gh,) + (bgh,) ® ﬁ2] + 1P (B, @02+, ®1,) .
Dissipation potential. For a monoclinic viscoelastic solid, when the full set of structural tensors
A={A =N, ®N,A; =N, ®N,,A; =N; ®N; } , (4.61)

is added to the list of the arguments of the dissipation potential ¢, it becomes an isotropic functional of its arguments, i.e., ¢ =
H(X, CP, EU“ lvT A, A,, Az, G, g). Although one may not use the standard representation theorem as for the free energy functionals, the
dissipation potential will be a functional of some standard invariants and a set of spectral invariants, similarly to the dissipation
potential of isotropic viscoelastic solids.
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Kinetic equation. Following (B.14), (4.36), and (4.58), one may write

o, ~ol, ~ o, ~ oIy ~ oI, ~ dIs <~ oIy ~ 0I, ~ oIy -~ Ol
g = #Q i e e A i £ Rl S s
aCh aCh aC aCP aCP aCP aCP aCP aC’ aCh aCP
=G+ 7y (LCF = L) + BLCH+ TN, @ N, +F5(N, @ (CN + (EN) @ N)) (4.62)
~ ~ ¢ ¢ 1 ~
+ PN, N, +¥;(N, ® (CN,) + (CNy) ® N,) + E(Nl “No)Ps(N; @ N, + N, @ Ny).
Hence, it follows from (3.8) that the kinetic equation for compressible monoclinic viscoelastic solids is written as
9 o, EGHE -2, |1 - L,GE#] b 2,7+
JF
—2¥,C°N, @ F!N, —2F,(C°N, ® (F7'CN)) + (GC?N)) ® F7'N)) (4.63)
- 27, "N, @ F7IN, — 2,(C’N, ® (F-1CN,) + (GC2N,) ® F'N,)
— (N, - NP (C'N, @ FIN, + C'N,  FIN;) = 0
and in the case of incompressible monoclinic viscoelastic solids, the kinetic equation (3.12) reads
0
9 2, &GHE -2, [121 GC- F‘] F* —27,0N, ® FIN, — 275(C'N, ® (F'CNy) + (GC2N)) @ FIN))
6F
(4.64)

- 2F,C'N, ® FIN, — 27,(C°N, ® (F7'CN,) + (GC?N,) ® F'N,)
— (N, - NP (C'N; @ F'N, + C'N, @ F'N,) = gF* .

4.3. Invariance in anelasticity and viscoelasticity: A critical discussion of some of the existing works

The notion of invariance and its interpretation in the presence of inelastic deformations has eluded mechanicians over the past
few decades. Invariance is a central notion in physics, and particularly in mechanics; there is a deep connection between balance
laws and symmetries. Noether’s theorems tell us that any symmetry of the Lagrangian density (or action) corresponds to a conserved
quantity or a balance law (Kosmann-Schwarzbach et al., 2011; Marsden and Ratiu, 2013). For example, invariance under time shifts
corresponds to the balance of energy. As another example, for continuum mechanics formulated in a Euclidean ambient space, the
balance of angular momentum corresponds to invariance under rigid body rotations in the ambient space. On the other hand, local
invariance in the reference configuration is related to material symmetry.

The work of Green and Naghdi. Green and Naghdi (1971) observed that for any proper orthogonal tensor Q, the multlphcatlve
decomposmon of the deformation gradient can be written as F = FF = FQQTF and hence F and Fp' can be replaced by FQ and
QTF, respectively. However, it should be noted that replacing F by FQ implies that Q is an element of the material symmetry
group G. Assuming that Q is any proper orthogonal tensor (or rotation) is equivalent to assuming that the material is isotropic. In
other words, Green and Naghdi (1971)’s argument is incorrect for anisotropic solids; there is a G-ambiguity in the multiplicative
decomposition and not an .SO(3)-ambiguity, see also Yavari and Sozio (2023).

The work of Simo. In formulating finite plasticpity, Simo (1988) considered the multiplicative decomposition of the deformation
gradient into elastic and plastic parts: F = FF. He considered coordinate charts {x'} and {X'} for the current and reference
configurations, respectively. The spatial metric has components g;; and the metric of the reference configuration has components
G, ;. Looking at the coordinate representation of F in Eq.(1.2b) in (Simo, 1988), clearly it is assumed that F is a linear map from
the tangent space of the reference configuration to itself (F : Ty — Ty B in our notation). This means that the “intermediate
configuration” is identified with Ty B. After Eq.(1.2b), it is explicitly mentioned that “where we have endowed the intermediate
configuration with the metric tensor G”. In other words, the same metric is used in both the reference and intermediate
configurations. Simo (1988) assumes a free energy function of the form y = xiz(g,Fe‘, F) (an explicit dependence on G is suppressed
perhaps because the flat metric G is induced from the spatial metric g). Then “invariance under rigid-body motions superposed onto
the intermediate configuration” is assumed that Simo (1988) writes as

(g FQF) = y(gF.F), VQesS03), (4.65)

i.e., for any rotation Q in the “intermediate configuration”. Recall that F TyB - T.,Cand F : TyB - T, ie, F and F
have the same tensor character, and hence (4.65) does not make sense; F must be transformed as well. Simo was aware that not
including F as an argument of the free energy in (4.65) implies material isotropy. He introduced F as an argument in the free energy
that is unchanged under “rotations in the intermediate configuration” in order to avoid material isotropy (Simo, 1988, Remark
1.6). However, assuming invariance with respect to the “intermediate configuration” is equivalent to material symmetry under all
rotations and indeed precludes anisotropic response. In his last piece of work before passing that was posthumously published,?

29 We thank Sanjay Govindjee for bringing this reference to our attention.
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Simo remarked that (Simo, 1998, Remark 34.2): “The entire issue depends on an a priori specification of the class of admissible
rotations Q for such transformations. This question is related to a constitutive assumption on the symmetry group of the material
and appears to have little to do with any fundamental principle in continuum physics”.

The work of Gurtin and Anand. Gurtin and Anand (2005) studied material symmetry in the presence of local plastic deformations.
They call the target space of F “relaxed space”, which is usually called “intermediate configuration”. They treated it as an entity
completely independent from the reference and current configurations; independent in the sense that the “relaxed space” is not
affected by either referential or spatial transformations. This assumption leads to the definition of two symmetry groups, namely,
“referential symmetry group” and “relaxational symmetry group”. More specifically, they assumed a free energy v = §(F, F). The
two symmetry groups are defined as

P . P e ref

W(I:, I;) = (FH, f)y VHe ¢*%, (4.66)

¥(F,F)=¢H 'F,FH), VHe g,
An “intermediate configuration” or a “relaxed space” is defined pointwise, and for a given point, it is a linear space. The total
deformation gradient is a linear map between tangent spaces of the material and the ambient space manifolds: F : Ty B —» T, S.
There are only two spaces (manifolds) in anelasticity and viscoelasticity: the ambient space manifold S (which is usually assumed
to be the Euclidean 3-spac§32)3° eand thpe material manifold B (which is an embedded 3-submanifold of the Euclidean ambient space).
In the decomposition F = FF, F and F are linear maps. Their domain and target spaces can be either Ty B or T,C (see Remark 2.1).
In other words, assuming a third linear space distinct from T B and T,C does not have physical relevance. Therefore, the correct
symmetry group should be defined as

¢(F.F) = ¢(H'FH,FH), VHeG. (4.67)

The work of Kumar and Lopez-Pamies. Kumar and Lopez-Pamies (2016) assumed that F and F are compatible—see their Eq. (4).
In addition to the reference 2, and current 2 conﬁguratlons a global 1ntermedlate conflguratlon Q, was also assumed—see their
Fig. 2. Under a material symmetry K, they assumed that F is transformed to FK and hence, F = FF~! remains unchanged, since
(FK)(FK) I was finally concluded that Pngg is unaltered by material symmetry. First, it should be noted that there is no
reason to expect that ¥ (and consequently F) is compatible. In other words, a global Euclidean intermediate conflguratlon does not
exlst in general. Further, knowing that F(X ) : TyB — TxB, a change of material configuration by K transforms F to K IFK and
F to FK (see Fig. 3a). In (Kumar and Lopez-Pamies, 2016), it was assumed that Yro = Yro(X.F,G.g) and ¢ d(X, F F G) have
the same symmetry group, but ¥ygq = Pnpg(X, F.G, g) was excluded seemingly because it was assumed that F was not affected by
material symmetries. In light of the discussion in Section 2.3, F(X ) : Ty B — T,C, and it hence seems natural to assume that ¥ygq
has the same symmetry group as well.

The work of Ciambella and Nardinocchi. In a recent paper (C1ambella and Nardinocchi, 2021) aiming to formulate a theory of
anisotropic viscoelasticity, the multiplicative decomposition F = FF was used. The authors recognized that F and F are incompatible,
in general. However, they confused viscoelasticity with anelasticity and assumed that F defines a local relaxed configuration (after
their Eq. (2.1), they say that the viscous deformation gradient acts on a small piece of the body and maps it “into its relaxed
(or natural) state at time ¢”.). This is an incorrect assumption. Their choice of the free energy in their Eq. (3.13) is identical to
what one would see in anelasticity. Ciambella and Nardinocchi (2021) also claimed that a theory of nonlinear viscoelasticity has
to be “structurally frame indifferent”. They based this claim on the work of Green and Naghdi (1971). In summary, invariance
in the “intermediate configuration” or “structural invariance” is not physically meaningful. The above-mentioned fundamentally
questionable assumptions, unfortunately, make the formulation presented in (Ciambella and Nardinocchi, 2021) flawed.

What have we learned? The source of confusion in the literature has been a lack of understanding of the mathematical nature of
“intermediate configuration”. A body B is an embedded topological submanifold of the Euclidean ambient space S. In nonlinear
elasticity, B is equipped with a metric that is induced from the ambient space. This defines a Euclidean material manifold. In anelas-
ticity and viscoelasticity, “intermediate configuration” has traditionally been defined locally; a local intermediate configuration is a
linear space with a Euclidean metric. One should note that in the case of the direct Bilby-Kroner-Lee decomposition, an intermediate
configuration (manifold) has the same topology as 3. However, an intermediate configuration cannot be isometrically embedded
in the Euclidean space because the material metric is non-Euclidean, in general. In anelasticity and viscoelasticity, there are only
two manifolds that are of physical significance: (i) the ambient space manifold S, which is the Euclidean 3-space, and (ii) the
material manifold 53, which is an embedded topological submanifold of S. Any local invariance is either defined for x € S on 7, S,
or for X € B on TyB. The former invariance is the material-frame-indifference (objectivity), and the latter is related to material
symmetry; any “intermediate configuration invariance” is nothing but a material symmetry, in the case of the direct Bilby-Kroner-Lee
decomposition.

Table 1 summarizes some of the important fields, constitutive equations, and governing equations of nonlinear anisotropic
viscoelasticity.

30 In some applications the ambient space could be curved, in general. See Yavari et al. (2016) for a detailed discussion and examples.
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Table 1
Summary of the main fields, constitutive equations, and governing equations of nonlinear viscoelasticity.

Nonlinear Anisotropic Viscoelasticity

Kinematics
F = FF F(X) : TyB - Ty B
F(X) : TyB - T,C
Free energy Isotropic solids
¥ = ¥go + Pig Vi = Peo(X, F. G, g) = o (X, C, G)
g = Peg(X, F.G.g= Preo(X, C’,G)
A: structural tensors Anisotropic solids
A = F* A: viscous structural tensors Vro = Pro(X, O, F, G, A, g) l1!“’,3(,(X ,0,C",G, A)
G = F*G: viscous material metric Pneg = Paeo(X, O, F, G.A, g) = lI’NEQ(X,O, .G, A)

Dissipation potential
B=-% (dissipative viscous-force) ¢ = ¢(X.F,F.F.G,g) = §(X,C",F.F.G)
oF

Material symmetry group
WEq(X,F}(, G.g) = (X F, G g)
Vo (X, FK, G, g) = Pypo (X, F, G, g) v K € G < Orth(G)
#(X,FK,K'F. K*F, G, g) = p(X.F.F. F,G. )

The Clausius—Duhem inequality
o, NEQ ¢ -

0= 200 —EQ px . F >0 (compressible solids)
ac
b() NEQ ¢ i : . . :
0n= 20 F* :F+qF* >0 (incompressible solids)
ac

The Balance of linear momentum

Div [ZF o +2F Xud +p,B =p,A (compressible solids)
aC? Flel
Div [ 'W aw {2 ] +p,B=p,A (incompressible solids)

Kinetic equation

ﬁ + dl‘,p =0 (compressible solids)
oF OF

@ + ﬂ = qi“* (incompressible solids)
oF OF

5. Examples

In this section, we study three examples of large deformations of isotropic and anisotropic viscoelastic solids. To simplify
the kinematics we assume incompressible solids. The deformations considered in this section are subsets of the known universal
deformations for incompressible isotropic (Ericksen, 1955; Yavari, 2021) and anisotropic solids (Yavari and Goriely, 2021, 2023).
Universal deformations are those deformations that can be maintained in the absence of body forces for any material in a given
class. For homogeneous compressible isotropic solids, Ericksen (1955) showed that the only universal deformations are homogeneous
deformations. For homogeneous incompressible isotropic solids, in addition to isochoric homogeneous deformations, Ericksen (1954)
found four families of universal deformations. A fifth family was later on discovered independently by Singh and Pipkin (1965)
and Klingbeil and Shield (1966). For some recent generalizations of Ericksen’s problem to inhomogeneous and anisotropic solids,
and anelasticity see Yavari (2021), Yavari and Goriely (2021, 2023, 2016), and Goodbrake et al. (2020).%" The stress at any material
point in a simple material at time ¢t depends only on the history of the deformation gradient at that point up to time ¢ (Noll,
1958). Carroll (1967) showed that the known universal deformations of homogeneous incompressible isotropic elastic solids are
universal for simple materials as well. One should note that (simple) viscoelastic solids are a subclass of simple materials. It should,
however, be noted that Carroll (1967) assumed that the total deformation is volume preserving. Here, we assume that both the local
elastic and viscoelastic deformations are volume preserving.

31 The analogue of universal deformations in linear elasticity are universal displacements (Truesdell, 1966; Gurtin, 1972; Yavari et al.,, 2020; Yavari and
Goriely, 2023, 2022; Yavari, 2023).
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5.1. Quadratic dissipation potentials

Kumar and Lopez-Pamies (2016) assumed the following form for the dissipation potential

HX.F.F.F.G)= - F : A(F.F.G,g) : F= %ﬁ"L Aty M (5.1)

l o
2
where A(F, Ie? G,g) is a positive-definite fourth-order tensor.*? It is clear that only the major symmetric part of A contributes to

dissipation, and indeed, by definition (5.1) above, A has major symmetries. However, A does not necessarily have any minor
symmetries.*

v oD
Adding the set of structural tensors A to its arguments, the dissipation potential ¢ = ¢(X,F,F,F, A,G) becomes an isotropic
functional, i.e.,

K, ¢(X,F.F.F, A, G) = ¢(X, K'F, K'F, K'F,K* A,G) = §(X,F.F,F, A,G), VK € Orth(G). (5.2)
It hence follows that

K'F : AK'F.K'F,K*A,G,g) : K'F=F : AF.F.A,G, g : F, VFFF,VKe&Orth(G), (5.3)
where we recall that K*IlT = K‘IE‘K, K*F =FK, and K* = FK. Therefore

K,A(F.F,A,G,g) = A(F,F,A,G,g), VK € Orth(G). (5.4)
Hence, A = A(F, F,A,G, g) is an isotropic tensor. The most general isotropic fourth-order tensor has the following representation (Jog,
2006)

Agpmp =M GxkpGup + 1 GkpGpm +13GxmGap (5.5)
where 5, = 1,(F,F, A, G,g) = #,(C°, ", A, G) for i = 1,2,3. Thus

AKLMN = Agpyp GPPGPN =5y 65603 + 1y 6y 64y + 113 Gy p GV . (5.6)

The dissipation potential is written as

¢ = %'11 (ﬁAA)Z + %'12 FA FB, + %713 G 4 F€ pGPBFA , = %'71 (trﬁ*)2 + %nz tr (IL?z) + %:13 tr <f?f?T) . (5.7
In order to find the necessary and sufficient conditions on #;,#,, and 5; to ensure positive-definiteness of the tensor A, we introduce
new indices I' = {AB} such that {11,12,13,21,22,23,31,32,33} < {1,2,3,4,5,6,7,8,9}. Now, in a Cartesian coordinate system, the
dissipation potential is rewritten as ¢ = %(CF AFF,. The tensor A is positive-definite if and only if the 9 x 9 matrix C is positive-
definite. It may be found that the eigenvalues of the matrix C are 3#, +#, +#3, #, + 13, and —n, + 3. Therefore, A is positive-definite
if and only if**

3m+m+n3>0, m+n>0, —m+n>0. (5.8)

Choosing (5.6), we have

d v o i
54’ = FM 1 6% + PPy + 113G 40 FM y GNE. (5.9)
oFA,
Or
0 p) D i
9 YT+ gy B 4+, GFGE, (5.10)
oF

where trlbf = I%CC. With this choice, the kinetic equation (4.31) is simplified to read

(e )T+, F* + 1 GFGY — 2, O GHF* + 2, [(”:2" - fléb] GIF* = gF . (5.11)

32 Notice that (5.1), along with the positive definiteness of A, trivially satisfies the Clausius-Duhem inequality (3.29) (and (3.33) for the incompressible case).

33 Notice that for the dissipation potential ¢(X,F.F, F.G) = % C : B(F.F.G,g) : C, which is a particular case of (5.1) for AK"MN = 4G, F/ BILANEE G\,
the minor symmetries hold for B.
34 Note that in components, the left hand side of (5.4) reads

D - _ L
[K«:A]ABC =K,K%K KCKDLAIJK .
35 It is seen that 5, = 7, is not acceptable, and hence, A cannot have minor symmetries.
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5.2. Example 1: Finite extension of an incompressible isotropic circular cylindrical bar

Kinematics. Let us consider a solid circular cylindrical bar subject to an axial loading. In its undeformed configuration, it has radius
R, and length L. We consider longitudinal and radial deformations and assume the following deformation ansatz:

r=r(R,1), 6=0, z=AMNZ, (5.12)

where A(7) is the axial stretch. In a displacement-control loading, the longitudinal stretch A(r) is given, while in a force-controlled
loading, it is an unknown function to be determined. Acting on an initially stress-free unloaded bar, i.e., 4(0) = 1, it is assumed that
loading (either force or displacement-control) is slow enough such that the inertial effects can be ignored. The deformation gradient
reads

[rr(R,) 0 0

F=F(R,1) = 0 1 0 1. (5.13)
0 0 A

Incompressibility J = 1 implies that r(R,?) = \/%. In terms of its physical components, the deformation gradient reads

1
— 0 0
F=FRtH=| 0 —_— 0 1. (5.14)
(R, 1) 70
| o 0 A

We use a semi-inverse method and assume that the viscous deformation gradient has the following form

. [a,(R,1) 0 0

F=FR,1) = 0 b,(R,1) 0 . (5.15)

0 0 A,(R,1)

At the initial unloaded state, we have IL;‘(R, 0) =1, ie., a,(R,0) = b,(R,0) = 4,(R,0) = 1. Incompressibility of the local viscous
deformation implies that J(R,?) = a,(R,1)b,(R,1) A,(R,1) = 1, and hence b,(R,1) = m. The physical components of the
viscous deformation gradient read e

1

4,(R,1) = a,(R,1), by(R,1) = by(R,1) = TR DIED” (R, 1) = A,(R, D). (5.16)

Since F = Fe‘f‘, it follows that the elastic deformation gradient has the following form

L. a(R1) 0 0
F=FRnN=| 0 b,(R.1) o |, (5.17)
0 0 Ao(R,1)
where
1 1 A1)
a,(R,1) = ErE— b,(R,1) = bT =a,(R,0)A,(R,1), AR, 1) = TRT (5.18)
22 (Nay(R, 1) b(R 1) (R 1)
The physical components read
aRy=—L Rz WBDARD G Ry = : ’153) _ (5.19)
A2 (Ha,(R, 1) A3 (1) o(R, 1)

Remark 5.1. It should be noted that F is homogeneous. However, F and consequently F are not compatlble in general Recall
that incompatibility of F is controlled by exterior derivative of F (or its curl), i.e., dF which has components A B.C —FA c.p (Yavari,
2013). Note that

. » b (R, 1) . v 34, (R, 1)

F22,1 - F21,2 = —baR > F33,1 - F31,3 = —UaR . (5.20)
This means that F is compatible if and only if (a solid bar is simply-connected)

b, (R.1) 04, (R.1)

OR ~  oR

Kinetic equations. We assume an isotropic quadratic dissipation potential (5.7). We obtain three independent kinetic equations for
a,(R,1), A,(R, 1), and g(R, t)—the Lagrange multiplier corresponding to viscous incompressibility. We then proceed to eliminate g(R, t)
from the system of kinetic equations and are left with the following two independent kinetic equations for a,(R,?) and 4,(R,?):

(5.21)

Ay [y (a0 = 1)+ (na + 15) (@322 4 1) | @+ Ay my (a2, = 1) (@22 = 1)+ + 5] Ay
=2a,2, (1-a*22) [,13}?'1 + ,12@'2] ,

Ay {('71 +1, + 113) L,AU - (agﬂf, +a,— /IU)} a, +a, {'11 (af,ﬁ% + A, = av) - (111 +m + 113) avﬂi} iv
= -2 (B - )[4 + @27

(5.22)
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Recall that following viscous incompressibility, i.e., J= 1, we have b,

above in terms of b, and 4,. It is hence found that the kinetic equations in terms of {bv, y } are identical to (5.22) in terms of
{a,,4,}, such that the evolutions of a, and b, are both governed by the same equations; and since they are subject to the same
1

initial condition a,(R,0) = b,(R,0) = 1, it follows that b,(R,?) = a,(R, ), and hence that a, = /1;5. Therefore, (5.22) may be reduced
to a single differential equation in terms of 4, as follows

3 ) ~ ~
2yt oy —Am AL +2 (ny ) 2| 24, =4 (2P = 23) [?’]/1 + Wm] . (5.23)

Stress and equilibrium equations. Following (4.24), the non-zero components of the Cauchy stress are

(R, 1) = —p(R, 1) + i —2W, A(t) + 24 AR _ 28 A0

WO IRD (5.24a)
0 _OpRDAD 2P, 2P, 20 2P AR 2%, A2
c”’(R,1) = _T + F - e + R - e R0 s (5.24b)
— W, 2%, 20 2%, 2(R.1)
Z(R 1) = —p(R, 1) + 2P, A2() — —2 + =1 - Y , 5.24c
oHRD) = RN+ B, B0 =+ S o (5.240)

where p = p(R, 1) is the Lagrange multiplier corresponding to incompressibility, i.e., J = 1. The only nontrivial equilibrium equation
iso™, + %0'” —ra% = 0. In terms of the referential coordinates, this reads

9
OR
Since the lateral area of the cylinder is traction-free, it follows that ¢'"(R,, ) = 0. Therefore, ¢""(R,t) = 0 and

6" (R,1)=0. (5.25)

29,
A1) a2(R, 1)

1

2y _ - )
p(R,1) = ol 20, A + — 2%, A1) d*(R,1). (5.26)

Hence, it follows that ¢?’(R, 1) = 0, and the only non-zero stress component is ¢7%, which reads®

20 AR M AR -
4%@» Am]%+4%mn 2o |1 (527)

6(R,1) =2 [/12(:)—— Vo+2 a0 -

7o)
A(t) 20

The force at the two ends of the bar (Z = 0, L) is written as

r(Ry) Ry
F@t) = 27[/ c**(R,t)yrdr =2x / 6%(R,DA" ()RR, (5.28)
0 0

which is expanded to read

2[1(:)—L]/ROR¢ dR+2[1—L]/RUR¢ dR+2/R0R A ARD ¥, dR
20| Jo ! Bw | Jo : 0 2Ry 20 |

R 2R (5.29)
o (R, 1) | ~
+2 / R 1 __ 4L ¥Y,dR = 0.
0 A,(R, 1) A3(1) 2z
Example 5.1. In this example, we assume a neo-Hookean viscoelastic solid
j— ~ e e H e
Yoo =P, 1)) = g(I1 =3, o= 1) =S, -3). (5.30)
Thus, ¥, = 1 > Hs 7 = % u,, and ¥, = F, = 0. The kinetic equation is then simplified to read
2 +my 43 —4;11/12 +2(n +my+mg) 2| AAy=2u, (22 =23) . (5.31)

It is seen that the ODE governing the time evolution of 1,(R,t) does not depend on R; and since the initial condition 4,(R,0) = 1 does
not depend on R either, it follows that 4, does not depend on R, i.e., 4, = 4,(r). By inspection of the dimensional quantities involved
in the problem at hand, one may identify = = '“ as a viscoelastic dissipation characteristic time of (5.31) above and the resulting

time evolution of the viscous deformation gradlent F(t) In this case, the only non-zero physical stress component is independent of
R and reads

2
670 = u (2 ;)+m<j¢—f>~ (>:32)

36 Note that the longitudinal physical component of stress is given by 6%*(R,1) = 6%(R,1).
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Displacement-control loading. We start with a displacement-control loading. Let us assume a loading such that the longitudinal stretch
has the following form

1+(/10—1)erf(tl), 0<r<1,,
0

Aty =3 4y + A et (’%) . <1<ty (5.33)

Aty) + (1 = A(ty))exf (’*’2) . h<t<i,,

Ty

where erf is the error function, #, is the loading characteristic time, #; = 25¢,, 1, = 50¢, t; = 75t;, and 4, is the stretch at large times
to <t < t;. For a displacement-controlled loading, the following initial-value problem needs to be solved for 4,:

3 .
[2111 +ry s =4y +2 (n +m ) /13,] Ahy=2p, (22 =2), 2,0)=1. (5.34)

Force-control loading. For a force-control loading, the force required to maintain the deformation is exactly F(r) as in (5.28). In the
case of a neo-Hookean solid, (5.29) is simplified to read

s L], R a0 20] _ Fo
T [ﬂ(f) - /12_(1)] + 5 % - 12(1‘) = 7 . (5.35)

Here, we assume the following loading

Foerf<tl>, 0<t<1t,

0

F(r) = Eﬁ@erf(%), 1 <t<ty, (5.36)
F t—t
f—F(zz)erf(Tz), 1 <t<ty,

where 1, is the loading characteristic time, #; = 251, 1, = 50ty, 1, = 75t;, and F; is the force at large times 7, <t <. For a
force-control loading, we solve the following initial-value problem for 4, and 4:

HRY ) KRS T a0 A®RD] _ F@
= o -2ol+ = [A%(R,n T 20 ] =2

(24 a3 = A 22 2 (g 4 15) 23| 20, = 20 (A2 = 23) (5.37)
A,(0)=1.

Numerical results. Let us consider a solid cylinder made of an isotropic neo-Hookean viscoelastic solid with p, = % u and a dissipation
potential of the form (5.6) such that n, =#, = %7]3. In this example, an explicit finite difference scheme has been used to numerically
solve the governing equations.

Let us first look at the displacement-control loading case as we subject the structure to the longitudinal loading A(t) (5.33)
with 4, = 1.5. We numerically solve the displacement-control governing Eq. (5.34) assuming different loading characteristic times
1y, respectively smaller, equal, and larger than the characteristic time of the viscoelastic bar. In Fig. 4, we plot the profile of the
given displacement-control loading A(f) and the resulting evolution of the kinematic quantities 4,, a,, 4,, a,, and the outer radius
r at R = R, as well as the longitudinal physical stress component. As the cylinderical bar is subjected to a longitudinal stretch
load in three stages—loading followed by partial unloading and then full unloading—we observe in each of the stages that the
cylinder experiences stress relaxation: The bar first experiences an instantaneous fast elastic stress response followed by a slow
stress relaxation (decrease in the loading stage and increase in the unloading stages) under a constant imposed displacement. Note,
however, that this is not observed for ¢, = 10z, since the loading does not reach a steady state of constant A.

Next, we look at the force-control loading case as we subject the structure to the force loading F(r) (5.36) with F, = yR%. We
numerically solve the force-control governing Eq. (5.37) assuming different loading characteristic times ¢, respectively smaller,
equal, and larger than the characteristic time of the viscoelastic bar. In Fig. 5, we plot the profile of the given force-control loading
F(t) and the resulting evolution of the kinematic quantities 4,, a,, 4,, a,, and the outer radius r at R = R, as well as the longitudinal
physical stress component. As the bar is subjected to an axial force in three stages—loading followed by partial unloading and then
full unloading—we observe in each of the stages that the bar experiences creep: The bar first experiences a fast elastic deformation
but continues to slowly deform even as the force reaches a steady state.

In both cases, we observe that the cross section shrinks as the bar is loaded and expands back again as the bar is unloaded.
Interestingly, and in both loading cases, the elastic deformation gradient features a behaviour akin to a strain relaxation as its
physical components experience a fast elastic response followed by a slower relaxation under constant loading towards its initial
value at the unloaded state. However, the viscous deformation gradient experiences what is akin to creep as it undergoes a fast
response followed by a slow evolution towards matching the total deformation gradient F at large times under constant loading—A,
approaches A and 4, = b, approaches Frp=Fg= /1’%. That is, at large times under constant loading in each of the three loading

stages, we have F=Iand F=F as previously discussed in Remark 3.4.
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Fig. 4. Numerical results for the time evolution of the strain and stress state of an isotropic neo-Hookean viscoelastic bar subject to displacement-control loading
A1) (5.33) with different characteristic times f, versus the viscoelastic dissipation characteristic time 7 = 'ZT' of the system.
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Fig. 5. Numerical results for the time evolution of the strain and stress state of an isotropic neo-Hookean viscoelastic bar subject to force-control loading F(r)
(5.36) with different characteristic times 7, versus the viscoelastic dissipation characteristic time 7 = "7' of the system.
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5.3. Example 2: Finite torsion of an incompressible transversely isotropic circular cylindrical bar

Kinematics. Let us consider a solid circular cylindrical bar that, in its undeformed configuration, has radius R, and length L,. In
this example, we assume that the cylindrical bar is transversely isotropic with helical material preferred directions. One can think
of this bar as being a homogeneous isotropic solid cylinder reinforced by helical fibers. More precisely, for fixed R € (0, Ry], it is
assumed that fibers are along a family of helices tangent to the fiber direction N = N(R, ©). Recall that in cylindrical coordinates,
the tangent to a helix has a vanishing radial coordinate. Let us denote by y(R) the angle that N(R, ©) makes with E4(0) = %. Thus,
N(R,0) = cosy(R)/REy(0) +siny(R)E,, where E, = %.37

Given the helical symmetry of the problem, we assume the following deformation ansatz

r=r(R,1), 0=0+y(HZ, z=AMNZ, (5.38)

where y(?) is the twist per unit length, and A(?) is the axial stretch. In a twist-force-control loading, the twist y(f) and force F(r) are
prescribed, while A(#) is an unknown. In a torque-force-control loading, the torque 7'(¢) and force F(r) are prescribed, and both y (7)
and A(¢) are unknown functions.*® The deformation gradient reads

r(R,t) 0 0

F=FR,n=| 0 1w, (5.39)
0 0 A@®)
where ¥ (R,1) = %ﬁ”). The incompressibility implies that
detg A (R, 1) F (R, 1)
J=1/ detF = =1. 5.40
detG R (5.40)
Assuming that r(0,7) = 0, one obtains r(R,?) = \/%. In terms of its physical components, the deformation gradient reads
r1
—_— 0 0
P Vo 1 Ry (1)
F=FR=| 0 — O, 5.41
(R1) = M0 (5.41)
| 0 0 A0
We again use a semi-inverse method and assume that the viscous deformation gradient has the following form
L [a,(R, 1) 0 0
F=FRn=| 0 bR w,(RD|. (5.42)
0 0 A, (R, 1)

Incompressibility of the local viscous deformation implies that a,(R,?) b,(R,1)4,(R,t) = 1. The physical components of the viscous
deformation gradient read

1

éU(R, 1) = aU(R, f), I;U(R, f) = bU(R, 1) = m s

AR =R,  YRD=w,(R1). (5.43)
For a torque-force-control loading, the unknown fields of the problem are A(z), w(?), a,(R,1), y,(R,1), and 4,(R, 1), while for a twist-
force-control loading, w () is prescribed and the unknown fields are A(r), a,(R,?), y,(R,1), and 4,(R,?). In this problem, the elastic
deformation gradient has the following form

.. [a,(R,1) 0 0
F=FR, )= 0 b,(R,t) w (R D|. (5.44)
0 0 (R, 1)

Knowing that F = FF implies that

, ooy R 0
F=FR1)= 0 a,(R,))A,(R,1) A(‘)‘;(,;ft) —w,(R.Da,(R,1)| . (5.45)
0 0 ﬂf((lti),r)
The physical components read
GR D)= — 1 . bR = a,(R, tl)/%(R,t)’ AR = - /zi)r)’ Pe(RD) = — Ry(@®) RWU(R,II)aU(R, 1)  (5.46)
A2 (H)ay(R, 1) A2 (1) ol A2, (R 1) A2 (1)

37 Let us recall that N is a G-unit vector, i.e., NAN3G,, = R2(N®)? + (NZ)? = 1 and this is why the % factor shows up in the ©-component.
38 The other two possible loadings are twist-displacement and torque-displacement-control loadings that we will not consider in our numerical examples.
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U e
Remark 5.2. Notice that F is homogeneous. However, F, and consequently F, are not compatible, in general, because

v . b, (R, 1) . v ow,(R,1) o . 34, (R, 1)
Py -Fp= l;—R i -F ;= S—R e l:)—R (5.47)
This implies that F is compatible if and only if
0b,(R,t oy, (Rt dA,(R,t
o ): W, ( ): of ):0. (5.48)
JR JR JR
Stress and equilibrium equations. The principal invariants read
R2w2(t R2w2(t cos?y + sin?y (43 + R%y?) + Ry sin 2y
(5.49)

4.2 (cosy + Ry siny) [Ry/siny (2/13 + R%y? + 1) +cosy (Rzl//2 + 1)]
Is = A7sin“y + .
A2
The non-zero physical components of the Cauchy stress are " = 6", 6% = r26%, 6** = ¢%%, and 6%? = ro%?. The diagonal components
read

2P — 2% -
(RN = —p+ —L —24W, + =L —2F, 14, (5.50)
A Aa? v
.00 1+ R*y?— —  2(cosy + Ry siny)® —
6U R =—p 22— =2y s W,
4(cosy + Ry siny) [Ry (4% + R%y? + 1) siny + (R*w? + 1) cos y| —
+ P Vs
2 [avlu (av (Rzivylg + Az) - 2R21//1//U) + R2w2] ~ 21 ~
+ 2 ¥, - e ¥,
U aU U
2 [a,A, (A, cosy — Ry, siny) + Ry sin y]2 - (5.51)
+ 3 ¥,
A%
4 . .
+ FoyT (ay4, (cosyi, — Rsinyy,) + Ry siny)
v
X { Rsiny (u/ - auﬂuwu) [auxlv (au (szluu/g + 113}) - 2R2y/u/U) + 4%+ Rzu/z]
+ a, cos y/li (”Mv (au (R2/1L,t//3 + /12) - 2R21//ulu) + RZWZ) } §’5 s
and
_ 2(Rw?+1)_ _
6(R, 1) = —p+ 242 ¥, — %5’/2 +24%5in’y ¥,
. 3. . =  2i%~
+4Asiny [/1 siny + Ry(cosy + Rx//smy)] ¥s+ —2'1’1
< (5.52)
2 (av/‘l'v (av (R2Avl//3 + /13) - 2R2V/Wu) + Rzl//z) lfl + 2/12 SiIl2 yil '
- 2 4
a2 A2
4Asiny . . &
+ I {Ravﬂu [R siny y,, (au/lvylv - 21//) +cosy 4, (1// - avﬂuy/u)] +siny (23 + Rzylz)} s .
U
The only non-zero shear stress is
— 2Ry — —
89 (R, = 2RV Iy ¥, + T"’ ¥, + 2V isiny (cosy + Ry siny) ¥,
A
sin2y (43 + 3R%y2 + 1) — 2Ry cos2y (4> + R%y?) + 2Ry (13 + R2y? + 1) 7
+ 5
Vi
ZRﬁ (u/ - au/lvy/u) ~ 2R (u/ - QMUV/U) ~  2y/Asiny (au/iv (cosy Ay — Rsinyy/v) + Ry sin y) ~ (5.53)
+ Y, + 2 ¥y

1 2t
A Viai A

! { 2a,siny A, (2° +3R*y?) (cosy A, — 2Rsiny w,) + 2Rya*A2 (6R? sin® y w? — 3Rsin 2y A, + A2)

Vi

+
+ aili (—4R3 sin® y ‘/’3 +3R%sin2y /Ivy/g - 2R/112)ylu +sin2y /13) + 4Ry sin’y (A3 + Rzy/z) } '7’5 .
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The only nontrivial equilibrium equation is ¢, + %a” —re% = 0. In terms of the referential coordinates, this reads

a rr —_
SRC RD=[(R1), (5.54)

where

JRy?—  2(cosy + Rysiny)? —  4(cosy + Ry siny) [Ry siny (A* + R2y? +1) +cosy (R2y? +1)] —
f(R,1) = Y + Y, + ¥s
i AR A2R
alz) [avﬂv (av (Rzﬂvwg + /13) - 2R2y/wv) + Rzu/z] - 112) ~
ARa2 A2 !

v
. . \2
24 (a*22 1) & 2 (a,A, (cosyA, — Rsinyy,) + Ry siny) &
Ra2i2  ° ARA2 N

+2

4 |a,A A, — Risi ,) + Ry si
[ab » (cosy4, AZRSEVWL) u/smy] {Rsiny(u/—a”lvv/v) [QMU(% (Rziuvlf+/12) _ZRle/U) +/13+R2W2]
v

+ a, cos ylf, (aullv (aU (Rzluwf + /113]) - ZRZWWU) + R? Wz) } '7’5 .

(5.55)
Assuming that the boundary cylinder is traction free, i.e., 6""(R,, ) = 0, one obtains

Ry
o"(R,1) = —/R fE&ndé.

This, in particular, implies that

(5.56)

Ry 2, — 2 -,
—p=—[ fEDdE- L +24¥, - — +2P, Aa]. (5.57)
R 4 /1(1“

The normal stress components 6% and 67% are now simplified to read

Ro 2R?y? — 2(cosy + Ry siny)? —
&99<R,z)=—/ fEnde+—XF + (cosy — Vi,
R

4(cosy + Ry siny) [Ry siny (4% + R%y2 + 1) + cosy (R2y? +1)] —
N 2 (Rzai}%qluz - 2R2y/a?)luwu + Rzylzag + a‘u‘/li - ﬂi) ~
1a2 A2 !
v

24 (a‘b‘,}% - l) P 4 2 [aulv (cos yA, — Rsinyu/u) + Ry sin y]2 7 (5.58)
a2 ? 222 N

4

+_
223

(ay4, (cosyd, — Rsinyy,) + Ry siny)

X { Rsiny (u/ - GMUV/U) [aullv (au (Rziut//g + /13) - 2R2u/ulu) + 2+ szz]

+ a, cos y/lf, (aulv (au (RZAUV/E, + /12) - 2R2wwv) + Rzy/z) } f’S s
and
Ro e . 2 =
6 (R, 1) = —/ FENdE+2 (/12 - E) Vit (- Ry -1) ¥,
R
_ _ B2
+2A%sin%y ¥, +4Asiny [/13 siny + Ry(cosy + Rl//siny)] s+ 2# .
v aU
(5.59)
—Rzaiiiwg +2R*ya, Ay, + /13ai/1% - a%/lf; — R%y? 4 22 sin? '
P2a2 2 : ¢
v

+2

4
44 si . . =~
;:ny [Ra, 4, (Rsiny w, (a,A,w, —2w) +cosy 4, (v — a,d,w,)) +siny (2 + R*y?)| @s .

v

For a force-control loading at the two ends of the bar (Z = 0, L), the axial force and torque required to maintain the deformation
are calculated as

Ry
F(t) = 27z/ P*2(R,)RdAR =0,
0

R,

S (5.60)
P'%(R,1r(R,HR*dR,

)
T@) =2x / P'?(R,H)R*dR =21 /
0 0
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where P?Z = P?Z is the zZ-component of the first Piola-Kirchhoff stress and P4 = rP%7 is the physical #Z component of the first
Piola—Kirchhoff stress. Recall the relation P = JoF~*, or in components P4 = Jo®F~4,. Thus, P4 = 1716*% and P%? = 1716%7,
and hence

B Ry —
Pzz(R,z)=—l/ fEDdE+2( A— v, +3(/13—R2W2—1)9v2
AJR A A3
12
+24sin® y‘[’4 +4siny [A siny + Ry(cosy + Rwsmy)] ¥s +2W 1
(5.61)
—R222y2 +2R?ya dyw, + Aat 2 — a2t - RPy? _ 24sin?y ~
+2 FEPRyE P+
aU 2 v
4siny . 3 22\ gy
+ gy {Raullv [R siny y,, (avivy/u - 21//) +cosy 4, ( —-a /IUWL)] siny ()» + Ry )}‘l’s R
v
and
POZ(R.1) = 2Ry al 2R1//§2 2siny(cosy + Ry/smy)—
}»5 A2 Az
sin2y (4% +3R%w? +1) —2Rycos2y (3 + R2y?) + 2Ry (B3 + RPy2 +1)_
+ 5
2
2R (y —a,A, ~ 2R (y —a,Aw,) ~ 2siny |a,4, (4,c08y — Ry, siny) + Ry siny| -
L, 2R - W) § 4 (u/3 oAo¥) B 45 7 A, (4, cosy ~ Rv v) + Rysiny] 7, (5.62)
a2 22 A2a222 A2 22
3 2.2 232 (6R21,2 in2 o _ : 2
+ { 2a,4, (/1 +3Ry ) (l cosy — 2Ry, smy) siny + 2Ryay 4 (()R y, sin” y = 3RA,p, sin2y + ﬂv)
a2 4
+a 2} (4R sin®y + 3Rt sin2y —2RA2y, + A sin2y) + 4Ry (4° + R*y?) sin?y } P .
Kinetic equations. The three kinetic equations for a,, 4,, and v, are written as
f) o, g, of ol ol.
Efi,’f S 2al'2+ :'I’4+ ;'1’5=0
¢ 011 b My s
o, g,{ll+ lif’2+a/1 Yyt 57 ?’5_0 (5.63)
f) e L obg  ohg . of
avi PR R R vk Sl‘”5—0
Example 5.2. For the numerical examples, we consider the following incompressible neo-Hookean reinforced model:
= H Hi 2 Hel
Pro =¥, Iy =5 =3+ = (I,-1)", ¥NEQ = P, 1,) = —(11 -3)+ 79( - 1) (5.64)

where 4, and, u,, are positive constants. Thus, ¥, = g, ¥y =0,¥, =, —1),¥s=0,F = %, P, =0, = yel(f4 — 1), and
¥, = 0. For this material

FR.1) = Ry? at 2(cosy + Ry siny)? wi(Dy— 1)+ aﬁ (av/lu (av (RZ/%WE, + /13) - ZRZWWU) + RZWZ) - /ﬁ u
)= — — % H#ls— e
P AR ARa2 12 65
. o (5.65)
2 (a,A, (cosyA, — Rsinyy,) + Ry siny) d -1
lRﬂlz) He1lly .
Thus, the axial force and torque are written as
F@) Ro Ry Ro )
—_——/ / f&, t)d§dR+</1——>2 R +2p,4 / R, —1)sinydR
0
+ /RO P4 pdr+2 / d, - 1)5”1 RdR, (5.66a)
He 0 2 ﬂg 5 Hel 4 '%L .
T Row Ro si sy + Ry si Ro R(w —ayd,w
% M+2ﬂ1/ (14_1)91n7(0097/ 1 u/@lnr)deRJr”e/ Mkz‘m
T4 0 a2 0 A2 22
Ry , siny |a,4, (cosy4, — Rsinyy,) + Ry siny
+2,4e1/ (I, = 1) o ( L ) ]RZ dR. (5.66b)
A2 22

30



S. Sadik and A. Yavari Journal of the Mechanics and Physics of Solids 182 (2024) 105461

For the neo-Hookean material (5.64), the kinetic equations (5.63) simplify to read
a* 203 (my+m) + 222 (a2A, — 1)y — A2A, (a®A, = 1) ny + 422, (ny +1m3) J

PAVEYE] ’
v v
N a%lzlz (a%lv - 1) n = a,A? (a%lu - 1) ny + a,A? (112 + r]3) it aﬁii + 4, (af)Rzylg - 1) - aszlyy/U u
at 23 ! a3, ¢ (5.67)
2(1 cosy — Ry, siny) [a 12 cosy + R(y —a,A,y,)sin y]
223

X [aili cos?y + (Rz(y/ - aU/L,y/u)2 + 13) sin’ y - Ag(aUR(avllvy/U —y)sin2y + /l)] Ho1 =0,
a2 2223 (aya2 = 1)y — 422 (a,A2 = 1)y + 2222 (i +113) i

a2 Y
v v
aizlz/l‘z (112 + 113) + alz)/lz/li (av/llz) - 1) m— auiz/lu (av/llz) - 1) n + aU/lz/lv (112 + n3) i
a3 25 ?
v v
@23+ a, A, Ryy, — 13 — R%y? p (5.68)
43 ¢
v
N [agl‘b‘, + (alz)/l‘b‘, —a,4, Rzy/wu + A3+ Rzy/z) cos2y — alz)/liRy/U sin2y + aUAszy/y/U -~ Rzy/z]
1213

x {@® At cos? y + [R*(w — a,d,w,)* + 4] sin? y — 22 [a,R(a, AW, — w)sin2y + 4]} i, =0,
and
a,R(a,Aw, —w) 2a, [avlg cosy + R(y —a,A,y,)sin y] siny
A, He ™ 223 (5.69)
X {aii;‘) cos?y + [Rz(y/ —a,Aw,)? + 13] sin?y — ,15 [a,R(a, Ay, —w)sin2y + 4]} p,y =0.

n3 Ry, +

Numerical results. We consider a solid cylinder made of a transversely isotropic neo-Hookean viscoelastic solid such that u, = %;4,
M = %;4, and p, = %;4 with helically symmetric preferred directions along © = én, and a dissipation potential of the form (5.6)
such that n;, =, = %'13~ In this example, an implicit finite difference scheme has been used to numerically solve the governing
equations.

Let us first look at the twist-force-control loading case and let the bar be free to deform in the longitudinal direction, i.e., F(r) = 0
and subject it to the following twist loading

l[/oerf(L), 0<r<ty,
1o
w(t) = 1,,0+ L erf (’:4) . L <t<ty, (5.70)
0
y/(tz)erf<rt2>, 1, <t<ty,

where 1, is the loading characteristic time, t; = 25y, t, = 50t), t, = 75y, and y;, = Rl is the angle of twist per unit length at
large times ¢, < t < t,. In this case, we need to solve the governing PDEs (kinetic equations) (5.67)-(5.69) coupled with the integral
Eq. (5.66a) with F = 0 and prescribing a twist loading y () given by (5.70). We numerically solve this system of equations assuming
different loading characteristic times ¢, respectively smaller than, equal to, and larger than the characteristic time of the viscoelastic
cylinder z = ’i—j In Fig. 6, given the twist loading w(r), we plot the profile of the corresponding physical component (R, t) = Rov®

NAG)

as well as the resulting time evolution of the kinematic quantities A ¥, 1,, 4,, b,, ¥,, 4., 4,, b,, and r at R = R,, as well as the
non-zero stress physical components at R = %RO. As the bar is twist-loaded, we observe stress relaxation on all the non-zero stress
components: First, the bar experiences a fast elastic stress response followed by a slow relaxation towards a steady state of stress
under a constant twist angle in each of the loading stages. We also observe that the bar elongation follows the trend of the imposed
twist while its outer radius follows an inverse trend. However, the physical components of both the viscous and elastic deformation
gradients experience what may be described as strain relaxation. Ultimately, we see that the elastic deformation ,gradlent relaxes

towards its unloaded state, and the viscous deformation gradient approaches the total deformation gradient, i.e., F=IandF= ¥,
at large times under constant twist for each of the loading stages, as was previously discussed in Remark 3.4.

Next, we look at the torque-force-control loading case and let the cylinder be free to deform in the longitudinal direction,
i.e., F(r) = 0, and subject it to the following end torque

Toerf(l> 0<t<1,
T() =Ty + "0 f<’:4> . <1<ty (5.71)
0

T(tz)erf(’ '2> . <1<,
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Fig. 6. Numerical results for the time evolution of the strain and stress state of a transversely isotropic neo-Hookean bar subject to twist-force-control loading

F(1)=0 and (5.70) at the two ends of the bar with different characteristic times 7, versus the viscoelastic dissipation characteristic time r = ”;‘ of the system.

where 1 is the loading characteristic time, #; = 25¢, t, = 501, 1, = 75t;, and T, = uRg is the end torque at large times 7, <t <t;. In
this case, we need to solve the governing PDEs (kinetic equations) (5.67)—(5.69) coupled with the integral Egs. (5.66) with F = 0 and
T(t) as given by (5.71). We numerically solve this system of equations assuming different loading characteristic times 1, respectively
smaller than, equal to, and larger than the characteristic time of the viscoelastic cylinder = = ”7‘ In Fig. 7, we plot the profile of the
torque loading T as well as the resulting time evolution of the kinematic quantities ¥, A y,, 4,, 4,, b,, W., A,, d,, b,, and r at R = Ry,
as well as the non-zero stress physical components at R = %RO. As the cylinder is torque-loaded, we observe that it experiences
creep: First, it elastically deforms instantaneously then continues to slowly deform even as the torque reaches a constant steady
state. This can be seen in the evolution of the elongation A(f) and the outer radius r(R,, ). Except for the viscous elongation flu,
which experiences an evolution akin to creep, all the other physical components of the viscous and the elastic deformation gradients
experience a strain relaxation. However, here again, and in accordance with Remark 3.4, the elastic deformation gradient relaxes
towards its unloaded state, while the viscous deformation gradient approaches the total deformation gradient, i.e., F=Iand F= F,
at large times under constant torque for each of the loading stages.

5.4. Example 3: Inflation of an incompressible isotropic viscoelastic thick spherical shell

Kinematics. Let us consider a thick spherical shell subject to a uniform time-dependent inner pressure p;(s). In its undeformed
configuration, it has inner and outer radii R, and R,, respectively. Let (R, ©,®) and (r, 0, ¢) be spherical coordinate systems in the
reference and current configurations, respectively, with their origins at the centers of the respective configurations of the spherical
shell. Following the spherical symmetry of the problem, we consider a radial deformation ansatz

r=r(R,1), 6=0, p=0. (5.72)
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Fig. 7. Numerical results for the time evolution of the strain and stress state of a transversely isotropic neo-Hookean bar subject to twist-force-control loading
F(1)=0 and (5.71) at the ends of the bar with different characteristic times 7, versus the viscoelastic dissipation characteristic time 7 = 'L‘ of the system.

Therefore, the material and spatial metrics have the following representations:

1 0 0 1 0 0
G=|0 R? 0 , g=|0 r2 0 , (5.73)
0 0 R’sin®@ 0 0 rsin@

and the deformation gradient reads

0 0
F=FR,n=| 0 1 of, (5.74)
0 1

1
where #/(R,1) = dr(R,1)/dR. Incompressibility J = 1 implies that r2(R,?)#'(R,t) = R%. Thus, r(R,?) = [R> + C3(1)]3 for some time-
dependent function C(¢). At t = 0, the thick shell is in its undeformed configuration, i.e., (R,0) = R; hence, the unknown function
C(1) satisfies the initial condition C(0) = 0. In terms of its physical components, the deformation gradient reads

RZ
N N rz(R,t) 0
F=FRn=| o R0 g | (5.75)
r(R,1)
0 0 %

In order to be consistent with spherically-symmetric universal eigenstrains (Goodbrake et al., 2021), we assume the following form
for the viscous deformation gradient

L a(R1) 0 0
F=FRn=| 0 bR o |. (5.76)
0 0 bR
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At t = 0, in the initial unloaded state, II:‘(R, 0) =1 1i.e., a,(R,0) = b,(R,0) = 1. Incompressibility J=1 implies that a,(R, 1) b%(R, H=1.
The physical components of the viscous deformation gradient read

4R = ay(R.1),  By(Rot) = by(R1) = —— . (5.77)

Va,(R, 1)

Since F = Ie?II?, it follows that the elastic deformation gradient has the following form

o 4R 0 0
F=FRnH=| 0 bs@®RH 0 |, (5.78)
0 0 b,(R,1)
where
2
e (R=—= R,  b(R1=b (R = a RD). (5.79)

[R?+C3(n)]3
Its physical components read

[R® +C3(n)] 3
R

[R®+C3(0)] 3

R R?
a,(R,1) = R

[R3 + C3(n)]

a 'R,  b(RD= b R = Va,(R.1). (5.80)

2
3

Remark 5.3. F is compatible if and only if % =0.

Stress and equilibrium equations. Following (4.24), the non-zero components of the Cauchy stress are

4 4
4 _ 2(RP+C3 _ 4 . 282(R+C3)3 _
(R =—p+ —B - ( - ) v+ — 2K g - o = ) 7, (5.81a)
(R +C3)3 a2 (R +C3)3
_ 2 ~ 2R?D2
599(12,;):_;24_%!1/1 - ZR - '}/2+$?’1 -—", (5.81b)
(R3+C3)§ (R3+C3)§ v (R3+C3)§

_ 2 ~ 2R’

(R, 1) = L L +iq/1 - 2R 2 — |, (5.81¢)

Yo+ ——=Y -
sin” © (R3+C3)§ (R3+C3)% szg 1 (R3+C3)§

where p = p(R,1) is the Lagrange multiplier corresponding to the incompressibility constraint, i.e., J = 1. The only non-trivial
equilibrium is

o+ go'" —re? — rsin? 0 6% = 0. (5.82)
’ r
Or
o p=—1 [Za" - 2r0'99] . (5.83)
’ r
Thus, recalling that the inner boundary is under a time-dependent pressure p;(¢), i.e., ¢’"(R,,t) = —p;(t), we find
R
o""(R,1) = —pi(t)+/ [, ndé, (5.84)
Ry
where
2
2 ol A 2RI+CY) . 4CP2RP+C3)_ 4 a3 (R +C3) - R]
Rty =~ [—o‘" ~ 20 ] = L+ L7, + 1
" (R +C?)3 R (R} +C3)3 @ (R3+C3)3 5.85)
4fad (R4’ - RY|
+ — .
a,R* (R} +C3)3
From (5.81a) and (5.84), the pressure field is calculated as
4 4
R 4 _ 2(RP4+C)3 _ 4 . 28 (R+C)5
2R 2R
p(R,t):pi(t)—/ fEnde+ i ( = ) ¥, + — ¥ - al = ) ¥, . (5.86)
Ry (R3+C3)3 a2 (R¥+C3)3
We assume that the outer boundary is traction-free, i.e., ¢'"(R,,7) = 0. Thus
Ry
f&ndé=p@). (5.87)

Ry
At this point, the unknown fields of the problem are C(¢) and a,(R, t). The boundary condition at R, above needs to be supplemented
by the kinetic equation to solve the problem herein.
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Kinetic equation. Assuming the quadratic dissipation potential introduced in Section 5.1, the kinetic equation—following (5.11)—
reads as the following system of equations

. m 2RYP, 4R*P,
a, (’71 + m + 7]3)[lu - - 4 - 2 =4, (588a)
Vv (C3+R3)3a2 (C3+R3)3gq,
. 4 ~ 2 .
. < " _2,11+,,2+,,3>_2w2(c3+R3)3a3_2'1/1 (CP+R)3a, 2R, .y (5.88b)
v - ’ '
Vay 2a; Rt ke (C3+ R3)% a,

where we recall that ¢ = q(R,?) is the Lagrange multiplier corresponding to viscous incompressibility, i.e., J = 1. We eliminate q
from (5.88) and end up with a single ordinary differential equation for a, as the kinetic equation:

;N2 afa (R4 =R 4lad (R +C)° = Ro,| _
[2;11 <a3 - ) + (ny +13) (24> + 1)] a, + ¥+ > ¥, =0. (5.89)
3

4
3

R (R3 +C3) R (R3 +C3)

Example 5.3. Let us consider a neo-Hookean viscoelastic solid, i.e., ?1 = %/A, ?2 =0, E?’l = % H,, and 'f’z = 0. In this case, the kinetic
equation (5.89) is simplified to read

2
3 2 3+ R|3 4
|:2m <a3 - 1> + (m+m3) (242 + 1)] a,(R, 1)+ ZMe%az = ZMER—4 . (5.90)
[C3@) + R3]3
For this model
C3 (2R3 +C3) @ (R} +C3)* — RO
F(R1)=2pu — +2u, —. (5.91)
(R¥+C3)3 a2 (R3+C3)3

The boundary condition (5.87) is simplified to read

4R,C*+5R} 4R C*+5R} R g} (R +C3)* = RO
H i " +2ue/ ————dR=p0®. (5.92)
1 4 R 1
2(C3+R3)3  2(CP+ RS 1 a2 (R¥+C3)3

The following system of ODE-integral equation governs the unknowns a,(R,t) and C(#):*°

3 2 5 N 2
5 . C’(H)+R’)3 4
2m <a3 —1> +(r]2+n3) (2ai+1) aU(R,1)+2ye%ai=2ueR—4,
(C3(1)+R3)3

4R2c3+5R;2‘ B 4R1C3+5Ri o, /RITZ ui(R3+C3)2—ZR6 dR = p(0), (5.94)
43R 4(ory)? a2(R3+C3)3
a,(R,0)=1,
where the inner pressure loading is given by
Merf(é), 0<t<1t,
pi(t) = pf+@erf(%> , 11 <t<ty, (5.95)

Py t—ty
> —Pi(lz)erf(T) » B St<Zty,
where 1, is the loading characteristic time, #, = 25, 1, = 50¢,, 1, = 75ty, and p, is the force at large times 7, <t <1,.

Numerical results. Let us consider a thick spherical shell made of a neo-Hookean viscoelastic solid such that u, = % u, with a
dissipation potential of the form (5.6) such that , =, = %;13, and subject it to the inner pressure p;() (5.95) with p, = 0.25u
at R; = 0.75R,. In this example, an explicit finite difference scheme has been used to numerically solve the governing equations.
We numerically solve the governing Eq. (5.94) assuming different characteristic times ¢, respectively smaller, equal, and larger
than the characteristic time of the viscoelastic shell. In Fig. 8, we show the profile of the inner pressure loading p;(r) and the
resulting evolution of the kinematic quantities a,, b,, a,, b,, and r at R = R,, as well as the non-zero physical stress components

39 Assuming that a,(R,0) = 1, the integral equation at ¢ = 0 is simplified to read

4R,C3 +5RY  4R,C?+5R}
0+ 1o T - =0, (5.93)
4(C3+R})7  4(C3+R)3

which implies that C(0) = 0. Thus, only one initial condition is needed.
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to =0.17 to =17 to = 107
0.2 0.2 [ 0.2
pi(t) 0-15 0.15 0.15
Hoo04 0.1 0.1
0.05 0.05 0.05
0 0 0
0 25 50 75 0 25 50 75 0 25 50 75

0.4 -

04f _—=———1 04f ~=="" 6
L~ 1 ,” ‘l —" =" ,/' \\
l I 1 / N
N 0.2 0.2 \ 02t 7/ N
(R, t) S———— 1 I —————— \ / S———
\,
1 \ / .
0 L_I_'i 0 \—; 0 w
0.2 0.2 0.2
0 25 50 75 0 25 50 75 0 25 50 75
t/T t/T t/T

Fig. 8. Numerical results for the time evolution of strain and stress state of an isotropic neo-Hookean viscoelastic thick shell of outer radius R, and inner radius
R, = 0.75R, subject to pressure-control loading p,(r) (5.95) at its inner wall with different characteristic times 7, versus the viscoelastic dissipation characteristic
time 7 = ’;T‘ of the system.

at R=R, = %(R1 + R,). As pressure is applied on the inner wall of the spherical shell, we observe that in each of the three
loading then unloading stages, the thick shell experiences creep as its outer radius first experiences a fast elastic response followed
by a slow deformation even as the inner pressure reaches a constant steady state. However, the elastic deformation gradient
experiences a strain relaxation as its physical components first elastically increase at a fast rate and then slowly relax into their

initial unloaded state as the loading reaches a constant steady state, i.e., F = I, as previously discussed in Remark 3.4. We also see
that the viscous deformation gradient experiences a phenomenon akin to creep which is in accordance with Remark 3.4 since its

physical components tend to match those of the total deformation gradient as the loading reaches a constant steady state—a, (R,, )

R? ~ v ~
approaches F’p(R,,t) = -—2— and b,(R,, 1) approaches F’4(R,,1) = R 5o that F = F at large times in each of the three loading

r2(Ry.1) Ry
stages.

6. Conclusions

In this paper, we first revisited the multiplicative decomposition of the deformation gradient F = FF in nonlinear viscoelasticity
from a geometric point of view. We showed, based on invariance and physical arguments, that the viscous deformation gradient
has to be a material tensor while the elastic deformation gradient is a two-point tensor. We assumed an additive split of the free
energy density into equilibrium and non-equilibrium parts. The equilibrium free energy depends on the total deformation gradient,
while the non-equilibrium part depends only on the elastic deformation gradient. We also assumed the existence of a dissipation
potential that depends on the total deformation gradient, the viscous deformation gradient, and its rate, and that it is convex in
the rate of the viscous deformation gradient. It was concluded that there is a subtle but crucial difference between anelasticity and
viscoelasticity; the intermediate configuration is stress-free in anelasticity but it is stressed in viscoelasticity.

We derived the balance laws using a two-potential approach and the Lagrange-d’Alembert principle. More specifically, the
variational principle gives us the balance of linear momentum and a kinetic equation for the viscous deformation gradient. We also
discussed thermodynamics of viscoelasticity. Next, material symmetry was discussed and it was emphasized that the equilibrium
and non-equilibrium free energies and the dissipation potential are all invariant under the same symmetry group. We derived
the representations of the Cauchy stress in terms of the principal and structural invariants for isotropic, transversely isotropic,
orthotropic, and monoclinic solids. The explicit form of the kinetic equation was also derived for these four classes of solids.

Three examples of universal deformations were studied for both isotropic and transversely isotropic solids. These were extension
and torsion of a solid circular bar, and inflation of a spherical shell. Assuming incompressible solids, the kinematics in each case is
reduced to depend on one or two unknown time-dependent functions. The viscous deformation gradient has one or two unknown
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functions of a radial coordinate and time. The governing equations were reduced to an initial-value problem for a coupled system
of partial differential and integral equations. For specific examples of solids, these problems were solved numerically.

In a future communication, a theory of small-on-large viscoelasticity will be formulated, a particular case of which is linearized
viscoelasticity. In another future communication, a nonlinear theory of visco-anelasticity will be developed in order to study the
coupling of anelasticity and viscoelasticity.
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Appendix A. Variations for the Lagrange-d’Alembert principle

The variation of the velocity vector, §V, is computed as
dp.(X,1) _ Dt dp.(X,1)
! de
e=0

= D%5p,
ot 0P
where DE denotes the covariant derivative along the curve € ~ g, (X) for fixed t and X, D denotes the covariant derivative along

6V = DEV, |,y = DE (
e=0

the curve ¢ = ¢, (X) for fixed ¢ and X, and use was made of the symmetry lemma for covariant derivatives (Nishikawa, 2002):
D& = Dg 9 Hence, it follows that

[ oo [ o [ [ (55n) - ()
:-/B[i;g&p], av - / /Dg(ag>5(pdth

Following (3.3b) and (3.3c), one may see that 6(p,0 = 5(p,] = 0. From (3.2), one finds that an/aV = p,gV and D,g (09/6V) = p,gA. %
Therefore, it follows that (A.1) yields

/ /—zSVdth /l/(paA,rS(p>ngdt. (A.2)
ty B

The variation of the Cauchy-Green deformation tensor, §C’, is computed as

dvdt

(A1)

ac’
de ez0
=F* (g(V89p) + (VEs0)*g) F

5C” =

d * s * d * * *
= — N = — (., = L =F*(L;, eF
» de((/’ 9.9, 8) o @ de(co.fpgg) o ¢ (L5y8) (Ls5(8) (A.3)

40 Note that Dfg = V¥ v& =0 per compatibility of the Levi-Civita connection V&.
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where L denotes the total Lie derivative operator and use was made of the compatibility of the Levi-Civita connection to write
Ls,g = g(VEp) + (VESp)*g. It follows that

//‘33 §C’ dvdr = // : F* [8(VE80) + (VES@)* g FdVdt
B()C"

/ zacb F*g(VE5¢)F dV dt
B

/ / 2acb : F*gl(¢* VE)sp] dV dt
B

/ZgF— [(p*VE)5p]dV dt (A4
B

. f .
—/ /Div (25<ng£> dAdt+/ /5(pDiv <2gF£> dvdt
0 JB oc’ w JB acP
1y S 1 o
—/ / 25(ng£NdAdt+/ /gDiV <2F£)5q)dth
1 JoB ac’ n JB ac’
n P n P
- 2F—N, 6 dAdt+/ / Div <2F—>,5 dvdt,
/to /aB< 2L N.50), K 2) 500,

where (¢p*V8)6p = (V85¢)F, Div denotes the material Levi-Civita divergence operator, and use was made of Stokes’ theorem with N
being the G-unit normal to 05. .
The variation of the elastic Cauchy-Green deformation tensor, 5C, is calculated as
= 6(F,C") = (F*C'F1) = F*6C°F! + 6F *C°F~! + F*C'6F~!
= F*F*(L;,@FF — F*6F*F*CF ! — F*C'F~ ' 5FF ! (A.5)

= F*(L;,@F —F*(F)*C’ - CGRF ' = F* (2(VE60) + (VE69)*g) F — C'GBF ! — F*(6F)*C".
It follows that

:6C avdr = F* (2(VE50) + (VE60)*g) F — C" (SF)F~! ﬁ*-*((sﬁ)*é"] dvdt
1o 4B oCh o JB 9
- / / [2  Frg(VEso)F — 2‘) C"(&F)F‘] dvde
\ - ."C (A.6)
= —/ / [2% : F*gl(¢* VE)s0)F ! —2Cb£F’* : §F] dvdt
oCP
/ / [ZgF (@ VE)sg] — 260 X fr ﬂ”"] dvdr.
ac’
Isolating the first term, one may write
/ / {2gF I vg)&p]} dvdt
=/ / [Div <25q)gﬁ¥f-*> — 5¢Div <2gﬁ¥f-*>] dvdt
1o aC? oC? (A7)
/ / 26q;gF—F‘*NdAdt / /5(pgD1V <2F ) dvdt
ac
:/ / (2F£F’*N,5(p)gdAdt—/ /(Div <2F£F’*>,5(p)ngdt.
v JoB  9Ch 1n JB aCh
Therefore, it follows from (A.6) and (A.7) that
¢ bl e QY v e Y/ v

/ / 5C"dth=/ /[(Div <2F$F‘*),6¢>g+2cbir* : 5F] dVdt

Bacb 1 JB Lol oC? (A.8)

3 e Y/
—/ / (2F£F’*N,6¢>g dAdt.
1o JoB Cb

The variation of the material metric, §G, is identically zero since the material metric G remains unaltered by the one-parameter
family e ~ (g,, e)

6G=0. (A.9)

41 Note that in terms of the autonomous Lie derivative £, one has L, = i + £5¢
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The variation of the spatial metric, g, is also identically zero following from the compatibility of the Levi-Civita connection V&:
6g = DE(gop,) = 6pVig =0. (A.10)
The variation of the Jacobian of the total deformation, 6J, reads

b= & (V)

-1 _d (det C,)
24/det C 9€
-1 4 e :sC
2v/det € 4€
_1ly -1 . i
=3 det CC™" : 6C using (B.3) (A11)
- %JC‘I | G'F* (g(VE6p) + (VE6p)*g) F —using (A.3)
=JC' : G'F*g(V86@)F —recalling that C* = C
=JC™* : F'(V86g)F —recalling that FT = G*F*g
=JFTC™ : (V85@)F
=JF™* : (¢*VE)sp —since FT"C* =F* and recalling (¢*V&)5¢ = (VE5@)F .
Therefore
3] 1
/ /p&.l dth=/ /pJF_* L (@*VE)SpdVdt
1 JB 1 JB
1
= / / [Div(pJ 6¢F ™) — 5 Div(pJF )| dVdt
B
o | (A.12)
=/ / pJ6F *NdAdt —/ /5(,; Div(pJF*)dVdt
1o JoB 1 /B
[ 1
= / / (pJg'F*N,5¢), dAdt — / / (Div(pJ g'F ™), 6¢p)g dV dt .
1o JoB 1y JB
The variation of the Jacobian of the viscous contribution to the deformation, §J , reads
5f=2L (det F) = 4 (detF) : 5F
de dF
(A.13)

= (det l‘:‘)IL;“* . 6F —similarly to (B.3)
= JF ™ : 6F.

And it follows that
1 v | v v
/ /qéJ dvdt =/ /qJF_* : 6FdvVdt. (A.14)
g JB ty JB
Appendix B. Derivatives of the principal invariants

Suppose f(C’) is a scalar-valued functional. For an arbitrary second-order covariant tensor H, which has the coordinate
representation H=H,; d X4 ® dX 5, one writes

P)
f(Cb+eH):f(Cb)+a—(j; tHe +o(e). (B.1)
Note that I = trg C* = C* : G = C,3G*B = C4 . This implies that
oI,
oL _gt (B.2)
aC’
For I3 = det C, note that
det(CA + e HA ) = det [CAD (625 +C )’y eHMB>] = det C det (I+ ¢ C™"H) = det C [1 + ¢ tr (C”'H) + o(e)] ®3)
=det C +(det C)C™!: He + oe).
This implies that
oI, oI,
— =,C!, = [,(CHB . B.4
oc 3 aCAy (EDa B4
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Therefore

% =5,CF, a?:IjB = I,(C™HAB, (B.5)
where (C"1)48 = (C~)4,, GMB _ For I, = (det C)tr C~! = I, tr C,

% = % wC 4 I % rC = LCc wC 4 13% wCl=nc "+ 13% e (B.6)
The second term on the right-hand side is calculated as

(C+eHy ! =[C(I+eCH)] " = (1+eCc'H) ' ¢! (B.7)
Note that for small enough ¢ one has

([+eCH) ' = [I- (e C'H)] ™ =T+ (~e C'H) + (e C'H)” + o(c?) = T - ¢ (C"'H) + €2 (C'H)” + o(¢?). (B.8)
Thus

(C+eH)' =C —c(CTTHC™) + & (CH) €' + o(e?) . (B.9)
This implies that

tr(C+eH) ' =t C! —etr (C‘lHC‘l) +é2tr [(C‘IH)2 C‘l] + o(e?). (B.10)
Note that

tr (CT'HC™!) = ()4 pHEp(CHP , = (CcHP (™ HApHE ), = (CHPgHE, =C2: H. (B.11)
Therefore

% wel=c2. (B.12)
Finally

% =LC'+1,C2, % =LCH L =nCct+ %, (B.13)
Similarly

M g, e, 0L e (B.14)

ac’ ac’ ac’
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