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A B S T R A C T

In this paper, we revisit the mathematical foundations of nonlinear viscoelasticity. We study
the underlying geometry of viscoelastic deformations, and in particular, the intermediate
configuration. Starting from the direct multiplicative decomposition of the deformation gradient
𝐅 =

𝑒

𝐅
𝑣

𝐅 , into elastic and viscous distortions
𝑒

𝐅 and
𝑣

𝐅 , respectively, we point out that
𝑣

𝐅 can be
either a material tensor (

𝑒

𝐅 is a two-point tensor) or a two-point tensor (
𝑒

𝐅 is a spatial tensor).
We show, based on physical grounds, that the second choice is unacceptable. It is assumed that
the free energy density is the sum of an equilibrium and a non-equilibrium part. The symmetry
transformations and their action on the total, elastic, and viscous deformation gradients are
carefully discussed. Following a two-potential approach, the governing equations of nonlinear
viscoelasticity are derived using the Lagrange–d’Alembert principle. We discuss the constitutive
and kinetic equations for compressible and incompressible isotropic, transversely isotropic,
orthotropic, and monoclinic viscoelastic solids. We finally semi-analytically study creep and
relaxation in three examples of universal deformations.

1. Introduction

The linear theory of viscoelasticity was formulated 150 years ago by Boltzmann (1874) for isotropic solids (and by Volterra, 1909
for anisotropic solids), see Gurtin and Sternberg (1962) and Coleman and Noll (1961). The nonlinear theories of viscoelasticity
ppeared much later. Rivlin and Ericksen (1955) formulated a theory of viscoelasticity for isotropic solids in which stress at a
aterial point depends on the deformation gradient and gradients of velocity, acceleration, and higher order accelerations up to
ome finite order at that point.1 Most of the early studies of finite viscoelasticity (Pipkin, 1964; Rivlin, 1965; Pipkin and Rogers,
1968) were based on the theory of fading memory (Green and Rivlin, 1957; Green et al., 1959; Green and Rivlin, 1959; Wang,
1965).

Much of the recent developments in the literature of viscoelasticity stem from the pioneering work of Green and Tobolsky (1946)
on rubber-like viscoelastic relaxation and its subsequent extension by Lubliner (1985) to finite rubber-like viscoelasticity using the
Bilby–Kröner–Lee decomposition following (Sidoroff, 1974). As detailed in (Sadik and Yavari, 2017b), although largely credited
to Lee and Liu (1967) and Lee (1969), the multiplicative decomposition of the deformation gradient was first formally introduced
by Bilby et al. (1955) and Kröner (1959). In the context of nonlinear viscoelasticity, it was first introduced by Sidoroff (1974)
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1 There are some recent works on ‘‘nonlinear viscoelasticity of strain rate type’’ (Şengül, 2021; Mielke and Roubíček, 2020; Badal et al., 2023), which is
very special case of the Rivlin–Ericksen theory. Apparently, the authors of these recent papers were not aware of the seminal paper of Rivlin and Ericksen
1955).
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inspired by its use in elasto-plasticity (Berdichevskii and Sedov, 1967; Lee and Liu, 1967; Lee, 1969; Sidoroff, 1973).2 Sidoroff
1974) formulated a finite deformation viscoelastic model by assuming a free energy that depends explicitly on both the total
eformation gradient and its elastic (or viscous) part. Constraining the free energy by the Clausius–Duhem inequality, he found the
onstitutive relations—including an additive split of the stress into elastic and viscoelastic parts without assuming any such split
f the free energy. He then introduced a quadratic dissipation potential following the Casimir–Onsager’s reciprocity principle to
btain evolution equations. Following Green and Tobolsky (1946) and Sidoroff (1974), Lubliner (1985) considered the nonelastic
art of the deformation gradient as an additional internal variable governed by a linear rate equation. Without assuming isotropy,
e formulated a constitutive model such that the free energy is additively split into an elastic part uncoupling the volumetric and
eviatoric contributions of the deformation, and a viscous part that depends on the additional internal variable. Latorre and Montáns
2016) explicitly acknowledged that the intermediate configuration in viscoelasticity is not stress free (after their Eq. (20) they write
‘(i.e., the intermediate configuration is not strictly speaking a ‘‘stress-free’’ configuration)’’). Latorre and Montáns (2016) suggested
sing a reverse decomposition of deformation gradient in viscoelasticity, i.e., 𝐅 =

𝑒
𝐅
𝑣
𝐅 =

𝑣
F

𝑒
F (see also Bahreman et al., 2022 who

ompared the direct and reverse decompositions for viscoelasticity. It should be noted that these authors assumed the elastic and
iscous distortions to be compatible (see Eqs. (8) & (12)), which is incorrect.). Similar to anelasticity (Yavari and Sozio, 2023), the
everse decomposition is expected to result in an equivalent theory.
Based on the generalized one-dimensional linear Maxwell rheological model, Simo (1987) first sketches an alternative for-
ulation of the standard linear solid that he subsequently generalizes to a nonlinear formulation of viscoelastic solids. In his
ormulation, he assumes an additive split of the free energy into an initial (elastic) and a non-equilibrium contribution. Similarly
o Lubliner (1985), he uncouples the bulk and deviatoric components of the deformation gradient to forgo the isotropy assumption
n his constitutive model. The viscous response is introduced by considering a strain-like tensor as an internal variable in the non-
quilibrium part of the free energy; a variable whose evolution is governed by a linear rate constitutive equation. When specialized
o the particular case of neo-Hookean solids, he shows that his theory is consistent with the Bilby–Kröner–Lee decomposition with
he internal variable related to the non-elastic contribution of the deformation gradient as in (Lubliner, 1985). It is worth mentioning
hat Simo’s finite linear convolution model has never been demonstrated to conform to the second law. For a recent relevant study,
ee Liu et al. (2021).
Le Tallec et al. (1993) assumed the multiplicative decomposition of the deformation gradient into elastic and viscous parts.

or incompressible viscoelastic solids, they assumed that both the total deformation gradient and the viscous deformation gradient
or equivalently both the elastic and viscous deformation gradients) are volume preserving (the same assumption had been made
arlier by Leonov, 1976). They assumed an additive split of the free energy density into equilibrium and non-equilibrium parts
hat depend on 𝐂 and

𝑒
𝐂, respectively. Finally, they assumed a dissipation potential that explicitly depends on

𝑣̇
𝐂, i.e., 𝜙 = 𝜙(

𝑣̇
𝐂).

or fiber-reinforced viscoelastic composites, Nguyen et al. (2007) used an isotropic dissipation potential written in terms of
𝑣
𝐂 and

dentical to that used by Reese and Govindjee (1998b). When written in terms of
𝑣
𝐂, the quadratic dissipation potential is expressed

in terms of two positive viscosities (deviatoric and volumetric).
Without any mention of the Bilby–Kröner–Lee decomposition, Holzapfel and Simo (1996) introduced an additive decomposition

of the free energy into a purely thermoelastic contribution and a non-equilibrium contribution; where, following Coleman and
Gurtin (1967), the latter is described as a configurational free energy dependent on a set of additional internal variables, akin to
strain, characterizing the irreversible viscoelastic response of the material. Starting from the generalized one-dimensional linear
Maxwell rheological model (Holzapfel, 1996), they introduced an evolution equation for the conjugate internal non-equilibrium
stresses following (Valanis, 1972).

Starting with the generalized linear Maxwell rheological model and generalizing the constitutive model of Lubliner (1985), Reese
and Govindjee (1998a,b) proposed an additive split of the free energy into an equilibrium and a non-equilibrium part. The
equilibrium part depends on the total deformation gradient and gives the free energy in the thermodynamic equilibrium state
at infinite time. The non-equilibrium part of the free energy depends however solely on the elastic part of the Bilby–Kröner–Lee
deformation gradient decomposition and eventually vanishes as the body relaxes in the thermodynamic equilibrium state. In the
framework of Holzapfel and Simo (1996), they effectively took the inelastic part of the deformation gradient to be the internal
variable of interest, and instead assumed its evolution to be given by a positive semi-definite quadratic dissipation potential;
a sufficient condition to fulfill the second law of thermodynamics. More recently, Kumar and Lopez-Pamies (2016) formulated
nonlinear viscoelasticity using a two-potential approach. They critically reviewed some of the previous works in the literature on the
kinetic equations and pointed out some inconsistencies regarding objectivity (material-frame-indifference) of some of the proposed
kinetic equations.

There have been attempts in the literature to model anisotropic nonlinear viscoelastic solids. Biot (1954) presented a Lagrangian
treatment of anisotropic viscoelasticity based on Onsager’s reciprocal relations (Onsager, 1931) using potential energy and
dissipation function and introduced operational tensors to relate stress and strain. For a viscoelastic solid reinforced by one family of
fibers (a transversely isotropic viscoelastic solid), Merodio (2006) assumed that the Cauchy stress depends on the fiber orientation,
the right Cauchy–Green strain, and its time derivative, i.e., 𝝈 = 𝝈(𝐍,𝐂, 𝐂̇), where 𝐍 = 𝐍(𝑋) is the unit tangent vector to the fiber
at the material point 𝑋. There have been several efforts in the literature in modeling nonlinear viscoelasticity of fiber-reinforced

2 Note, however, that the difference in the underlying conceptual rational for the use of the multiplicative decomposition of the deformation gradient in
iscoelasticity as opposed to anelasticity has been to the best of our knowledge so far ignored—or at best not explicitly discussed—in the literature. As we later
2

oint out, this does have important consequences on the nature of the so-called intermediate configuration and the validity of the model otherwise.
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viscoelastic solids using the multiplicative decomposition of the deformation gradient (Nedjar, 2007; Nguyen et al., 2007; Liu et al.,
2019). They assumed separate multiplicative decompositions of the deformation gradient for the matrix and the fibers. Nguyen et al.
(2007) assumed that the equilibrium and non-equilibrium free energies have the same symmetry group. There have also been recent
efforts in modeling viscoelasticity of nematic liquid crystal elastomers (Wang et al., 2022). We should also mention that there are
several reviews of viscoelasticity in the literature (Schapery, 2000; Drapaca et al., 2007; Banks et al., 2011; Wineman, 2020; Şengül,
2021).

This paper is organized as follows. In Section 2, kinematics of viscoelasticity is discussed. In particular, we assume the
multiplicative decomposition 𝐅 =

𝑒
𝐅
𝑣
𝐅, and the tensorial characters of

𝑒
𝐅 and

𝑣
𝐅 are carefully investigated. Additive decomposition

of the free energy density into an equilibrium and a non-equilibrium part is assumed. In Section 3, balance of mass, balance of
linear and angular momenta, and the kinetic equation for

𝑣
𝐅 are derived, and the constitutive relations are discussed. The balance

of linear and angular momenta, and the kinetic equations for
𝑣
𝐅 are derived using a two-potential approach and the Lagrange–

d’Alembert principle. The first and second laws of thermodynamics are discussed and used to find the constitutive relations for
viscoelastic solids. Material symmetry in viscoelasticity is studied in Section 4. In particular, it is seen that the symmetry group acts
on both the equilibrium and non-equilibrium parts of the free energy, as well as the dissipation potential. The representation of the
Cauchy stress in terms of the material integrity basis is derived for transversely isotropic, orthotropic, and monoclinic solids both
in the compressible and incompressible cases. The dissipation potential and its functional form for both isotropic and anisotropic
solids is discussed. Three examples of universal deformations of isotropic and anisotropic viscoelastic solids are analyzed in detail
in Section 5. Concluding remarks are given in Section 6.

2. Kinematics, free energy, and dissipation potential

2.1. Kinematics

Let us consider a body that is made of a viscoelastic solid. We identify the body with an embedded 3-submanifold  of the
Euclidean ambient space  = R3. We adopt the standard convention to denote objects and indices by uppercase characters in the
material manifold  (e.g., 𝑋 ∈ ) and by lowercase characters in the spatial manifold  (e.g., 𝑥 ∈ ). We denote by {𝑋𝐴}, and {𝑥𝑎},
the local coordinate charts on  and , respectively; by

{

𝜕𝐴 = 𝜕
𝜕𝑋𝐴

}

and
{

𝜕𝑎 =
𝜕
𝜕𝑥𝑎

}

, we denote the corresponding local coordinate
ases, respectively; and by

{

𝑑𝑋𝐴} and {𝑑𝑥𝑎}, we denote the corresponding dual bases. We also adopt Einstein’s repeated index
ummation convention, e.g., 𝑢𝑖𝑣𝑖 ∶=

∑

𝑖 𝑢
𝑖𝑣𝑖.

Motion is represented by a one-parameter family of maps 𝜑𝑡 ∶  → 𝑡 ⊂ , where 𝑡 = 𝜑𝑡() is the current configuration of the
body. A material point 𝑋 ∈  is mapped to 𝑥 = 𝑥(𝑋, 𝑡) = 𝜑𝑡(𝑋) = 𝜑𝑋 (𝑡). The Euclidean ambient space has the flat metric 𝐠, which
has the representation 𝐠 = g𝑎𝑏 𝑑𝑥𝑎⊗𝑑𝑥𝑏. For example, if {𝑥𝑎} are Cartesian coordinates, the metric reads off 𝐠 = 𝛿𝑎𝑏 𝑑𝑥𝑎⊗𝑑𝑥𝑏. Given
wo vectors 𝐮 ,𝐰 ∈ 𝑇𝑥—the tangent space of  at 𝑥, their dot product is denoted by ⟨𝐮,𝐰⟩𝐠 = u𝑎 w𝑏 g𝑎𝑏. Given a vector 𝐮 ∈ 𝑇𝑥
and a 1-form 𝝎 ∈ 𝑇 ∗

𝑥 —the cotangent space of  at 𝑥, their natural pairing is denoted by ⟨𝝎,𝐮⟩ = 𝝎(𝐮) = 𝜔𝑎 u𝑎. The spatial volume
form reads 𝑑𝑣 =

√

det 𝐠 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. Let ∇𝐠 be the Levi-Civita connection of ( , 𝐠). We denote its Christoffel symbols by 𝛾𝑎𝑏𝑐 in
he local coordinate chart {𝑥𝑎}. The Euclidean metric 𝐠 induces the Euclidean metric 𝐆 on . The natural distances in the body
efore deformation are calculated using the metric 𝐆; this is the material metric and has the representation 𝐆 = G𝐴𝐵 𝑑𝑋𝐴 ⊗ 𝑑𝑋𝐵 .
For example, if {𝑋𝐴} are Cartesian coordinates, the metric reads off 𝐆 = 𝛿𝐴𝐵 𝑑𝑋𝐴 ⊗ 𝑑𝑋𝐵 ; in cylindrical coordinates {𝑅,𝛩,𝑍}, it
reads off 𝐆 = 𝑑𝑅 ⊗ 𝑑𝑅 + 𝑅2 𝑑𝛩 ⊗ 𝑑𝛩 + 𝑑𝑍 ⊗ 𝑑𝑍. Given two vectors 𝐔 ,𝐖 ∈ 𝑇𝑋—the tangent space of  at 𝑋, their dot product
is denoted by ⟨𝐔,𝐖⟩𝐆 = U𝐴W𝐵 G𝐴𝐵 . Given a vector 𝐔 ∈ 𝑇𝑋 and a 1-form 𝜴 ∈ 𝑇 ∗

𝑋—the cotangent space of  at 𝑋, their natural
pairing is denoted by ⟨𝜴,𝐔⟩ = 𝜴(𝐔) = 𝛺𝐴 U𝐴. The material volume form reads 𝑑𝑉 =

√

det𝐆 𝑑𝑋1 ∧ 𝑑𝑋2 ∧ 𝑑𝑋3. Let ∇𝐆 be the
evi-Civita connection of (,𝐆). We denote its Christoffel symbols by 𝛤𝐴𝐵𝐶 in the local coordinate chart {𝑋𝐴}.
A local elastic deformation is measured with respect to a local stress-free state and induces change of distances. It may be

uantified by the derivative of the deformation mapping—the so-called deformation gradient, denoted by 𝐅(𝑋, 𝑡) = 𝑇𝜑𝑡(𝑋) ∶ 𝑇𝑋 →

𝑇𝜑𝑡(𝑋)𝑡, which has components F𝑎𝐴 = 𝜕𝜑𝑎∕𝜕𝑋𝐴. The dual 𝐅⋆ of 𝐅 is defined as 𝐅⋆(𝑋, 𝑡) ∶ 𝑇𝜑𝑡(𝑋)𝑡 → 𝑇𝑋, ⟨𝜶,𝐅𝐔⟩ = ⟨𝐅⋆𝜶,𝐔⟩,
∀𝐔 ∈ 𝑇𝑋, ∀𝜶 ∈ 𝑇 ∗

𝜑(𝑋), and reads in components
(

F⋆
)

𝐴
𝑎 = F𝑎𝐴. The transpose 𝐅𝖳 of 𝐅 is defined as 𝐅𝖳(𝑋, 𝑡) ∶ 𝑇𝜑𝑡(𝑋)𝑡 → 𝑇𝑋,

𝐅𝐔,𝐮⟩𝐠 = ⟨𝐔,𝐅𝖳𝐮⟩𝐆, ∀𝐔 ∈ 𝑇𝑋, ∀𝐮 ∈ 𝑇𝜑(𝑋), and has components
(

F𝖳
)𝐴

𝑎 = G𝐴𝐵 F𝑏𝐵 g𝑏𝑎. Note that 𝐅𝖳 = 𝐆♯𝐅⋆𝐠, where (.)♯

denotes the musical isomorphism for raising indices. The right Cauchy–Green—also known as Green—deformation tensor is defined
as 𝐂 ∶= 𝐅𝖳𝐅, and reads in components C𝐴𝐵 = G𝐴𝐾 F𝑎𝐾 g𝑎𝑏 F𝑏𝐵 . Note that 𝐂♭ agrees with the pull-back of the spatial metric 𝐠 by 𝜑,
i.e., 𝐂♭ = 𝜑∗𝐠 = 𝐅⋆𝐠𝐅, where (.)♭ denotes the musical isomorphism for lowering indices. The Piola deformation tensor is defined
s 𝐁 ∶= 𝐂−1 = 𝐅−1𝐅−𝖳, and has components B𝐴𝐵 = (F−1)𝐴𝑎 g𝑎𝑏(F−1)𝐶𝑏 G𝐶𝐵 . Note that 𝐁♯ agrees with the pull-back of the inverse
aterial metric 𝐠♯ by 𝜑, i.e., 𝐁♯ = 𝜑∗𝐠♯ = 𝐅−1𝐠♯𝐅−⋆. The left Cauchy–Green—also known as Finger—deformation tensor is defined
s 𝐛 ∶= 𝐅𝐅𝖳, and reads in components 𝑏𝑎𝑏 = 𝐹 𝑎𝐴𝐺𝐴𝐵𝐹 𝑐𝐵 𝑔𝑐𝑏. Note that 𝐛♯ agrees with the push-forward of the inverse of the
aterial metric 𝐆♯ by 𝜑, i.e., 𝐛♯ = 𝜑∗𝐆♯ = 𝐅𝐆♯𝐅⋆. The inverse Finger deformation tensor is denoted by 𝐜 ∶= 𝐛−1 = 𝐅−𝖳𝐅−1,
nd has components C𝐴𝑏 = g𝑎𝑐 (F−1)𝐴𝑐 G𝐴𝐵(F−1)𝐵𝑏. Note that 𝐜♭ agrees with the push-forward of the material metric 𝑮 by 𝜑,
.e., 𝒄♭ = 𝜑∗𝑮 = 𝐅−⋆𝐆𝐅−1. The Jacobian of the motion relates the material and spatial volume elements as d𝑣 = 𝐽d𝑉 , and it
an be shown that 𝐽 =

√

det 𝐂 =
√

det 𝐠∕ det𝐆 det 𝐅.3

3 Denoting the Riemannian volume 3-forms corresponding to the Riemannian metrics 𝐠 and 𝐆 by 𝝁 and 𝝁 , respectively, they are related as 𝜑∗𝝁 = 𝐽 𝝁 .
3

𝐠 𝐆 𝐠 𝐆
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Fig. 1. Local intermediate configurations in viscoelasticity and anelasticity. Blue and pink squares indicate locally stress-free and locally stressed configurations,
respectively. (a) In viscoelasticity, the local intermediate configuration is stressed, and the material manifold is the Euclidean manifold (,𝐆). (b) In anelasticity,
the local intermediate configuration is stress-free, and the material manifold is (,𝐆), where 𝐆 is the non-flat material metric, which is related to the Euclidean
etric 𝐆̊ via pull-back.

The material velocity 𝐕 of the motion is defined as 𝐕 ∶  × R+ → 𝑇 ,𝐕(𝑋, 𝑡) ∶= 𝜕𝜑(𝑋, 𝑡)∕𝜕𝑡, and in components reads V𝑎 = 𝜕𝜑𝑎

𝜕𝑡 .
The spatial velocity is defined as 𝐯 ∶ 𝜑𝑡() × R+ → 𝑇, 𝐯(𝑥, 𝑡) ∶= 𝐕(𝜑−1

𝑡 (𝑥), 𝑡). The material acceleration is defined as 𝐀 ∶  × R+ → 𝑇
𝐀(𝑋, 𝑡) ∶= 𝐷𝐠

𝑡 𝐕(𝑋, 𝑡), where 𝐷
𝐠
𝑡 denotes the covariant derivative along 𝜑𝑋 ∶ 𝑡 ↦ 𝜑(𝑋, 𝑡). In components, A𝑎 = 𝜕V𝑎

𝜕𝑡 + 𝛾𝑎𝑏𝑐 V𝑏 V𝑐 .
The spatial acceleration is defined as 𝐚 ∶ 𝜑𝑡() × R+ → 𝑇, 𝐚(𝑥, 𝑡) ∶= 𝐀(𝜑−1

𝑡 (𝑥), 𝑡) ∈ 𝑇𝑥, and in components reads, a𝑎 =
𝜕v𝑎
𝜕𝑡 + 𝜕v𝑎

𝜕𝑥𝑏 v
𝑏 + 𝛾𝑎𝑏𝑐 v𝑏 v𝑐 .

2.2. Multiplicative decomposition of the deformation gradient

Let us consider a viscoelastic body in its loaded deformed state. If we proceed to unload the body, we observe an instantaneous
partial relaxation into an intermediate stressed state (that is embedded in the Euclidean ambient space), followed by a slower
relaxation back into its initial undeformed state. Note that in this experiment, the intermediate state may, in general, still contain
unresolved residual elastic strain. As a mater of fact, while the instantaneous partial relaxation is purely elastic, the slow relaxation
is, in general, not purely viscous and may involve some residual elastic deformation that might have been prevented from resolving
instantaneously.4

Instead of the global picture above, let us look at this thought experiment locally by considering a volume element in a viscoelastic
body in its loaded state, i.e., a small neighborhood of a spatial point—generally deformed and stressed. We let this volume element
be isolated and proceed to unload it independently of the rest of the body. We then observe an instantaneous purely elastic relaxation
of the total elastic strain in the isolated volume element into an intermediate stressed state,5 followed by a slow viscous relaxation
into its initial undeformed state. The instantaneous local purely elastic unloading map is denoted by

𝑒
𝐅−1. The slow final local purely

viscous relaxation map is denoted by
𝑣
𝐅−1. Therefore, one has a local multiplicative decomposition of the deformation gradient

𝐅 =
𝑒
𝐅
𝑣
𝐅. The two maps

𝑒
𝐅 and

𝑣
𝐅 are incompatible, in general, i.e., global maps 𝑣𝜑𝑡 ∶  →  and 𝑒𝜑𝑡 ∶  → 𝑡 (or

𝑣𝜑𝑡 ∶  → 𝑡 and
𝑒𝜑𝑡 ∶ 𝑡 → 𝑡) such that

𝑣
𝐅 = 𝑇 𝑣𝜑𝑡 and

𝑒
𝐅 = 𝑇 𝑒𝜑𝑡 do not exist, in general. Notice that the local configuration that results after an

instantaneous local elastic unloading is not stress-free, in general (see Section 3.4). This is in contrast with anelasticity for which a
locally unloaded configuration is stress-free. This is the fundamental difference between viscoelasticity and anelasticity (see Fig. 1).

It should be noted that in the decomposition 𝐅 =
𝑒
𝐅
𝑣
𝐅 there are two possibilities:

(𝑖)
𝑣
𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑋 ,

𝑒
𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑥 , (2.1a)

(𝑖𝑖)
𝑣
𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑥 ,

𝑒
𝐅(𝑥) ∶ 𝑇𝑥 → 𝑇𝑥 , (2.1b)

where 𝑥 = 𝜑(𝑋). In the next section, we show that the second choice will have physically-inconsistent consequences, and hence, it
is not acceptable.

2.3. Additive decomposition of the free energy into equilibrium and non-equilibrium parts

We assume that the constitutive model of a nonlinear viscoelastic solid is described by a pair of functionals (𝛹, 𝜙), where
𝛹 = 𝛹 (𝑋,𝛩,𝐅,

𝑒
𝐅,𝐆, 𝐠) is the free energy density functional (per unit undeformed volume) and 𝜙 = 𝜙(𝑋,𝛩,𝐅,

𝑣
𝐅,

𝑣̇
𝐅,𝐆, 𝐠) is a dissipation

4 This is essentially an expression of the incompatibility of the elastic strain in the body.
5 The union of all such partially relaxed volume elements constituting the body does not, in general, result in a body embeddable in the Euclidean ambient

pace. It can, however, be described as an abstract manifold with a non-trivial metric; and it is, in general, different from the partially relaxed intermediate
4

tate embedded in the Euclidean ambient space discussed in the global experiment above.
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potential density (per unit undeformed volume)—or Rayleigh functional, where 𝛩 = 𝛩(𝑋, 𝑡) is the temperature field. In the literature,
it has usually been assumed that the free energy can be additively decomposed into an equilibrium part and a non-equilibrium
part: 𝛹 = 𝛹EQ + 𝛹NEQ, where the equilibrium free energy depends on the total deformation gradient, and the non-equilibrium free
nergy depends on the instantaneous elastic contribution of the deformation gradient

𝑒
𝐅 (Reese and Govindjee, 1998b; Kumar and

Lopez-Pamies, 2016). For either choice in (2.1), one may write 𝛹EQ = 𝛹EQ(𝑋,𝛩,𝐅,𝐆, 𝐠); and material frame indifference6 implies
hat 𝛹EQ(𝑋,𝐅, 𝛩,𝐆, 𝐠) = 𝛹̂EQ(𝑋,𝛩,𝐂♭,𝐆). However, the functional form of the non-equilibrium free energy depends on the choices
n (2.1):

(𝑖) 𝛹NEQ = 𝛹 (1)
NEQ(𝑋,𝛩,

𝑒
𝐅,𝐆, 𝐠) , (2.2a)

(𝑖𝑖) 𝛹NEQ = 𝛹 (2)
NEQ(𝑥, 𝜃,

𝑒
𝐅, 𝐠) , (2.2b)

here 𝑥 = 𝜑(𝑋) and 𝜃 = 𝛩◦𝜑−1
𝑡 . Considering (2.2a), objectivity implies that 𝛹

(1)
NEQ = 𝛹̂ (1)

NEQ(𝑋,𝛩,
𝑒
𝐂♭,𝐆), where

𝑒
𝐂 =

𝑒
𝐅𝖳

𝑒
𝐅.7 For

he second choice, material frame indifference forces 𝛹 (2)
NEQ to be isotropic. More specifically, for (2.2b), spatial covariance (an

ssumption that implies material frame indifference) of the non-equilibrium free energy 𝛹 (2)
NEQ holds if under a spatial diffeomorphism

∶  →  (such that 𝑇 𝜉 is an isometry in the case of a Euclidean ambient space) one has

𝛹 (2)
NEQ(𝜉(𝑥), 𝜉∗𝜃, 𝜉∗

𝑒
𝐅, 𝜉∗𝐠) = 𝛹 (2)

NEQ(𝑥, 𝜃,
𝑒
𝐅, 𝐠) , (2.3)

here 𝜉∗𝜃 = 𝜃◦𝜉, 𝜉∗
𝑒
𝐅 = 𝑇 𝜉 ⋅

𝑒
𝐅 ⋅ (𝑇 𝜉)−1, and 𝜉∗𝐠 = (𝑇 𝜉)−1 𝐠 (𝑇 𝜉)−⋆. This implies that

𝛹 (2)
NEQ(𝑥

′, 𝜃,
𝑒
𝐅, 𝐠) = 𝛹 (2)

NEQ(𝑥, 𝜃, 𝜉
∗ 𝑒
𝐅, 𝜉∗𝐠) , (2.4)

here 𝑥′ = 𝜉(𝑥), for all such 𝜉, which hence means that 𝛹 (2)
NEQ is an isotropic functional of

𝑒
𝐅.8 It follows that the non-equilibrium free

nergy is isotropic for any viscoelastic solid; and consequently, viscoelastic materials experience creep (deformation increase under
onstant load) and relaxation (stress decrease under constant deformation) in an isotropic fashion. However, experimental evidence
ontradicts this hypothetical situation since viscoelastic creep and relaxation have experimentally been observed to be anisotropic
n different classes of materials, e.g., skin in vivo (Khatyr et al., 2004), some single-crystal superalloys (Segersäll et al., 2014), and
oft soil (Sivasithamparam et al., 2015). Therefore, we conclude that the physically consistent decomposition is indeed (2.1a). From
ere on, we assume that

𝑣
𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑋,

𝑒
𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑥 and write

𝛹 = 𝛹 (𝑋,𝛩,𝐅,
𝑒
𝐅,𝐆, 𝐠) = 𝛹EQ(𝑋,𝛩,𝐅,𝐆, 𝐠) + 𝛹NEQ(𝑋,𝛩,

𝑒
𝐅,𝐆, 𝐠) , (2.5)

r equivalently

𝛹 = 𝛹̂ (𝑋,𝛩,𝐂♭,
𝑒
𝐂♭,𝐆) = 𝛹̂EQ(𝑋,𝛩,𝐂♭,𝐆) + 𝛹̂NEQ(𝑋,𝛩,

𝑒
𝐂♭,𝐆) . (2.6)

emark 2.1. One may argue that (2.1a) and (2.1b) are not the only possibilities for the direct decomposition 𝐅 =
𝑒
𝐅
𝑣
𝐅. In the most

general case, one may assume that
𝑣
𝐅 ∶ 𝑇𝑋 →  , and

𝑒
𝐅 ∶  → 𝑇𝑥, for some arbitrary vector space  . In such a case, we ought to

have 𝛹NEQ = 𝛹NEQ(𝑋,𝛩,
𝑒
𝐅,𝐦, 𝐠), for some metric 𝐦 on  as

𝑒
𝐅 is a two-point tensor. This then implies that 𝛹NEQ is independent of

the material configuration  and its metric 𝐆. Hence, unless  is isometric to 𝑇𝑋, it would follow that one may not enforce any
material symmetry constraint on 𝛹NEQ. This would consequently preclude 𝛹NEQ—and subsequently the material’s creep and viscous
relaxation behaviors—from reflecting the material symmetry, which is not physical. It follows then that  has to be isometric to
𝑇𝑋. Therefore, one may assume that  = 𝑇𝑋 without any loss of generality.

Remark 2.2. Instead of looking at the deformed body and a local unloading, let us start with the stress-free undeformed body.
Consider a material volume element (a small neighborhood of a material point—undeformed and stress-free) and imagine that it is
locally loaded, i.e., it is isolated and deformed independently from the rest of the body. This element undergoes an instantaneous
elastic deformation followed by a slow viscous relaxation. It should be noted that both the elastically deformed intermediate state and
the final deformed state are generally stressed. This thought experiment motivates the reverse decomposition of the deformation
gradient: 𝐅 =

𝑣
F

𝑒
F. It should also be noted that if the reverse decomposition 𝐅 =

𝑣
F

𝑒
F is used, it may be proved—similarly to

Section 2.3—that
𝑒
F ∶ 𝑇𝑋 → 𝑇𝑥, and

𝑣
F ∶ 𝑇𝑥 → 𝑇𝑥. It is observed, in both the direct and reverse decompositions, that the elastic

deformation gradient is a two-point tensor. In the direct decomposition, the viscous deformation gradient is a material tensor while
it is a spatial tensor in the reverse decomposition. We expect this decomposition to lead to an equivalent theory of viscoelasticity.9
In this paper, we work with the direct decomposition.

6 Material frame indifference, objectivity, or invariance under the ambient space rigid body motions of 𝛹EQ are equivalent in the case of a Euclidean ambient
space to 𝛹EQ(𝑋,𝐪𝐅, 𝛩,𝐆, 𝐠) = 𝛹EQ(𝑋,𝐅, 𝛩,𝐆, 𝐠) for all deformation gradients 𝐅 and any arbitrary 𝐠-orthogonal second-order tensor 𝐪 ∶ 𝑇𝑥 → 𝑇𝑥, i.e., 𝐪𝖳𝐪 = id ,
which is equivalent to writing 𝐪∗𝐠 = 𝐠, where 𝐪∗𝐠 = 𝐪⋆𝐠𝐪.

7 Note that
𝑒

𝐂♭ =
𝑒

𝐅∗𝐠 =
𝑒

𝐅⋆𝐠
𝑒

𝐅.
8 Note that material symmetries put constraints on 𝛹 (1)

NEQ but not on 𝛹 (2)
NEQ.

9 It has been shown that the direct and inverse decompositions are equivalent for anelasticity (Yavari and Sozio, 2023), and we expect a similar result for
iscoelasticity.
5
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2.4. Dissipation potential for isotropic and anisotropic viscoelastic solids

The dissipation potential complements the free energy functional 𝛹 to form the full constitutive model of a viscoelastic solid; it
s assumed to have the functional form 𝜙 = 𝜙(𝑋,𝛩,𝐅,

𝑣
𝐅,

𝑣̇
𝐅,𝐆, 𝐠) and is such that the generalized force driving the evolution of the

iscous deformation is given by
𝑣
𝐁 = −

𝜕𝜙

𝜕
𝑣̇
𝐅
. (2.7)

otice that for a general viscoelastic solid, while the dependence of 𝜙 on 𝐅 can be reduced to a dependence on the symmetric
ensor 𝐂♭ following from material frame indifference, i.e., 𝜙 = 𝜙̂(𝑋,𝛩,𝐂♭,

𝑣
𝐅,

𝑣̇
𝐅,𝐆), the dependence of 𝜙 on

𝑣
𝐅 and

𝑣̇
𝐅 cannot always

e reduced to a dependence on the symmetric tensors
𝑣
𝐂♭ and

𝑣̇
𝐂♭. This implies that the model used by Le Tallec et al. (1993) is

applicable to only a subset of viscoelastic solids. It is assumed that 𝜙 is a convex functional of
𝑣̇
𝐅 (Ziegler, 1958; Ziegler and Wehrli,

1987; Germain et al., 1983; Goldstein et al., 2002; Kumar and Lopez-Pamies, 2016), which is equivalent to

⎛

⎜

⎜

⎝

𝜕𝜙

𝜕
𝑣̇
𝐅2

−
𝜕𝜙

𝜕
𝑣̇
𝐅1

⎞

⎟

⎟

⎠

∶
( 𝑣̇
𝐅2 −

𝑣̇
𝐅1

)

≥ 0 , (2.8)

for any
𝑣̇
𝐅1 and

𝑣̇
𝐅2.

3. Balance laws

3.1. Conservation of mass

We denote the material and spatial mass densities by 𝜌𝑜(𝑋) and 𝜌(𝑥, 𝑡), respectively. The conservation of mass in local form reads
𝜌𝐽 = 𝜌𝑜, which yields the continuity equation

𝑑𝜌
𝑑𝑡

+ 𝜌 div 𝐯 = 0,

here div = div𝐠 denotes the spatial Levi-Civita divergence operator corresponding to the metric 𝐠.

3.2. The Lagrange–d’Alembert principle

The configuration of a viscoelastic body is given by a pair (𝜑,
𝑣
𝐅), and we denote the configuration space containing all such pairs

y C. The governing equations of the viscoelastic body can be derived as the Euler–Lagrange equations associated with a variational
rinciple defined as follows: Let us fix a time interval [𝑡0, 𝑡1], and look at paths 𝑐 ∶ [𝑡0, 𝑡1] → C in the configuration space such that
𝑐(𝑡0) and 𝑐(𝑡1) are fixed. We define an action functional 𝖲 on the space of paths as

𝖲(𝑐) = ∫

𝑡1

𝑡0
∫

ℒ𝑑𝑉 𝑑𝑡 , (3.1)

where ℒ is the Lagrangian density per unit undeformed volume, defined as ℒ=𝒯− 𝛹 , where 𝒯= 1
2𝜌𝑜‖𝐕‖

2
𝐠 is the kinetic energy

density per unit undeformed volume. One may hence choose the following functional dependence10

ℒ= ℒ̂(𝑋,𝛩,𝐕,𝐂♭,
𝑒
𝐂♭,𝐆, 𝐠) = 1

2
𝜌𝑜‖𝐕‖2𝐠 − 𝛹̂ (𝑋,𝛩,𝐂

♭,
𝑒
𝐂♭,𝐆) . (3.2)

Variations of the generalized configurations (𝜑,
𝑣
𝐅) are represented by a one-parameter family (𝜑𝑡,𝜖 ,

𝑣
𝐅𝑡,𝜖) of motions 𝜑𝑡,𝜖 and viscous

deformation gradients
𝑣
𝐅𝑡,𝜖 such that

(𝜑𝑡,0,
𝑣
𝐅𝑡,0) = (𝜑𝑡,

𝑣
𝐅𝑡) , ∀𝑡 ∈ [𝑡0, 𝑡1] , (3.3a)

(𝜑𝑡0 ,𝜖 ,
𝑣
𝐅𝑡0 ,𝜖) = (𝜑𝑡0 ,

𝑣
𝐅𝑡0 ) , ∀𝜖 > 0 , (3.3b)

(𝜑𝑡1 ,𝜖 ,
𝑣
𝐅𝑡1 ,𝜖) = (𝜑𝑡1 ,

𝑣
𝐅𝑡1 ) , ∀𝜖 > 0 . (3.3c)

Notice that 𝛿𝜑 = 𝑑𝜑𝑡,𝜖(𝑋)∕𝑑𝜖|𝜖=0 is a vector in the ambient space, whereas 𝛿
𝑣
𝐅 = 𝑑

𝑣
𝐅𝑡,𝜖(𝑋)∕𝑑𝜖|𝜖=0 is a material tensor, i.e., a tensor

in the material manifold. The Lagrange–d’Alembert variational principle states that the physical configuration of the body satisfies
the following identity (Marsden and Ratiu, 2013)11

𝛿 ∫

𝑡1

𝑡0
∫

ℒ𝑑𝑉 𝑑𝑡 + ∫

𝑡1

𝑡0
∫

𝑣
𝐁 ∶ 𝛿

𝑣
𝐅 𝑑𝑉 𝑑𝑡 + ∫

𝑡1

𝑡0
∫

𝜌𝑜⟨B, 𝛿𝜑⟩𝐠 𝑑𝑉 𝑑𝑡 + ∫

𝑡1

𝑡0
∫𝜕

⟨T, 𝛿𝜑⟩𝐠 𝑑𝐴𝑑𝑡 = 0 , (3.4)

10 One instead may equivalently choose the functional dependence ℒ= ℒ̂(𝑋,𝛩,𝐕,𝐅,
𝑒

𝐅,𝐆, 𝐠).
11 In this work, we assume that the temperature field remains unaltered by perturbations of the deformation mapping, i.e., 𝛿𝛩 = 0. Otherwise, in the case of

thermoelasticity, we ought to consider variations of the temperature field—see Sadik and Yavari (2017a).
6
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for all variation fields 𝛿𝜑 and 𝛿
𝑣
𝐅. The vector fields B = B(𝑋, 𝑡) and T = T(𝑋, 𝑡) are the body force per unit mass and the boundary

traction fields per unit undeformed area, respectively. It follows from the Lagrange–d’Alembert variational principle (3.4) that

∫

𝑡1

𝑡0
∫

(

𝜕ℒ̂
𝜕𝐕

𝛿𝐕 + 𝜕ℒ̂
𝜕𝐂♭

∶ 𝛿𝐂♭ + 𝜕ℒ̂
𝜕
𝑒
𝐂♭

∶ 𝛿
𝑒
𝐂♭ + 𝜕ℒ̂

𝜕𝐆
∶ 𝛿𝐆 + 𝜕ℒ̂

𝜕𝐠
∶ 𝛿𝐠

)

𝑑𝑉 𝑑𝑡

+ ∫

𝑡1

𝑡0
∫

𝑣
𝐁 ∶ 𝛿

𝑣
𝐅 𝑑𝑉 𝑑𝑡 + ∫

𝑡1

𝑡0
∫

𝜌𝑜⟨B, 𝛿𝜑⟩𝐠 𝑑𝑉 𝑑𝑡 + ∫

𝑡1

𝑡0
∫𝜕

⟨T, 𝛿𝜑⟩𝐠 𝑑𝐴𝑑𝑡 = 0 .

(3.5)

sing (2.7), (A.2), (A.4), and (A.8)–(A.10) as detailed in Appendix A, the above identity is simplified to read

∫

𝑡1

𝑡0
∫

[

⟨−𝜌𝑜𝐀 + Div
(

2𝐅 𝜕𝛹̂
𝜕𝐂♭

+ 2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

)

+ 𝜌𝑜B, 𝛿𝜑⟩𝐠 +

(

2
𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ −

𝜕𝜙

𝜕
𝑣̇
𝐅

)

∶ 𝛿
𝑣
𝐅
]

𝑑𝑉 𝑑𝑡

−∫

𝑡1

𝑡0
∫𝜕

⟨

(

2𝐅 𝜕𝛹̂
𝜕𝐂♭

+ 2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

)

𝐍 − T, 𝛿𝜑⟩𝐠 𝑑𝐴𝑑𝑡 = 0 ,

(3.6)

here 𝐍 is the 𝐆-unit normal to 𝜕. Since (3.6) above is valid for all variations 𝛿𝜑 and 𝛿
𝑣
𝐅, one finds the balance of linear momentum

ogether with its boundary conditions12

Div
[

2𝐅 𝜕𝛹̂
𝜕𝐂♭

+ 2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

]

+ 𝜌𝑜B = 𝜌𝑜𝐀 , (3.7a)
[

2𝐅 𝜕𝛹̂
𝜕𝐂♭

+ 2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

]

|

|

|

|

|𝜕
𝐍 = T , (3.7b)

where Div denotes the two-point Levi-Civita divergence operator.13 One also finds the kinetic equation governing the evolution of
he internal variable

𝑣
𝐅:

𝜕𝜙

𝜕
𝑣̇
𝐅

− 2
𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ = 𝟎 . (3.8)

he initial condition for the kinetic equation is
𝑣
𝐅(𝑋, 0) = 𝐈. For the deformation map, 𝜑(𝑋, 0) = 𝜄(𝑋) and 𝜕𝜑(𝑋, 0)∕𝜕𝑡 = 𝐕0, where

 is the inclusion map and 𝐕0 is the initial velocity field of the viscoelastic body.

ncompressible viscoelastic solids. For an incompressible viscoelastic solid, one assumes both the total deformation and its purely
iscous part to be volume preserving (Leonov, 1976; Le Tallec et al., 1993), i.e.,

𝐽 = det 𝐅
√

det 𝐠
det𝐆

= 1 ,
𝑣
𝐽 = det

𝑣
𝐅 = 1 . (3.9)

he free energy is hence augmented by the above constraints and their corresponding Lagrange multipliers, i.e., the free energy for
he incompressible solid is modified to read 𝛹inc = 𝛹−𝑝(𝐽−1)−𝑞(

𝑣
𝐽−1), where 𝑝 = 𝑝(𝑋, 𝑡) and 𝑞 = 𝑞(𝑋, 𝑡) are the Lagrange multipliers

orresponding to the constraints given in (3.9). Therefore, the Lagrangian (3.2) is modified to read ℒinc =ℒ+ 𝑝(𝐽 − 1) + 𝑞(
𝑣
𝐽 − 1).

Now, the Lagrange–d’Alembert principle reads

∫

𝑡1

𝑡0
∫

(

𝛿ℒ+ 𝑝 𝛿𝐽 |𝐽=1 + 𝑞 𝛿
𝑣
𝐽 | 𝑣
𝐽=1

+
𝑣
𝐁 ∶ 𝛿

𝑣
𝐅 + 𝜌𝑜⟨B, 𝛿𝜑⟩𝐠

)

𝑑𝑉 𝑑𝑡 + ∫

𝑡1

𝑡0
∫𝜕

⟨T, 𝛿𝜑⟩𝐠 𝑑𝐴𝑑𝑡 = 0 . (3.10)

Consequently, by using (2.7), (A.2), (A.4), (A.8)–(A.10), (A.12), and (A.14) as detailed in Appendix A, (3.10) yields

Div
[

2𝐅 𝜕𝛹̂
𝜕𝐂♭

+ 2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

− 𝑝𝐠♯𝐅−⋆
]

+ 𝜌𝑜B = 𝜌𝑜𝐀 , (3.11a)
[

2𝐅 𝜕𝛹̂
𝜕𝐂♭

+ 2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

− 𝑝𝐠♯𝐅−⋆
]

|

|

|

|

|𝜕
𝐍 = T , (3.11b)

and
𝜕𝜙

𝜕
𝑣̇
𝐅

− 2
𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ = 𝑞

𝑣
𝐅−⋆ . (3.12)

emark 3.1. Note that if one considers the equivalent functional dependence for 𝛹 in terms of
𝑣
𝐅, i.e., 𝛹 = 𝛹̌ (𝑋,𝐅,

𝑣
𝐅,𝐆, 𝐠) = 𝛹 (𝑋,𝐅,

𝑣
𝐅−1,𝐆, 𝐠), it may be seen that

2
𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ = − 𝜕𝛹̌

𝜕
𝑣
𝐅
. (3.13)

12 The balance of angular momentum will later be discussed in Section 3.3.3.
13 For a two-point tensor with components 𝑄𝑎𝐴, Div𝐐 has components 𝑄𝑎𝐴 = 𝑄𝑎𝐴 + 𝛤𝐴 𝑄𝑎𝐵 + 𝛾𝑎 𝐹 𝑏 𝑄𝑐𝐴.
7

|𝐴 ,𝐴 𝐴𝐵 𝑏𝑐 𝐴
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This consequently transforms the kinetic equations (3.8) and (3.12), respectively, to

𝜕𝜙

𝜕
𝑣̇
𝐅

+ 𝜕𝛹̌

𝜕
𝑣
𝐅

= 𝟎 for compressible viscoelastic solids, (3.14a)

𝜕𝜙

𝜕
𝑣̇
𝐅

+ 𝜕𝛹̌

𝜕
𝑣
𝐅

= 𝑞
𝑣
𝐅−⋆ for incompressible viscoelastic solids. (3.14b)

Eq. (3.14a) is identical to Eq. (7-b) as it appears in (Kumar and Lopez-Pamies, 2016), (3.14b) is equivalent to Eq. (3.10) as it appears
in (Le Tallec et al., 1993).

3.3. Thermodynamics of viscoelasticity

3.3.1. The first law of thermodynamics
The first law of thermodynamics postulates the existence of a state functional, namely the internal energy, which satisfies the

balance of energy (Truesdell, 1952; Gurtin, 1974; Marsden and Hughes, 1983; Yavari et al., 2006)

𝑑
𝑑𝑡 ∫

(

 + 1
2
𝜌𝑜‖𝐕‖2𝐠

)

𝑑𝑉 = ∫
𝜌𝑜

(

⟨B,𝐕⟩𝐠 + 𝑅
)

𝑑𝑉 + ∫𝜕

(

⟨T,𝐕⟩𝐠 +𝐻
)

𝑑𝐴 , (3.15)

here  = ̂(𝑋, ,𝐂♭,
𝑒
𝐂♭,𝐆) is the material internal energy density (per unit undeformed volume), 𝑅 = 𝑅(𝑋, 𝑡) is the heat supply

er unit mass, and 𝐻 is the heat flux across a material surface; which may be written as 𝐻 = −⟨𝐐,𝐍⟩𝐆, where 𝐐 = 𝐐(𝑋,𝛩, 𝑑𝛩,𝐂♭,𝐆)
is the external heat flux per unit material area, 𝐍 is the 𝐆-unit normal to the boundary 𝜕, and 𝛩 = 𝛩(𝑋, 𝑡) is the temperature field.
In local form, the energy balance (3.15) reads14

̇ = 𝐒 ∶ 𝐃 − Div𝐐 + 𝜌𝑜𝑅 + ⟨Div𝐏 + 𝜌𝑜(B − 𝐀),𝐕⟩𝐠 , (3.16)

where a dotted quantity denotes its total time derivative, 𝐏 is the first Piola–Kirchhoff stress tensor—T = 𝐏𝐍, 𝐒 = 𝐅−1𝐏 is the second
Piola–Kirchhoff stress tensor, and 𝐃 = 1

2 𝐂̇
♭ is the material rate of deformation tensor.

.3.2. The second law of thermodynamics
The second law of thermodynamics postulates the existence of a state functional, namely the entropy, which satisfies the material

lausius–Duhem inequality (Truesdell, 1952; Gurtin, 1974; Marsden and Hughes, 1983)

𝑑
𝑑𝑡 ∫

𝑑𝑉 ≥ ∫
𝜌𝑜
𝑅
𝛩
𝑑𝑉 + ∫𝜕

𝐻
𝛩
𝑑𝐴 , (3.17)

here  = ̂ (𝑋,𝛩,𝐂♭,
𝑒
𝐂♭,𝐆) is the material entropy density (per unit undeformed volume). In localized form, the material

lausius–Duhem inequality (3.17) reads

𝜂̇ = ̇𝛩 + 𝛩Div
(

𝐐
𝛩

)

− 𝜌𝑜𝑅 ≥ 0 , (3.18)

here 𝜂̇ is the rate of energy dissipation.

.3.3. Constitutive relations and balance laws
The free energy density 𝛹 is the Legendre transform of the internal energy density  with respect to the conjugate variables of

emperature 𝛩 and  , i.e.,

𝛹 =  − 𝛩 , (3.19)

here  = ̂(𝑋, ,𝐂♭,
𝑒
𝐂♭,𝐆),  = ̂ (𝑋,𝛩,𝐂♭,

𝑒
𝐂♭,𝐆), and 𝛹 = 𝛹̂ (𝑋,𝛩,𝐂♭,

𝑒
𝐂♭,𝐆). It hence follows from (3.18) that

𝜂̇ = ̇ − 𝛹̇ − 𝛩̇ + Div𝐐 − 1
𝛩
⟨𝑑𝛩,𝐐⟩ − 𝜌𝑜𝑅 ≥ 0 . (3.20)

sing (3.16) in (3.20) and expanding 𝛹̇ , one finds

𝜂̇ = 1
2
𝐒 ∶ 𝐂̇♭ − 𝜕𝛹̂

𝜕𝛩
𝛩̇ − 𝜕𝛹̂

𝜕𝐂♭
∶ 𝐂̇♭ − 𝜕𝛹̂

𝜕
𝑒
𝐂♭

∶
𝑒̇
𝐂♭ − 𝛩̇ − 1

𝛩
⟨𝑑𝛩,𝐐⟩ + ⟨Div𝐏 + 𝜌𝑜(B − 𝐀),𝐕⟩𝐠 ≥ 0 . (3.21)

t can be seen that15

𝜕𝛹̂

𝜕
𝑒
𝐂♭

∶
𝑒̇
𝐂♭ =

𝑣
𝐅−1 𝜕𝛹̂

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶ 𝐂̇♭ − 2

𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶

𝑣̇
𝐅 ,

14 Note that the localization of the energy balance (3.15) is typically presented without the last term appearing in (3.16) that vanishes after imposing the
balance of linear momentum. At this point in this work, even though we have already proven the balance of linear momentum (3.11) in terms of the tensorial
derivatives of the free energy, we have not yet proven the Doyle–Ericksen formula (the stress constitutive equation) relating them to the stress tensors, and may
hence not yet impose that the last term in (3.16) vanishes.
15 𝑒̇

𝐂♭ =
𝑣

𝐅−⋆ ̇ ♭ 𝑣
−1

𝑒
♭
𝑣̇ 𝑣

−1
𝑣
−⋆

𝑣̇ 𝑒
♭

𝑒
♭

𝑣
♭

𝑣
−⋆ ♭

𝑣
−1
8

Note that 𝐂 𝐅 − 𝐂 𝐅𝐅 − 𝐅 𝐅𝐂 , which follows from 𝐂 = 𝐅∗𝐂 = 𝐅 𝐂 𝐅 .
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and it follows that (3.21) is simplified to read

𝜂̇ =
(

 + 𝜕𝛹̂
𝜕𝛩

)

𝛩̇ + 1
2

(

𝐒 − 2 𝜕𝛹̂
𝜕𝐂♭

− 2
𝑣
𝐅−1 𝜕𝛹̂

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆

)

∶ 𝐂̇♭ + ⟨Div𝐏 + 𝜌𝑜(B − 𝐀),𝐕⟩𝐠

+ 2
𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶

𝑣̇
𝐅 − 1

𝛩
⟨𝑑𝛩,𝐐⟩ ≥ 0 .

(3.22)

he inequality (3.22) above must hold for all deformations 𝜑 and temperature fields 𝛩. Hence, it follows that16

 = − 𝜕𝛹̂
𝜕𝛩

, (3.23a)

𝐒 = 2 𝑑𝛹̂
𝑑𝐂♭

= 2
𝜕𝛹̂EQ
𝜕𝐂♭

+ 2
𝑣
𝐅−1 𝜕𝛹̂NEQ

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ . (3.23b)

The first Piola–Kirchhoff 𝐏, the Cauchy 𝝈, and the convected stress 𝜮 tensors17 may hence be written as

𝐏 = 𝐠♯ 𝑑𝛹
𝑑𝐅

= 𝐠♯
𝜕𝛹EQ
𝜕𝐅

+ 𝐠♯
𝜕𝛹NEQ

𝜕
𝑒
𝐅

𝑣
𝐅−⋆ , (3.24a)

𝝈 = 2
𝐽
𝑑𝛹
𝑑𝐠

= 2
𝐽
𝜕𝛹EQ
𝜕𝐠

+ 2
𝐽
𝜕𝛹NEQ
𝜕𝐠

, (3.24b)

𝜮 = 2
𝐽
𝑑𝛹̂
𝑑𝐂♭

= 2
𝐽
𝜕𝛹̂EQ
𝜕𝐂♭

+ 2
𝐽

𝑣
𝐅−1 𝜕𝛹̂NEQ

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ . (3.24c)

ubstituting the stress constitutive Eq. (3.24a) for 𝐏 into (3.7) yields the balance of linear momentum in the two-point tensorial
orm and the traction boundary condition:

Div𝐏 + 𝜌𝑜B = 𝜌𝑜𝐀 , (3.25a)

𝐏|𝜕 𝐍 = T . (3.25b)

From (3.23b), and since 𝐂⋆ = 𝐂, one finds the balance of angular momentum in two-point tensorial form

𝐏⋆𝐅−⋆ = 𝐅−1𝐏 . (3.26)

n spatial form, the balance of linear and angular momenta and the traction boundary condition read

div𝝈 + 𝜌b = 𝜌𝐚 , (3.27a)

𝝈⋆ = 𝝈 , (3.27b)

𝝈|𝜕 𝐧 = t , (3.27c)

here b = B◦𝜑−1
𝑡 , t = 𝐽T◦𝜑−1

𝑡 , and 𝐧 = 𝐍◦𝜑−1
𝑡 . In convected form, the balance of linear and angular momenta and the traction

oundary condition read

Div𝐂♭ 𝜮 + 𝜑∗
𝑡 (𝜌b) = 𝜑∗

𝑡 (𝜌𝐚) , (3.28a)

𝜮⋆ = 𝜮 , (3.28b)

𝜮|𝜕 𝐍 = 𝜑∗
𝑡 t , (3.28c)

here Div𝐂♭ denotes the convected Levi-Civita divergence operator, i.e., the divergence operator associated with the Levi-Civita
onnection of the convected manifold (,𝐂♭).
Within the scope of this work, we assume that the viscoelastic body undergoes an isothermal process, i.e., 𝑑𝛩 = 0 ; hence, using

3.23) and (3.25), the Clausius–Duhem inequality (3.22) reduces to read

𝜂̇ = 2
𝑒
𝐂♭
𝜕𝛹̂NEQ

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶

𝑣̇
𝐅 ≥ 0 . (3.29)

Incompressible viscoelastic solids. For an incompressible viscoelastic solid, the Legendre transform (3.19) is modified to take into
ccount the volume preserving constraints (3.9) as follows

𝛹 − 𝑝(𝐽 − 1) − 𝑞(
𝑣
𝐽 − 1) =  − 𝛩 . (3.30)

16 Following (3.8), one has 2
𝑒

𝐂♭(𝜕𝛹̂NEQ∕𝜕
𝑒

𝐂♭)
𝑣

𝐅−⋆ = 𝜕𝜙(𝑋,𝐅,
𝑣

𝐅,
𝑣̇

𝐅,𝐆, 𝐠)∕𝜕
𝑣̇

𝐅 ; and recall that 𝐐 = 𝐐(𝑋,𝛩, 𝑑𝛩,𝐂,𝐆). Therefore, the coefficients of
𝑣̇

𝐅 and 𝑑𝛩 in the
inequality (3.22) depend on

𝑣̇

𝐅 and 𝑑𝛩, respectively; hence, they may not be identically equal to zero in spite of the arbitrariness of
𝑣̇

𝐅 and 𝑑𝛩. Also, recall from
(2.6) that 𝛹̂ (𝑋,𝛩,𝐂♭ ,

𝑒

𝐂♭ ,𝐆) = 𝛹̂EQ(𝑋,𝛩,𝐂♭ ,𝐆) + 𝛹̂NEQ(𝑋,𝛩,
𝑒

𝐂♭ ,𝐆).
17 −1 −1 −⋆
9

Recall that 𝐒 = 𝐅 𝐏 = 𝐽𝜮 = 𝐽𝐅 𝝈𝐅 .
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Similarly to (A.11) and (A.13), one finds

𝐽̇ = 1
2
𝐽𝐂−♯ ∶ 𝐂̇♭ and

𝑣̇
𝐽 =

𝑣
𝐽
𝑣
𝐅−⋆ ∶

𝑣̇
𝐅 . (3.31)

ne hence simplifies the constitutive relations (3.23) and (3.24) to read

 = − 𝜕𝛹̂
𝜕𝛩

, (3.32a)

𝐒 = 2 𝑑𝛹̂
𝑑𝐂♭

− 𝑝𝐂−♯ = 2
𝜕𝛹̂EQ
𝜕𝐂♭

+ 2
𝑣
𝐅−1 𝜕𝛹̂NEQ

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ − 𝑝𝐂−♯ , (3.32b)

𝐏 = 𝐠♯ 𝑑𝛹
𝑑𝐅

− 𝑝𝐠♯𝐅−⋆ = 𝐠♯
𝜕𝛹EQ
𝜕𝐅

+ 𝐠♯
𝜕𝛹NEQ

𝜕
𝑒
𝐅

𝑣
𝐅−⋆ − 𝑝𝐠♯𝐅−⋆ , (3.32c)

𝝈 = 2𝑑𝛹
𝑑𝐠

− 𝑝𝐠♯ = 2
𝜕𝛹EQ
𝜕𝐠

+ 2
𝜕𝛹NEQ
𝜕𝐠

− 𝑝𝐠♯ , (3.32d)

𝜮 = 2 𝑑𝛹̂
𝑑𝐂♭

− 𝑝𝐂−♯ = 2
𝜕𝛹̂EQ
𝜕𝐂♭

+ 2
𝑣
𝐅−1 𝜕𝛹̂NEQ

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ − 𝑝𝐂−♯ . (3.32e)

The Clausius–Duhem inequality (3.29) is rewritten as

𝜂̇ = 2
𝑒
𝐂♭
𝜕𝛹̂NEQ

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶

𝑣̇
𝐅 + 𝑞

𝑣
𝐅−⋆ ≥ 0 . (3.33)

Remark 3.2. From the convexity of the dissipation potential 𝜙 as defined in (2.8), if one assumes that for fixed
𝑣
𝐅, 𝜙 is minimized

or
𝑣̇
𝐅 = 𝟎, it follows that

𝜕𝜙

𝜕
𝑣̇
𝐅

∶
𝑣̇
𝐅 ≥ 0 , (3.34)

hich is consistent with the Clausius–Duhem inequality stating that the rate of energy dissipation is non-negative, i.e., 𝜂̇ ≥ 0.18

From here on, consistent with the isothermal process assumption, we may drop the temperature dependance in both the free
nergy and the dissipation potential, i.e., 𝛹 = 𝛹 (𝑋,𝐅,

𝑒
𝐅,𝐆, 𝐠) = 𝛹̂ (𝑋,𝐂♭,

𝑒
𝐂♭,𝐆) and 𝜙 = 𝜙(𝑋,𝐅,

𝑣
𝐅,

𝑣̇
𝐅,𝐆, 𝐠) = 𝜙̂(𝑋,𝐂♭,

𝑣
𝐅,

𝑣̇
𝐅,𝐆).

3.4. Stress in the intermediate configurations in anelasticity versus viscoelasticity

Anelasticity. In anelasticity, the energy density has the form 𝑊 = 𝑊̊ (𝑋,
𝑒
𝐅,𝐆, 𝐠). The first Piola–Kirchhoff stress is calculated as

𝐏 = 𝐠♯ 𝜕𝑊
𝜕𝐅

= 𝐠♯ 𝜕𝑊̊
𝜕
𝑒
𝐅
𝜕
𝑒
𝐅
𝜕𝐅

= 𝐠♯ 𝜕𝑊̊
𝜕
𝑒
𝐅

𝑎
𝐅−⋆ . (3.35)

n components 𝑃 𝑎𝐴 = 𝑔𝑎𝑏 𝜕𝑊̊ ∕
𝑒
F𝑏𝑀 (

𝑎
F−1)𝐴𝑀 . Stress in the intermediate configuration is calculated as

𝐏int = 𝐠♯ 𝜕𝑊̊
𝜕
𝑒
𝐅

|

|

|

|

|

𝑒
𝐅=id

𝑎
𝐅−⋆ = 𝟎 , (3.36)

s 𝜕𝑊̊ ∕𝜕
𝑒
𝐅 vanishes in the absence of a local elastic deformation.

iscoelasticity. In viscoelasticity, recall that the free energy density is written as 𝛹 (𝑋,𝐅,
𝑒
𝐅,𝐆, 𝐠) = 𝛹EQ(𝑋,𝐅,𝐆, 𝐠) +𝛹NEQ(𝑋,

𝑒
𝐅,𝐆, 𝐠),

nd hence stress is calculated as

𝐏 = 𝐠♯ 𝑑𝛹
𝑑𝐅

= 𝐠♯
𝜕𝛹EQ
𝜕𝐅

+ 𝐠♯
𝜕𝛹NEQ

𝜕
𝑒
𝐅

𝑣
𝐅−⋆ . (3.37)

tress in the intermediate configuration is then calculated as

𝐏int = 𝐠♯ 𝑑𝛹
𝑑𝐅

|

|

|

|

|

𝑒
𝐅=id

= 𝐠♯
𝜕𝛹EQ
𝜕𝐅

|

|

|

|

|𝐅=
𝑣
𝐅
+ 𝐠♯

𝜕𝛹NEQ

𝜕
𝑒
𝐅

|

|

|

|

|

𝑒
𝐅=id

𝑣
𝐅−⋆ = 𝐠♯

𝜕𝛹EQ
𝜕𝐅

|

|

|

|

|𝐅=
𝑣
𝐅
, (3.38)

s 𝜕𝛹NEQ∕𝜕
𝑒
𝐅 vanishes when there is no local elastic deformation. This clearly shows that in viscoelasticity the local intermediate

onfiguration is, in general, not stress-free (see Fig. 1).

emark 3.3. If a small neighborhood of a material point in the current configuration is unloaded, the instantaneous unloaded length
s calculated using the metric

𝑒
𝐅∗𝐆. However, this is not the natural length; the natural length is found in the reference configuration

nd is measured by 𝐆. In the intermediate configuration, the natural length is calculated using the metric
𝑣
𝐅∗𝐆. As the intermediate

18 As a matter of fact, (3.34) may be alternatively found following (3.8) and (3.29)—or (3.12) and (3.33) for the incompressible case.
10
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Fig. 2. Standard solid: 𝛹EQ, 𝛹NEQ, and 𝜙 are the nonlinear analogues of 𝐸EQ, 𝐸NEQ, and 𝜂, respectively.

configuration is not stress-free, the metric
𝑣
𝐅∗𝐆 is not of much physical significance and does not appear anywhere in the present

theory. However, there is another metric that is of physical significance for the non-equilibrium free energy, see Section 4.2.1.

Remark 3.4. Let us consider a viscoelastic body that undergoes a motion in the time interval [0,∞). At time 𝑡 = 𝑇 , the applied
loads (and/or boundary displacements) are held fixed. Thus, for 𝑡 > 𝑇 , 𝐅(𝑋, 𝑡) = 𝐅(𝑋, 𝑇 ) =∶ 𝐅̄(𝑋). However, note that the elastic
and viscous deformation gradients are still time dependent, i.e.,

𝐅̄(𝑋) =
𝑒
𝐅(𝑋, 𝑡)

𝑣
𝐅(𝑋, 𝑡) , 𝑡 > 𝑇 . (3.39)

In terms of the physical components, ̂̄𝐅(𝑋) =
𝑒̂
𝐅(𝑋, 𝑡)

𝑣̂
𝐅(𝑋, 𝑡), where ̂̄𝐹

𝑎
𝐴 =

√

𝑔𝑎𝑎𝐺𝐴𝐴 𝐹 𝑎𝐴,
𝑒̂
F
𝑎

𝐴 =
√

𝑔𝑎𝑎𝐺𝐴𝐴
𝑒
F𝑎𝐴, and

𝑣̂
F
𝐴

𝐵 =
𝑣
F𝐴𝐵

no summation on repeated indices) (Truesdell, 1953). We are interested in the evolution of
𝑒
𝐅 and

𝑣
𝐅 when 𝑡 → ∞. Recall that

𝛹 (𝑋,𝐅,
𝑒
𝐅,𝐆, 𝐠) = 𝛹EQ(𝑋,𝐅,𝐆, 𝐠) + 𝛹NEQ(𝑋,

𝑒
𝐅,𝐆, 𝐠), and that stress has consequenctly the following additive decomposition

𝐏 = 𝐏EQ + 𝐏NEQ , 𝐏EQ = 𝐠♯
𝜕𝛹EQ
𝜕𝐅

, 𝐏NEQ = 𝐠♯
𝜕𝛹NEQ

𝜕
𝑒
𝐅

𝑣
𝐅−⋆ . (3.40)

or 𝑡→ ∞, 𝐏 = 𝐏EQ, i.e., 𝐏NEQ = 𝟎. This implies that

lim
𝑡→∞

𝜕𝛹NEQ

𝜕
𝑒
𝐅

= 𝟎 . (3.41)

Therefore, lim𝑡→∞
𝑒̂
𝐅(𝑋, 𝑡) = 𝐈, and hence lim𝑡→∞

𝑣
𝐅(𝑋, 𝑡) = ̂̄𝐅(𝑋). This is the nonlinear analogue of what is observed in a stress-

relaxation experiment for the standard solid model (Zener, 1948) that is briefly revised next (see Simo and Hughes, 2006),
see Fig. 2. The non-equilibrium stress has the following relation with the viscous strain: 𝑃NEQ(𝑡) = 𝜂 𝜖̇𝑣(𝑡). From equilibrium,
𝑃NEQ(𝑡) = 𝐸NEQ 𝜖𝑒(𝑡) = 𝐸NEQ

(

𝜖(𝑡) − 𝜖𝑣(𝑡)
)

. Thus, from these two equations, one obtains

𝜖̇𝑣(𝑡) +
1
𝜂
𝜖𝑣(𝑡) =

1
𝜂
𝜖(𝑡) , 𝜏 =

𝜂
𝐸NEQ

. (3.42)

lso, note that 𝑃 (𝑡) = 𝑃EQ(𝑡) +𝑃NEQ(𝑡) = 𝐸EQ 𝜖(𝑡) +𝐸NEQ
(

𝜖(𝑡) − 𝜖𝑣(𝑡)
)

= 𝐸𝜖(𝑡) −𝐸NEQ 𝜖𝑣(𝑡), where 𝐸 = 𝐸EQ +𝐸NEQ. Now, suppose that
he total strain is fixed, i.e., 𝜖(𝑡) = 𝜖0, and 𝜖𝑣(0) = 0. Hence, 𝜖𝑣(𝑡) = 𝜖0

[

1 − 𝑒−
𝑡
𝜏
]

, and 𝜖𝑒(𝑡) = 𝜖0 𝑒
− 𝑡
𝜏 . It is observed that lim𝑡→∞ 𝜖𝑒(𝑡) = 0

nd lim𝑡→∞ 𝜖𝑣(𝑡) = 𝜖0.

. Material symmetry

In this section, we discuss material symmetry in both anelasticity and viscoelasticity.

.1. Material symmetry in nonlinear anelasticity

For an elastic solid, let us assume an energy functional of the form 𝑊̊ = 𝑊̊ (𝑋,𝐅, 𝐆̊, 𝐠), where 𝐠 is the metric of the Euclidean
mbient space and 𝐆̊ is the induced metric on the body, which is the material metric in the absence of eigenstrains. The material
ymmetry group ̊𝑋 at a point 𝑋 with respect to the Euclidean reference configuration (, 𝐆̊) is defined as19

𝐊̊∗𝑊̊ (𝑋,𝐅, 𝐆̊, 𝐠̊) = 𝑊̊ (𝑋, 𝐊̊∗𝐅, 𝐊̊∗𝐆̊, 𝐠̊) = 𝑊̊ (𝑋,𝐅, 𝐆̊, 𝐠̊), ∀ 𝐊̊ ∈ ̊𝑋 ⩽ Orth(𝐆̊) , (4.1)

or all deformation gradients 𝐅, where Orth(𝐆̊) =
{

𝐐 ∶ 𝑇𝑋 → 𝑇𝑋 ∣ 𝐐⋆𝐆̊𝐐 = 𝐆̊
}

. Note that 𝐊̊∗𝐅 = 𝐅𝐊̊ and 𝐊̊∗𝐆̊ = 𝐊̊⋆𝐆̊𝐊̊ = 𝐆̊.
hus

𝑊̊ (𝑋,𝐅𝐊̊, 𝐆̊, 𝐠̊) = 𝑊̊ (𝑋,𝐅, 𝐆̊, 𝐠̊) , ∀ 𝐊̊ ∈ ̊𝑋 ⩽ Orth(𝐆̊) . (4.2)

19 ̊ ⩽ Orth(𝐆̊) indicates that ̊ is a subgroup of Orth(𝐆̊).
11
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Fig. 3. The actions of the symmetry group on the total, elastic, and non-elastic (anelastic or viscoelastic) deformation gradients. The blue and pink squares
indicate locally stress-free and locally stressed configurations, respectively.

For an anelastic body, 𝐅 =
𝑒
𝐅
𝑎
𝐅, where

𝑒
𝐅 and

𝑎
𝐅 are the local elastic and anelastic deformations, respectively. Energy explicitly

epends on the local elastic deformation, i.e., 𝑊 = 𝑊̊ (𝑋,
𝑒
𝐅, 𝐆̊, 𝐠). Yavari and Sozio (2023) defined the following energy functional20

𝑊 (𝑋,𝐅,
𝑎
𝐅, 𝐆̊, 𝐠) = 𝑊 (𝑋,

𝑒
𝐅
𝑎
𝐅,

𝑎
𝐅, 𝐆̊, 𝐠) = 𝑊̊ (𝑋,𝐅

𝑎
𝐅−1, 𝐆̊, 𝐠) = 𝑊̊ (𝑋,

𝑒
𝐅, 𝐆̊, 𝐠) . (4.3)

he following is Eq. (3.20) in (Yavari and Sozio, 2023):

𝑊 (𝑋,
𝑒
𝐅
𝑎
𝐅,

𝑎
𝐅, 𝐆̊, 𝐠̊) = 𝑊̊ (𝑋,

𝑒
𝐅, 𝐆̊, 𝐠̊) = 𝑊̊ (𝑋,

𝑒
𝐅𝐊̊, 𝐆̊, 𝐠̊) = 𝑊 (𝑋,

𝑒
𝐅𝐊̊

𝑎
𝐅,

𝑎
𝐅, 𝐆̊, 𝐠̊) = 𝑊 (𝑋,𝐅

𝑎
𝐅−1𝐊̊

𝑎
𝐅,

𝑎
𝐅, 𝐆̊, 𝐠̊)

= 𝑊 (𝑋,𝐅𝐊,
𝑎
𝐅, 𝐆̊, 𝐠̊) , ∀ 𝐊̊ ∈ ̊𝑋 .

(4.4)

he first equality is the definition of 𝑊 , and the second equality is a consequence of material symmetry (4.2). The third equality
s incorrect; instead of

𝑎
𝐅, 𝐊̊∗ 𝑎𝐅 = 𝐊̊−1 𝑎𝐅𝐊̊ should be used in the second and the third dependent variable entries (see Fig. 3b). Thus,

heir Eq. (3.20) should be corrected to read

𝑊 (𝑋,
𝑒
𝐅
𝑎
𝐅,

𝑎
𝐅, 𝐆̊, 𝐠̊) = 𝑊̊ (𝑋,

𝑒
𝐅, 𝐆̊, 𝐠̊) = 𝑊̊ (𝑋,

𝑒
𝐅𝐊̊, 𝐆̊, 𝐠̊) = 𝑊 (𝑋,

𝑒
𝐅𝐊̊𝐊̊−1 𝑎𝐅𝐊̊, 𝐊̊−1 𝑎𝐅𝐊̊, 𝐆̊, 𝐠̊)

= 𝑊 (𝑋,𝐅𝐊̊, 𝐊̊−1 𝑎𝐅𝐊̊, 𝐆̊, 𝐠̊) , ∀ 𝐊̊ ∈ ̊𝑋 .
(4.5)

avari and Sozio (2023) suggested a connection between (4.4) and Noll’s rule; but it turns out that the corrected Eq. (4.5) bears
o such connection. Noll’s rule states that under a material diffeomorphism, the symmetry group of an elastic body transforms
aturally, i.e., through push forward. More specifically, consider a transformation F(𝑋) ∶ 𝑇𝑋 → 𝑇𝑋. Let us denote the material
ymmetry group of the elastic solid with respect to (𝑇𝑋, 𝐆̊) by ̊𝑋 , and that with respect to (𝑇𝑋,F∗𝐆̊) by 𝑋 . Noll’s rule says that
𝑋 = F∗̊𝑋 = F ̊𝑋F

−1. However, notice that (4.5) has nothing to do with Noll’s rule. It simply tells us how symmetry group acts
n deformation gradient and the anelastic local deformation. It should be noted that Eqs. (3.21)-(3.23) in (Yavari and Sozio, 2023)
re incorrect as well. However, what follows after their Eq. (3.23) is correct. This mistake did not affect any of the conclusions in
ection §3.5 of (Yavari and Sozio, 2023).

.2. Material symmetry in nonlinear viscoelasticity

The material symmetry group 𝑋 of a viscoelastic solid with the equilibrium free energy functional 𝛹EQ = 𝛹EQ(𝑋,𝐅,𝐆, 𝐠), the
on-equilibrium free energy 𝛹NEQ = 𝛹NEQ(𝑋,

𝑒
𝐅,𝐆, 𝐠), and the dissipation potential 𝜙 = 𝜙(𝑋,𝐅,

𝑣
𝐅,

𝑣̇
𝐅,𝐆, 𝐠) at a point 𝑋 with respect

20 In (Yavari and Sozio, 2023), 𝐠̊ was used for the metric of the Euclidean ambient space and 𝐠 was reserved for the metric of the spatial intermediate
12
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to the Euclidean reference configuration (,𝐆) is defined as21

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐊∗𝛹EQ(𝑋,𝐅,𝐆, 𝐠) = 𝛹EQ(𝑋,𝐅𝐊,𝐆, 𝐠) = 𝛹EQ(𝑋,𝐅,𝐆, 𝐠) ,

𝐊∗𝛹NEQ(𝑋,
𝑒
𝐅,𝐆, 𝐠) = 𝛹NEQ(𝑋,

𝑒
𝐅𝐊,𝐆, 𝐠) = 𝛹NEQ(𝑋,

𝑒
𝐅,𝐆, 𝐠) ,

𝐊∗𝜙(𝑋,𝐅,
𝑣
𝐅,

𝑣̇
𝐅,𝐆, 𝐠) = 𝜙(𝑋,𝐅𝐊,𝐊∗ 𝑣𝐅,𝐊∗ 𝑣̇𝐅,𝐆, 𝐠) = 𝜙(𝑋,𝐅,

𝑣
𝐅,

𝑣̇
𝐅,𝐆, 𝐠) ,

∀ 𝐊 ∈ 𝑋 ⩽ Orth(𝐆) , (4.6)

for all deformation gradients 𝐅 and viscous deformation gradients
𝑣
𝐅, where 𝐊∗ 𝑣𝐅 = 𝐊−1 𝑣𝐅𝐊 (see Fig. 3a) and Orth(𝐆) =

{

𝐐 ∶ 𝑇𝑋 → 𝑇𝑋 ∣ 𝐐⋆𝐆𝐐 = 𝐆
}

.

4.2.1. Structural tensors, viscous metric, and viscous structural tensors
The 𝜇𝑡ℎ power Kronecker product ⟨𝐐⟩𝜇 of a 𝐆-orthogonal transformation 𝐐 for a 𝜇𝑡ℎ order tensor 𝜦 is defined as (⟨𝐐⟩𝜇𝜦)𝐴̄1…𝐴̄𝜇 =

Q𝐴̄1𝐴1
…Q𝐴̄𝜇𝐴𝜇 𝛬

𝐴1…𝐴𝜇 . In particular, ⟨𝐐⟩𝑚
(

𝐖1 ⊗…⊗𝐖𝑚
)

= 𝐐𝐖1⊗…⊗𝐐𝐖𝑚, where 𝐖𝑖 ∈ 𝑇𝑋, 𝑖 = 1,… , 𝑚. A symmetry group
 ⩽ Orth(𝐆) may be characterized via a finite collection of structural tensors 𝜦𝑖 of order 𝜇𝑖, 𝑖 = 1,… , 𝑁 as follows (Liu, 1982;
Boehler, 1987; Zheng and Spencer, 1993; Zheng, 1994; Lu and Papadopoulos, 2000; Mazzucato and Rachele, 2006)

𝐐 ∈  ⩽ Orth(𝐆) ⟺ ⟨𝐐⟩𝜇𝑖𝜦𝑖 = 𝜦𝑖 , ∀𝑖 = 1,… , 𝑁 . (4.7)

n other words, the set of structural tensors is a basis for the space of -invariant tensors. We denote the collection of structural
ensors by 𝜦. When 𝜦 is added to the arguments of the (free or dissipation) energy functional, the energy functional becomes
n isotropic functional of its arguments—the so-called principle of isotropy of space (Boehler, 1979). Now, the energy functional
eing isotropic, the corresponding set of isotropic invariants can be used to simplify its dependence on its arguments. A theorem
roved by Hilbert in 1890 (Hilbert, 1993) (see also Olive et al., 2017) tells us that any finite collection of tensors has a finite
et of isotropic invariants—the integrity basis for the set of isotropic invariants of the collection (Spencer, 1971). Therefore, since
he free energy functionals 𝛹EQ and 𝛹NEQ are isotropic functionals of symmetric tensors, i.e., 𝛹EQ = 𝛹̂EQ(𝑋,𝛩,𝐂♭,𝜦1,… ,𝜦𝑁 ,𝐆),
nd 𝛹NEQ = 𝛹̂NEQ(𝑋,𝛩,

𝑒
𝐂♭,𝜦1,… ,𝜦𝑁 ,𝐆), one writes 𝛹EQ = 𝛹 (𝑋, 𝐼1,… , 𝐼𝑚), where

{

𝐼1,… , 𝐼𝑚
}

is the integrity basis for the set of
isotropic invariants of

{

𝐂♭,𝜦1,… ,𝜦𝑁
}

; and 𝛹NEQ = 𝛹̃ (𝑋,
𝑒
𝐼1,… ,

𝑒
𝐼𝑚), where

{ 𝑒
𝐼1,… ,

𝑒
𝐼𝑚

}

is the integrity basis for the set of isotropic

invariants of
{ 𝑒
𝐂♭,𝜦1,… ,𝜦𝑁

}

. However, the dissipation potential 𝜙 = 𝜙̂(𝑋,𝛩,𝐂♭,𝜦1,… ,𝜦𝑁 ,
𝑣
𝐅,

𝑣̇
𝐅,𝐆) is an isotropic functional of the

symmetric tensors
{

𝐂♭,𝜦1,… ,𝜦𝑁
}

and two generally non-symmetric material tensors
𝑣
𝐅 and

𝑣̇
𝐅 ; hence, the classical representation

theorems cannot be used.
Next, we show that the dependence of the non-equilibrium free energy on

𝑒
𝐅 can be reduced to a dependence on the total

deformation gradient 𝐅. From (2.5), recall that 𝛹NEQ = 𝛹NEQ(𝑋,𝛩,
𝑒
𝐅,𝐆, 𝐠). For an anisotropic solid we have a collection of structural

tensors denoted by 𝜦. Let us add this collection to the list of arguments of the non-equilibrium free energy and write

𝛹NEQ = 𝛹NEQ(𝑋,𝛩,
𝑒
𝐅,𝐆,𝜦, 𝐠) . (4.8)

Now, 𝛹NEQ is a materially-covariant functional (Lu, 2012; Yavari and Sozio, 2023), i.e., for any invertible linear transformation
𝐓 ∶ 𝑇𝑋 → 𝑇𝑋, one has

𝛹NEQ(𝑋,𝛩,𝐓∗ 𝑒
𝐅,𝐓∗𝐆,𝐓∗𝜦, 𝐠) = 𝛹NEQ(𝑋,𝛩,

𝑒
𝐅,𝐆,𝜦, 𝐠) . (4.9)

Noting that
𝑒
𝐅 =

𝑣
𝐅∗𝐅, and choosing 𝐓 =

𝑣
𝐅, material covariance implies that

𝛹NEQ(𝑋,𝛩,
𝑒
𝐅,𝐆,𝜦, 𝐠) = 𝛹NEQ(𝑋,𝛩,

𝑣
𝐅∗ 𝑣𝐅∗𝐅,

𝑣
𝐅∗𝐆,

𝑣
𝐅∗𝜦, 𝐠) = 𝛹NEQ(𝑋,𝛩,𝐅,

𝑣
𝐆,

𝑣
𝜦, 𝐠) , (4.10)

where
𝑣
𝐆 =

𝑣
𝐅∗𝐆 and

𝑣
𝜦 =

𝑣
𝐅∗𝜦. Thus, in summary, we have

𝛹 = 𝛹 (𝑋,𝛩,𝐅,
𝑒
𝐅,𝐆,𝜦, 𝐠) = 𝛹EQ(𝑋,𝛩,𝐅,𝐆,𝜦, 𝐠) + 𝛹NEQ(𝑋,𝛩,𝐅,

𝑣
𝐆,

𝑣
𝜦, 𝐠) . (4.11)

This means that the non-equilibrium free energy is a function of the total deformation gradient as long as the viscous metric
𝑣
𝐆 and

viscous structural tensors
𝑣
𝜦 are used. Objectivity implies that22

𝛹 = 𝛹̂EQ(𝑋,𝛩,𝐂♭,𝐆,𝜦) + 𝛹̂NEQ(𝑋,𝛩,𝐂♭,
𝑣
𝐆,

𝑣
𝜦) . (4.13)

Next, we use the integrity basis for isotropic, transversely isotropic, orthotropic, and monoclinic viscoelastic solids, and explicitly
write their respective stress constitutive relations and kinetic equations.

21 𝑋 ⩽ Orth(𝐆) indicates that 𝑋 is a subgroup of Orth(𝐆).
22 This is consistent with (2.6) when structural tensors are included. First, note that

𝑒

𝐂 =
𝑣

𝐅∗𝐂♭. Thus

𝛹̂NEQ = 𝛹̂NEQ(𝑋,𝛩,
𝑒

𝐂♭ ,𝐆,𝜦) = 𝛹̂NEQ(𝑋,𝛩,
𝑣

𝐅∗𝐂♭ ,𝐆,𝜦) = 𝛹̂NEQ(𝑋,𝛩,𝐂♭ ,
𝑣

𝐅∗𝐆,
𝑣

𝐅∗𝜦) = 𝛹̂NEQ(𝑋,𝛩,𝐂♭ ,
𝑣

𝐆,
𝑣
𝜦) . (4.12)
13
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4.2.2. Isotropic solids
Stress constitutive equations. For isotropic solids, 𝛹EQ and 𝛹NEQ depend only on the principal invariants of 𝐂♭ and

𝑒
𝐂♭, respectively,

.e.,

𝛹EQ = 𝛹 (𝑋, 𝐼1, 𝐼2, 𝐼3) , 𝛹NEQ = 𝛹̃ (𝑋,
𝑒
𝐼1,

𝑒
𝐼2,

𝑒
𝐼3) , (4.14)

here23

𝐼1 = tr 𝐂 = C𝐴𝐴 , 𝐼2 =
1
2
(

𝐼21 − tr 𝐂2) = 1
2
(

𝐼21 − C𝐴𝐵 C𝐵𝐴
)

, 𝐼3 = det 𝐂 ,
𝑒
𝐼1 = tr

𝑒
𝐂 =

𝑒
C𝐴𝐴 ,

𝑒
𝐼2 =

1
2

( 𝑒
𝐼21 − tr

𝑒
𝐂2

)

= 1
2

( 𝑒
𝐼21 −

𝑒
C𝐴𝐵

𝑒
C𝐵𝐴

)

,
𝑒
𝐼3 = det

𝑒
𝐂 .

(4.16)

Note that 𝐂♭ =
𝑣
𝐅∗ 𝑒

𝐂♭ =
𝑣
𝐅⋆

𝑒
𝐂♭

𝑣
𝐅, or equivalently

𝑒
𝐂♭ =

𝑣
𝐅−⋆𝐂♭

𝑣
𝐅−1. The second Piola–Kirchhoff stress is written as

𝐒 = 2 𝑑𝛹̂
𝑑𝐂♭

= 2
𝑑𝛹̂EQ
𝑑𝐂♭

+ 2
𝑑𝛹̂NEQ
𝑑𝐂♭

= 2
𝜕𝛹̂EQ
𝜕𝐂♭

+ 2
𝜕𝛹̂NEQ

𝜕
𝑒
𝐂♭

⋅
𝜕
𝑒
𝐂♭

𝜕𝐂♭
= 2

𝜕𝛹̂EQ
𝜕𝐂♭

+ 2
𝑣
𝐅−1 𝜕𝛹̂NEQ

𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ . (4.17)

n terms of the principal invariants, one writes

𝐒 = 2 𝑑𝛹̂
𝑑𝐂♭

=
3
∑

𝑗=1
2𝛹 𝑗

𝜕𝐼𝑗
𝜕𝐂♭

+
𝑣
𝐅−1

[ 3
∑

𝑗=1
2𝛹̃𝑗

𝜕
𝑒
𝐼𝑗

𝜕
𝑒
𝐂♭

]

𝑣
𝐅−⋆ , (4.18)

where

𝛹 𝑗 = 𝛹 𝑗 (𝑋, 𝐼1, 𝐼2, 𝐼3) ∶=
𝜕𝛹
𝜕𝐼𝑗

, 𝛹̃𝑗 = 𝛹̃𝑗 (𝑋,
𝑒
𝐼1,

𝑒
𝐼2,

𝑒
𝐼3) ∶=

𝜕𝛹̃

𝜕
𝑒
𝐼𝑗
, 𝑗 = 1, 2, 3 . (4.19)

herefore24

𝐒 = 2𝛹 1 𝐆♯ + 2𝛹 2 (𝐼2 𝐂−♯ − 𝐼3 𝐂−2♯) + 2𝛹 3 𝐼3 𝐂−♯ +
𝑣
𝐅−1

[

2𝛹̃1 𝐆♯ + 2𝛹̃2

( 𝑒
𝐼2

𝑒
𝐂−♯ −

𝑒
𝐼3

𝑒
𝐂−2♯

)

+ 2𝛹̃3
𝑒
𝐼3

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ . (4.20)

ote that
𝑣
𝐅−1𝐆♯ 𝑣𝐅−⋆ =

𝑣
𝐅∗𝐆♯,

𝑣
𝐅−1 𝑒

𝐂−♯ 𝑣𝐅−⋆ =
𝑣
𝐅∗ 𝑒

𝐂−♯, and
𝑣
𝐅−1 𝑒

𝐂−2♯ 𝑣𝐅−⋆ =
𝑣
𝐅∗ 𝑒

𝐂−2♯. Thus

𝐒 = 2𝛹 1 𝐆♯ + 2𝛹 2 (𝐼2 𝐂−♯ − 𝐼3 𝐂−2♯) + 2𝛹 3 𝐼3 𝐂−♯ + 2𝛹̃1
𝑣
𝐅∗𝐆♯ + 2𝛹̃2

𝑣
𝐅∗

( 𝑒
𝐼2

𝑒
𝐂−♯ −

𝑒
𝐼3

𝑒
𝐂−2♯

)

+ 2𝛹̃3
𝑒
𝐼3

𝑣
𝐅∗ 𝑒

𝐂−♯ . (4.21)

he Cauchy stress is related to the second Piola–Kirchhoff stress as 𝝈 = 1
√

𝐼3
𝐅𝐒𝐅⋆. Recall that 𝐅𝐆♯𝐅⋆ = 𝜑∗𝐆♯ = 𝐛♯, 𝐅𝐂−♯𝐅⋆ =

𝐅𝐂−1𝐆♯𝐅⋆ = 𝐅(𝐅−1𝐅−𝖳)𝐅𝖳𝐠♯ = 𝐠♯, and

𝐅𝐂−2♯𝐅⋆ = 𝐅𝐂−1𝐂−1𝐆♯𝐅⋆ = 𝐅(𝐅−1𝐅−𝖳)(𝐅−1𝐅−𝖳)(𝐅𝖳𝐠♯) = 𝐅−𝖳𝐅−1𝐠♯ = 𝐜♯ . (4.22)

Thus

𝝈 = 2
√

𝐼3

[(

𝐼2 𝛹 2 + 𝐼3 𝛹 3

)

𝐠♯ + 𝛹 1 𝐛♯ − 𝐼3 𝛹 2 𝐜♯
]

+ 2
√

𝐼3

𝑒
𝐅
[

𝛹̃1 𝐆♯ +
( 𝑒
𝐼2 𝛹̃2 +

𝑒
𝐼3 𝛹̃3

) 𝑒
𝐂−♯ −

𝑒
𝐼3 𝛹̃2

𝑒
𝐂−2♯

] 𝑒
𝐅⋆

= 2
√

𝐼3

[(

𝐼2 𝛹 2 + 𝐼3 𝛹 3 +
𝑒
𝐼2 𝛹̃2 +

𝑒
𝐼3 𝛹̃3

)

𝐠♯ + 𝛹 1 𝐛♯ + 𝛹̃1
𝑒
𝐛♯ − 𝐼3 𝛹 2 𝐜♯ −

𝑒
𝐼3 𝛹̃2

𝑒𝐜♯
]

.
(4.23)

For an incompressible isotropic solid 𝐼3 =
𝑒
𝐼3 = 1, and hence

𝝈 = −𝑝 𝐠♯ + 2𝛹 1 𝐛♯ + 2𝛹̃1
𝑒
𝐛♯ − 2𝛹 2 𝐜♯ − 2 𝛹̃2

𝑒𝐜♯ , (4.24)

here 𝑝 is the Lagrange multiplier associated with the incompressibility constraint 𝐽 =
√

𝐼3 = 1.

issipation potential. For an isotropic viscoelastic solid, the dissipation potential must be invariant under the orthogonal group, i.e.,

𝜙(𝑋,𝐅𝐊,𝐊−1 𝑣𝐅𝐊,𝐊−1 𝑣̇𝐅𝐊,𝐆, 𝐠) = 𝜙(𝑋,𝐅,
𝑣
𝐅,

𝑣̇
𝐅,𝐆, 𝐠) , ∀ 𝐊 ∈ Orth(𝐆) , (4.25)

or all deformation gradients 𝐅 and viscous deformation gradients
𝑣
𝐅. Notice that even for an isotropic viscoelastic solid, the

ependence of 𝜙 on
𝑣
𝐅 and

𝑣̇
𝐅 cannot always be reduced to a dependence on the symmetric tensors

𝑣
𝐂♭ and

𝑣̇
𝐂♭. Let 𝜆2𝑖 (𝑖 = 1, 2, 3)

be the eigenvalues of the symmetric tensor 𝐂♯. Let us denote the corresponding unit eigenvectors by 𝐖𝑖 (𝑖 = 1, 2, 3). Thus,

23 The characteristic polynomial of 𝐂 reads:

𝜆3 − 𝐼1 𝜆2 + 𝐼2 𝜆 − 𝐼3 = 0 , 𝐼1 = tr 𝐂 , 𝐼2 = (det 𝐂) tr 𝐂−1 , 𝐼3 = det 𝐂 . (4.15)
he Cayley–Hamilton theorem tells us that 𝐂3−𝐼1 𝐂2+𝐼2 𝐂−𝐼3 𝐈 = 𝟎. Multiplying both sides by 𝐂−1 one concludes that 𝐼3 𝐂−1 = 𝐂2−𝐼1 𝐂+𝐼2 𝐈. This, in particular,
implies that 𝐼2 =

1
2

(

𝐼21 − tr 𝐂2).
24 See Appendix B for the derivatives of the principal invariants of 𝐂 and

𝑒

𝐂.
14
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𝐂♯ = 𝜆21 𝐖1 ⊗ 𝐖1 + 𝜆22 𝐖2 ⊗ 𝐖2 + 𝜆23 𝐖3 ⊗ 𝐖3. The dissipation potential will be a functional of 𝐼1, 𝐼2, 𝐼3, and the following 18
spectral invariants (Shariff, 2022):

𝐹𝑖𝑗 = ⟨𝐖𝑖,
𝑣
𝐅𝐖𝑗⟩𝐆 , 𝐹𝑖𝑗 = ⟨𝐖𝑖,

𝑣̇
𝐅𝐖𝑗⟩𝐆 , 𝑖, 𝑗 = 1, 2, 3 , (4.26)

i.e., 𝜙̂ = 𝜙̄(𝐼1, 𝐼2, 𝐼3, 𝐹11, 𝐹12,… , 𝐹33, 𝐹11, 𝐹12,… , 𝐹33).25

Remark 4.1. If one assumes that the dissipation potential has the functional form 𝜙(𝑋,
𝑣
𝐅,

𝑣̇
𝐅,𝐆), then for an isotropic solid, 𝜙 is an

isotropic functional of two non-symmetric material tensors
𝑣
𝐅 and

𝑣̇
𝐅. Let 𝜇𝑖 (𝑖 = 1, 2, 3) be the eigenvalues of the symmetric tensor

𝑣
𝐂♯, where

𝑣
𝐂 =

𝑣
𝐅𝖳

𝑣
𝐅. Let us denote the corresponding eigenvectors by 𝐔𝑖 (𝑖 = 1, 2, 3). Thus,

𝑣
𝐂♯ = 𝜇1𝐔1⊗𝐔1 + 𝜇2𝐔2⊗𝐔2 + 𝜇3𝐔3⊗𝐔3.

he dissipation potential will be a functional of the following 18 spectral invariants (Shariff, 2022):

𝐹𝑖𝑗 = ⟨𝐔𝑖,
𝑣
𝐅𝐔𝑗⟩𝐆 , 𝐹𝑖𝑗 = ⟨𝐔𝑖,

𝑣̇
𝐅𝐔𝑗⟩𝐆 , 𝑖, 𝑗 = 1, 2, 3 , (4.27)

.e., 𝜙 = 𝜙̃(𝐹11, 𝐹12,… , 𝐹33, 𝐹11, 𝐹12,… , 𝐹33).

inetic equation. Following (B.14), one may write

𝜕𝛹

𝜕
𝑒
𝐂♭

=
𝜕𝛹NEQ

𝜕
𝑒
𝐂♭

= 𝛹̃1
𝜕
𝑒
𝐼1
𝜕
𝑒
𝐂♭

+ 𝛹̃2
𝜕
𝑒
𝐼2
𝜕
𝑒
𝐂♭

+ 𝛹̃3
𝜕
𝑒
𝐼3
𝜕
𝑒
𝐂♭

= 𝛹̃1𝐆♯ + 𝛹̃2

( 𝑒
𝐼2

𝑒
𝐂−♯ −

𝑒
𝐼3

𝑒
𝐂−2♯

)

+ 𝛹̃3
𝑒
𝐼3

𝑒
𝐂−♯ . (4.28)

ence, it follows from (3.8) that the kinetic equation for compressible isotropic viscoelastic solids reads26

𝜕𝜙

𝜕
𝑣̇
𝐅

− 2𝛹̃1
𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ − 2𝛹̃2

[ 𝑒
𝐼2𝐈 −

𝑒
𝐼3𝐆

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ − 2

𝑒
𝐼3𝛹̃3

𝑣
𝐅−⋆ = 𝟎 ; (4.30)

and in the case of incompressible isotropic viscoelastic solids, the kinetic equation (3.12) is written as
𝜕𝜙

𝜕
𝑣̇
𝐅

− 2𝛹̃1
𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ − 2𝛹̃2

[ 𝑒
𝐼2𝐈 −𝐆

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ = 𝑞

𝑣
𝐅−⋆ . (4.31)

4.2.3. Transversely isotropic solids
A transversely isotropic solid at a material point 𝑋 ∈  has a material preferred direction that is specified by a unit vector 𝐍(𝑋),

which is normal to the plane of isotropy at that point.

Stress constitutive relation. The equilibrium and non-equilibrium free energies become isotropic functionals of their arguments
when the structural tensor 𝐀 = 𝐍 ⊗ 𝐍 is added to the list of their arguments (Doyle and Ericksen, 1956; Spencer, 1982; Lu and
Papadopoulos, 2000).27 Equivalently,

𝛹EQ = 𝛹 (𝑋, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5) , 𝛹NEQ = 𝛹̃ (𝑋,
𝑒
𝐼1,

𝑒
𝐼2,

𝑒
𝐼3,

𝑒
𝐼4,

𝑒
𝐼5) , (4.32)

here
𝐼1 = tr 𝐂 = C𝐴𝐴 , 𝐼2 = det 𝐂 tr 𝐂−1 = det(C𝐴𝐵)(C−1)𝐷𝐷 , 𝐼3 = det𝐂 = det(C𝐴𝐵) ,

𝐼4 = 𝐍 ⋅ 𝐂 ⋅ 𝐍 = 𝑁𝐴𝑁𝐵 C𝐴𝐵 , 𝐼5 = 𝐍 ⋅ 𝐂2 ⋅ 𝐍 = 𝑁𝐴𝑁𝐵 C𝐵𝑀 C𝑀𝐴 ,
(4.33)

nd
𝑒
𝐼1 = tr

𝑒
𝐂 =

𝑒
C𝐴𝐴 ,

𝑒
𝐼2 = det

𝑒
𝐂 tr

𝑒
𝐂−1 = det(

𝑒
C𝐴𝐵)(

𝑒
C−1)𝐷𝐷 ,

𝑒
𝐼3 = det

𝑒
𝐂 = det(

𝑒
C𝐴𝐵) ,

𝑒
𝐼4 = 𝐍 ⋅

𝑒
𝐂 ⋅ 𝐍 = 𝑁𝐴𝑁𝐵 𝑒

C𝐴𝐵 ,
𝑒
𝐼5 = 𝐍 ⋅

𝑒
𝐂2 ⋅ 𝐍 = 𝑁𝐴𝑁𝐵 𝑒

C𝐵𝑀
𝑒
C𝑀𝐴 .

(4.34)

Note that for the extra invariants
𝜕𝐼4
𝜕𝐂♭

= 𝐍⊗ 𝐍 ,
𝜕𝐼5
𝜕𝐂♭

= 𝐍⊗ (𝐆♯𝐂♭𝐍) + (𝐆♯𝐂♭𝐍)⊗ 𝐍 , (4.35)

nd

𝜕
𝑒
𝐼4
𝜕
𝑒
𝐂♭

= 𝐍⊗ 𝐍 ,
𝜕
𝑒
𝐼5
𝜕
𝑒
𝐂♭

= 𝐍⊗ (𝐆♯ 𝑒𝐂♭𝐍) + (𝐆♯ 𝑒𝐂♭𝐍)⊗ 𝐍 . (4.36)

25 This functional form essentially means that, even in the isotropic case, while the dissipation potential depends only on the three principal invariants of
he right Cauchy–Green deformation tensor instead of its 6 components, there is no reduction in its dependence on the non-symmetric tensors

𝑣

𝐅 and
𝑣̇

𝐅; it still
depends on all their 18 components. Note, however, that when these components are written with respect to the eigenbasis

{

𝐖1 ,𝐖2 ,𝐖3
}

, they are invariant
under the orthogonal group.
26 Similarly to what was observed earlier in Footnote 23, the Cayley–Hamilton theorem for

𝑒

𝐂 tells us that
𝑒
𝐼2𝐈 −

𝑒
𝐼3

𝑒

𝐂−1 =
𝑒
𝐼1

𝑒

𝐂 −
𝑒

𝐂2, which then changes the
kinetic equation to the following equivalent form

𝜕𝜙

𝜕
𝑣̇

𝐅
− 2𝛹̃1

𝑒

𝐂♭𝐆♯ 𝑣

𝐅−⋆ + 2𝛹̃2

[ 𝑒

𝐂2♭ −
𝑒
𝐼1

𝑒

𝐂♭
]

𝐆♯ 𝑣

𝐅−⋆ − 2
𝑒
𝐼3𝛹̃3

𝑣

𝐅−⋆ = 𝟎 . (4.29)

27 𝑒 𝑒
15

The functionals 𝛹EQ(𝑋,𝛩,𝐅,𝐀,𝐆), 𝛹NEQ(𝑋,𝛩,𝐅,𝐀,𝐆), and 𝛹 (𝑋,𝛩,𝐅,𝐅,𝐀,𝐆, 𝐠) are isotropic.
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The second Piola–Kirchhoff stress has the following representation

𝐒 = 2 𝜕𝛹̂
𝜕𝐂♭

=
5
∑

𝑗=1
2𝛹 𝑗

𝜕𝐼𝑗
𝜕𝐂♭

+
𝑣
𝐅−1

[ 5
∑

𝑗=1
2𝛹̃𝑗

𝜕
𝑒
𝐼𝑗

𝜕
𝑒
𝐂♭

]

𝑣
𝐅−⋆ , (4.37)

here

𝛹 𝑗 = 𝛹 𝑗 (𝑋, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5) ∶=
𝜕𝛹
𝜕𝐼𝑗

, 𝛹̃𝑗 = 𝛹̃𝑗 (𝑋,
𝑒
𝐼1,

𝑒
𝐼2,

𝑒
𝐼3,

𝑒
𝐼4,

𝑒
𝐼5) ∶=

𝜕𝛹̃

𝜕
𝑒
𝐼𝑗
, 𝑗 = 1,… , 5 . (4.38)

Thus

𝐒 = 2𝛹 1 𝐆♯ + 2𝛹 2 (𝐼2 𝐂−♯ − 𝐼3 𝐂−2♯) + 2𝛹 3 𝐼3 𝐂−♯ + 2𝛹 4 𝐍⊗ 𝐍 + 2𝛹 5

[

𝐍⊗ (𝐆♯𝐂♭𝐍) + (𝐆♯𝐂♭𝐍)⊗ 𝐍
]

+ 2𝛹̃1
𝑣
𝐅∗𝐆♯ + 2𝛹̃2

( 𝑒
𝐼2

𝑣
𝐅∗ 𝑒

𝐂−♯ −
𝑒
𝐼3

𝑣
𝐅∗ 𝑒

𝐂−2♯
)

+ 2𝛹̃3
𝑒
𝐼3

𝑣
𝐅∗ 𝑒

𝐂−♯ + 2𝛹̃4
𝑣
𝐅−1 [𝐍⊗ 𝐍 ]

𝑣
𝐅−⋆

+ 2𝛹̃5
𝑣
𝐅−1

[

𝐍⊗ (𝐆♯ 𝑒𝐂♭𝐍) + (𝐆♯ 𝑒𝐂♭𝐍)⊗ 𝐍
] 𝑣
𝐅−⋆

= 2𝛹 1 𝐆♯ + 2𝛹 2 (𝐼2 𝐂−♯ − 𝐼3 𝐂−2♯) + 2𝛹 3 𝐼3 𝐂−♯ + 2𝛹 4 𝐍⊗ 𝐍 + 2𝛹 5

[

𝐍⊗ (𝐆♯𝐂♭𝐍) + (𝐆♯𝐂♭𝐍)⊗ 𝐍
]

+ 2𝛹̃1
𝑣
𝐅∗𝐆♯ + 2𝛹̃2

( 𝑒
𝐼2

𝑣
𝐅∗ 𝑒

𝐂−♯ −
𝑒
𝐼3

𝑣
𝐅∗ 𝑒

𝐂−2♯
)

+ 2𝛹̃3
𝑒
𝐼3

𝑣
𝐅∗ 𝑒

𝐂−♯ + 2𝛹̃4 (
𝑣
𝐅−1𝐍)⊗ (

𝑣
𝐅−1𝐍)

+ 2𝛹̃5

[

(
𝑣
𝐅−1𝐍)⊗ (

𝑣
𝐅−1𝐆♯ 𝑒𝐂♭𝐍) + (

𝑣
𝐅−1𝐆♯ 𝑒𝐂♭𝐍)⊗ (

𝑣
𝐅−1𝐍)

]

.

(4.39)

Note that 𝐅
[

𝐍⊗ (𝐆♯𝐂♭𝐍) + (𝐆♯𝐂♭𝐍)⊗ 𝐍
]

𝐅⋆ = 𝐧⊗ 𝐅(𝐆♯𝐂♭𝐍) + 𝐅(𝐆♯𝐂♭𝐍)⊗ 𝐧. Also notice that

𝐅(𝐆♯𝐂♭𝐍) = 𝐅𝐆♯𝐅⋆𝐠𝐅𝐍 = (𝐅𝐆♯𝐅⋆)𝐠𝐧 = 𝐛♯𝐠𝐧 . (4.40)

imilarly
𝑒
𝐅(𝐆♯ 𝑒𝐂♭𝐍) =

𝑒
𝐛♯𝐠 𝑒𝐧 , (4.41)

here 𝑒𝐧 =
𝑒
𝐅𝐍. The Cauchy stress has the following representation

𝝈 = 2
√

𝐼3

{

(

𝐼2 𝛹 2 + 𝐼3 𝛹 3 +
𝑒
𝐼2 𝛹̃2 +

𝑒
𝐼3 𝛹̃3

)

𝐠♯ + 𝛹 1 𝐛♯ + 𝛹̃1
𝑒
𝐛♯ − 𝐼3 𝛹 2 𝐜♯ −

𝑒
𝐼3 𝛹̃2

𝑒𝐜♯

+ 𝛹 4 𝐧⊗ 𝐧 + 𝛹 5

[

𝐧⊗ (𝐛♯𝐠𝐧) + (𝐛♯𝐠𝐧)⊗ 𝐧
]

+ 𝛹̃4
𝑒𝐧⊗ 𝑒𝐧 + 𝛹̃5

[

𝑒𝐧⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧) + (

𝑒
𝐛♯𝐠 𝑒𝐧)⊗ 𝑒𝐧

]

}

.

(4.42)

For an incompressible isotropic solid, 𝐼3 =
𝑒
𝐼3 = 1, and hence

𝝈 = −𝑝 𝐠♯ + 2𝛹 1 𝐛♯ + 2𝛹̃1
𝑒
𝐛♯ − 2𝛹 2 𝐜♯ − 2 𝛹̃2

𝑒𝐜♯ + 2𝛹 4 𝐧⊗ 𝐧 + 2𝛹 5

[

𝐧⊗ (𝐛♯𝐠𝐧) + (𝐛♯𝐠𝐧)⊗ 𝐧
]

+ 2𝛹̃4
𝑒𝐧⊗ 𝑒𝐧

+ 2𝛹̃5

[

𝑒𝐧⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧) + (

𝑒
𝐛♯𝐠 𝑒𝐧)⊗ 𝑒𝐧

]

,
(4.43)

where 𝑝 is the Lagrange multiplier associated with the incompressibility constraint 𝐽 =
√

𝐼3 = 1.

issipation potential. For a transversely isotropic viscoelastic solid, when the structural tensor 𝐀 = 𝐍⊗𝐍 is added to the list of the
rguments of the dissipation potential 𝜙, it becomes an isotropic functional of its arguments 𝜙 = 𝜙̂(𝑋,𝐂♭,

𝑣
𝐅,

𝑣̇
𝐅,𝐀,𝐆, 𝐠). Although one

may not use the standard representation theorem as for the free energy functionals, the dissipation potential will be a functional of
some standard invariants and a set of spectral invariants, similarly to the dissipation potential of isotropic viscoelastic solids.

Kinetic equation. Following (B.14) and (4.36), one may write

𝜕𝛹

𝜕
𝑒
𝐂♭

=
𝜕𝛹NEQ

𝜕
𝑒
𝐂♭

= 𝛹̃1
𝜕
𝑒
𝐼1
𝜕
𝑒
𝐂♭

+ 𝛹̃2
𝜕
𝑒
𝐼2
𝜕
𝑒
𝐂♭

+ 𝛹̃3
𝜕
𝑒
𝐼3
𝜕
𝑒
𝐂♭

+ 𝛹̃4
𝜕
𝑒
𝐼4
𝜕
𝑒
𝐂♭

+ 𝛹̃5
𝜕
𝑒
𝐼5
𝜕
𝑒
𝐂♭

= 𝛹̃1𝐆♯ + 𝛹̃2

( 𝑒
𝐼2

𝑒
𝐂−♯ −

𝑒
𝐼3

𝑒
𝐂−2♯

)

+ 𝛹̃3
𝑒
𝐼3

𝑒
𝐂−♯ + 𝛹̃4𝐍⊗ 𝐍 + 𝛹̃5(𝐍⊗ (

𝑒
𝐂𝐍) + (

𝑒
𝐂𝐍)⊗ 𝐍) .

(4.44)

ence, it follows from (3.8) that the kinetic equation for compressible transversely isotropic viscoelastic solids reads
𝜕𝜙

𝜕
𝑣̇
𝐅

− 2𝛹̃1
𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ − 2𝛹̃2

[ 𝑒
𝐼2𝐈 −

𝑒
𝐼3𝐆

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ − 2

𝑒
𝐼3𝛹̃3

𝑣
𝐅−⋆ − 2𝛹̃4

𝑒
𝐂♭𝐍⊗

𝑣
𝐅−1𝐍

− 2𝛹̃5

[ 𝑒
𝐂♭𝐍⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍) + (𝐆
𝑒
𝐂2𝐍)⊗

𝑣
𝐅−1𝐍

]

= 𝟎 ;
(4.45)

nd in the case of incompressible transversely isotropic viscoelastic solids, the kinetic equation (3.12) is written as
𝜕𝜙
𝑣̇
− 2𝛹̃1

𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ − 2𝛹̃2

[ 𝑒
𝐼2𝐈 −𝐆

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ − 2𝛹̃4

𝑒
𝐂♭𝐍⊗

𝑣
𝐅−1𝐍 − 2𝛹̃5

[ 𝑒
𝐂♭𝐍⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍) + (𝐆
𝑒
𝐂2𝐍)⊗

𝑣
𝐅−1𝐍

]

= 𝑞
𝑣
𝐅−⋆ . (4.46)
16
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4.2.4. Orthotropic solids
An orthotropic solid at a material point 𝑋 ∈  has reflection symmetry with respect to three mutually perpendicular planes

ith 𝐆-orthonormal vectors 𝐍1(𝑋), 𝐍2(𝑋), and 𝐍3(𝑋), i.e., ⟨𝐍𝑖(𝑋),𝐍𝑗 (𝑋)⟩𝐆 = 𝛿𝑖𝑗 . A choice for structural tensors is the set
𝜦 =

{

𝐀1 = 𝐍1 ⊗ 𝐍1,𝐀2 = 𝐍2 ⊗ 𝐍2,𝐀3 = 𝐍3 ⊗ 𝐍3
}

. However, 𝐀1 + 𝐀2 + 𝐀3 = 𝐈, and hence only two of them are independent.

tress constitutive equations. One can take 𝐀1 and 𝐀2 to be the independent structural tensors of the set 𝜦. When these two tensors
re added to the list of the arguments of the equilibrium and non-equilibrium free energies, they become isotropic functionals of
heir arguments.28 This is equivalent to the free energy functions each depending on seven invariants:

𝛹EQ = 𝛹 (𝑋, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7) , 𝛹NEQ = 𝛹̃ (𝑋,
𝑒
𝐼1,

𝑒
𝐼2,

𝑒
𝐼3,

𝑒
𝐼4,

𝑒
𝐼5,

𝑒
𝐼6,

𝑒
𝐼7) , (4.47)

here

𝐼1 = tr 𝐂 , 𝐼2 = det 𝐂 tr 𝐂−1 , 𝐼3 = det 𝐂 ,
𝐼4 = 𝐍1 ⋅ 𝐂 ⋅ 𝐍1 , 𝐼5 = 𝐍1 ⋅ 𝐂2 ⋅ 𝐍1 ,

𝐼6 = 𝐍2 ⋅ 𝐂 ⋅ 𝐍2 , 𝐼7 = 𝐍2 ⋅ 𝐂2 ⋅ 𝐍2 ,

(4.48)

nd
𝑒
𝐼1 = tr

𝑒
𝐂 ,

𝑒
𝐼2 = det

𝑒
𝐂 tr

𝑒
𝐂−1 ,

𝑒
𝐼3 = det

𝑒
𝐂 ,

𝑒
𝐼4 = 𝐍1 ⋅

𝑒
𝐂 ⋅ 𝐍1 , 𝐼5 = 𝐍1 ⋅

𝑒
𝐂2 ⋅ 𝐍1 ,

𝑒
𝐼6 = 𝐍2 ⋅

𝑒
𝐂 ⋅ 𝐍2 ,

𝑒
𝐼7 = 𝐍2 ⋅

𝑒
𝐂2 ⋅ 𝐍2 ,

(4.49)

he Cauchy stress has the following representation

𝝈 = 2
√

𝐼3

{

(

𝐼2 𝛹 2 + 𝐼3 𝛹 3 +
𝑒
𝐼2 𝛹̃2 +

𝑒
𝐼3 𝛹̃3

)

𝐠♯ + 𝛹 1 𝐛♯ + 𝛹̃1
𝑒
𝐛♯ − 𝐼3 𝛹 2 𝐜♯ −

𝑒
𝐼3 𝛹̃2

𝑒𝐜♯

+ 2𝛹 4 𝐧1 ⊗ 𝐧1 + 2𝛹 5

[

𝐧1 ⊗ (𝐛♯𝐠𝐧1) + (𝐛♯𝐠𝐧1)⊗ 𝐧1
]

+ 2𝛹 6 𝐧2 ⊗ 𝐧2 + 2𝛹 7

[

𝐧2 ⊗ (𝐛♯𝐠𝐧2) + (𝐛♯𝐠𝐧2)⊗ 𝐧2
]

+ 2𝛹̃4
𝑒𝐧1 ⊗

𝑒𝐧1 + 2𝛹̃5

[

𝑒𝐧1 ⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧1) + (

𝑒
𝐛♯𝐠 𝑒𝐧1)⊗

𝑒𝐧1
]

+ 2𝛹̃6
𝑒𝐧2 ⊗

𝑒𝐧2 + 2𝛹̃7

[

𝑒𝐧2 ⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧2) + (

𝑒
𝐛♯𝐠 𝑒𝐧2)⊗

𝑒𝐧2
]

}

,

(4.50)

where 𝑒𝐧1 =
𝑒
𝐅𝐍1,

𝑒𝐧2 =
𝑒
𝐅𝐍2, and

𝛹 𝑗 = 𝛹 𝑗 (𝑋, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7) ∶=
𝜕𝛹
𝜕𝐼𝑗

, 𝛹̃𝑗 = 𝛹̃𝑗 (𝑋,
𝑒
𝐼1,

𝑒
𝐼2,

𝑒
𝐼3,

𝑒
𝐼4,

𝑒
𝐼5,

𝑒
𝐼6,

𝑒
𝐼7) ∶=

𝜕𝛹̃

𝜕
𝑒
𝐼𝑗
, 𝑗 = 1,… , 7 . (4.51)

For an incompressible isotropic solid, 𝐼3 =
𝑒
𝐼3 = 1, and hence

𝝈 = −𝑝 𝐠♯ + 2𝛹 1 𝐛♯ + 2𝛹̃1
𝑒
𝐛♯ − 𝛹 2 𝐜♯ − 2 𝛹̃2

𝑒𝐜♯

+ 2𝛹 4 𝐧1 ⊗ 𝐧1 + 2𝛹 5

[

𝐧1 ⊗ (𝐛♯𝐠𝐧1) + (𝐛♯𝐠𝐧1)⊗ 𝐧1
]

+ 2𝛹 6 𝐧2 ⊗ 𝐧2 + 2𝛹 7

[

𝐧2 ⊗ (𝐛♯𝐠𝐧2) + (𝐛♯𝐠𝐧2)⊗ 𝐧2
]

+ 2𝛹̃4
𝑒𝐧1 ⊗

𝑒𝐧1 + 2𝛹̃5

[

𝑒𝐧1 ⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧1) + (

𝑒
𝐛♯𝐠 𝑒𝐧1)⊗

𝑒𝐧1
]

+ 2𝛹̃6
𝑒𝐧2 ⊗

𝑒𝐧2 + 2𝛹̃7

[

𝑒𝐧2 ⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧2) + (

𝑒
𝐛♯𝐠 𝑒𝐧2)⊗

𝑒𝐧2
]

,

(4.52)

where 𝑝 is the Lagrange multiplier associated with the incompressibility constraint 𝐽 =
√

𝐼3 = 1.

issipation potential. For an orthotropic viscoelastic solid, when two elements of the set of structural tensors 𝜦 are added to the list of
he arguments of the dissipation potential 𝜙, it becomes an isotropic functional of its arguments, e.g., 𝜙 = 𝜙̂(𝑋,𝐂♭,

𝑣
𝐅,

𝑣̇
𝐅,𝐀1,𝐀2,𝐆, 𝐠).

Although one may not use the standard representation theorem as for the free energy functionals, the dissipation potential will
be a functional of some standard invariants and a set of spectral invariants, similarly to the dissipation potential of the isotropic
viscoelastic solids.

Kinetic equation. Following (B.14) and (4.36), one may write

𝜕𝛹

𝜕
𝑒
𝐂♭

=
𝜕𝛹NEQ

𝜕
𝑒
𝐂♭

= 𝛹̃1
𝜕
𝑒
𝐼1
𝜕
𝑒
𝐂♭

+ 𝛹̃2
𝜕
𝑒
𝐼2
𝜕
𝑒
𝐂♭

+ 𝛹̃3
𝜕
𝑒
𝐼3
𝜕
𝑒
𝐂♭

+ 𝛹̃4
𝜕
𝑒
𝐼4
𝜕
𝑒
𝐂♭

+ 𝛹̃5
𝜕
𝑒
𝐼5
𝜕
𝑒
𝐂♭

+ 𝛹̃6
𝜕
𝑒
𝐼6
𝜕
𝑒
𝐂♭

+ 𝛹̃7
𝜕
𝑒
𝐼7
𝜕
𝑒
𝐂♭

= 𝛹̃1𝐆♯ + 𝛹̃2

( 𝑒
𝐼2

𝑒
𝐂−♯ −

𝑒
𝐼3

𝑒
𝐂−2♯

)

+ 𝛹̃3
𝑒
𝐼3

𝑒
𝐂−♯ + 𝛹̃4𝐍1 ⊗ 𝐍1 + 𝛹̃5(𝐍1 ⊗ (

𝑒
𝐂𝐍1) + (

𝑒
𝐂𝐍1)⊗ 𝐍1)

+ 𝛹̃6𝐍2 ⊗ 𝐍2 + 𝛹̃7(𝐍2 ⊗ (
𝑒
𝐂𝐍2) + (

𝑒
𝐂𝐍2)⊗ 𝐍2) .

(4.53)

28 The functionals 𝛹 (𝑋,𝛩,𝐅,𝐀 ,𝐀 ,𝐆), 𝛹 (𝑋,𝛩,
𝑒

𝐅,𝐀 ,𝐀 ,𝐆), and 𝛹 (𝑋,𝛩,𝐅,
𝑒

𝐅,𝐀 ,𝐀 ,𝐆, 𝐠) are isotropic.
17
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Hence, it follows from (3.8) that the kinetic equation for compressible orthotropic viscoelastic solids reads
𝜕𝜙

𝜕
𝑣̇
𝐅

− 2𝛹̃1
𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ − 2𝛹̃2

[ 𝑒
𝐼2𝐈 −

𝑒
𝐼3𝐆

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ − 2

𝑒
𝐼3𝛹̃3

𝑣
𝐅−⋆

− 2𝛹̃4
𝑒
𝐂♭𝐍1 ⊗

𝑣
𝐅−1𝐍1 − 2𝛹̃5(

𝑒
𝐂♭𝐍1 ⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍1) + (𝐆
𝑒
𝐂2𝐍1)⊗

𝑣
𝐅−1𝐍1)

− 2𝛹̃6
𝑒
𝐂♭𝐍2 ⊗

𝑣
𝐅−1𝐍2 − 2𝛹̃7(

𝑒
𝐂♭𝐍2 ⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍2) + (𝐆
𝑒
𝐂2𝐍2)⊗

𝑣
𝐅−1𝐍2) = 𝟎 ;

(4.54)

nd in the case of incompressible orthotropic viscoelastic solids, the kinetic equation (3.12) is written as
𝜕𝜙

𝜕
𝑣̇
𝐅

− 2𝛹̃1
𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ − 2𝛹̃2

[ 𝑒
𝐼2𝐈 −𝐆

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ − 2𝛹̃4

𝑒
𝐂♭𝐍1 ⊗

𝑣
𝐅−1𝐍1 − 2𝛹̃5(

𝑒
𝐂♭𝐍1 ⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍1) + (𝐆
𝑒
𝐂2𝐍1)⊗

𝑣
𝐅−1𝐍1)

− 2𝛹̃6
𝑒
𝐂♭𝐍2 ⊗

𝑣
𝐅−1𝐍2 − 2𝛹̃7(

𝑒
𝐂♭𝐍2 ⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍2) + (𝐆
𝑒
𝐂2𝐍2)⊗

𝑣
𝐅−1𝐍2) = 𝑞

𝑣
𝐅−⋆ .

(4.55)

.2.5. Monoclinic solids
A monoclinic solid at a material point 𝑋 ∈  has three material preferred directions

{

𝐍1(𝑋),𝐍2(𝑋),𝐍3(𝑋)
}

such that 𝐍1 ⋅𝐍2 ≠ 0
nd 𝐍3 is normal to the plane of 𝐍1 and 𝐍2 (Merodio and Ogden, 2020).

tress constitutive equations. The equilibrium and non-equilibrium free energies of a monoclinic solid depend on nine invari-
nts (Spencer, 1986):

𝛹EQ = 𝛹EQ(𝑋, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8, 𝐼9) , 𝛹NEQ = 𝛹NEQ(𝑋,
𝑒
𝐼1,

𝑒
𝐼2,

𝑒
𝐼3,

𝑒
𝐼4,

𝑒
𝐼5,

𝑒
𝐼6,

𝑒
𝐼7,

𝑒
𝐼8,

𝑒
𝐼9) . (4.56)

or each free energy, the first seven invariants are identical to those of orthotropic solids (4.48) and (4.49). The three extra invariants
re

𝐼8 =  𝐍1 ⋅ 𝐂 ⋅ 𝐍2 ,
𝑒
𝐼8 =  𝐍1 ⋅

𝑒
𝐂 ⋅ 𝐍2 , 𝐼9 =

𝑒
𝐼9 = 2 ,  = 𝐍1 ⋅ 𝐍2 . (4.57)

ote that

𝜕𝐼8
𝜕𝐂♭

= 1
2
 (𝐍1 ⊗ 𝐍2 + 𝐍2 ⊗ 𝐍1) ,

𝜕𝐼9
𝜕𝐂♭

= 𝟎 ,
𝜕
𝑒
𝐼8
𝜕
𝑒
𝐂♭

= 1
2
 (𝐍1 ⊗ 𝐍2 + 𝐍2 ⊗ 𝐍1) ,

𝜕
𝑒
𝐼9
𝜕
𝑒
𝐂♭

= 𝟎 . (4.58)

The Cauchy stress has the following representation

𝝈 = 2
√

𝐼3

{

(

𝐼2 𝛹 2 + 𝐼3 𝛹 3 +
𝑒
𝐼2 𝛹̃2 +

𝑒
𝐼3 𝛹̃3

)

𝐠♯ + 𝛹 1 𝐛♯ + 𝛹̃1
𝑒
𝐛♯ − 𝐼3 𝛹 2 𝐜♯ −

𝑒
𝐼3 𝛹̃2

𝑒𝐜♯

+ 2𝛹 4 𝐧1 ⊗ 𝐧1 + 2𝛹 5

[

𝐧1 ⊗ (𝐛♯𝐠𝐧1) + (𝐛♯𝐠𝐧1)⊗ 𝐧1
]

+ 2𝛹 6 𝐧2 ⊗ 𝐧2 + 2𝛹 7

[

𝐧2 ⊗ (𝐛♯𝐠𝐧2) + (𝐛♯𝐠𝐧2)⊗ 𝐧2
]

+  𝛹 8
(

𝐧1 ⊗ 𝐧2 + 𝐧2 ⊗ 𝐧1
)

+ 2𝛹̃4
𝑒𝐧1 ⊗

𝑒𝐧1 + 2𝛹̃5

[

𝑒𝐧1 ⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧1) + (

𝑒
𝐛♯𝐠 𝑒𝐧1)⊗

𝑒𝐧1
]

+ 2𝛹̃6
𝑒𝐧2 ⊗

𝑒𝐧2 + 2𝛹̃7

[

𝑒𝐧2 ⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧2) + (

𝑒
𝐛♯𝐠 𝑒𝐧2)⊗

𝑒𝐧2
]

+  𝛹̃8
( 𝑒𝐧1 ⊗

𝑒𝐧2 + 𝑒𝐧2 ⊗
𝑒𝐧1
)

}

.

(4.59)

For an incompressible monoclinic solid

𝝈 = −𝑝 𝐠♯ + 2𝛹 1 𝐛♯ + 2𝛹̃1
𝑒
𝐛♯ − 𝛹 2 𝐜♯ − 2 𝛹̃2

𝑒𝐜♯ + 2𝛹 4 𝐧1 ⊗ 𝐧1 + 2𝛹 5

[

𝐧1 ⊗ (𝐛♯𝐠𝐧1) + (𝐛♯𝐠𝐧1)⊗ 𝐧1
]

+ 2𝛹 6 𝐧2 ⊗ 𝐧2 + 2𝛹 7

[

𝐧2 ⊗ (𝐛♯𝐠𝐧2) + (𝐛♯𝐠𝐧2)⊗ 𝐧2
]

+  𝛹 8
(

𝐧1 ⊗ 𝐧2 + 𝐧2 ⊗ 𝐧1
)

+ 2𝛹̃4
𝑒𝐧1 ⊗

𝑒𝐧1 + 2𝛹̃5

[

𝑒𝐧1 ⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧1) + (

𝑒
𝐛♯𝐠 𝑒𝐧1)⊗

𝑒𝐧1
]

+ 2𝛹̃6
𝑒𝐧2 ⊗

𝑒𝐧2 + 2𝛹̃7

[

𝑒𝐧2 ⊗ (
𝑒
𝐛♯𝐠 𝑒𝐧2) + (

𝑒
𝐛♯𝐠 𝑒𝐧2)⊗

𝑒𝐧2
]

+  𝛹̃8
( 𝑒𝐧1 ⊗

𝑒𝐧2 + 𝑒𝐧2 ⊗
𝑒𝐧1
)

.

(4.60)

Dissipation potential. For a monoclinic viscoelastic solid, when the full set of structural tensors

𝜦 =
{

𝐀1 = 𝐍1 ⊗ 𝐍1,𝐀2 = 𝐍2 ⊗ 𝐍2,𝐀3 = 𝐍3 ⊗ 𝐍3
}

, (4.61)

is added to the list of the arguments of the dissipation potential 𝜙, it becomes an isotropic functional of its arguments, i.e., 𝜙 =
𝜙̂(𝑋,𝐂♭,

𝑣
𝐅,

𝑣̇
𝐅,𝐀1,𝐀2,𝐀3,𝐆, 𝐠). Although one may not use the standard representation theorem as for the free energy functionals, the

dissipation potential will be a functional of some standard invariants and a set of spectral invariants, similarly to the dissipation
18

potential of isotropic viscoelastic solids.
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Kinetic equation. Following (B.14), (4.36), and (4.58), one may write

𝜕𝛹

𝜕
𝑒
𝐂♭

=
𝜕𝛹NEQ

𝜕
𝑒
𝐂♭

= 𝛹̃1
𝜕
𝑒
𝐼1
𝜕
𝑒
𝐂♭

+ 𝛹̃2
𝜕
𝑒
𝐼2
𝜕
𝑒
𝐂♭

+ 𝛹̃3
𝜕
𝑒
𝐼3
𝜕
𝑒
𝐂♭

+ 𝛹̃4
𝜕
𝑒
𝐼4
𝜕
𝑒
𝐂♭

+ 𝛹̃5
𝜕
𝑒
𝐼5
𝜕
𝑒
𝐂♭

+ 𝛹̃6
𝜕
𝑒
𝐼6
𝜕
𝑒
𝐂♭

+ 𝛹̃7
𝜕
𝑒
𝐼7
𝜕
𝑒
𝐂♭

+ 𝛹̃8
𝜕
𝑒
𝐼8
𝜕
𝑒
𝐂♭

+ 𝛹̃9
𝜕
𝑒
𝐼9
𝜕
𝑒
𝐂♭

= 𝛹̃1𝐆♯ + 𝛹̃2

( 𝑒
𝐼2

𝑒
𝐂−♯ −

𝑒
𝐼3

𝑒
𝐂−2♯

)

+ 𝛹̃3
𝑒
𝐼3

𝑒
𝐂−♯ + 𝛹̃4𝐍1 ⊗ 𝐍1 + 𝛹̃5(𝐍1 ⊗ (

𝑒
𝐂𝐍1) + (

𝑒
𝐂𝐍1)⊗ 𝐍1)

+ 𝛹̃6𝐍2 ⊗ 𝐍2 + 𝛹̃7(𝐍2 ⊗ (
𝑒
𝐂𝐍2) + (

𝑒
𝐂𝐍2)⊗ 𝐍2) +

1
2
(𝐍1 ⋅ 𝐍2)𝛹̃8(𝐍1 ⊗ 𝐍2 + 𝐍2 ⊗ 𝐍1) .

(4.62)

ence, it follows from (3.8) that the kinetic equation for compressible monoclinic viscoelastic solids is written as
𝜕𝜙

𝜕
𝑣̇
𝐅

− 2𝛹̃1
𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ − 2𝛹̃2

[ 𝑒
𝐼2𝐈 −

𝑒
𝐼3𝐆

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ − 2

𝑒
𝐼3𝛹̃3

𝑣
𝐅−⋆

− 2𝛹̃4
𝑒
𝐂♭𝐍1 ⊗

𝑣
𝐅−1𝐍1 − 2𝛹̃5(

𝑒
𝐂♭𝐍1 ⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍1) + (𝐆
𝑒
𝐂2𝐍1)⊗

𝑣
𝐅−1𝐍1)

− 2𝛹̃6
𝑒
𝐂♭𝐍2 ⊗

𝑣
𝐅−1𝐍2 − 2𝛹̃7(

𝑒
𝐂♭𝐍2 ⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍2) + (𝐆
𝑒
𝐂2𝐍2)⊗

𝑣
𝐅−1𝐍2)

− (𝐍1 ⋅ 𝐍2)𝛹̃8(
𝑒
𝐂♭𝐍1 ⊗

𝑣
𝐅−1𝐍2 +

𝑒
𝐂♭𝐍2 ⊗

𝑣
𝐅−1𝐍1) = 𝟎 ;

(4.63)

nd in the case of incompressible monoclinic viscoelastic solids, the kinetic equation (3.12) reads
𝜕𝜙

𝜕
𝑣̇
𝐅

− 2𝛹̃1
𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ − 2𝛹̃2

[ 𝑒
𝐼2𝐈 −𝐆

𝑒
𝐂−♯

] 𝑣
𝐅−⋆ − 2𝛹̃4

𝑒
𝐂♭𝐍1 ⊗

𝑣
𝐅−1𝐍1 − 2𝛹̃5(

𝑒
𝐂♭𝐍1 ⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍1) + (𝐆
𝑒
𝐂2𝐍1)⊗

𝑣
𝐅−1𝐍1)

− 2𝛹̃6
𝑒
𝐂♭𝐍2 ⊗

𝑣
𝐅−1𝐍2 − 2𝛹̃7(

𝑒
𝐂♭𝐍2 ⊗ (

𝑣
𝐅−1 𝑒

𝐂𝐍2) + (𝐆
𝑒
𝐂2𝐍2)⊗

𝑣
𝐅−1𝐍2)

− (𝐍1 ⋅ 𝐍2)𝛹̃8(
𝑒
𝐂♭𝐍1 ⊗

𝑣
𝐅−1𝐍2 +

𝑒
𝐂♭𝐍2 ⊗

𝑣
𝐅−1𝐍1) = 𝑞

𝑣
𝐅−⋆ .

(4.64)

.3. Invariance in anelasticity and viscoelasticity: A critical discussion of some of the existing works

The notion of invariance and its interpretation in the presence of inelastic deformations has eluded mechanicians over the past
ew decades. Invariance is a central notion in physics, and particularly in mechanics; there is a deep connection between balance
aws and symmetries. Noether’s theorems tell us that any symmetry of the Lagrangian density (or action) corresponds to a conserved
uantity or a balance law (Kosmann-Schwarzbach et al., 2011; Marsden and Ratiu, 2013). For example, invariance under time shifts
orresponds to the balance of energy. As another example, for continuum mechanics formulated in a Euclidean ambient space, the
alance of angular momentum corresponds to invariance under rigid body rotations in the ambient space. On the other hand, local
nvariance in the reference configuration is related to material symmetry.

he work of Green and Naghdi. Green and Naghdi (1971) observed that for any proper orthogonal tensor 𝐐, the multiplicative
ecomposition of the deformation gradient can be written as 𝐅 =

𝑒
𝐅
𝑝
𝐅 =

𝑒
𝐅𝐐𝐐𝖳

𝑝
𝐅, and hence

𝑒
𝐅 and

𝑝
𝐅 can be replaced by

𝑒
𝐅𝐐 and

𝖳
𝑝
𝐅, respectively. However, it should be noted that replacing

𝑒
𝐅 by

𝑒
𝐅𝐐 implies that 𝐐 is an element of the material symmetry

roup . Assuming that 𝐐 is any proper orthogonal tensor (or rotation) is equivalent to assuming that the material is isotropic. In
ther words, Green and Naghdi (1971)’s argument is incorrect for anisotropic solids; there is a -ambiguity in the multiplicative
ecomposition and not an 𝑆𝑂(3)-ambiguity, see also Yavari and Sozio (2023).

he work of Simo. In formulating finite plasticity, Simo (1988) considered the multiplicative decomposition of the deformation
radient into elastic and plastic parts: 𝐅 =

𝑒
𝐅
𝑝
𝐅. He considered coordinate charts {𝑥𝑖} and {𝑋𝐼} for the current and reference

onfigurations, respectively. The spatial metric has components 𝑔𝑖𝑗 and the metric of the reference configuration has components

𝐼𝐽 . Looking at the coordinate representation of
𝑝
𝐅 in Eq.(1.2b) in (Simo, 1988), clearly it is assumed that

𝑝
𝐅 is a linear map from

he tangent space of the reference configuration to itself (
𝑝
𝐅 ∶ 𝑇𝑋 → 𝑇𝑋 in our notation). This means that the ‘‘intermediate

onfiguration’’ is identified with 𝑇𝑋. After Eq.(1.2b), it is explicitly mentioned that ‘‘where we have endowed the intermediate
onfiguration with the metric tensor 𝐆 ’’. In other words, the same metric is used in both the reference and intermediate
onfigurations. Simo (1988) assumes a free energy function of the form 𝜓 = 𝜓̂(𝐠,

𝑒
𝐅,𝐅) (an explicit dependence on 𝐆 is suppressed

erhaps because the flat metric 𝐆 is induced from the spatial metric 𝐠). Then ‘‘invariance under rigid-body motions superposed onto
he intermediate configuration’’ is assumed that Simo (1988) writes as

𝜓̂(𝐠,
𝑒
𝐅𝐐,𝐅) = 𝜓̂(𝐠,

𝑒
𝐅,𝐅) , ∀𝐐 ∈ 𝑆𝑂(3) , (4.65)

i.e., for any rotation 𝐐 in the ‘‘intermediate configuration’’. Recall that
𝑒
𝐅 ∶ 𝑇𝑋 → 𝑇𝑥 and 𝐅 ∶ 𝑇𝑋 → 𝑇𝑥, i.e.,

𝑒
𝐅 and 𝐅

have the same tensor character, and hence (4.65) does not make sense; 𝐅 must be transformed as well. Simo was aware that not
including 𝐅 as an argument of the free energy in (4.65) implies material isotropy. He introduced 𝐅 as an argument in the free energy
that is unchanged under ‘‘rotations in the intermediate configuration’’ in order to avoid material isotropy (Simo, 1988, Remark
1.6). However, assuming invariance with respect to the ‘‘intermediate configuration’’ is equivalent to material symmetry under all
rotations and indeed precludes anisotropic response. In his last piece of work before passing that was posthumously published,29

29 We thank Sanjay Govindjee for bringing this reference to our attention.
19
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Simo remarked that (Simo, 1998, Remark 34.2): ‘‘The entire issue depends on an a priori specification of the class of admissible
otations 𝐐 for such transformations. This question is related to a constitutive assumption on the symmetry group of the material
nd appears to have little to do with any fundamental principle in continuum physics’’.

he work of Gurtin and Anand. Gurtin and Anand (2005) studied material symmetry in the presence of local plastic deformations.
They call the target space of

𝑝
𝐅 ‘‘relaxed space’’, which is usually called ‘‘intermediate configuration’’. They treated it as an entity

completely independent from the reference and current configurations; independent in the sense that the ‘‘relaxed space’’ is not
affected by either referential or spatial transformations. This assumption leads to the definition of two symmetry groups, namely,
‘‘referential symmetry group’’ and ‘‘relaxational symmetry group’’. More specifically, they assumed a free energy 𝜓 = 𝜓̂(

𝑝
𝐅,

𝑒
𝐅). The

two symmetry groups are defined as

𝜓̂(
𝑝
𝐅,

𝑒
𝐅) = 𝜓̂(

𝑝
𝐅𝐇,

𝑒
𝐅) , ∀𝐇 ∈ ref ,

𝜓̂(
𝑝
𝐅,

𝑒
𝐅) = 𝜓̂(𝐇−1

𝑝
𝐅,

𝑒
𝐅𝐇) , ∀𝐇 ∈ rel .

(4.66)

An ‘‘intermediate configuration’’ or a ‘‘relaxed space’’ is defined pointwise, and for a given point, it is a linear space. The total
deformation gradient is a linear map between tangent spaces of the material and the ambient space manifolds: 𝐅 ∶ 𝑇𝑋 → 𝑇𝑥.
There are only two spaces (manifolds) in anelasticity and viscoelasticity: the ambient space manifold  (which is usually assumed
to be the Euclidean 3-space)30 and the material manifold  (which is an embedded 3-submanifold of the Euclidean ambient space).
In the decomposition 𝐅 =

𝑒
𝐅
𝑝
𝐅,

𝑒
𝐅 and

𝑝
𝐅 are linear maps. Their domain and target spaces can be either 𝑇𝑋 or 𝑇𝑥 (see Remark 2.1).

In other words, assuming a third linear space distinct from 𝑇𝑋 and 𝑇𝑥 does not have physical relevance. Therefore, the correct
symmetry group should be defined as

𝜓̂(
𝑝
𝐅,

𝑒
𝐅) = 𝜓̂(𝐇−1

𝑝
𝐅𝐇,

𝑒
𝐅𝐇) , ∀𝐇 ∈  . (4.67)

The work of Kumar and Lopez-Pamies. Kumar and Lopez-Pamies (2016) assumed that
𝑒
𝐅 and

𝑣
𝐅 are compatible—see their Eq. (4).

In addition to the reference 𝛺0 and current 𝛺 configurations, a global intermediate configuration 𝛺𝑣 was also assumed—see their
Fig. 2. Under a material symmetry 𝐊, they assumed that

𝑣
𝐅 is transformed to

𝑣
𝐅𝐊, and hence,

𝑒
𝐅 = 𝐅

𝑣
𝐅−1 remains unchanged, since

(𝐅𝐊)(
𝑣
𝐅𝐊)−1 =

𝑒
𝐅. It was finally concluded that 𝛹NEQ is unaltered by material symmetry. First, it should be noted that there is no

reason to expect that
𝑒
𝐅 (and consequently

𝑣
𝐅) is compatible. In other words, a global Euclidean intermediate configuration does not

exist, in general. Further, knowing that
𝑣
𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑋, a change of material configuration by 𝐊 transforms

𝑣
𝐅 to 𝐊−1 𝑣𝐅𝐊 and

𝑒
𝐅 to

𝑒
𝐅𝐊 (see Fig. 3a). In (Kumar and Lopez-Pamies, 2016), it was assumed that 𝛹EQ = 𝛹EQ(𝑋,𝐅,𝐆, 𝐠) and 𝜙 = 𝜙(𝑋,

𝑣
𝐅,

𝑣̇
𝐅,𝐆) have

the same symmetry group, but 𝛹NEQ = 𝛹NEQ(𝑋,
𝑒
𝐅,𝐆, 𝐠) was excluded seemingly because it was assumed that

𝑒
𝐅 was not affected by

material symmetries. In light of the discussion in Section 2.3,
𝑒
𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑥, and it hence seems natural to assume that 𝛹NEQ

has the same symmetry group as well.

The work of Ciambella and Nardinocchi. In a recent paper (Ciambella and Nardinocchi, 2021) aiming to formulate a theory of
anisotropic viscoelasticity, the multiplicative decomposition 𝐅 =

𝑒
𝐅
𝑣
𝐅 was used. The authors recognized that

𝑒
𝐅 and

𝑣
𝐅 are incompatible,

in general. However, they confused viscoelasticity with anelasticity and assumed that
𝑣
𝐅 defines a local relaxed configuration (after

their Eq. (2.1), they say that the viscous deformation gradient acts on a small piece of the body and maps it ‘‘into its relaxed
(or natural) state at time 𝑡 ’’.). This is an incorrect assumption. Their choice of the free energy in their Eq. (3.13) is identical to
what one would see in anelasticity. Ciambella and Nardinocchi (2021) also claimed that a theory of nonlinear viscoelasticity has
to be ‘‘structurally frame indifferent’’. They based this claim on the work of Green and Naghdi (1971). In summary, invariance
in the ‘‘intermediate configuration’’ or ‘‘structural invariance’’ is not physically meaningful. The above-mentioned fundamentally
questionable assumptions, unfortunately, make the formulation presented in (Ciambella and Nardinocchi, 2021) flawed.

What have we learned? The source of confusion in the literature has been a lack of understanding of the mathematical nature of
‘‘intermediate configuration’’. A body  is an embedded topological submanifold of the Euclidean ambient space . In nonlinear
elasticity,  is equipped with a metric that is induced from the ambient space. This defines a Euclidean material manifold. In anelas-
ticity and viscoelasticity, ‘‘intermediate configuration’’ has traditionally been defined locally; a local intermediate configuration is a
linear space with a Euclidean metric. One should note that in the case of the direct Bilby-Kröner-Lee decomposition, an intermediate
configuration (manifold) has the same topology as . However, an intermediate configuration cannot be isometrically embedded
in the Euclidean space because the material metric is non-Euclidean, in general. In anelasticity and viscoelasticity, there are only
two manifolds that are of physical significance: (i) the ambient space manifold , which is the Euclidean 3-space, and (ii) the
material manifold , which is an embedded topological submanifold of . Any local invariance is either defined for 𝑥 ∈  on 𝑇𝑥,
or for 𝑋 ∈  on 𝑇𝑋. The former invariance is the material-frame-indifference (objectivity), and the latter is related to material
symmetry; any ‘‘intermediate configuration invariance’’ is nothing but a material symmetry, in the case of the direct Bilby-Kröner-Lee
decomposition.

Table 1 summarizes some of the important fields, constitutive equations, and governing equations of nonlinear anisotropic
viscoelasticity.

30 In some applications the ambient space could be curved, in general. See Yavari et al. (2016) for a detailed discussion and examples.
20
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Table 1
Summary of the main fields, constitutive equations, and governing equations of nonlinear viscoelasticity.

Nonlinear Anisotropic Viscoelasticity

Kinematics
𝐅 =

𝑒

𝐅
𝑣

𝐅
𝑣

𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑋
𝑒

𝐅(𝑋) ∶ 𝑇𝑋 → 𝑇𝑥

Free energy Isotropic solids
𝛹 = 𝛹EQ + 𝛹NEQ 𝛹EQ = 𝛹EQ(𝑋,𝐅,𝐆, 𝐠) = 𝛹̂EQ(𝑋,𝐂♭ ,𝐆)

𝛹NEQ = 𝛹NEQ(𝑋,
𝑒

𝐅,𝐆, 𝐠) = 𝛹̂NEQ(𝑋,
𝑒

𝐂♭ ,𝐆)

𝜦: structural tensors Anisotropic solids
𝑣
𝜦 =

𝑣

𝐅∗𝜦: viscous structural tensors 𝛹EQ = 𝛹EQ(𝑋,𝛩,𝐅,𝐆,𝜦, 𝐠) = 𝛹̂EQ(𝑋,𝛩,𝐂♭ ,𝐆,𝜦)
𝑣

𝐆 =
𝑣

𝐅∗𝐆: viscous material metric 𝛹NEQ = 𝛹NEQ(𝑋,𝛩,𝐅,
𝑣

𝐆,
𝑣
𝜦, 𝐠) = 𝛹̂NEQ(𝑋,𝛩,𝐂♭ ,

𝑣

𝐆,
𝑣
𝜦)

Dissipation potential
𝑣

𝐁 = − 𝜕𝜙

𝜕
𝑣̇
𝐅
(dissipative viscous-force) 𝜙 = 𝜙(𝑋,𝐅,

𝑣

𝐅,
𝑣̇

𝐅,𝐆, 𝐠) = 𝜙̂(𝑋,𝐂♭ ,
𝑣

𝐅,
𝑣̇

𝐅,𝐆)

Material symmetry group
⎧

⎪

⎨

⎪

⎩

𝛹EQ(𝑋,𝐅𝐊,𝐆, 𝐠) = 𝛹EQ(𝑋,𝐅,𝐆, 𝐠)
𝛹NEQ(𝑋,

𝑒

𝐅𝐊,𝐆, 𝐠) = 𝛹NEQ(𝑋,
𝑒

𝐅,𝐆, 𝐠)
𝜙(𝑋,𝐅𝐊,𝐊∗

𝑣

𝐅,𝐊∗
𝑣̇

𝐅,𝐆, 𝐠) = 𝜙(𝑋,𝐅,
𝑣

𝐅,
𝑣̇

𝐅,𝐆, 𝐠)
∀ 𝐊 ∈ 𝑋 ⩽ Orth(𝐆)

The Clausius–Duhem inequality

𝜂̇ = 2
𝑒

𝐂♭
𝜕𝛹̂NEQ

𝜕
𝑒

𝐂♭

𝑣

𝐅−⋆ ∶
𝑣̇

𝐅 ≥ 0 (compressible solids)

𝜂̇ = 2
𝑒

𝐂♭
𝜕𝛹̂NEQ

𝜕
𝑒

𝐂♭

𝑣

𝐅−⋆ ∶
𝑣̇

𝐅 + 𝑞
𝑣

𝐅−⋆ ≥ 0 (incompressible solids)

The Balance of linear momentum

Div
[

2𝐅 𝜕𝛹̂
𝜕𝐂♭

+ 2
𝑒

𝐅 𝜕𝛹̂
𝜕

𝑒

𝐂♭

]

+ 𝜌𝑜𝗕 = 𝜌𝑜𝐀 (compressible solids)

Div
[

2𝐅 𝜕𝛹̂
𝜕𝐂♭

+ 2
𝑒

𝐅 𝜕𝛹̂
𝜕

𝑒

𝐂♭
− 𝑝𝐠♯𝐅−⋆

]

+ 𝜌𝑜B = 𝜌𝑜𝐀 (incompressible solids)

Kinetic equation
𝜕𝜙

𝜕
𝑣̇

𝐅
+ 𝜕𝛹̃
𝜕

𝑣

𝐅
= 𝟎 (compressible solids)

𝜕𝜙

𝜕
𝑣̇

𝐅
+ 𝜕𝛹̃
𝜕

𝑣

𝐅
= 𝑞

𝑣

𝐅−⋆ (incompressible solids)

5. Examples

In this section, we study three examples of large deformations of isotropic and anisotropic viscoelastic solids. To simplify
he kinematics we assume incompressible solids. The deformations considered in this section are subsets of the known universal
eformations for incompressible isotropic (Ericksen, 1955; Yavari, 2021) and anisotropic solids (Yavari and Goriely, 2021, 2023).
Universal deformations are those deformations that can be maintained in the absence of body forces for any material in a given
class. For homogeneous compressible isotropic solids, Ericksen (1955) showed that the only universal deformations are homogeneous
eformations. For homogeneous incompressible isotropic solids, in addition to isochoric homogeneous deformations, Ericksen (1954)
ound four families of universal deformations. A fifth family was later on discovered independently by Singh and Pipkin (1965)
nd Klingbeil and Shield (1966). For some recent generalizations of Ericksen’s problem to inhomogeneous and anisotropic solids,
nd anelasticity see Yavari (2021), Yavari and Goriely (2021, 2023, 2016), and Goodbrake et al. (2020).31 The stress at any material
point in a simple material at time 𝑡 depends only on the history of the deformation gradient at that point up to time 𝑡 (Noll,
1958). Carroll (1967) showed that the known universal deformations of homogeneous incompressible isotropic elastic solids are
universal for simple materials as well. One should note that (simple) viscoelastic solids are a subclass of simple materials. It should,
however, be noted that Carroll (1967) assumed that the total deformation is volume preserving. Here, we assume that both the local
elastic and viscoelastic deformations are volume preserving.

31 The analogue of universal deformations in linear elasticity are universal displacements (Truesdell, 1966; Gurtin, 1972; Yavari et al., 2020; Yavari and
21

Goriely, 2023, 2022; Yavari, 2023).
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5.1. Quadratic dissipation potentials

Kumar and Lopez-Pamies (2016) assumed the following form for the dissipation potential

𝜙(𝑋,𝐅,
𝑣
𝐅,

𝑣̇
𝐅,𝐆) = 1

2
𝑣̇
𝐅 ∶ A(𝐅,

𝑒
𝐅,𝐆, 𝐠) ∶

𝑣̇
𝐅 = 1

2
𝑣̇
F𝐾𝐿 A𝐾𝐿𝑀

𝑁 𝑣̇
F𝑀𝑁 , (5.1)

where A(𝐅,
𝑒
𝐅,𝐆, 𝐠) is a positive-definite fourth-order tensor.32 It is clear that only the major symmetric part of A contributes to

dissipation, and indeed, by definition (5.1) above, A has major symmetries. However, A does not necessarily have any minor
symmetries.33

Adding the set of structural tensors 𝜦 to its arguments, the dissipation potential 𝜙 = 𝜙(𝑋,𝐅,
𝑣
𝐅,

𝑣̇
𝐅,𝜦,𝐆) becomes an isotropic

functional, i.e.,

𝐊∗𝜙(𝑋,𝐅,
𝑣
𝐅,

𝑣̇
𝐅,𝜦,𝐆) = 𝜙(𝑋,𝐊∗𝐅,𝐊∗ 𝑣𝐅,𝐊∗ 𝑣̇𝐅,𝐊∗𝜦,𝐆) = 𝜙(𝑋,𝐅,

𝑣
𝐅,

𝑣̇
𝐅,𝜦,𝐆) , ∀𝐊 ∈ Orth(𝐆) . (5.2)

It hence follows that

𝐊∗ 𝑣̇𝐅 ∶ A(𝐊∗𝐅,𝐊∗ 𝑒
𝐅,𝐊∗𝜦,𝐆, 𝐠) ∶ 𝐊∗ 𝑣̇𝐅 =

𝑣̇
𝐅 ∶ A(𝐅,

𝑒
𝐅,𝜦,𝐆, 𝐠) ∶

𝑣̇
𝐅 , ∀𝐅,

𝑒
𝐅,

𝑣̇
𝐅 ,∀𝐊 ∈ Orth(𝐆) , (5.3)

where we recall that 𝐊∗ 𝑣̇𝐅 = 𝐊−1 𝑣̇𝐅𝐊, 𝐊∗𝐅 = 𝐅𝐊, and 𝐊∗ =
𝑒
𝐅𝐊. Therefore34

𝐊∗A(𝐅,
𝑒
𝐅,𝜦,𝐆, 𝐠) = A(𝐅,

𝑒
𝐅,𝜦,𝐆, 𝐠) , ∀𝐊 ∈ Orth(𝐆) . (5.4)

Hence, A = A(𝐅,
𝑒
𝐅,𝜦,𝐆, 𝐠) is an isotropic tensor. The most general isotropic fourth-order tensor has the following representation (Jog,

2006)

A𝐾𝐵𝑀𝐷 = 𝜂1 𝐺𝐾𝐵𝐺𝑀𝐷 + 𝜂2 𝐺𝐾𝐷𝐺𝐵𝑀 + 𝜂3 𝐺𝐾𝑀𝐺𝐵𝐷 , (5.5)

where 𝜂𝑖 = 𝜂𝑖(𝐅,
𝑒
𝐅,𝜦,𝐆, 𝐠) = 𝜂𝑖(𝐂♭,

𝑒
𝐂♭,𝜦,𝐆) for 𝑖 = 1, 2, 3. Thus

A𝐾𝐿𝑀
𝑁 = A𝐾𝐵𝑀𝐷 𝐺

𝐵𝐿𝐺𝐷𝑁 = 𝜂1 𝛿
𝐿
𝐾𝛿

𝑁
𝑀 + 𝜂2 𝛿𝑁𝐾 𝛿

𝐿
𝑀 + 𝜂3 𝐺𝐾𝑀𝐺𝐿𝑁 . (5.6)

The dissipation potential is written as

𝜙 = 1
2
𝜂1

( 𝑣̇
F𝐴𝐴

)2
+ 1

2
𝜂2

𝑣̇
F𝐴𝐵

𝑣̇
F𝐵𝐴 + 1

2
𝜂3 𝐺𝐴𝐶

𝑣̇
F𝐶𝐷𝐺𝐷𝐵

𝑣̇
F𝐴𝐵 = 1

2
𝜂1

(

tr
𝑣̇
𝐅
)2

+ 1
2
𝜂2 tr

( 𝑣̇
𝐅2

)

+ 1
2
𝜂3 tr

( 𝑣̇
𝐅
𝑣̇
𝐅𝖳

)

. (5.7)

n order to find the necessary and sufficient conditions on 𝜂1, 𝜂2, and 𝜂3 to ensure positive-definiteness of the tensor A, we introduce
ew indices 𝛤 = {𝐴𝐵} such that {11, 12, 13, 21, 22, 23, 31, 32, 33} ↔ {1, 2, 3, 4, 5, 6, 7, 8, 9}. Now, in a Cartesian coordinate system, the
issipation potential is rewritten as 𝜙 = 1

2C
𝛤𝛬 𝖥̇𝛤 𝖥̇𝛬. The tensor A is positive-definite if and only if the 9 × 9 matrix C is positive-

efinite. It may be found that the eigenvalues of the matrix C are 3𝜂1 + 𝜂2 + 𝜂3, 𝜂2 + 𝜂3, and −𝜂2 + 𝜂3. Therefore, A is positive-definite
f and only if35

3𝜂1 + 𝜂2 + 𝜂3 > 0 , 𝜂2 + 𝜂3 > 0 , −𝜂2 + 𝜂3 > 0 . (5.8)

Choosing (5.6), we have

𝜕𝜙

𝜕
𝑣̇
F𝐴𝐵

= 𝜂1
𝑣
F𝑀𝑀 𝛿𝐵𝐴 + 𝜂2

𝑣̇
F𝐵𝐴 + 𝜂3 𝐺𝐴𝑀

𝑣̇
F𝑀𝑁 𝐺

𝑁𝐵 . (5.9)

Or
𝜕𝜙

𝜕
𝑣̇
𝐅

= 𝜂1(tr
𝑣̇
𝐅) 𝐈 + 𝜂2

𝑣̇
𝐅⋆ + 𝜂3 𝐆

𝑣̇
𝐅𝐆♯ , (5.10)

where tr
𝑣̇
𝐅 =

𝑣̇
F𝐶𝐶 . With this choice, the kinetic equation (4.31) is simplified to read

𝜂1(tr
𝑣̇
𝐅) 𝐈 + 𝜂2

𝑣̇
𝐅⋆ + 𝜂3 𝐆

𝑣̇
𝐅𝐆♯ − 2𝛹̃1

𝑒
𝐂♭𝐆♯ 𝑣𝐅−⋆ + 2𝛹̃2

[ 𝑒
𝐂2♭ −

𝑒
𝐼1

𝑒
𝐂♭

]

𝐆♯ 𝑣𝐅−⋆ = 𝑞
𝑣
𝐅−⋆ . (5.11)

32 Notice that (5.1), along with the positive definiteness of A, trivially satisfies the Clausius–Duhem inequality (3.29) (and (3.33) for the incompressible case).
33 Notice that for the dissipation potential 𝜙(𝑋,𝐅,

𝑣

𝐅,
𝑣̇

𝐅,𝐆) = 1
2

𝑣̇

𝐂 ∶ B(𝐅,
𝑒

𝐅,𝐆, 𝐠) ∶
𝑣̇

𝐂, which is a particular case of (5.1) for A𝐾
𝐿
𝑀
𝑁 = 4G𝐾𝐽

𝑣
F𝐽 𝐼B𝐼𝐿𝐴𝑁

𝑣
F𝐵𝐴G𝐵𝑀 ,

the minor symmetries hold for B.
34 Note that in components, the left hand side of (5.4) reads

[𝐊∗A]𝐴𝐵𝐶
𝐷 = K−𝐼

𝐴K𝐵
𝐽K−𝐾

𝐶K𝐷
𝐿A𝐼

𝐽
𝐾
𝐿 .

35 It is seen that 𝜂 = 𝜂 is not acceptable, and hence, A cannot have minor symmetries.
22
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5.2. Example 1: Finite extension of an incompressible isotropic circular cylindrical bar

Kinematics. Let us consider a solid circular cylindrical bar subject to an axial loading. In its undeformed configuration, it has radius
0 and length 𝐿0. We consider longitudinal and radial deformations and assume the following deformation ansatz:

𝑟 = 𝑟(𝑅, 𝑡) , 𝜃 = 𝛩 , 𝑧 = 𝜆(𝑡)𝑍 , (5.12)

here 𝜆(𝑡) is the axial stretch. In a displacement-control loading, the longitudinal stretch 𝜆(𝑡) is given, while in a force-controlled
oading, it is an unknown function to be determined. Acting on an initially stress-free unloaded bar, i.e., 𝜆(0) = 1, it is assumed that
oading (either force or displacement-control) is slow enough such that the inertial effects can be ignored. The deformation gradient
eads

𝐅 = 𝐅(𝑅, 𝑡) =
⎡

⎢

⎢

⎣

𝑟,𝑅(𝑅, 𝑡) 0 0
0 1 0
0 0 𝜆(𝑡)

⎤

⎥

⎥

⎦

. (5.13)

ncompressibility 𝐽 = 1 implies that 𝑟(𝑅, 𝑡) = 𝑅
√

𝜆(𝑡)
. In terms of its physical components, the deformation gradient reads

𝐅̂ = 𝐅̂(𝑅, 𝑡) =
⎡

⎢

⎢

⎢

⎣

1
√

𝜆(𝑡)
0 0

0 1
√

𝜆(𝑡)
0

0 0 𝜆(𝑡)

⎤

⎥

⎥

⎥

⎦

. (5.14)

e use a semi-inverse method and assume that the viscous deformation gradient has the following form

𝑣
𝐅 =

𝑣
𝐅(𝑅, 𝑡) =

⎡

⎢

⎢

⎣

𝑎𝑣(𝑅, 𝑡) 0 0
0 𝑏𝑣(𝑅, 𝑡) 0
0 0 𝜆𝑣(𝑅, 𝑡)

⎤

⎥

⎥

⎦

. (5.15)

t the initial unloaded state, we have
𝑣
𝐅(𝑅, 0) = 𝐈, i.e., 𝑎𝑣(𝑅, 0) = 𝑏𝑣(𝑅, 0) = 𝜆𝑣(𝑅, 0) = 1. Incompressibility of the local viscous

eformation implies that
𝑣
𝐽 (𝑅, 𝑡) = 𝑎𝑣(𝑅, 𝑡) 𝑏𝑣(𝑅, 𝑡) 𝜆𝑣(𝑅, 𝑡) = 1, and hence 𝑏𝑣(𝑅, 𝑡) = 1

𝑎𝑣(𝑅,𝑡)𝜆𝑣(𝑅,𝑡)
. The physical components of the

viscous deformation gradient read

𝑎̂𝑣(𝑅, 𝑡) = 𝑎𝑣(𝑅, 𝑡) , 𝑏̂𝑣(𝑅, 𝑡) = 𝑏𝑣(𝑅, 𝑡) =
1

𝑎𝑣(𝑅, 𝑡)𝜆𝑣(𝑅, 𝑡)
, 𝜆̂𝑣(𝑅, 𝑡) = 𝜆𝑣(𝑅, 𝑡) . (5.16)

Since 𝐅 =
𝑒
𝐅
𝑣
𝐅, it follows that the elastic deformation gradient has the following form

𝑒
𝐅 =

𝑒
𝐅(𝑅, 𝑡) =

⎡

⎢

⎢

⎣

𝑎𝑒(𝑅, 𝑡) 0 0
0 𝑏𝑒(𝑅, 𝑡) 0
0 0 𝜆𝑒(𝑅, 𝑡)

⎤

⎥

⎥

⎦

, (5.17)

where

𝑎𝑒(𝑅, 𝑡) =
1

𝜆
1
2 (𝑡)𝑎𝑣(𝑅, 𝑡)

, 𝑏𝑒(𝑅, 𝑡) =
1

𝑏𝑣(𝑅, 𝑡)
= 𝑎𝑣(𝑅, 𝑡)𝜆𝑣(𝑅, 𝑡) , 𝜆𝑒(𝑅, 𝑡) =

𝜆(𝑡)
𝜆𝑣(𝑅, 𝑡)

. (5.18)

The physical components read

𝑎̂𝑒(𝑅, 𝑡) =
1

𝜆
1
2 (𝑡)𝑎𝑣(𝑅, 𝑡)

, 𝑏̂𝑒(𝑅, 𝑡) =
𝑎𝑣(𝑅, 𝑡)𝜆𝑣(𝑅, 𝑡)

𝜆
1
2 (𝑡)

, 𝜆̂𝑒(𝑅, 𝑡) =
𝜆(𝑡)

𝜆𝑣(𝑅, 𝑡)
. (5.19)

Remark 5.1. It should be noted that 𝐅 is homogeneous. However,
𝑣
𝐅, and consequently

𝑒
𝐅, are not compatible, in general. Recall

that incompatibility of
𝑣
𝐅 is controlled by exterior derivative of

𝑣
𝐅 (or its curl), i.e., 𝑑

𝑣
𝐅, which has components

𝑣
F𝐴𝐵,𝐶 −

𝑣
F𝐴𝐶,𝐵 (Yavari,

013). Note that
𝑣
F22,1 −

𝑣
F21,2 =

𝜕𝑏𝑣(𝑅, 𝑡)
𝜕𝑅

,
𝑣
F33,1 −

𝑣
F31,3 =

𝜕𝜆𝑣(𝑅, 𝑡)
𝜕𝑅

. (5.20)

his means that
𝑣
𝐅 is compatible if and only if (a solid bar is simply-connected)

𝜕𝑏𝑣(𝑅, 𝑡)
𝜕𝑅

=
𝜕𝜆𝑣(𝑅, 𝑡)
𝜕𝑅

= 0 . (5.21)

inetic equations. We assume an isotropic quadratic dissipation potential (5.7). We obtain three independent kinetic equations for
𝑣(𝑅, 𝑡), 𝜆𝑣(𝑅, 𝑡), and 𝑞(𝑅, 𝑡)—the Lagrange multiplier corresponding to viscous incompressibility. We then proceed to eliminate 𝑞(𝑅, 𝑡)
rom the system of kinetic equations and are left with the following two independent kinetic equations for 𝑎𝑣(𝑅, 𝑡) and 𝜆𝑣(𝑅, 𝑡):

⎧

⎪

⎪

⎨

⎪

⎪

𝜆𝜆𝑣
[

𝜂1
(

𝑎2𝑣𝜆𝑣 − 1
)2 +

(

𝜂2 + 𝜂3
) (

𝑎4𝑣𝜆
2
𝑣 + 1

)

]

𝑎̇𝑣 + 𝜆𝑎𝑣
[

𝜂1
(

𝑎2𝑣𝜆𝑣 − 1
) (

𝑎𝑣𝜆2𝑣 − 1
)

+ 𝜂2 + 𝜂3
]

𝜆̇𝑣
= 2𝑎𝑣𝜆𝑣

(

1 − 𝑎4𝑣𝜆
2
𝑣
)

[

𝜆2𝑣𝛹̃1 + 𝜆2𝛹̃2

]

,
𝜆𝑣

{(

𝜂1 + 𝜂2 + 𝜂3
)

𝑎3𝑣𝜆𝑣 − 𝜂1
(

𝑎2𝑣𝜆
2
𝑣 + 𝑎𝑣 − 𝜆𝑣

)}

𝑎̇𝑣 + 𝑎𝑣
{

𝜂1
(

𝑎2𝑣𝜆
2
𝑣 + 𝜆𝑣 − 𝑎𝑣

)

−
(

𝜂1 + 𝜂2 + 𝜂3
)

𝑎𝑣𝜆3𝑣
}

𝜆̇𝑣
= − 2 (

𝜆3𝑎2 − 𝜆2
)

[

𝜆𝛹̃ + 𝑎2𝜆2𝛹̃
]

.

(5.22)
23
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Recall that following viscous incompressibility, i.e.,
𝑣
𝐽 = 1, we have 𝑏𝑣 = 1

𝑎𝑣𝜆𝑣
. We may then recast the kinetic equations (5.22)

above in terms of 𝑏𝑣 and 𝜆𝑣. It is hence found that the kinetic equations in terms of
{

𝑏𝑣, 𝜆𝑣
}

are identical to (5.22) in terms of
{

𝑎𝑣, 𝜆𝑣
}

, such that the evolutions of 𝑎𝑣 and 𝑏𝑣 are both governed by the same equations; and since they are subject to the same

initial condition 𝑎𝑣(𝑅, 0) = 𝑏𝑣(𝑅, 0) = 1, it follows that 𝑏𝑣(𝑅, 𝑡) = 𝑎𝑣(𝑅, 𝑡), and hence that 𝑎𝑣 = 𝜆
− 1

2
𝑣 . Therefore, (5.22) may be reduced

to a single differential equation in terms of 𝜆𝑣 as follows
[

2𝜂1 + 𝜂2 + 𝜂3 − 4𝜂1𝜆
3
2
𝑣 + 2

(

𝜂1 + 𝜂2 + 𝜂3
)

𝜆3𝑣

]

𝜆2𝜆̇𝑣 = 4
(

𝜆3 − 𝜆3𝑣
)

[

𝛹̃1𝜆 + 𝛹̃2𝜆𝑣
]

. (5.23)

tress and equilibrium equations. Following (4.24), the non-zero components of the Cauchy stress are

𝜎𝑟𝑟(𝑅, 𝑡) = −𝑝(𝑅, 𝑡) +
2𝛹 1

𝜆(𝑡)
− 2𝛹 2 𝜆(𝑡) +

2𝛹̃1 𝜆𝑣(𝑅, 𝑡)
𝜆(𝑡)

−
2𝛹̃2 𝜆(𝑡)
𝜆𝑣(𝑅, 𝑡)

, (5.24a)

𝜎𝜃𝜃(𝑅, 𝑡) = −
𝑝(𝑅, 𝑡)𝜆(𝑡)

𝑅2
+

2𝛹 1

𝑅2
−

2𝛹 2 𝜆2(𝑡)
𝑅2

+
2𝛹̃1 𝜆𝑣(𝑅, 𝑡)

𝑅2
−

2𝛹̃2 𝜆2(𝑡)
𝑅2 𝜆𝑣(𝑅, 𝑡)

, (5.24b)

𝜎𝑧𝑧(𝑅, 𝑡) = −𝑝(𝑅, 𝑡) + 2𝛹 1 𝜆
2(𝑡) −

2𝛹 2

𝜆2(𝑡)
+

2𝛹̃1 𝜆2(𝑡)
𝜆2𝑣(𝑅, 𝑡)

−
2𝛹̃2 𝜆2𝑣(𝑅, 𝑡)

𝜆2(𝑡)
, (5.24c)

where 𝑝 = 𝑝(𝑅, 𝑡) is the Lagrange multiplier corresponding to incompressibility, i.e., 𝐽 = 1. The only nontrivial equilibrium equation
is 𝜎𝑟𝑟,𝑟 +

1
𝑟 𝜎

𝑟𝑟 − 𝑟𝜎𝜃𝜃 = 0. In terms of the referential coordinates, this reads

𝜕
𝜕𝑅

𝜎𝑟𝑟(𝑅, 𝑡) = 0 . (5.25)

Since the lateral area of the cylinder is traction-free, it follows that 𝜎𝑟𝑟(𝑅0, 𝑡) = 0. Therefore, 𝜎𝑟𝑟(𝑅, 𝑡) = 0 and

𝑝(𝑅, 𝑡) =
2𝛹 1

𝜆2(𝑡)
− 2𝛹 2 𝜆(𝑡) +

2𝛹̃1

𝜆(𝑡) 𝑎2𝑣(𝑅, 𝑡)
− 2𝛹̃2 𝜆(𝑡) 𝑎2𝑣(𝑅, 𝑡) . (5.26)

ence, it follows that 𝜎𝜃𝜃(𝑅, 𝑡) = 0, and the only non-zero stress component is 𝜎𝑧𝑧, which reads36

𝜎̂𝑧𝑧(𝑅, 𝑡) = 2
[

𝜆2(𝑡) − 1
𝜆(𝑡)

]

𝛹 1 + 2
[

𝜆(𝑡) − 1
𝜆2(𝑡)

]

𝛹 2 + 2

[

𝜆2(𝑡)
𝜆2𝑣(𝑅, 𝑡)

−
𝜆𝑣(𝑅, 𝑡)
𝜆(𝑡)

]

𝛹̃1 + 2

[

𝜆(𝑡)
𝜆𝑣(𝑅, 𝑡)

−
𝜆2𝑣(𝑅, 𝑡)
𝜆2(𝑡)

]

𝛹̃2 . (5.27)

The force at the two ends of the bar (𝑍 = 0, 𝐿) is written as

𝐹 (𝑡) = 2𝜋 ∫

𝑟(𝑅0)

0
𝜎𝑧𝑧(𝑅, 𝑡)𝑟 𝑑𝑟 = 2𝜋 ∫

𝑅0

0
𝜎̂𝑧𝑧(𝑅, 𝑡)𝜆−1(𝑡)𝑅𝑑𝑅 , (5.28)

which is expanded to read

2
[

𝜆(𝑡) − 1
𝜆2(𝑡)

]

∫

𝑅0

0
𝑅𝛹 1 𝑑𝑅 + 2

[

1 − 1
𝜆3(𝑡)

]

∫

𝑅0

0
𝑅𝛹 2 𝑑𝑅 + 2∫

𝑅0

0
𝑅

[

𝜆(𝑡)
𝜆2𝑣(𝑅, 𝑡)

−
𝜆𝑣(𝑅, 𝑡)
𝜆2(𝑡)

]

𝛹̃1 𝑑𝑅

+ 2∫

𝑅0

0
𝑅

[

1
𝜆𝑣(𝑅, 𝑡)

−
𝜆2𝑣(𝑅, 𝑡)
𝜆3(𝑡)

]

𝛹̃2 𝑑𝑅 =
𝐹 (𝑡)
2𝜋

.

(5.29)

xample 5.1. In this example, we assume a neo-Hookean viscoelastic solid

𝛹EQ = 𝛹 (𝐼1, 𝐼2) =
𝜇
2
(𝐼1 − 3) , 𝛹NEQ = 𝛹̃ (

𝑒
𝐼1,

𝑒
𝐼2) =

𝜇𝑒
2
(
𝑒
𝐼1 − 3) . (5.30)

hus, 𝛹 1 =
1
2𝜇, 𝛹̃1 =

1
2𝜇𝑒, and 𝛹 2 = 𝛹̃2 = 0. The kinetic equation is then simplified to read

[

2𝜂1 + 𝜂2 + 𝜂3 − 4𝜂1𝜆
3
2
𝑣 + 2

(

𝜂1 + 𝜂2 + 𝜂3
)

𝜆3𝑣

]

𝜆 𝜆̇𝑣 = 2𝜇𝑒
(

𝜆3 − 𝜆3𝑣
)

. (5.31)

It is seen that the ODE governing the time evolution of 𝜆𝑣(𝑅, 𝑡) does not depend on 𝑅 ; and since the initial condition 𝜆𝑣(𝑅, 0) = 1 does
not depend on 𝑅 either, it follows that 𝜆𝑣 does not depend on 𝑅, i.e., 𝜆𝑣 = 𝜆𝑣(𝑡). By inspection of the dimensional quantities involved
in the problem at hand, one may identify 𝜏 = 𝜂1

𝜇 as a viscoelastic dissipation characteristic time of (5.31) above and the resulting
ime evolution of the viscous deformation gradient

𝑣
𝐅(𝑡). In this case, the only non-zero physical stress component is independent of

and reads

𝜎̂𝑧𝑧(𝑡) = 𝜇
(

𝜆2 − 1
𝜆

)

+ 𝜇𝑒

(

𝜆2

𝜆2𝑣
−
𝜆𝑣
𝜆

)

. (5.32)

36 Note that the longitudinal physical component of stress is given by 𝜎̂𝑧𝑧(𝑅, 𝑡) = 𝜎𝑧𝑧(𝑅, 𝑡).
24
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Displacement-control loading. We start with a displacement-control loading. Let us assume a loading such that the longitudinal stretch
has the following form

𝜆(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 + (𝜆0 − 1) erf
(

𝑡
𝑡0

)

, 0 ≤ 𝑡 ≤ 𝑡1 ,

𝜆(𝑡1) +
1−𝜆(𝑡1)

2 erf
(

𝑡−𝑡1
𝑡0

)

, 𝑡1 ≤ 𝑡 ≤ 𝑡2 ,

𝜆(𝑡2) + (1 − 𝜆(𝑡2)) erf
(

𝑡−𝑡2
𝑡0

)

, 𝑡2 ≤ 𝑡 ≤ 𝑡𝑓 ,

(5.33)

here erf is the error function, 𝑡0 is the loading characteristic time, 𝑡1 = 25𝑡0, 𝑡2 = 50𝑡0, 𝑡𝑓 = 75𝑡0, and 𝜆0 is the stretch at large times
0 ≪ 𝑡 < 𝑡1. For a displacement-controlled loading, the following initial-value problem needs to be solved for 𝜆𝑣 :

[

2𝜂1 + 𝜂2 + 𝜂3 − 4𝜂1𝜆
3
2
𝑣 + 2

(

𝜂1 + 𝜂2 + 𝜂3
)

𝜆3𝑣

]

𝜆 𝜆̇𝑣 = 2𝜇𝑒
(

𝜆3 − 𝜆3𝑣
)

, 𝜆𝑣(0) = 1 . (5.34)

Force-control loading. For a force-control loading, the force required to maintain the deformation is exactly 𝐹 (𝑡) as in (5.28). In the
case of a neo-Hookean solid, (5.29) is simplified to read

𝜇𝑅2
0

2

[

𝜆(𝑡) − 1
𝜆2(𝑡)

]

+
𝜇𝑒𝑅2

0
2

[

𝜆(𝑡)
𝜆2𝑣(𝑡)

−
𝜆𝑣(𝑡)
𝜆2(𝑡)

]

=
𝐹 (𝑡)
2𝜋

. (5.35)

ere, we assume the following loading

𝐹 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹0 erf
(

𝑡
𝑡0

)

, 0 ≤ 𝑡 ≤ 𝑡1 ,

𝐹0 +
𝐹 (𝑡1)
2 erf

(

𝑡−𝑡1
𝑡0

)

, 𝑡1 ≤ 𝑡 ≤ 𝑡2 ,
𝐹0
2 − 𝐹 (𝑡2) erf

(

𝑡−𝑡2
𝑡0

)

, 𝑡2 ≤ 𝑡 ≤ 𝑡𝑓 ,

(5.36)

here 𝑡0 is the loading characteristic time, 𝑡1 = 25𝑡0, 𝑡2 = 50𝑡0, 𝑡𝑓 = 75𝑡0, and 𝐹0 is the force at large times 𝑡0 ≪ 𝑡 < 𝑡1. For a
orce-control loading, we solve the following initial-value problem for 𝜆𝑣 and 𝜆:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇𝑅2
0

2

[

𝜆(𝑡) − 𝜆−2(𝑡)
]

+
𝜇𝑒𝑅2

0
2

[

𝜆(𝑡)
𝜆2𝑣(𝑅,𝑡)

− 𝜆𝑣(𝑅,𝑡)
𝜆2(𝑡)

]

= 𝐹 (𝑡)
2𝜋 ,

[

2𝜂1 + 𝜂2 + 𝜂3 − 4𝜂1𝜆
3∕2
𝑣 + 2

(

𝜂1 + 𝜂2 + 𝜂3
)

𝜆3𝑣
]

𝜆 𝜆̇𝑣 = 2𝜇𝑒
(

𝜆3 − 𝜆3𝑣
)

,
𝜆𝑣(0) = 1 .

(5.37)

umerical results. Let us consider a solid cylinder made of an isotropic neo-Hookean viscoelastic solid with 𝜇𝑒 =
1
2𝜇 and a dissipation

potential of the form (5.6) such that 𝜂1 = 𝜂2 =
1
2 𝜂3. In this example, an explicit finite difference scheme has been used to numerically

solve the governing equations.
Let us first look at the displacement-control loading case as we subject the structure to the longitudinal loading 𝜆(𝑡) (5.33)

with 𝜆0 = 1.5. We numerically solve the displacement-control governing Eq. (5.34) assuming different loading characteristic times
𝑡0, respectively smaller, equal, and larger than the characteristic time of the viscoelastic bar. In Fig. 4, we plot the profile of the
given displacement-control loading 𝜆(𝑡) and the resulting evolution of the kinematic quantities 𝜆𝑣, 𝑎𝑣, 𝜆𝑒, 𝑎𝑒, and the outer radius
𝑟 at 𝑅 = 𝑅0 as well as the longitudinal physical stress component. As the cylinderical bar is subjected to a longitudinal stretch
load in three stages—loading followed by partial unloading and then full unloading—we observe in each of the stages that the
cylinder experiences stress relaxation: The bar first experiences an instantaneous fast elastic stress response followed by a slow
stress relaxation (decrease in the loading stage and increase in the unloading stages) under a constant imposed displacement. Note,
however, that this is not observed for 𝑡0 = 10𝜏, since the loading does not reach a steady state of constant 𝜆.

Next, we look at the force-control loading case as we subject the structure to the force loading 𝐹 (𝑡) (5.36) with 𝐹0 = 𝜇𝑅2
0. We

numerically solve the force-control governing Eq. (5.37) assuming different loading characteristic times 𝑡0, respectively smaller,
equal, and larger than the characteristic time of the viscoelastic bar. In Fig. 5, we plot the profile of the given force-control loading
𝐹 (𝑡) and the resulting evolution of the kinematic quantities 𝜆𝑣, 𝑎𝑣, 𝜆𝑒, 𝑎𝑒, and the outer radius 𝑟 at 𝑅 = 𝑅0, as well as the longitudinal
physical stress component. As the bar is subjected to an axial force in three stages—loading followed by partial unloading and then
full unloading—we observe in each of the stages that the bar experiences creep: The bar first experiences a fast elastic deformation
but continues to slowly deform even as the force reaches a steady state.

In both cases, we observe that the cross section shrinks as the bar is loaded and expands back again as the bar is unloaded.
Interestingly, and in both loading cases, the elastic deformation gradient features a behaviour akin to a strain relaxation as its
physical components experience a fast elastic response followed by a slower relaxation under constant loading towards its initial
value at the unloaded state. However, the viscous deformation gradient experiences what is akin to creep as it undergoes a fast
response followed by a slow evolution towards matching the total deformation gradient 𝐅̂ at large times under constant loading—𝜆̂𝑣
approaches 𝜆 and 𝑎̂𝑣 = 𝑏̂𝑣 approaches 𝐹

𝑟
𝑅 = 𝐹 𝜃𝛩 = 𝜆−

1
2 . That is, at large times under constant loading in each of the three loading

stages, we have
𝑒̂
𝐅 = 𝐈 and

𝑣̂
𝐅 = 𝐅 as previously discussed in Remark 3.4.
25
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(

Fig. 4. Numerical results for the time evolution of the strain and stress state of an isotropic neo-Hookean viscoelastic bar subject to displacement-control loading
𝜆(𝑡) (5.33) with different characteristic times 𝑡0 versus the viscoelastic dissipation characteristic time 𝜏 =

𝜂1
𝜇
of the system.

Fig. 5. Numerical results for the time evolution of the strain and stress state of an isotropic neo-Hookean viscoelastic bar subject to force-control loading 𝐹 (𝑡)
5.36) with different characteristic times 𝑡0 versus the viscoelastic dissipation characteristic time 𝜏 =

𝜂1
𝜇
of the system.
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5.3. Example 2: Finite torsion of an incompressible transversely isotropic circular cylindrical bar

Kinematics. Let us consider a solid circular cylindrical bar that, in its undeformed configuration, has radius 𝑅0 and length 𝐿0. In
this example, we assume that the cylindrical bar is transversely isotropic with helical material preferred directions. One can think
of this bar as being a homogeneous isotropic solid cylinder reinforced by helical fibers. More precisely, for fixed 𝑅 ∈ (0, 𝑅0], it is
assumed that fibers are along a family of helices tangent to the fiber direction 𝐍 = 𝐍(𝑅,𝛩). Recall that in cylindrical coordinates,
the tangent to a helix has a vanishing radial coordinate. Let us denote by 𝛾(𝑅) the angle that 𝐍(𝑅,𝛩) makes with 𝐄𝛩(𝛩) =

𝜕
𝜕𝛩 . Thus,

(𝑅,𝛩) = cos 𝛾(𝑅)∕𝑅𝐄𝛩(𝛩) + sin 𝛾(𝑅)𝐄𝑍 , where 𝐄𝑍 = 𝜕
𝜕𝑍 .

37

Given the helical symmetry of the problem, we assume the following deformation ansatz

𝑟 = 𝑟(𝑅, 𝑡) , 𝜃 = 𝛩 + 𝜓(𝑡)𝑍 , 𝑧 = 𝜆(𝑡)𝑍 , (5.38)

here 𝜓(𝑡) is the twist per unit length, and 𝜆(𝑡) is the axial stretch. In a twist-force-control loading, the twist 𝜓(𝑡) and force 𝐹 (𝑡) are
rescribed, while 𝜆(𝑡) is an unknown. In a torque-force-control loading, the torque 𝑇 (𝑡) and force 𝐹 (𝑡) are prescribed, and both 𝜓(𝑡)
nd 𝜆(𝑡) are unknown functions.38 The deformation gradient reads

𝐅 = 𝐅(𝑅, 𝑡) =
⎡

⎢

⎢

⎣

𝑟′(𝑅, 𝑡) 0 0
0 1 𝜓(𝑡)
0 0 𝜆(𝑡)

⎤

⎥

⎥

⎦

, (5.39)

here 𝑟′(𝑅, 𝑡) = 𝜕𝑟(𝑅,𝑡)
𝜕𝑅 . The incompressibility implies that

𝐽 =
√

det 𝐠
det𝐆

det 𝐅 =
𝜆(𝑡) 𝑟(𝑅, 𝑡) 𝑟′(𝑅, 𝑡)

𝑅
= 1 . (5.40)

ssuming that 𝑟(0, 𝑡) = 0, one obtains 𝑟(𝑅, 𝑡) = 𝑅
√

𝜆(𝑡)
. In terms of its physical components, the deformation gradient reads

𝐅̂ = 𝐅̂(𝑅, 𝑡) =
⎡

⎢

⎢

⎢

⎣

1
√

𝜆(𝑡)
0 0

0 1
√

𝜆(𝑡)
𝑅𝜓(𝑡)
√

𝜆(𝑡)
0 0 𝜆(𝑡)

⎤

⎥

⎥

⎥

⎦

. (5.41)

We again use a semi-inverse method and assume that the viscous deformation gradient has the following form

𝑣
𝐅 =

𝑣
𝐅(𝑅, 𝑡) =

⎡

⎢

⎢

⎣

𝑎𝑣(𝑅, 𝑡) 0 0
0 𝑏𝑣(𝑅, 𝑡) 𝜓𝑣(𝑅, 𝑡)
0 0 𝜆𝑣(𝑅, 𝑡)

⎤

⎥

⎥

⎦

. (5.42)

ncompressibility of the local viscous deformation implies that 𝑎𝑣(𝑅, 𝑡) 𝑏𝑣(𝑅, 𝑡)𝜆𝑣(𝑅, 𝑡) = 1. The physical components of the viscous
deformation gradient read

𝑎̂𝑣(𝑅, 𝑡) = 𝑎𝑣(𝑅, 𝑡) , 𝑏̂𝑣(𝑅, 𝑡) = 𝑏𝑣(𝑅, 𝑡) =
1

𝑎𝑣(𝑅, 𝑡)𝜆𝑣(𝑅, 𝑡)
, 𝜆̂𝑣(𝑅, 𝑡) = 𝜆𝑣(𝑅, 𝑡) , 𝜓̂𝑣(𝑅, 𝑡) = 𝜓𝑣(𝑅, 𝑡) . (5.43)

For a torque-force-control loading, the unknown fields of the problem are 𝜆(𝑡), 𝜓(𝑡), 𝑎𝑣(𝑅, 𝑡), 𝜓𝑣(𝑅, 𝑡), and 𝜆𝑣(𝑅, 𝑡), while for a twist-
force-control loading, 𝜓(𝑡) is prescribed and the unknown fields are 𝜆(𝑡), 𝑎𝑣(𝑅, 𝑡), 𝜓𝑣(𝑅, 𝑡), and 𝜆𝑣(𝑅, 𝑡). In this problem, the elastic
deformation gradient has the following form

𝑒
𝐅 =

𝑒
𝐅(𝑅, 𝑡) =

⎡

⎢

⎢

⎣

𝑎𝑒(𝑅, 𝑡) 0 0
0 𝑏𝑒(𝑅, 𝑡) 𝜓𝑒(𝑅, 𝑡)
0 0 𝜆𝑒(𝑅, 𝑡)

⎤

⎥

⎥

⎦

. (5.44)

Knowing that 𝐅 =
𝑒
𝐅
𝑣
𝐅 implies that

𝑒
𝐅 =

𝑒
𝐅(𝑅, 𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

1
√

𝜆(𝑡) 𝑎𝑣(𝑅,𝑡)
0 0

0 𝑎𝑣(𝑅, 𝑡)𝜆𝑣(𝑅, 𝑡)
𝜓(𝑡)
𝜆𝑣(𝑅,𝑡)

− 𝜓𝑣(𝑅, 𝑡)𝑎𝑣(𝑅, 𝑡)

0 0 𝜆(𝑡)
𝜆𝑣(𝑅,𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

. (5.45)

he physical components read

𝑎̂𝑒(𝑅, 𝑡) =
1

𝜆
1
2 (𝑡)𝑎𝑣(𝑅, 𝑡)

, 𝑏̂𝑒(𝑅, 𝑡) =
𝑎𝑣(𝑅, 𝑡)𝜆𝑣(𝑅, 𝑡)

𝜆
1
2 (𝑡)

, 𝜆̂𝑒(𝑅, 𝑡) =
𝜆(𝑡)

𝜆𝑣(𝑅, 𝑡)
, 𝜓̂𝑒(𝑅, 𝑡) =

𝑅𝜓(𝑡)

𝜆
1
2 (𝑡)𝜆𝑣(𝑅, 𝑡)

−
𝑅𝜓𝑣(𝑅, 𝑡)𝑎𝑣(𝑅, 𝑡)

𝜆
1
2 (𝑡)

. (5.46)

37 Let us recall that 𝐍 is a 𝐆-unit vector, i.e., 𝑁𝐴𝑁𝐵𝐺𝐴𝐵 = 𝑅2(𝑁𝛩)2 + (𝑁𝑍 )2 = 1 and this is why the 1
𝑅
factor shows up in the 𝛩-component.

38 The other two possible loadings are twist-displacement and torque-displacement-control loadings that we will not consider in our numerical examples.
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Remark 5.2. Notice that 𝐅 is homogeneous. However,
𝑣
𝐅, and consequently

𝑒
𝐅, are not compatible, in general, because

𝑣
F22,1 −

𝑣
F21,2 =

𝜕𝑏𝑣(𝑅, 𝑡)
𝜕𝑅

,
𝑣
F23,1 −

𝑣
F21,3 =

𝜕𝜓𝑣(𝑅, 𝑡)
𝜕𝑅

,
𝑣
F33,1 −

𝑣
F31,3 =

𝜕𝜆𝑣(𝑅, 𝑡)
𝜕𝑅

. (5.47)

his implies that
𝑣
𝐅 is compatible if and only if

𝜕𝑏𝑣(𝑅, 𝑡)
𝜕𝑅

=
𝜕𝜓𝑣(𝑅, 𝑡)
𝜕𝑅

=
𝜕𝜆𝑣(𝑅, 𝑡)
𝜕𝑅

= 0 . (5.48)

tress and equilibrium equations. The principal invariants read

𝐼1 = 𝜆2(𝑡) + 2
𝜆(𝑡)

+
𝑅2𝜓2(𝑡)
𝜆(𝑡)

, 𝐼2 = 2𝜆(𝑡) + 1
𝜆2(𝑡)

+
𝑅2𝜓2(𝑡)
𝜆2(𝑡)

, 𝐼4 =
cos2 𝛾 + sin2 𝛾

(

𝜆3 + 𝑅2𝜓2) + 𝑅𝜓 sin 2𝛾
𝜆

,

𝐼5 = 𝜆4 sin2 𝛾 +
(cos 𝛾 + 𝑅𝜓 sin 𝛾)

[

𝑅𝜓 sin 𝛾
(

2𝜆3 + 𝑅2𝜓2 + 1
)

+ cos 𝛾
(

𝑅2𝜓2 + 1
)]

𝜆2
.

(5.49)

he non-zero physical components of the Cauchy stress are 𝜎̂𝑟𝑟 = 𝜎𝑟𝑟, 𝜎̂𝜃𝜃 = 𝑟2𝜎𝜃𝜃 , 𝜎̂𝑧𝑧 = 𝜎𝑧𝑧, and 𝜎̂𝜃𝑧 = 𝑟𝜎𝜃𝑧. The diagonal components
read

𝜎̂𝑟𝑟(𝑅, 𝑡) = −𝑝 +
2𝛹 1
𝜆

− 2𝜆𝛹 2 +
2𝛹̃1

𝜆 𝑎2𝑣
− 2𝛹̃2 𝜆 𝑎

2
𝑣 , (5.50)

𝜎̂𝜃𝜃(𝑅, 𝑡) = −𝑝 + 2
1 + 𝑅2𝜓2

𝜆
𝛹 1 − 2𝜆𝛹 2 +

2(cos 𝛾 + 𝑅𝜓 sin 𝛾)2

𝜆
𝛹 4

+
4(cos 𝛾 + 𝑅𝜓 sin 𝛾)

[

𝑅𝜓
(

𝜆3 + 𝑅2𝜓2 + 1
)

sin 𝛾 +
(

𝑅2𝜓2 + 1
)

cos 𝛾
]

𝜆2
𝛹 5

+
2
[

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝑅2𝜓2]

𝜆𝜆2𝑣
𝛹̃1 −

2𝜆
𝑎2𝑣𝜆2𝑣

𝛹̃2

+
2
[

𝑎𝑣𝜆𝑣
(

𝜆𝑣 cos 𝛾 − 𝑅𝜓𝑣 sin 𝛾
)

+ 𝑅𝜓 sin 𝛾
]2

𝜆𝜆2𝑣
𝛹̃4

+ 4
𝜆2𝜆4𝑣

(

𝑎𝑣𝜆𝑣
(

cos 𝛾𝜆𝑣 − 𝑅 sin 𝛾𝜓𝑣
)

+ 𝑅𝜓 sin 𝛾
)

×
{

𝑅 sin 𝛾
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)

[

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓
2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝜆3 + 𝑅2𝜓2
]

+ 𝑎𝑣 cos 𝛾𝜆2𝑣
(

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓
2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝑅2𝜓2)
}

𝛹̃5 ,

(5.51)

nd

𝜎̂𝑧𝑧(𝑅, 𝑡) = −𝑝 + 2𝜆2 𝛹 1 −
2
(

𝑅2𝜓2 + 1
)

𝜆2
𝛹 2 + 2𝜆2 sin2 𝛾 𝛹 4

+ 4𝜆 sin 𝛾
[

𝜆3 sin 𝛾 + 𝑅𝜓(cos 𝛾 + 𝑅𝜓 sin 𝛾)
]

𝛹 5 +
2𝜆2

𝜆2𝑣
𝛹̃1

−
2
(

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝑅2𝜓2)

𝜆2𝑎2𝑣𝜆2𝑣
𝛹̃2 +

2𝜆2 sin2 𝛾
𝜆2𝑣

𝛹̃4

+
4𝜆 sin 𝛾
𝜆4𝑣

{

𝑅𝑎𝑣𝜆𝑣
[

𝑅 sin 𝛾 𝜓𝑣
(

𝑎𝑣𝜆𝑣𝜓𝑣 − 2𝜓
)

+ cos 𝛾 𝜆𝑣
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)]

+ sin 𝛾
(

𝜆3 + 𝑅2𝜓2)} 𝛹̃5 .

(5.52)

The only non-zero shear stress is

𝜎̂𝜃𝑧(𝑅, 𝑡) = 2𝑅
√

𝜆𝜓 𝛹 1 +
2𝑅𝜓
√

𝜆
𝛹 2 + 2

√

𝜆 sin 𝛾 (cos 𝛾 + 𝑅𝜓 sin 𝛾)𝛹 4

+
sin 2𝛾

(

𝜆3 + 3𝑅2𝜓2 + 1
)

− 2𝑅𝜓 cos 2𝛾
(

𝜆3 + 𝑅2𝜓2) + 2𝑅𝜓
(

𝜆3 + 𝑅2𝜓2 + 1
)

√

𝜆
𝛹 5

+
2𝑅

√

𝜆
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)

𝜆2𝑣
𝛹̃1 +

2𝑅
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)

√

𝜆 𝑎2𝑣𝜆2𝑣
𝛹̃2 +

2
√

𝜆 sin 𝛾
(

𝑎𝑣𝜆𝑣
(

cos 𝛾 𝜆𝑣 − 𝑅 sin 𝛾 𝜓𝑣
)

+ 𝑅𝜓 sin 𝛾
)

𝜆2𝑣
𝛹̃4

+ 1
√

𝜆 𝜆4𝑣

{

2𝑎𝑣 sin 𝛾 𝜆𝑣
(

𝜆3 + 3𝑅2𝜓2) (cos 𝛾 𝜆𝑣 − 2𝑅 sin 𝛾 𝜓𝑣
)

+ 2𝑅𝜓𝑎2𝑣𝜆
2
𝑣
(

6𝑅2 sin2 𝛾 𝜓2
𝑣 − 3𝑅 sin 2𝛾 𝜆𝑣𝜓𝑣 + 𝜆2𝑣

)

+ 𝑎3𝜆3
(

−4𝑅3 sin2 𝛾 𝜓3 + 3𝑅2 sin 2𝛾 𝜆 𝜓2 − 2𝑅𝜆2𝜓 + sin 2𝛾 𝜆3
)

+ 4𝑅𝜓 sin2 𝛾
(

𝜆3 + 𝑅2𝜓2)
}

𝛹̃ .

(5.53)
28
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The only nontrivial equilibrium equation is 𝜎𝑟𝑟,𝑟 +
1
𝑟 𝜎

𝑟𝑟 − 𝑟𝜎𝜃𝜃 = 0. In terms of the referential coordinates, this reads

𝜕
𝜕𝑅

𝜎𝑟𝑟(𝑅, 𝑡) = 𝑓 (𝑅, 𝑡) , (5.54)

here

𝑓 (𝑅, 𝑡) =
2𝑅𝜓2

𝜆
𝛹 1 +

2(cos 𝛾 + 𝑅𝜓 sin 𝛾)2

𝜆𝑅
𝛹 4 +

4(cos 𝛾 + 𝑅𝜓 sin 𝛾)
[

𝑅𝜓 sin 𝛾
(

𝜆3 + 𝑅2𝜓2 + 1
)

+ cos 𝛾
(

𝑅2𝜓2 + 1
)]

𝜆2𝑅
𝛹 5

+ 2
𝑎2𝑣

[

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝑅2𝜓2] − 𝜆2𝑣
𝜆𝑅𝑎2𝑣𝜆2𝑣

𝛹̃1

+
2𝜆

(

𝑎4𝑣𝜆
2
𝑣 − 1

)

𝑅𝑎2𝑣𝜆2𝑣
𝛹̃2 +

2
(

𝑎𝑣𝜆𝑣
(

cos 𝛾𝜆𝑣 − 𝑅 sin 𝛾𝜓𝑣
)

+ 𝑅𝜓 sin 𝛾
)2

𝜆𝑅𝜆2𝑣
𝛹̃4

4
[

𝑎𝑣𝜆𝑣
(

cos 𝛾𝜆𝑣 − 𝑅 sin 𝛾𝜓𝑣
)

+ 𝑅𝜓 sin 𝛾
]

𝜆2𝑅𝜆4𝑣

{

𝑅 sin 𝛾
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)

[

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓
2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝜆3 + 𝑅2𝜓2
]

+ 𝑎𝑣 cos 𝛾𝜆2𝑣
(

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓
2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝑅2 𝜓2)
}

𝛹̃5 .

(5.55)

Assuming that the boundary cylinder is traction free, i.e., 𝜎𝑟𝑟(𝑅0, 𝑡) = 0, one obtains

𝜎𝑟𝑟(𝑅, 𝑡) = −∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 . (5.56)

This, in particular, implies that

−𝑝 = −∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 −

2𝛹 1
𝜆

+ 2𝜆𝛹 2 −
2𝛹̃1

𝜆 𝑎2𝑣
+ 2𝛹̃2 𝜆 𝑎

2
𝑣 . (5.57)

The normal stress components 𝜎̂𝜃𝜃 and 𝜎̂𝑧𝑧 are now simplified to read

𝜎̂𝜃𝜃(𝑅, 𝑡) = −∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 +

2𝑅2𝜓2

𝜆
𝛹 1 +

2(cos 𝛾 + 𝑅𝜓 sin 𝛾)2

𝜆
𝛹 4

+
4(cos 𝛾 + 𝑅𝜓 sin 𝛾)

[

𝑅𝜓 sin 𝛾
(

𝜆3 + 𝑅2𝜓2 + 1
)

+ cos 𝛾
(

𝑅2𝜓2 + 1
)]

𝜆2
𝛹 5

+
2
(

𝑅2𝑎4𝑣𝜆
2
𝑣𝜓

2
𝑣 − 2𝑅2𝜓𝑎3𝑣𝜆𝑣𝜓𝑣 + 𝑅

2𝜓2𝑎2𝑣 + 𝑎
4
𝑣𝜆

4
𝑣 − 𝜆

2
𝑣
)

𝜆𝑎2𝑣𝜆2𝑣
𝛹̃1

+
2𝜆

(

𝑎4𝑣𝜆
2
𝑣 − 1

)

𝑎2𝑣𝜆2𝑣
𝛹̃2 +

2
[

𝑎𝑣𝜆𝑣
(

cos 𝛾𝜆𝑣 − 𝑅 sin 𝛾𝜓𝑣
)

+ 𝑅𝜓 sin 𝛾
]2

𝜆𝜆2𝑣
𝛹̃4

+ 4
𝜆2𝜆4𝑣

(

𝑎𝑣𝜆𝑣
(

cos 𝛾𝜆𝑣 − 𝑅 sin 𝛾𝜓𝑣
)

+ 𝑅𝜓 sin 𝛾
)

×
{

𝑅 sin 𝛾
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)

[

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓
2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝜆3 + 𝑅2𝜓2
]

+ 𝑎𝑣 cos 𝛾𝜆2𝑣
(

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓
2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝑅2𝜓2)
}

𝛹̃5 ,

(5.58)

nd

𝜎̂𝑧𝑧(𝑅, 𝑡) = −∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 + 2

(

𝜆2 − 1
𝜆

)

𝛹 1 +
2
𝜆2

(

𝜆3 − 𝑅2𝜓2 − 1
)

𝛹 2

+ 2𝜆2 sin2 𝛾 𝛹 4 + 4𝜆 sin 𝛾
[

𝜆3 sin 𝛾 + 𝑅𝜓(cos 𝛾 + 𝑅𝜓 sin 𝛾)
]

𝛹 5 + 2
𝜆3𝑎2𝑣 − 𝜆

2
𝑣

𝜆 𝜆2𝑣 𝑎𝑣
𝛹̃1

+ 2
−𝑅2𝑎2𝑣𝜆

2
𝑣𝜓

2
𝑣 + 2𝑅2𝜓𝑎𝑣𝜆𝑣𝜓𝑣 + 𝜆3𝑎4𝑣𝜆

2
𝑣 − 𝑎

2
𝑣𝜆

4
𝑣 − 𝑅

2𝜓2

𝜆2𝑎2𝑣𝜆2𝑣
𝛹̃2 +

2𝜆2 sin2 𝛾
𝜆2𝑣

𝛹̃4

+
4𝜆 sin 𝛾
𝜆4𝑣

[

𝑅𝑎𝑣𝜆𝑣
(

𝑅 sin 𝛾 𝜓𝑣
(

𝑎𝑣𝜆𝑣𝜓𝑣 − 2𝜓
)

+ cos 𝛾 𝜆𝑣
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
))

+ sin 𝛾
(

𝜆3 + 𝑅2𝜓2)] 𝛹̃5 .

(5.59)

For a force-control loading at the two ends of the bar (𝑍 = 0, 𝐿), the axial force and torque required to maintain the deformation
are calculated as

𝐹 (𝑡) = 2𝜋 ∫

𝑅0

0
𝑃 𝑧𝑍 (𝑅, 𝑡)𝑅𝑑𝑅 = 0 ,

𝑇 (𝑡) = 2𝜋
𝑅0
𝑃 𝜃𝑍 (𝑅, 𝑡)𝑅2 𝑑𝑅 = 2𝜋

𝑅0
𝑃 𝜃𝑍 (𝑅, 𝑡) 𝑟(𝑅, 𝑡)𝑅2 𝑑𝑅 ,

(5.60)
29
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T

where 𝑃 𝑧𝑍 = 𝑃 𝑧𝑍 is the 𝑧𝑍-component of the first Piola–Kirchhoff stress and 𝑃 𝜃𝑍 = 𝑟𝑃 𝜃𝑍 is the physical 𝜃𝑍 component of the first
Piola–Kirchhoff stress. Recall the relation 𝐏 = 𝐽𝝈𝐅−⋆, or in components 𝑃 𝑎𝐴 = 𝐽𝜎𝑎𝑏𝐹−𝐴

𝑏. Thus, 𝑃 𝑧𝑍 = 𝜆−1𝜎𝑧𝑧 and 𝑃 𝜃𝑍 = 𝜆−1𝜎𝜃𝑧,
and hence

𝑃 𝑧𝑍 (𝑅, 𝑡) = − 1
𝜆 ∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 + 2

(

𝜆 − 1
𝜆2

)

𝛹 1 +
2
𝜆3

(

𝜆3 − 𝑅2𝜓2 − 1
)

𝛹 2

+ 2𝜆 sin2 𝛾 𝛹 4 + 4 sin 𝛾
[

𝜆3 sin 𝛾 + 𝑅𝜓(cos 𝛾 + 𝑅𝜓 sin 𝛾)
]

𝛹 5 + 2
𝜆3𝑎2𝑣 − 𝜆

2
𝑣

𝜆2 𝜆2𝑣 𝑎2𝑣
𝛹̃1

+ 2
−𝑅2𝑎2𝑣𝜆

2
𝑣𝜓

2
𝑣 + 2𝑅2𝜓𝑎𝑣𝜆𝑣𝜓𝑣 + 𝜆3𝑎4𝑣𝜆

2
𝑣 − 𝑎

2
𝑣𝜆

4
𝑣 − 𝑅

2𝜓2

𝜆3𝑎2𝑣𝜆2𝑣
𝛹̃2 +

2𝜆 sin2 𝛾
𝜆2𝑣

𝛹̃4

+
4 sin 𝛾
𝜆4𝑣

{

𝑅𝑎𝑣𝜆𝑣
[

𝑅 sin 𝛾 𝜓𝑣
(

𝑎𝑣𝜆𝑣𝜓𝑣 − 2𝜓
)

+ cos 𝛾 𝜆𝑣
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)]

+ sin 𝛾
(

𝜆3 + 𝑅2𝜓2)
}

𝛹̃5 ,

(5.61)

and

𝑃 𝜃𝑍 (𝑅, 𝑡) =
2𝑅𝜓

𝜆
1
2

𝛹 1 +
2𝑅𝜓

𝜆
3
2

𝛹 2 +
2 sin 𝛾(cos 𝛾 + 𝑅𝜓 sin 𝛾)

𝜆
1
2

𝛹 4

+
sin 2𝛾

(

𝜆3 + 3𝑅2𝜓2 + 1
)

− 2𝑅𝜓 cos 2𝛾
(

𝜆3 + 𝑅2 𝜓2) + 2𝑅𝜓
(

𝜆3 + 𝑅2𝜓2 + 1
)

𝜆
3
2

𝛹 5

+
2𝑅

(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)

𝜆
1
2 𝜆2𝑣

𝛹̃1 +
2𝑅

(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)

𝜆
3
2 𝑎2𝑣𝜆2𝑣

𝛹̃2 + 𝑠
2 sin 𝛾

[

𝑎𝑣𝜆𝑣
(

𝜆𝑣 cos 𝛾 − 𝑅𝜓𝑣 sin 𝛾
)

+ 𝑅𝜓 sin 𝛾
]

𝜆
1
2 𝜆2𝑣

𝛹̃4

+ 1

𝜆
3
2 𝜆4𝑣

{

2𝑎𝑣𝜆𝑣
(

𝜆3 + 3𝑅2𝜓2) (𝜆𝑣 cos 𝛾 − 2𝑅𝜓𝑣 sin 𝛾
)

sin 𝛾 + 2𝑅𝜓𝑎2𝑣𝜆
2
𝑣
(

6𝑅2𝜓2
𝑣 sin

2 𝛾 − 3𝑅𝜆𝑣𝜓𝑣 sin 2𝛾 + 𝜆2𝑣
)

+ 𝑎3𝑣𝜆
3
𝑣
(

−4𝑅3𝜓3
𝑣 sin

2 𝛾 + 3𝑅2𝜆𝑣𝜓
2
𝑣 sin 2𝛾 − 2𝑅𝜆2𝑣𝜓𝑣 + 𝜆

3
𝑣 sin 2𝛾

)

+ 4𝑅𝜓
(

𝜆3 + 𝑅2𝜓2) sin2 𝛾
}

𝛹̃5 .

(5.62)

Kinetic equations. The three kinetic equations for 𝑎̇𝑣, 𝜆̇𝑣, and 𝜓̇𝑣 are written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝜙
𝜕𝑎̇𝑣

+ 𝜕
𝑒
𝐼1
𝜕𝑎𝑣

𝛹̃1 +
𝜕
𝑒
𝐼2
𝜕𝑎𝑣

𝛹̃2 +
𝜕
𝑒
𝐼4
𝜕𝑎𝑣

𝛹̃4 +
𝜕
𝑒
𝐼5
𝜕𝑎𝑣

𝛹̃5 = 0 ,
𝜕𝜙
𝜕𝜆̇𝑣

+ 𝜕
𝑒
𝐼1
𝜕𝜆𝑣

𝛹̃1 +
𝜕
𝑒
𝐼2
𝜕𝜆𝑣

𝛹̃2 +
𝜕
𝑒
𝐼4
𝜕𝜆𝑣

𝛹̃4 +
𝜕
𝑒
𝐼5
𝜕𝜆𝑣

𝛹̃5 = 0 ,
𝜕𝜙
𝜕𝜓̇𝑣

+ 𝜕
𝑒
𝐼1
𝜕𝜓𝑣

𝛹̃1 +
𝜕
𝑒
𝐼2
𝜕𝜓𝑣

𝛹̃2 +
𝜕
𝑒
𝐼4
𝜕𝜓𝑣

𝛹̃4 +
𝜕
𝑒
𝐼5
𝜕𝜓𝑣

𝛹̃5 = 0 .

(5.63)

xample 5.2. For the numerical examples, we consider the following incompressible neo-Hookean reinforced model:

𝛹EQ = 𝛹 (𝐼1, 𝐼4) =
𝜇
2
(𝐼1 − 3) +

𝜇1
2

(

𝐼4 − 1
)2 , 𝛹NEQ = 𝛹̃ (

𝑒
𝐼1,

𝑒
𝐼4) =

𝜇𝑒
2
(
𝑒
𝐼1 − 3) +

𝜇𝑒1
2

( 𝑒
𝐼4 − 1

)2 , (5.64)

here 𝜇1, and, 𝜇𝑒1 are positive constants. Thus, 𝛹 1 = 𝜇
2 , 𝛹 2 = 0, 𝛹 4 = 𝜇1(𝐼4 − 1), 𝛹 5 = 0, 𝛹̃1 = 𝜇𝑒

2 , 𝛹̃2 = 0, 𝛹̃4 = 𝜇𝑒1(
𝑒
𝐼4 − 1), and

̃5 = 0 . For this material

𝑓 (𝑅, 𝑡) =
𝑅𝜓2

𝜆
𝜇 +

2(cos 𝛾 + 𝑅𝜓 sin 𝛾)2

𝜆𝑅
𝜇1(𝐼4 − 1) +

𝑎2𝑣
(

𝑎𝑣𝜆𝑣
(

𝑎𝑣
(

𝑅2𝜆𝑣𝜓2
𝑣 + 𝜆3𝑣

)

− 2𝑅2𝜓𝜓𝑣
)

+ 𝑅2𝜓2) − 𝜆2𝑣
𝜆𝑅𝑎2𝑣𝜆2𝑣

𝜇𝑒

+
2
(

𝑎𝑣𝜆𝑣
(

cos 𝛾𝜆𝑣 − 𝑅 sin 𝛾𝜓𝑣
)

+ 𝑅𝜓 sin 𝛾
)2

𝜆𝑅𝜆2𝑣
𝜇𝑒1(

𝑒
𝐼4 − 1) .

(5.65)

hus, the axial force and torque are written as

𝐹 (𝑡)
2𝜋

= −1
𝜆 ∫

𝑅0

0
𝑅∫

𝑅0

𝑅
𝑓 (𝜉, 𝑡) 𝑑𝜉 𝑑𝑅 +

(

𝜆 − 1
𝜆2

)

𝜇
2
𝑅2
0 + 2𝜇1𝜆∫

𝑅0

0
𝑅(𝐼4 − 1) sin2 𝛾 𝑑𝑅

+ 𝜇𝑒 ∫

𝑅0

0

𝜆3𝑎2𝑣 − 𝜆
2
𝑣

𝜆2 𝜆2𝑣 𝑎2𝑣
𝑅𝑑𝑅 + 2𝜇𝑒1 𝜆∫

𝑅0

0
(
𝑒
𝐼4 − 1)

sin2 𝛾
𝜆2𝑣

𝑅𝑑𝑅 , (5.66a)

𝑇 (𝑡)
2𝜋

=
𝑅4
0 𝜓

4𝜆
1
2

𝜇 + 2𝜇1 ∫

𝑅0

0
(𝐼4 − 1)

sin 𝛾(cos 𝛾 + 𝑅𝜓 sin 𝛾)

𝜆
1
2

𝑅2 𝑑𝑅 + 𝜇𝑒 ∫

𝑅0

0

𝑅
(

𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣
)

𝜆
1
2 𝜆2𝑣

𝑅2 𝑑𝑅

+ 2𝜇𝑒1 ∫

𝑅0

0
(
𝑒
𝐼4 − 1)

sin 𝛾
[

𝑎𝑣𝜆𝑣
(

cos 𝛾𝜆𝑣 − 𝑅 sin 𝛾𝜓𝑣
)

+ 𝑅𝜓 sin 𝛾
]

𝜆
1
2 𝜆2𝑣

𝑅2 𝑑𝑅 . (5.66b)
30
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For the neo-Hookean material (5.64), the kinetic equations (5.63) simplify to read

𝑎4𝑣𝜆
2𝜆3𝑣

(

𝜂2 + 𝜂3
)

+ 𝑎2𝑣𝜆
2𝜆2𝑣

(

𝑎2𝑣𝜆𝑣 − 1
)

𝜂1 − 𝜆2𝜆𝑣
(

𝑎2𝑣𝜆𝑣 − 1
)

𝜂1 + 𝜆2𝜆𝑣
(

𝜂2 + 𝜂3
)

𝑎4𝑣𝜆2𝜆3𝑣
𝑎̇𝑣

+
𝑎2𝑣𝜆

2𝜆2𝑣
(

𝑎2𝑣𝜆𝑣 − 1
)

𝜂1 − 𝑎𝑣𝜆2
(

𝑎2𝑣𝜆𝑣 − 1
)

𝜂1 + 𝑎𝑣𝜆2
(

𝜂2 + 𝜂3
)

𝑎4𝑣𝜆2𝜆3𝑣
𝜆̇𝑣 +

𝑎4𝑣𝜆
3
𝑣 + 𝜆𝑣

(

𝑎4𝑣𝑅
2𝜓2

𝑣 − 1
)

− 𝑎3𝑣𝑅
2𝜓𝜓𝑣

𝑎3𝑣𝜆𝜆𝑣
𝜇𝑒

+
2(𝜆𝑣 cos 𝛾 − 𝑅𝜓𝑣 sin 𝛾)

[

𝑎𝑣𝜆2𝑣 cos 𝛾 + 𝑅(𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣) sin 𝛾
]

𝜆2𝜆3𝑣
×
[

𝑎2𝑣𝜆
4
𝑣 cos

2 𝛾 +
(

𝑅2(𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣)2 + 𝜆3
)

sin2 𝛾 − 𝜆2𝑣(𝑎𝑣𝑅(𝑎𝑣𝜆𝑣𝜓𝑣 − 𝜓) sin 2𝛾 + 𝜆)
]

𝜇𝑒1 = 0 ,

(5.67)

𝑎2𝑣𝜆
2𝜆3𝑣

(

𝑎𝑣𝜆2𝑣 − 1
)

𝜂1 − 𝜆2𝜆2𝑣
(

𝑎𝑣𝜆2𝑣 − 1
)

𝜂1 + 𝜆2𝜆2𝑣
(

𝜂2 + 𝜂3
)

𝑎3𝑣𝜆2𝜆5𝑣
𝑎̇𝑣

+
𝑎3𝑣𝜆

2𝜆5𝑣
(

𝜂2 + 𝜂3
)

+ 𝑎2𝑣𝜆
2𝜆3𝑣

(

𝑎𝑣𝜆2𝑣 − 1
)

𝜂1 − 𝑎𝑣𝜆2𝜆𝑣
(

𝑎𝑣𝜆2𝑣 − 1
)

𝜂1 + 𝑎𝑣𝜆2𝜆𝑣
(

𝜂2 + 𝜂3
)

𝑎3𝑣𝜆2𝜆5𝑣
𝜆̇𝑣

+
𝑎2𝑣𝜆

4
𝑣 + 𝑎𝑣𝜆𝑣𝑅

2𝜓𝜓𝑣 − 𝜆3 − 𝑅2𝜓2

𝜆𝜆3𝑣
𝜇𝑒

+

[

𝑎2𝑣𝜆
4
𝑣 +

(

𝑎2𝑣𝜆
4
𝑣 − 𝑎𝑣𝜆𝑣𝑅

2𝜓𝜓𝑣 + 𝜆3 + 𝑅2𝜓2) cos 2𝛾 − 𝑎2𝑣𝜆
3
𝑣𝑅𝜓𝑣 sin 2𝛾 + 𝑎𝑣𝜆𝑣𝑅

2𝜓𝜓𝑣 − 𝜆3 − 𝑅2𝜓2]

𝜆2𝜆5𝑣
×
{

𝑎2𝑣𝜆
4
𝑣 cos

2 𝛾 +
[

𝑅2(𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣)2 + 𝜆3
]

sin2 𝛾 − 𝜆2𝑣
[

𝑎𝑣𝑅(𝑎𝑣𝜆𝑣𝜓𝑣 − 𝜓) sin 2𝛾 + 𝜆
]}

𝜇𝑒1 = 0 ,

(5.68)

nd

𝜂3𝑅 𝜓̇𝑣 +
𝑎𝑣𝑅(𝑎𝑣𝜆𝑣𝜓𝑣 − 𝜓)

𝜆𝜆𝑣
𝜇𝑒 −

2𝑎𝑣
[

𝑎𝑣𝜆2𝑣 cos 𝛾 + 𝑅(𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣) sin 𝛾
]

sin 𝛾
𝜆2𝜆3𝑣

×
{

𝑎2𝑣𝜆
4
𝑣 cos

2 𝛾 +
[

𝑅2(𝜓 − 𝑎𝑣𝜆𝑣𝜓𝑣)2 + 𝜆3
]

sin2 𝛾 − 𝜆2𝑣
[

𝑎𝑣𝑅(𝑎𝑣𝜆𝑣𝜓𝑣 − 𝜓) sin 2𝛾 + 𝜆
]}

𝜇𝑒1 = 0 .
(5.69)

Numerical results. We consider a solid cylinder made of a transversely isotropic neo-Hookean viscoelastic solid such that 𝜇𝑒 =
1
2𝜇,

𝜇1 = 1
2𝜇, and 𝜇𝑒1 = 1

2𝜇 with helically symmetric preferred directions along 𝛩 = 1
6𝜋, and a dissipation potential of the form (5.6)

such that 𝜂1 = 𝜂2 = 1
2 𝜂3. In this example, an implicit finite difference scheme has been used to numerically solve the governing

quations.
Let us first look at the twist-force-control loading case and let the bar be free to deform in the longitudinal direction, i.e., 𝐹 (𝑡) = 0,

nd subject it to the following twist loading

𝜓(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜓0 erf
(

𝑡
𝑡0

)

, 0 ≤ 𝑡 ≤ 𝑡1 ,

𝜓0 +
𝜓(𝑡1)
2 erf

(

𝑡−𝑡1
𝑡0

)

, 𝑡1 ≤ 𝑡 ≤ 𝑡2 ,
𝜓0
2 − 𝜓(𝑡2) erf

(

𝑡−𝑡2
𝑡0

)

, 𝑡2 ≤ 𝑡 ≤ 𝑡𝑓 ,

(5.70)

where 𝑡0 is the loading characteristic time, 𝑡1 = 25𝑡0, 𝑡2 = 50𝑡0, 𝑡𝑓 = 75𝑡0, and 𝜓0 = 1
𝑅0

is the angle of twist per unit length at
large times 𝑡0 ≪ 𝑡 < 𝑡1. In this case, we need to solve the governing PDEs (kinetic equations) (5.67)–(5.69) coupled with the integral
Eq. (5.66a) with 𝐹 = 0 and prescribing a twist loading 𝜓(𝑡) given by (5.70). We numerically solve this system of equations assuming
different loading characteristic times 𝑡0, respectively smaller than, equal to, and larger than the characteristic time of the viscoelastic
cylinder 𝜏 = 𝜂1

𝜇 . In Fig. 6, given the twist loading 𝜓(𝑡), we plot the profile of the corresponding physical component 𝜓̂(𝑅0, 𝑡) =
𝑅0𝜓(𝑡)
√

𝜆(𝑡)
as well as the resulting time evolution of the kinematic quantities 𝜆 𝜓̂𝑣, 𝜆̂𝑣, 𝑎̂𝑣, 𝑏̂𝑣, 𝜓̂𝑒, 𝜆̂𝑒, 𝑎̂𝑒, 𝑏̂𝑒, and 𝑟 at 𝑅 = 𝑅0, as well as the
non-zero stress physical components at 𝑅 = 1

2𝑅0. As the bar is twist-loaded, we observe stress relaxation on all the non-zero stress
components: First, the bar experiences a fast elastic stress response followed by a slow relaxation towards a steady state of stress
under a constant twist angle in each of the loading stages. We also observe that the bar elongation follows the trend of the imposed
twist while its outer radius follows an inverse trend. However, the physical components of both the viscous and elastic deformation
gradients experience what may be described as strain relaxation. Ultimately, we see that the elastic deformation gradient relaxes
towards its unloaded state, and the viscous deformation gradient approaches the total deformation gradient, i.e.,

𝑒̂
𝐅 = 𝐈 and

𝑣̂
𝐅 = 𝐅̂,

t large times under constant twist for each of the loading stages, as was previously discussed in Remark 3.4.
Next, we look at the torque-force-control loading case and let the cylinder be free to deform in the longitudinal direction,

.e., 𝐹 (𝑡) = 0, and subject it to the following end torque

𝑇 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

𝑇0 erf
(

𝑡
𝑡0

)

, 0 ≤ 𝑡 ≤ 𝑡1 ,

𝑇0 +
𝑇 (𝑡1)
2 erf

(

𝑡−𝑡1
𝑡0

)

, 𝑡1 ≤ 𝑡 ≤ 𝑡2 ,
𝑇0
2 − 𝑇 (𝑡2) erf

(

𝑡−𝑡2
𝑡

)

, 𝑡2 ≤ 𝑡 ≤ 𝑡𝑓 ,

(5.71)
31
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𝑇

Fig. 6. Numerical results for the time evolution of the strain and stress state of a transversely isotropic neo-Hookean bar subject to twist-force-control loading
𝐹 (𝑡) = 0 and (5.70) at the two ends of the bar with different characteristic times 𝑡0 versus the viscoelastic dissipation characteristic time 𝜏 =

𝜂1
𝜇
of the system.

where 𝑡0 is the loading characteristic time, 𝑡1 = 25𝑡0, 𝑡2 = 50𝑡0, 𝑡𝑓 = 75𝑡0, and 𝑇0 = 𝜇𝑅3
0 is the end torque at large times 𝑡0 ≪ 𝑡 < 𝑡1. In

this case, we need to solve the governing PDEs (kinetic equations) (5.67)–(5.69) coupled with the integral Eqs. (5.66) with 𝐹 = 0 and
(𝑡) as given by (5.71). We numerically solve this system of equations assuming different loading characteristic times 𝑡0, respectively

smaller than, equal to, and larger than the characteristic time of the viscoelastic cylinder 𝜏 = 𝜂1
𝜇 . In Fig. 7, we plot the profile of the

torque loading 𝑇 as well as the resulting time evolution of the kinematic quantities 𝜓̂ , 𝜆 𝜓̂𝑣, 𝜆̂𝑣, 𝑎̂𝑣, 𝑏̂𝑣, 𝜓̂𝑒, 𝜆̂𝑒, 𝑎̂𝑒, 𝑏̂𝑒, and 𝑟 at 𝑅 = 𝑅0,
as well as the non-zero stress physical components at 𝑅 = 1

2𝑅0. As the cylinder is torque-loaded, we observe that it experiences
creep: First, it elastically deforms instantaneously then continues to slowly deform even as the torque reaches a constant steady
state. This can be seen in the evolution of the elongation 𝜆(𝑡) and the outer radius 𝑟(𝑅0, 𝑡). Except for the viscous elongation 𝜆̂𝑣,
which experiences an evolution akin to creep, all the other physical components of the viscous and the elastic deformation gradients
experience a strain relaxation. However, here again, and in accordance with Remark 3.4, the elastic deformation gradient relaxes
towards its unloaded state, while the viscous deformation gradient approaches the total deformation gradient, i.e.,

𝑒̂
𝐅 = 𝐈 and

𝑣̂
𝐅 = 𝐅̂,

at large times under constant torque for each of the loading stages.

5.4. Example 3: Inflation of an incompressible isotropic viscoelastic thick spherical shell

Kinematics. Let us consider a thick spherical shell subject to a uniform time-dependent inner pressure 𝑝𝑖(𝑡). In its undeformed
configuration, it has inner and outer radii 𝑅1 and 𝑅2, respectively. Let (𝑅,𝛩,𝛷) and (𝑟, 𝜃, 𝜙) be spherical coordinate systems in the
reference and current configurations, respectively, with their origins at the centers of the respective configurations of the spherical
shell. Following the spherical symmetry of the problem, we consider a radial deformation ansatz

𝑟 = 𝑟(𝑅, 𝑡) , 𝜃 = 𝛩 , 𝜙 = 𝛷 . (5.72)
32
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Fig. 7. Numerical results for the time evolution of the strain and stress state of a transversely isotropic neo-Hookean bar subject to twist-force-control loading
𝐹 (𝑡) = 0 and (5.71) at the ends of the bar with different characteristic times 𝑡0 versus the viscoelastic dissipation characteristic time 𝜏 =

𝜂1
𝜇
of the system.

herefore, the material and spatial metrics have the following representations:

𝐆 =
⎡

⎢

⎢

⎣

1 0 0
0 𝑅2 0
0 0 𝑅2 sin2 𝛩

⎤

⎥

⎥

⎦

, 𝐠 =
⎡

⎢

⎢

⎣

1 0 0
0 𝑟2 0
0 0 𝑟2 sin2 𝛩

⎤

⎥

⎥

⎦

, (5.73)

nd the deformation gradient reads

𝐅 = 𝐅(𝑅, 𝑡) =
⎡

⎢

⎢

⎣

𝑟′(𝑅, 𝑡) 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, (5.74)

here 𝑟′(𝑅, 𝑡) = 𝜕𝑟(𝑅, 𝑡)∕𝜕𝑅. Incompressibility 𝐽 = 1 implies that 𝑟2(𝑅, 𝑡) 𝑟′(𝑅, 𝑡) = 𝑅2. Thus, 𝑟(𝑅, 𝑡) =
[

𝑅3 + 𝐶3(𝑡)
]
1
3 for some time-

dependent function 𝐶(𝑡). At 𝑡 = 0, the thick shell is in its undeformed configuration, i.e., 𝑟(𝑅, 0) = 𝑅 ; hence, the unknown function
𝐶(𝑡) satisfies the initial condition 𝐶(0) = 0. In terms of its physical components, the deformation gradient reads

𝐅̂ = 𝐅̂(𝑅, 𝑡) =
⎡

⎢

⎢

⎢

⎣

𝑅2

𝑟2(𝑅,𝑡) 0 0
0 𝑟(𝑅,𝑡)

𝑅 0
0 0 𝑟(𝑅,𝑡)

𝑅

⎤

⎥

⎥

⎥

⎦

. (5.75)

n order to be consistent with spherically-symmetric universal eigenstrains (Goodbrake et al., 2021), we assume the following form
or the viscous deformation gradient

𝑣
𝐅 =

𝑣
𝐅(𝑅, 𝑡) =

⎡

⎢

⎢

𝑎𝑣(𝑅, 𝑡) 0 0
0 𝑏𝑣(𝑅, 𝑡) 0

⎤

⎥

⎥

. (5.76)
33
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At 𝑡 = 0, in the initial unloaded state,
𝑣
𝐅(𝑅, 0) = 𝐈, i.e., 𝑎𝑣(𝑅, 0) = 𝑏𝑣(𝑅, 0) = 1. Incompressibility

𝑣
𝐽 = 1 implies that 𝑎𝑣(𝑅, 𝑡) 𝑏2𝑣(𝑅, 𝑡) = 1.

The physical components of the viscous deformation gradient read

𝑎̂𝑣(𝑅, 𝑡) = 𝑎𝑣(𝑅, 𝑡) , 𝑏̂𝑣(𝑅, 𝑡) = 𝑏𝑣(𝑅, 𝑡) =
1

√

𝑎𝑣(𝑅, 𝑡)
. (5.77)

ince 𝐅 =
𝑒
𝐅
𝑣
𝐅, it follows that the elastic deformation gradient has the following form

𝑒
𝐅 =

𝑒
𝐅(𝑅, 𝑡) =

⎡

⎢

⎢

⎣

𝑎𝑒(𝑅, 𝑡) 0 0
0 𝑏𝑒(𝑅, 𝑡) 0
0 0 𝑏𝑒(𝑅, 𝑡)

⎤

⎥

⎥

⎦

, (5.78)

where

𝑎𝑒(𝑅, 𝑡) =
𝑅2

[

𝑅3 + 𝐶3(𝑡)
]
2
3

𝑎−1𝑣 (𝑅, 𝑡) , 𝑏𝑒(𝑅, 𝑡) = 𝑏−1𝑣 (𝑅, 𝑡) =
√

𝑎𝑣(𝑅, 𝑡) . (5.79)

Its physical components read

𝑎̂𝑒(𝑅, 𝑡) =
𝑅2

[

𝑅3 + 𝐶3(𝑡)
]
2
3

𝑎−1𝑣 (𝑅, 𝑡) , 𝑏̂𝑒(𝑅, 𝑡) =

[

𝑅3 + 𝐶3(𝑡)
]
1
3

𝑅
𝑏−1𝑣 (𝑅, 𝑡) =

[

𝑅3 + 𝐶3(𝑡)
]
1
3

𝑅
√

𝑎𝑣(𝑅, 𝑡) . (5.80)

Remark 5.3.
𝑣
𝐅 is compatible if and only if 𝜕𝑏𝑣(𝑅,𝑡)

𝜕𝑅 = 0.

Stress and equilibrium equations. Following (4.24), the non-zero components of the Cauchy stress are

𝜎𝑟𝑟(𝑅, 𝑡) = −𝑝 + 2𝑅4

(

𝑅3 + 𝐶3
)
4
3

𝛹 1 −
2
(

𝑅3 + 𝐶3)
4
3

𝑅4
𝛹 2 +

2𝑅4

𝑎2𝑣
(

𝑅3 + 𝐶3
)
4
3

𝛹̃1 −
2𝑎2𝑣

(

𝑅3 + 𝐶3)
4
3

𝑅4
𝛹̃2 , (5.81a)

𝜎𝜃𝜃(𝑅, 𝑡) = −
𝑝

(

𝑅3 + 𝐶3
)
2
3

+ 2
𝑅2

𝛹 1 −
2𝑅2

(

𝑅3 + 𝐶3
)
4
3

𝛹 2 +
2

𝑅2𝑏2𝑣
𝛹̃1 −

2𝑅2𝑏2𝑣
(

𝑅3 + 𝐶3
)
4
3

𝛹̃2 , (5.81b)

𝜎𝜙𝜙(𝑅, 𝑡) = 1
sin2 𝛩

⎡

⎢

⎢

⎣

−
𝑝

(

𝑅3 + 𝐶3
)
2
3

+ 2
𝑅2

𝛹 1 −
2𝑅2

(

𝑅3 + 𝐶3
)
4
3

𝛹 2 +
2

𝑅2𝑏2𝑣
𝛹̃1 −

2𝑅2𝑏2𝑣
(

𝑅3 + 𝐶3
)
4
3

𝛹̃2

⎤

⎥

⎥

⎦

, (5.81c)

where 𝑝 = 𝑝(𝑅, 𝑡) is the Lagrange multiplier corresponding to the incompressibility constraint, i.e., 𝐽 = 1. The only non-trivial
equilibrium is

𝜎𝑟𝑟,𝑟 +
2
𝑟
𝜎𝑟𝑟 − 𝑟𝜎𝜃𝜃 − 𝑟 sin2 𝜃 𝜎𝜙𝜙 = 0. (5.82)

Or

𝜎𝑟𝑟,𝑅 = −𝑟′
[ 2
𝑟
𝜎𝑟𝑟 − 2𝑟𝜎𝜃𝜃

]

. (5.83)

hus, recalling that the inner boundary is under a time-dependent pressure 𝑝𝑖(𝑡), i.e., 𝜎𝑟𝑟(𝑅1, 𝑡) = −𝑝𝑖(𝑡), we find

𝜎𝑟𝑟(𝑅, 𝑡) = −𝑝𝑖(𝑡) + ∫

𝑅

𝑅1

𝑓 (𝜉, 𝑡) 𝑑𝜉 , (5.84)

here

𝑓 (𝑅, 𝑡) = −𝑟′
[ 2
𝑟
𝜎𝑟𝑟 − 2𝑟𝜎𝜃𝜃

]

=
4𝐶3 (2𝑅3 + 𝐶3)

(

𝑅3 + 𝐶3
)
7
3

𝛹 1 +
4𝐶3 (2𝑅3 + 𝐶3)

𝑅2
(

𝑅3 + 𝐶3
)
5
3

𝛹 2 +
4
[

𝑎3𝑣
(

𝑅3 + 𝐶3)2 − 𝑅6
]

𝑎2𝑣
(

𝑅3 + 𝐶3
)
7
3

𝛹̃1

+
4
[

𝑎3𝑣
(

𝑅3 + 𝐶3)2 − 𝑅6
]

𝑎𝑣𝑅2
(

𝑅3 + 𝐶3
)
5
3

𝛹̃2 .

(5.85)

rom (5.81a) and (5.84), the pressure field is calculated as

𝑝(𝑅, 𝑡) = 𝑝𝑖(𝑡) − ∫

𝑅

𝑅1

𝑓 (𝜉, 𝑡) 𝑑𝜉 + 2𝑅4

(

𝑅3 + 𝐶3
)
4
3

𝛹 1 −
2
(

𝑅3 + 𝐶3)
4
3

𝑅4
𝛹 2 +

2𝑅4

𝑎2𝑣
(

𝑅3 + 𝐶3
)
4
3

𝛹̃1 −
2𝑎2𝑣

(

𝑅3 + 𝐶3)
4
3

𝑅4
𝛹̃2 . (5.86)

We assume that the outer boundary is traction-free, i.e., 𝜎𝑟𝑟(𝑅2, 𝑡) = 0. Thus

∫

𝑅2

𝑅1

𝑓 (𝜉, 𝑡) 𝑑𝜉 = 𝑝𝑖(𝑡) . (5.87)

t this point, the unknown fields of the problem are 𝐶(𝑡) and 𝑎𝑣(𝑅, 𝑡). The boundary condition at 𝑅2 above needs to be supplemented
34

by the kinetic equation to solve the problem herein.
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Kinetic equation. Assuming the quadratic dissipation potential introduced in Section 5.1, the kinetic equation—following (5.11)—
reads as the following system of equations

𝑎̇𝑣

[

(𝜂1 + 𝜂2 + 𝜂3)𝑎𝑣 −
𝜂1
√

𝑎𝑣

]

−
2𝑅4𝛹̃1

(

𝐶3 + 𝑅3
)
4
3 𝑎2𝑣

−
4𝑅2𝛹̃2

(

𝐶3 + 𝑅3
)
2
3 𝑎𝑣

= 𝑞 , (5.88a)

𝑎̇𝑣

(

𝜂1
√

𝑎𝑣
−

2𝜂1 + 𝜂2 + 𝜂3
2𝑎2𝑣

)

−
2𝛹̃2

(

𝐶3 + 𝑅3)
4
3 𝑎2𝑣

𝑅4
−

2𝛹̃1
(

𝐶3 + 𝑅3)
2
3 𝑎𝑣

𝑅2
−

2𝑅2𝛹̃2
(

𝐶3 + 𝑅3
)
2
3 𝑎𝑣

= 𝑞 , (5.88b)

where we recall that 𝑞 = 𝑞(𝑅, 𝑡) is the Lagrange multiplier corresponding to viscous incompressibility, i.e.,
𝑣
𝐽 = 1. We eliminate 𝑞

rom (5.88) and end up with a single ordinary differential equation for 𝑎𝑣 as the kinetic equation:
[

2𝜂1

(

𝑎
3
2
𝑣 − 1

)2
+
(

𝜂2 + 𝜂3
) (

2𝑎3𝑣 + 1
)

]

𝑎̇𝑣 +
4
[

𝑎3𝑣
(

𝑅3 + 𝐶3)2 − 𝑅6
]

𝑅2
(

𝑅3 + 𝐶3
)
4
3

𝛹̃1 +
4
[

𝑎4𝑣
(

𝑅3 + 𝐶3)2 − 𝑅6𝑎𝑣
]

𝑅4
(

𝑅3 + 𝐶3
)
2
3

𝛹̃2 = 0 . (5.89)

xample 5.3. Let us consider a neo-Hookean viscoelastic solid, i.e., 𝛹 1 =
1
2𝜇, 𝛹 2 = 0, 𝛹̃1 =

1
2𝜇𝑒, and 𝛹̃2 = 0. In this case, the kinetic

quation (5.89) is simplified to read
[

2𝜂1

(

𝑎
3
2
𝑣 − 1

)2
+
(

𝜂2 + 𝜂3
) (

2𝑎3𝑣 + 1
)

]

𝑎̇𝑣(𝑅, 𝑡) + 2𝜇𝑒

[

𝐶3(𝑡) + 𝑅3]
2
3

𝑅2
𝑎3𝑣 = 2𝜇𝑒

𝑅4

[

𝐶3(𝑡) + 𝑅3
]
4
3

. (5.90)

or this model

𝑓 (𝑅, 𝑡) = 2𝜇
𝐶3 (2𝑅3 + 𝐶3)

(

𝑅3 + 𝐶3
)
7
3

+ 2𝜇𝑒
𝑎3𝑣

(

𝑅3 + 𝐶3)2 − 𝑅6

𝑎2𝑣
(

𝑅3 + 𝐶3
)
7
3

. (5.91)

he boundary condition (5.87) is simplified to read

𝜇
⎡

⎢

⎢

⎣

4𝑅2𝐶3 + 5𝑅4
2

2
(

𝐶3 + 𝑅3
2
)

4
3

−
4𝑅1𝐶3 + 5𝑅4

1

2
(

𝐶3 + 𝑅3
1
)

4
3

⎤

⎥

⎥

⎦

+ 2𝜇𝑒 ∫

𝑅2

𝑅1

𝑎3𝑣
(

𝑅3 + 𝐶3)2 − 𝑅6

𝑎2𝑣
(

𝑅3 + 𝐶3
)
7
3

𝑑𝑅 = 𝑝𝑖(𝑡) . (5.92)

he following system of ODE-integral equation governs the unknowns 𝑎𝑣(𝑅, 𝑡) and 𝐶(𝑡):39

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

2𝜂1

(

𝑎
3
2
𝑣 − 1

)2
+
(

𝜂2 + 𝜂3
) (

2𝑎3𝑣 + 1
)

]

𝑎̇𝑣(𝑅, 𝑡) + 2𝜇𝑒
(

𝐶3(𝑡)+𝑅3)
2
3

𝑅2 𝑎3𝑣 = 2𝜇𝑒
𝑅4

(𝐶3(𝑡)+𝑅3)
4
3
,

2𝜇
⎡

⎢

⎢

⎣

4𝑅2𝐶3+5𝑅4
2

4
(

𝐶3+𝑅3
2

)
4
3
−

4𝑅1𝐶3+5𝑅4
1

4
(

𝐶3+𝑅3
1

)
4
3

⎤

⎥

⎥

⎦

+ 2𝜇𝑒 ∫
𝑅2
𝑅1

𝑎3𝑣
(

𝑅3+𝐶3)2−𝑅6

𝑎2𝑣(𝑅3+𝐶3)
7
3

𝑑𝑅 = 𝑝𝑖(𝑡) ,

𝑎𝑣(𝑅, 0) = 1 ,

(5.94)

here the inner pressure loading is given by

𝑝𝑖(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑓 erf
(

𝑡
𝑡0

)

, 0 ≤ 𝑡 ≤ 𝑡1 ,

𝑝𝑓 + 𝑝𝑖(𝑡1)
2 erf

(

𝑡−𝑡1
𝑡0

)

, 𝑡1 ≤ 𝑡 ≤ 𝑡2 ,
𝑝𝑓
2 − 𝑝𝑖(𝑡2) erf

(

𝑡−𝑡2
𝑡0

)

, 𝑡2 ≤ 𝑡 ≤ 𝑡𝑓 ,

(5.95)

where 𝑡0 is the loading characteristic time, 𝑡1 = 25𝑡0, 𝑡2 = 50𝑡0, 𝑡𝑓 = 75𝑡0, and 𝑝𝑓 is the force at large times 𝑡0 ≪ 𝑡 < 𝑡1.

Numerical results. Let us consider a thick spherical shell made of a neo-Hookean viscoelastic solid such that 𝜇𝑒 = 1
2𝜇, with a

dissipation potential of the form (5.6) such that 𝜂1 = 𝜂2 = 1
2 𝜂3, and subject it to the inner pressure 𝑝𝑖(𝑡) (5.95) with 𝑝𝑓 = 0.25𝜇

at 𝑅1 = 0.75𝑅2. In this example, an explicit finite difference scheme has been used to numerically solve the governing equations.
We numerically solve the governing Eq. (5.94) assuming different characteristic times 𝑡0, respectively smaller, equal, and larger

han the characteristic time of the viscoelastic shell. In Fig. 8, we show the profile of the inner pressure loading 𝑝𝑖(𝑡) and the
esulting evolution of the kinematic quantities 𝑎𝑣, 𝑏𝑣, 𝑎𝑒, 𝑏𝑒, and 𝑟 at 𝑅 = 𝑅2, as well as the non-zero physical stress components

39 Assuming that 𝑎𝑣(𝑅, 0) = 1, the integral equation at 𝑡 = 0 is simplified to read

(𝜇 + 𝜇𝑒)
⎡

⎢

⎢

⎣

4𝑅2𝐶3 + 5𝑅4
2

4
(

𝐶3 + 𝑅3
2

)
4
3

−
4𝑅1𝐶3 + 5𝑅4

1

4
(

𝐶3 + 𝑅3
1

)
4
3

⎤

⎥

⎥

⎦

= 0 , (5.93)

hich implies that 𝐶(0) = 0. Thus, only one initial condition is needed.
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Fig. 8. Numerical results for the time evolution of strain and stress state of an isotropic neo-Hookean viscoelastic thick shell of outer radius 𝑅2 and inner radius
𝑅1 = 0.75𝑅2 subject to pressure-control loading 𝑝𝑖(𝑡) (5.95) at its inner wall with different characteristic times 𝑡0 versus the viscoelastic dissipation characteristic
time 𝜏 = 𝜂1

𝜇
of the system.

t 𝑅 = 𝑅𝑚 = 1
2 (𝑅1 + 𝑅2). As pressure is applied on the inner wall of the spherical shell, we observe that in each of the three

loading then unloading stages, the thick shell experiences creep as its outer radius first experiences a fast elastic response followed
by a slow deformation even as the inner pressure reaches a constant steady state. However, the elastic deformation gradient
experiences a strain relaxation as its physical components first elastically increase at a fast rate and then slowly relax into their
initial unloaded state as the loading reaches a constant steady state, i.e.,

𝑒̂
𝐅 = 𝐈, as previously discussed in Remark 3.4. We also see

that the viscous deformation gradient experiences a phenomenon akin to creep which is in accordance with Remark 3.4 since its
hysical components tend to match those of the total deformation gradient as the loading reaches a constant steady state—𝑎̂𝑣(𝑅2, 𝑡)

pproaches 𝐹 𝑟𝑅(𝑅2, 𝑡) =
𝑅2
2

𝑟2(𝑅2 ,𝑡)
and 𝑏̂𝑣(𝑅2, 𝑡) approaches 𝐹 𝜃𝛩(𝑅2, 𝑡) =

𝑟(𝑅2 ,𝑡)
𝑅2

so that
𝑣̂
𝐅 = 𝐅̂ at large times in each of the three loading

stages.

6. Conclusions

In this paper, we first revisited the multiplicative decomposition of the deformation gradient 𝐅 =
𝑒
𝐅
𝑣
𝐅 in nonlinear viscoelasticity

rom a geometric point of view. We showed, based on invariance and physical arguments, that the viscous deformation gradient
as to be a material tensor while the elastic deformation gradient is a two-point tensor. We assumed an additive split of the free
nergy density into equilibrium and non-equilibrium parts. The equilibrium free energy depends on the total deformation gradient,
hile the non-equilibrium part depends only on the elastic deformation gradient. We also assumed the existence of a dissipation
otential that depends on the total deformation gradient, the viscous deformation gradient, and its rate, and that it is convex in
he rate of the viscous deformation gradient. It was concluded that there is a subtle but crucial difference between anelasticity and
iscoelasticity; the intermediate configuration is stress-free in anelasticity but it is stressed in viscoelasticity.
We derived the balance laws using a two-potential approach and the Lagrange–d’Alembert principle. More specifically, the

ariational principle gives us the balance of linear momentum and a kinetic equation for the viscous deformation gradient. We also
iscussed thermodynamics of viscoelasticity. Next, material symmetry was discussed and it was emphasized that the equilibrium
nd non-equilibrium free energies and the dissipation potential are all invariant under the same symmetry group. We derived
he representations of the Cauchy stress in terms of the principal and structural invariants for isotropic, transversely isotropic,
rthotropic, and monoclinic solids. The explicit form of the kinetic equation was also derived for these four classes of solids.
Three examples of universal deformations were studied for both isotropic and transversely isotropic solids. These were extension

nd torsion of a solid circular bar, and inflation of a spherical shell. Assuming incompressible solids, the kinematics in each case is
educed to depend on one or two unknown time-dependent functions. The viscous deformation gradient has one or two unknown
36
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functions of a radial coordinate and time. The governing equations were reduced to an initial-value problem for a coupled system
of partial differential and integral equations. For specific examples of solids, these problems were solved numerically.

In a future communication, a theory of small-on-large viscoelasticity will be formulated, a particular case of which is linearized
iscoelasticity. In another future communication, a nonlinear theory of visco-anelasticity will be developed in order to study the
oupling of anelasticity and viscoelasticity.
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ppendix A. Variations for the Lagrange–d’Alembert principle

The variation of the velocity vector, 𝛿𝐕, is computed as

𝛿𝐕 = 𝐷𝐠
𝜖𝐕𝜖|𝜖=0 = 𝐷𝐠

𝜖

(

𝜕𝜑𝜖(𝑋, 𝑡)
𝜕𝑡

)

|

|

|

|

|𝜖=0
= 𝐷𝐠

𝑡

(

𝜕𝜑𝜖(𝑋, 𝑡)
𝜕𝜖

)

|

|

|

|

|𝜖=0
= 𝐷𝐠

𝑡 𝛿𝜑 ,

here 𝐷𝐠
𝜖 denotes the covariant derivative along the curve 𝜖 ↦ 𝜑𝑡,𝜖(𝑋) for fixed 𝑡 and 𝑋, 𝐷𝐠

𝑡 denotes the covariant derivative along
he curve 𝑡 ↦ 𝜑𝑡,𝜖(𝑋) for fixed 𝜖 and 𝑋, and use was made of the symmetry lemma for covariant derivatives (Nishikawa, 2002):
𝐠
𝜖
𝜕
𝜕𝑡 = 𝐷𝐠

𝑡
𝜕
𝜕𝜖 . Hence, it follows that

∫

𝑡1

𝑡0
∫

𝜕ℒ̂
𝜕𝐕

𝛿𝐕 𝑑𝑉 𝑑𝑡 = ∫

𝑡1

𝑡0
∫

𝜕ℒ̂
𝜕𝐕

𝐷𝐠
𝑡 𝛿𝜑 𝑑𝑉 𝑑𝑡 = ∫

𝑡1

𝑡0
∫

[

𝑑
𝑑𝑡

(

𝜕ℒ̂
𝜕𝐕

𝛿𝜑

)

−𝐷𝐠
𝑡

(

𝜕ℒ̂
𝜕𝐕

)

𝛿𝜑

]

𝑑𝑉 𝑑𝑡

= ∫

[

𝜕ℒ̂
𝜕𝐕

𝛿𝜑

]𝑡1

𝑡0

𝑑𝑉 − ∫

𝑡1

𝑡0
∫

𝐷𝐠
𝑡

(

𝜕ℒ̂
𝜕𝐕

)

𝛿𝜑 𝑑𝑉 𝑑𝑡 .

(A.1)

Following (3.3b) and (3.3c), one may see that 𝛿𝜑𝑡0 = 𝛿𝜑𝑡1 = 𝟎. From (3.2), one finds that 𝜕ℒ̂∕𝜕𝐕 = 𝜌𝑜𝐠𝐕 and 𝐷𝐠
𝑡

(

𝜕ℒ̂∕𝜕𝐕
)

= 𝜌𝑜𝐠𝐀.40
Therefore, it follows that (A.1) yields

∫

𝑡1

𝑡0
∫

𝜕ℒ̂
𝜕𝐕

𝛿𝐕 𝑑𝑉 𝑑𝑡 = −∫

𝑡1

𝑡0
∫

⟨𝜌𝑜𝐀, 𝛿𝜑⟩𝐠 𝑑𝑉 𝑑𝑡 . (A.2)

The variation of the Cauchy–Green deformation tensor, 𝛿𝐂♭, is computed as

𝛿𝐂♭ =
𝑑𝐂♭𝜖
𝑑𝜖

|

|

|

|

|𝜖=0
= 𝑑
𝑑𝜖

(𝜑∗
𝜖𝐠)

|

|

|

|𝜖=0
= 𝑑
𝑑𝜖

(𝜑∗𝜑∗𝜑
∗
𝜖𝐠)

|

|

|

|𝜖=0
= 𝜑∗ 𝑑

𝑑𝜖
(𝜑∗𝜑

∗
𝜖𝐠)

|

|

|

|𝜖=0
= 𝜑∗(𝐿𝛿𝜑𝐠) = 𝐅⋆(𝐿𝛿𝜑𝐠)𝐅

= 𝐅⋆
(

𝐠(∇𝐠𝛿𝜑) + (∇𝐠𝛿𝜑)⋆𝐠
)

𝐅 ,
(A.3)

40 Note that 𝐷𝐠𝐠 = ∇𝐠 𝐠 = 𝟎 per compatibility of the Levi-Civita connection ∇𝐠.
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𝐿

I

I

where 𝐿 denotes the total Lie derivative operator41 and use was made of the compatibility of the Levi-Civita connection to write
𝛿𝜑𝐠 = 𝐠(∇𝐠𝛿𝜑) + (∇𝐠𝛿𝜑)⋆𝐠. It follows that

∫

𝑡1

𝑡0
∫

𝜕ℒ̂
𝜕𝐂♭

∶ 𝛿𝐂♭ 𝑑𝑉 𝑑𝑡 = −∫

𝑡1

𝑡0
∫

𝜕𝛹̂
𝜕𝐂♭

∶ 𝐅⋆
[

𝐠(∇𝐠𝛿𝜑) + (∇𝐠𝛿𝜑)⋆𝐠
]

𝐅 𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫

2 𝜕𝛹̂
𝜕𝐂♭

∶ 𝐅⋆𝐠(∇𝐠𝛿𝜑)𝐅 𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫

2 𝜕𝛹̂
𝜕𝐂♭

∶ 𝐅⋆𝐠[(𝜑∗∇𝐠)𝛿𝜑] 𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫

2𝐠𝐅 𝜕𝛹̂
𝜕𝐂♭

∶ [(𝜑∗∇𝐠)𝛿𝜑] 𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫

Div
(

2𝛿𝜑𝐠𝐅 𝜕𝛹̂
𝜕𝐂♭

)

𝑑𝐴𝑑𝑡 + ∫

𝑡1

𝑡0
∫

𝛿𝜑Div
(

2𝐠𝐅 𝜕𝛹̂
𝜕𝐂♭

)

𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫𝜕

2𝛿𝜑𝐠𝐅 𝜕𝛹̂
𝜕𝐂♭

𝐍 𝑑𝐴𝑑𝑡 + ∫

𝑡1

𝑡0
∫

𝐠Div
(

2𝐅 𝜕𝛹̂
𝜕𝐂♭

)

𝛿𝜑 𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫𝜕

⟨2𝐅 𝜕𝛹̂
𝜕𝐂♭

𝐍, 𝛿𝜑⟩𝐠 𝑑𝐴𝑑𝑡 + ∫

𝑡1

𝑡0
∫

⟨Div
(

2𝐅 𝜕𝛹̂
𝜕𝐂♭

)

, 𝛿𝜑⟩𝐠 𝑑𝑉 𝑑𝑡 ,

(A.4)

where (𝜑∗∇𝐠)𝛿𝜑 = (∇𝐠𝛿𝜑)𝐅, Div denotes the material Levi-Civita divergence operator, and use was made of Stokes’ theorem with 𝐍
being the 𝐆-unit normal to 𝜕.

The variation of the elastic Cauchy–Green deformation tensor, 𝛿
𝑒
𝐂, is calculated as

𝛿
𝑒
𝐂♭ = 𝛿(

𝑣
𝐅∗𝐂♭) = 𝛿(

𝑣
𝐅−⋆𝐂♭

𝑣
𝐅−1) =

𝑣
𝐅−⋆𝛿𝐂♭

𝑣
𝐅−1 + 𝛿

𝑣
𝐅−⋆𝐂♭

𝑣
𝐅−1 +

𝑣
𝐅−⋆𝐂♭𝛿

𝑣
𝐅−1

=
𝑣
𝐅−⋆𝐅⋆(𝐿𝛿𝜑𝐠)𝐅

𝑣
𝐅−1 −

𝑣
𝐅−⋆𝛿

𝑣
𝐅⋆

𝑣
𝐅−⋆𝐂♭

𝑣
𝐅−1 −

𝑣
𝐅−⋆𝐂♭

𝑣
𝐅−1𝛿

𝑣
𝐅
𝑣
𝐅−1

=
𝑒
𝐅⋆(𝐿𝛿𝜑𝐠)

𝑒
𝐅 −

𝑣
𝐅−⋆(𝛿

𝑣
𝐅)⋆

𝑒
𝐂♭ −

𝑒
𝐂♭(𝛿

𝑣
𝐅)

𝑣
𝐅−1 =

𝑒
𝐅⋆

(

𝐠(∇𝐠𝛿𝜑) + (∇𝐠𝛿𝜑)⋆𝐠
) 𝑒
𝐅 −

𝑒
𝐂♭(𝛿

𝑣
𝐅)

𝑣
𝐅−1 −

𝑣
𝐅−⋆(𝛿

𝑣
𝐅)⋆

𝑒
𝐂♭ .

(A.5)

t follows that

∫

𝑡1

𝑡0
∫

𝜕ℒ̂
𝜕
𝑒
𝐂♭

∶ 𝛿
𝑒
𝐂♭ 𝑑𝑉 𝑑𝑡 = ∫

𝑡1

𝑡0
∫

𝜕ℒ̂
𝜕
𝑒
𝐂♭

∶
[ 𝑒
𝐅⋆

(

𝐠(∇𝐠𝛿𝜑) + (∇𝐠𝛿𝜑)⋆𝐠
) 𝑒
𝐅 −

𝑒
𝐂♭(𝛿

𝑣
𝐅)

𝑣
𝐅−1 −

𝑣
𝐅−⋆(𝛿

𝑣
𝐅)⋆

𝑒
𝐂♭

]

𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫

[

2 𝜕𝛹̂

𝜕
𝑒
𝐂♭

∶
𝑒
𝐅⋆𝐠(∇𝐠𝛿𝜑)

𝑒
𝐅 − 2 𝜕𝛹̂

𝜕
𝑒
𝐂♭

∶
𝑒
𝐂♭(𝛿

𝑣
𝐅)

𝑣
𝐅−1

]

𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫

[

2 𝜕𝛹̂

𝜕
𝑒
𝐂♭

∶
𝑒
𝐅⋆𝐠[(𝜑∗∇𝐠)𝛿𝜑]

𝑣
𝐅−1 − 2

𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶ 𝛿

𝑣
𝐅
]

𝑑𝑉 𝑑𝑡

= −∫

𝑡1

𝑡0
∫

[

2𝐠
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶ [(𝜑∗∇𝐠)𝛿𝜑] − 2

𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶ 𝛿

𝑣
𝐅
]

𝑑𝑉 𝑑𝑡 .

(A.6)

solating the first term, one may write

∫

𝑡1

𝑡0
∫

{

2𝐠
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶ [(𝜑∗∇𝐠)𝛿𝜑]

}

𝑑𝑉 𝑑𝑡

= ∫

𝑡1

𝑡0
∫

[

Div
(

2𝛿𝜑𝐠
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆

)

− 𝛿𝜑Div
(

2𝐠
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆

)]

𝑑𝑉 𝑑𝑡

= ∫

𝑡1

𝑡0
∫𝜕

2𝛿𝜑𝐠
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆𝐍 𝑑𝐴𝑑𝑡 − ∫

𝑡1

𝑡0
∫

𝛿𝜑𝐠Div
(

2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆

)

𝑑𝑉 𝑑𝑡

= ∫

𝑡1

𝑡0
∫𝜕

⟨2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆𝐍, 𝛿𝜑⟩𝐠 𝑑𝐴𝑑𝑡 − ∫

𝑡1

𝑡0
∫

⟨Div
(

2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆

)

, 𝛿𝜑⟩𝐠 𝑑𝑉 𝑑𝑡 .

(A.7)

Therefore, it follows from (A.6) and (A.7) that

∫

𝑡1

𝑡0
∫

𝜕ℒ̂
𝜕
𝑒
𝐂♭

∶ 𝛿
𝑒
𝐂♭ 𝑑𝑉 𝑑𝑡 = ∫

𝑡1

𝑡0
∫

[

⟨Div
(

2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆

)

, 𝛿𝜑⟩𝐠 + 2
𝑒
𝐂♭ 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆ ∶ 𝛿

𝑣
𝐅
]

𝑑𝑉 𝑑𝑡

− ∫

𝑡1

𝑡0
∫𝜕

⟨2
𝑒
𝐅 𝜕𝛹̂
𝜕
𝑒
𝐂♭

𝑣
𝐅−⋆𝐍, 𝛿𝜑⟩𝐠 𝑑𝐴𝑑𝑡 .

(A.8)

The variation of the material metric, 𝛿𝐆, is identically zero since the material metric 𝐆 remains unaltered by the one-parameter
family 𝜖 ↦ (𝜑𝜖 ,

𝑣
𝐅𝜖):

𝛿𝐆 = 𝟎 . (A.9)

41 Note that in terms of the autonomous Lie derivative L, one has 𝐿 = 𝜕 +L
38
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The variation of the spatial metric, 𝛿𝐠, is also identically zero following from the compatibility of the Levi-Civita connection ∇𝐠 :

𝛿𝐠 = 𝐷𝐠
𝜖 (𝐠◦𝜑𝜖) = 𝛿𝜑∇𝐠𝐠 = 𝟎 . (A.10)

The variation of the Jacobian of the total deformation, 𝛿𝐽 , reads

𝛿𝐽 = 𝑑
𝑑𝜖

(

√

det 𝐂𝜖
)

= 1

2
√

det 𝐂
𝑑
𝑑𝜖

(

det 𝐂𝜖
)

= 1

2
√

det 𝐂
𝑑
𝑑𝐂

(det 𝐂) ∶ 𝛿𝐂

= 1
2

√

det 𝐂𝐂−1 ∶ 𝛿𝐂 —using (B.3)

= 1
2
𝐽𝐂−1 ∶ 𝐆♯𝐅⋆

(

𝐠(∇𝐠𝛿𝜑) + (∇𝐠𝛿𝜑)⋆𝐠
)

𝐅 —using (A.3)

= 𝐽𝐂−1 ∶ 𝐆♯𝐅⋆𝐠(∇𝐠𝛿𝜑)𝐅 —recalling that 𝐂⋆ = 𝐂

= 𝐽𝐂−⋆ ∶ 𝐅𝖳(∇𝐠𝛿𝜑)𝐅 —recalling that 𝐅𝖳 = 𝐆♯𝐅⋆𝐠

= 𝐽𝐅𝖳⋆𝐂−⋆ ∶ (∇𝐠𝛿𝜑)𝐅

= 𝐽𝐅−⋆ ∶ (𝜑∗∇𝐠)𝛿𝜑 —since 𝐅𝖳⋆𝐂−⋆ = 𝐅−⋆ and recalling (𝜑∗∇𝐠)𝛿𝜑 = (∇𝐠𝛿𝜑)𝐅 .

(A.11)

herefore

∫

𝑡1

𝑡0
∫

𝑝 𝛿𝐽 𝑑𝑉 𝑑𝑡 = ∫

𝑡1

𝑡0
∫

𝑝𝐽𝐅−⋆ ∶ (𝜑∗∇𝐠)𝛿𝜑 𝑑𝑉 𝑑𝑡

= ∫

𝑡1

𝑡0
∫

[

Div(𝑝𝐽𝛿𝜑𝐅−⋆) − 𝛿𝜑Div(𝑝𝐽𝐅−⋆)
]

𝑑𝑉 𝑑𝑡

= ∫

𝑡1

𝑡0
∫𝜕

𝑝𝐽𝛿𝜑𝐅−⋆𝐍 𝑑𝐴𝑑𝑡 − ∫

𝑡1

𝑡0
∫

𝛿𝜑Div(𝑝𝐽𝐅−⋆) 𝑑𝑉 𝑑𝑡

= ∫

𝑡1

𝑡0
∫𝜕

⟨𝑝𝐽𝐠♯𝐅−⋆𝐍, 𝛿𝜑⟩𝐠 𝑑𝐴𝑑𝑡 − ∫

𝑡1

𝑡0
∫

⟨Div(𝑝𝐽𝐠♯𝐅−⋆), 𝛿𝜑⟩𝐠 𝑑𝑉 𝑑𝑡 .

(A.12)

The variation of the Jacobian of the viscous contribution to the deformation, 𝛿
𝑣
𝐽 , reads

𝛿
𝑣
𝐽 = 𝑑

𝑑𝜖

(

det
𝑣
𝐅𝜖

)

= 𝑑

𝑑
𝑣
𝐅
(det

𝑣
𝐅) ∶ 𝛿

𝑣
𝐅

= (det
𝑣
𝐅)

𝑣
𝐅−⋆ ∶ 𝛿

𝑣
𝐅 —similarly to (B.3)

=
𝑣
𝐽
𝑣
𝐅−⋆ ∶ 𝛿

𝑣
𝐅 .

(A.13)

And it follows that

∫

𝑡1

𝑡0
∫

𝑞 𝛿
𝑣
𝐽 𝑑𝑉 𝑑𝑡 = ∫

𝑡1

𝑡0
∫

𝑞
𝑣
𝐽
𝑣
𝐅−⋆ ∶ 𝛿

𝑣
𝐅 𝑑𝑉 𝑑𝑡 . (A.14)

Appendix B. Derivatives of the principal invariants

Suppose 𝑓 (𝐂♭) is a scalar-valued functional. For an arbitrary second-order covariant tensor 𝐇, which has the coordinate
representation 𝐇 = H𝐴𝐵 𝑑𝑋𝐴 ⊗ 𝑑𝑋𝐵 , one writes

𝑓 (𝐂♭ + 𝜖𝐇) = 𝑓 (𝐂♭) + 𝜕𝑓
𝜕𝐂♭

∶ 𝐇 𝜖 + 𝑜(𝜖) . (B.1)

Note that 𝐼1 = tr𝐆 𝐂♭ = 𝐂♭ ∶ 𝐆 = C𝐴𝐵G𝐴𝐵 = C𝐴𝐴. This implies that
𝜕𝐼1
𝜕𝐂♭

= 𝐆♯ . (B.2)

or 𝐼3 = det 𝐂, note that

det(C𝐴𝐵 + 𝜖H𝐴𝐵) = det
[

C𝐴𝐷
(

𝛿𝐷𝐵 + (C−1)𝐷𝑀 𝜖H𝑀𝐵

)]

= det 𝐂 det
(

𝐈 + 𝜖𝐂−1𝐇
)

= det 𝐂
[

1 + 𝜖 tr
(

𝐂−1𝐇
)

+ 𝑜(𝜖)
]

= det 𝐂 + (det 𝐂)𝐂−1 ∶ 𝐇 𝜖 + 𝑜(𝜖) .
(B.3)

This implies that
𝜕𝐼3 = 𝐼3𝐂−1 ,

𝜕𝐼3 = 𝐼3(C−1)𝐵𝐴 . (B.4)
39
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Therefore
𝜕𝐼3
𝜕𝐂♭

= 𝐼3𝐂−♯ ,
𝜕𝐼3
𝜕C𝐴𝐵

= 𝐼3(C−1)𝐴𝐵 , (B.5)

where (C−1)𝐴𝐵 = (C−1)𝐴𝑀 G𝑀𝐵 . For 𝐼2 = (det 𝐂) tr 𝐂−1 = 𝐼3 tr 𝐂−1,
𝜕𝐼2
𝜕𝐂

=
𝜕𝐼3
𝜕𝐂

tr 𝐂−1 + 𝐼3
𝜕
𝜕𝐂

tr 𝐂−1 = 𝐼3 𝐂−1 tr 𝐂−1 + 𝐼3
𝜕
𝜕𝐂

tr 𝐂−1 = 𝐼2 𝐂−1 + 𝐼3
𝜕
𝜕𝐂

tr 𝐂−1 . (B.6)

he second term on the right-hand side is calculated as

(𝐂 + 𝜖𝐇)−1 =
[

𝐂
(

𝐈 + 𝜖𝐂−1𝐇
)]−1 =

(

𝐈 + 𝜖𝐂−1𝐇
)−1 𝐂−1 . (B.7)

ote that for small enough 𝜖 one has
(

𝐈 + 𝜖𝐂−1𝐇
)−1 =

[

𝐈 −
(

−𝜖𝐂−1𝐇
)]−1 = 𝐈 +

(

−𝜖𝐂−1𝐇
)

+
(

−𝜖𝐂−1𝐇
)2 + 𝑜(𝜖2) = 𝐈 − 𝜖

(

𝐂−1𝐇
)

+ 𝜖2
(

𝐂−1𝐇
)2 + 𝑜(𝜖2) . (B.8)

Thus

(𝐂 + 𝜖𝐇)−1 = 𝐂−1 − 𝜖
(

𝐂−1𝐇𝐂−1) + 𝜖2
(

𝐂−1𝐇
)2 𝐂−1 + 𝑜(𝜖2) . (B.9)

This implies that

tr (𝐂 + 𝜖𝐇)−1 = tr 𝐂−1 − 𝜖 tr
(

𝐂−1𝐇𝐂−1) + 𝜖2 tr
[

(

𝐂−1𝐇
)2 𝐂−1

]

+ 𝑜(𝜖2) . (B.10)

Note that

tr
(

𝐂−1𝐇𝐂−1) = (C−1)𝐴𝐵 H𝐵𝐷 (C−1)𝐷𝐴 = (C−1)𝐷𝐴 (C−1)𝐴𝐵 H𝐵𝐷 = (C−2)𝐷𝐵 H𝐵𝐷 = 𝐂−2 ∶ 𝐇 . (B.11)

Therefore
𝜕
𝜕𝐂

tr 𝐂−1 = 𝐂−2 . (B.12)

inally
𝜕𝐼2
𝜕𝐂

= 𝐼2 𝐂−1 + 𝐼3 𝐂−2 ,
𝜕𝐼2
𝜕𝐂♭

= 𝐼2 (𝐂−1)−♯ + 𝐼3 (𝐂−2)♯ = 𝐼2 𝐂−♯ + 𝐼3 𝐂−2♯ . (B.13)

Similarly

𝜕
𝑒
𝐼1
𝜕
𝑒
𝐂♭

= 𝐆♯ ,
𝜕
𝑒
𝐼2
𝜕
𝑒
𝐂♭

=
𝑒
𝐼2

𝑒
𝐂−♯ −

𝑒
𝐼3

𝑒
𝐂−2♯ ,

𝜕
𝑒
𝐼3
𝜕
𝑒
𝐂♭

=
𝑒
𝐼3

𝑒
𝐂−♯ . (B.14)
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