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ABSTRACT

We study the geometric phases of nonlinear elastic N-rotors with continuous rotational symmetry. In the
Hamiltonian framework, the geometric structure of the phase space is a principal fiber bundle, i.e., a base,
or shape manifold B, and fibers 7 along the symmetry direction attached to it. The symplectic structure
of the Hamiltonian dynamics determines the connection and curvature forms of the shape manifold. Using
Cartan’s structural equations with zero torsion we find an intrinsic (pseudo) Riemannian metric for the shape
manifold. Without lose of generality, we show that one has the freedom to define the rotation sign of the total
angular momentum A of the elastic rotors as either positive or negative, e.g., counterclockwise or clockwise,
respectively, or viceversa. This endows the base manifold B with two distinct metrics both compatible with
the geometric phase. In particular, the metric is pseudo-Riemannian if A < 0, and the shape manifold is a
2D Robertson-Walker spacetime with positive curvature. For A > 0, the shape manifold is the hyperbolic
plane H? with negative curvature. We then generalize our results to free elastic N-rotors. We show that the
associated shape manifold B is reducible to the product manifold of N — 1 hyperbolic planes H? (A > 0),
or 2D Robertson-Walker spacetimes (A < 0) depending on the convection used to define the rotation sign of
the total angular momentum. We then consider elastic N-rotors subject to time-dependent self-equilibrated
moments. The N-dimensional shape manifold of the extended autonomous system has a structure similar to
that of the (N — 1)-dimensional shape manifold of free elastic rotors. The Riemannian structure of the shape
manifold provides an intrinsic measure of the closeness of one shape to another in terms of curvature, or
induced geometric phase.

1. Introduction

Q. In the frame rotating at that speed, one only observes the body
shape-changing dynamics and the rotational symmetry is reduced. In

A classical example in which geometric phases arise is the parallel
transport of a vector tangent to a sphere. The change in the vector
direction is equal to the solid angle of the closed path spanned by the
vector and it can be described by Hannay’s angles [1]. The rate at which
the angle, or geometric phase, changes in time is the geometric phase
velocity. In physics, the rotation of Foucault’s pendulum can also be
explained by means of geometric phases. Pancharatnam [2] discovered
their effects in polarized light, and later Berry [3] rediscovered it for
quantum-mechanical systems (see also [4-7]). Berry [3,4] showed that
a quantum mechanical system that undergoes an adiabatic evolution
acquires a phase factor that is purely geometric.

Another example drawn from classical mechanics is the spinning
body in a dissipationless medium, which has a rotational symmetry
with respect to the axis of rotation. The associated angular, or geo-
metric phase velocity €2 follows from the conservation of the angular
momentum /£, where I is the mass moment of inertia. If the body
changes shape, I varies over time and so does the angular speed

a fixed frame one cannot distinguish between the body deformation
and spinning motion. In general, geometric phases are observed in
classical mechanical systems with internal variables that rule their
shape deformations, and variables that rule their rigid translation of the
system as a whole. A cyclic motion of the shape variables can induce a
rigid translation if the total momentum is conserved.

In classical and quantum mechanics the key geometrical structure is
the symplectic form of a Hamiltonian. The Riemannian structure and a
metric are traditionally associated to the theories of General Relativity
and gravitation. In quantum mechanics, the scalar product on a Hilbert
space induces naturally a distance between quantum states, but the
interest is not in the local properties of the manifold of states. The
physically relevant quantities are transition probability amplitudes be-
tween quantum states, which do not depend on their relative distance.
However, Provost and Vallee [8] argued that for macroscopic systems
exhibiting collective behavior, the possibility of going from one state to
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another is not described by a direct transition amplitude (scalar product
in a Hilbert space) but rather through a succession of infinitesimal steps
on the manifold of collective states. The relevant distance between
distinct states is then the distance measured along geodesics on the
manifold.

In quantum mechanics, the Riemannian metric is the Fubini-Study
metric of complex projective spaces [8,9]. The importance of the asso-
ciated geodesic curves stems from the fact that Berry’s phase between
two quantum states can be expressed by integrating the associated
connection form along the geodesic between the two states [10,11]. As
a matter of fact, the quantum metric provides the infinitesimal distance
between two nearby states differing by a Berry phase. Such a distance
measures the quantum fluctuations between the two states [8].

In fluid mechanics, the motion of a swimmer at low Reynolds
numbers can be explained in terms of geometric phases [12,13]. Swim-
mers can cyclically change their shape (internal variables) to move
forward (translation variables). Since inertia is neglected the swimmer’s
velocity is uniquely determined by the geometry of the sequence of
its body’s shapes, which lead to a net translation, i.e., the geometric
phase. A fixed observer sees the swimmer drifting as its body shape
cyclically changes over time, but it is hard to distinguish between the
two motions. On the contrary, an observer moving with the swimmer
sees only its body deformations and translation symmetry is reduced
in the (symmetry-reduced) moving frame. In wave mechanics, the
slowdown of large oceanic wave groups can be explained in terms
of geometric phases [14-16]. Channel flow turbulence governed by
the Navier-Stokes equations admits a continuous translation symmetry.
Vortical structures, i.e., packets of vorticity, advect downstream at a
speed that depends on their intrinsic inertia (dynamical phase) and on
the way their shape varies over time (geometric phase). Fedele et al.
[17] showed that the geometric phase component of the vortex speed
can be interpreted as a sel f-propulsion velocity induced by the shape-
changing vortex deformations similar to the motion of a swimmer at
low Reynolds numbers [13].

In the literature, geometric phases have been understood in terms
of holonomy of connections on vector bundles [5]. In this paper we
study geometric phases of nonlinear elastic N-rotors in the Hamiltonian
framework [18] exploiting Cartan’s moving frames to characterize the
Riemannian structure of the reduced dynamics. We first present a com-
plete analysis of the geometric phases of a coupled elastic double rotor,
which conserves total angular momentum. This problem was studied
by Marsden et al. [18] to introduce the approach of Hamiltonian re-
duction for mechanical systems with a continuous Lie symmetry. Such
a symmetry implies that the associated phase space has the structure
of a principal fiber bundle, i.e., a shape manifold and transversal fibers
attached to it. The symplectic form of the Hamiltonian dynamics yields
the connection form on the shape manifold, which thus determines
the horizontal transport through the fiber bundle. A cyclic flow on the
shape manifold induces a drift along the fibers. This includes dynamic
and geometric phases. The dynamic phase increases with the time
spent by the flow to wander around the phase space and answers the
question: “How long did your trip take?” [3]. On the contrary, the
geometric phase is independent of time and it depends only upon the
curvature of the shape manifold, and answers the question: “Where
have you been?” [3]. The geometric phase is defined by the connection
form. Marsden et al. [18] defined the associated geometric phases and
related them to the curvature form of the shape manifold. Here, we
present a new analysis exploiting Cartan’s first structural equations
with zero torsion and derive the intrinsic Riemannian structure of the
shape manifold, which to the best of our knowledge, has not been
investigated to this date. The use of Cartan’s moving frames in studying
the geometric phases of nonlinear elastic N-rotors is motivated by
the success of the applications of Cartan’s machinery in the analysis
of distributed defects in nonlinear solids by the second author and
co-workers [19-24].
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This paper is organized as follows. We first review the theory of
Cartan’s moving frames and the associated connection and curvature
forms. The theory is then applied to pseudo-Riemannian manifolds. As a
special case we derive the Cartan curvature forms of an N-dimensional
manifold with a diagonal metric. We then introduce the problem of
an elastic double rotor in the Hamiltonian setting. The geometric
phases of the system are then studied and an intrinsic metric of the
shape manifold is derived. We then extend our study to the geometric
phases of free nonlinear elastic N-rotors and elastic N-rotors subject
to self-equilibrating external moments. Finally, we discuss the physical
relevance of the intrinsic metric for applications, and in particular, to
fluid turbulence.

2. Differential geometry via Cartan’s moving frames

Given an N-manifold B with a metric G and an affine connection
V, (B,V,G) is called a metric-affine manifold [25]. Here we mainly
follow Hehl and Obukhov [26] and Sternberg [27]. Let us consider an
orthonormal frame field {e;(X),...,eN(X)} that at every point X € B
forms a basis for the tangent space Ty 3. A moving frame is, in general,
a non-coordinate basis for the tangent space. The moving frame field
{e,} defines the moving co-frame field {8!,...,9"} such that 9%(ep) =
5%, where §% is the Kronecker delta. As the moving frame is assumed to
be orthonormal, i.e., {e,,e;)g = 6,5, Where (., .))¢ is the inner product
induced by the metric G, with respect to the moving frame the metric
has the representation

G=35,9"®9, 2.1

where summation over repeated indices is assumed.

An affine (linear) connection is an operation V : X(B) x X(B) —
X(B), where X(B) is the set of vector fields on B, with certain proper-
ties, namely, (@) Vi x,+5x,Y = f1Vx, Y + £2Vx, Y, ) Vix4px,Y =
fiVx, Y+ /29y, Y, and (c) Vx(fY) = fVxY+X[fDY,' where X, Y, X,
X,, Y, and Y, are arbitrary vector fields, f, f|, f, are arbitrary func-
tions, and a;,a, are arbitrary scalars. The vector VxY is the covariant
derivative of Y along X. Given the connection V, the connection 1-forms
are defined as

Ve, =¢, ® @, . (2.2)

The connection coefficients are defined as Ve, = (g e5)e, =
@’ g, €,.> Thus, the connection 1-forms have the representation o, =
@ po 9. 1t is straightforward to show that V9% = -0, 97, and Ve, 9% =
~a%, 9.

A coordinate chart {X“} for B defines a coordinate basis {9, =
a%} for Ty B. The moving frame field {e,} is related to the coordinate
basis by a GL(N, R)-rotation: e, = F,* d,. In order to preserve orienta-
tion, it is assumed that det[FaA] > 0. The relation between the moving
and coordinate co-frames is 9% = F* , d X4, where [F*,] is the inverse
of [F,]. For the coordinate frame [d4,d5] = 0, where [X, Y] = XY - YX
is the Lie bracket (commutator) of the vector fields X and Y. For an
arbitrary scalar field f, [X,Y][f] = X[f]Y — Y[f]X. For the moving
frame field one has

[e,.e5] = —cVaﬂ e, (2.3)

where ¢? ,; are components of the object of anhonolomy ¢’ = d9”. Noting
that

o =d (FpdXB) =) ¢y 9" A0, (2.4)
a<p

one can show that

 ap = F FgP (0,F7 5 — 05F7 4) . (2.5)

In the local chart {X4}, V, 0 = I'C,5dc, where I'C,, are the
. A .
Christoffel symbols of the connection.

L X[f] is the directional derivative of f along the vector field X.
2 (.,.) is the natural pairing of 1-forms and vectors.
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2.1. Non-metricity
For a metric-affine manifold (53, V,G), non-metricity Q : X(B) X
X(B) x X(B) - X(B) is defined as
QX.Y.Z) = (VxY.Z)g + (Y. VxZ)g — X[(Y.Z)g] - (2.6)

In the moving frame {e,}, Qup = Q(e},,ea,eﬁ). Non-metricity 1-forms
are defined as Q,; = Q,,; 9. One can show that Q, ,; = ®°,, Gs +
@5 Gey = (dGyp.€,) = @p0 + w45 —(dG,p.€,), Where d is the exterior
derivative. Hence

ayp

Qup = Wap + @py —dGpp. @.7)

This is Cartan’s zeroth structural equation. For an orthonormal frame
G, = 6,5 and hence

Qup = Wap + Dpg- (2.8)

The connection V is compatible with the metric G if non-metricity
vanishes, i.e.,

Vx{Y.Z))g = (VxY.Z)) + (Y. VxZ)g - (2.9

This is equivalent to VG = 0, which in a coordinate chart reads
Gapic =Gapc—TPcaGppg—TP 3G 4p = 0. With respect to the moving
frame, w,;+w;, =0, i.e., the connection 1-forms of a metric-compatible
connection are anti-symmetric.

2.2. Torsion

Torsion T : X(B) x X(B) = X(B) of the connection V is defined as

T(X,Y) = VxY - VyX - [X, Y]. (2.10)

In a local chart { X4}, torsion has components T4 5 = ' g — I p.
With respect to the moving frame torsion has the components 7%, =
%5, —@%, 5+, The torsion 2-forms have the following relations with
the connection 1-forms

T =d9" +w*y A (2.11)

These are called Cartan’s first structural equations. The connection V is
symmetric if it is torsion-free, i.e., VxY — VyX = [X,Y]. With respect
to the moving frame, d9* + w®; A 9% = 0.

2.3. Curvature

The curvature R X(B) x X(B) x X(B) — X(B) of the affine
connection V is defined as

RX,Y)Z = [V, Vy1Z - Vixy)Z = VxVyZ — Vy VxZ - Vix yZ. (2.12)

In a coordinate chart, R4 zcp = IMepg— IMppe + Mgy TMep —
TAcy TM gp. With respect to the moving frame, the curvature tensor
has the components R%j,, = 0,0, — 0,0%5, + @® gz 0}, — 0"z 0° 5, +
%, ¢ ;- The curvature 2-forms are defined as

R“ﬂ =dw”‘ﬂ+a)“y/\w7ﬂ. (2.13)

These are called Cartan’s second structural equations.

Requiring that V be both metric compatible and torsion free deter-
mines it uniquely. This is the Levi-Civita connection. With respect to
a coordinate chart { X4} it has the connection coefficients (Christoffel
symbols) I'C,5 = 1GP(Gpp 4 + Gapp — Gapp)- The Levi-Civita
connection 1-forms can be explicitly calculated [28]. Using Cartan’s
first structural equations d9” = —w%; A 9%, Thus

d9%(es.e,) = —(0"5 A 9)(eg.e,)

= -0 5(e) 9 (e,) + 0" 4(e,) 9 (eg) = —0%p, + 0%,5.  (2.14)

Similarly,

d9e,.e)=-a/  + 0Py,  dY(e,.ep) = -0 g+ . (2.15)

Physica D: Nonlinear Phenomena 459 (2024) 134040

Thus

d9%(ep.e,) +d9 (e, e,) — d9 (eq.ep) = 2007 5, (2.16)

where use was made of the fact that for a metric-compatible connection
%5 +of , =0. Thus

1
%5 = 3 [dS"(eﬁ,e;,) + dS”(ey,ea) — d&’(ea,eﬁ)] . (2.17)

The components of the Riemann curvature and the Ricci tensor are
related to the curvature 2-forms as

Riem® g, = R% (e, e,), Ric,; = R7 (e, €5). (2.18)

The Ricci scalar is defined as R = Ric,; 6*%. Note that with respect to
the moving frame g,; = 6,4, and hence g*/ = 5%/,

In the coordinate chart {X4} metric has the components G, =
Fa*Fy” 6,; and the Riemann and Ricci tensors given in (2.18) have
the following components

Riem” pop = F,* Fp/ Fcf Fp Riem” j, . Ricyp = F4*Fp? Ric,,,

(2.19)

where F,7F,® = 65. The Ricci scalar reads R = Ric,p G*5, where
GAB = F,AF;B 5% is the inverse of the metric G 45 in the coordinate
frame. Since the Ricci scalar is an invariant, its value is the same in any
frame. As a matter of fact, R = Rich GAB = F,*F P Ric,, F,AF, B o7 =
(FA% F,)(F " F,P)Ricyy 6% = 67 5, Ricyy 677 = Ricyy 6.

2.4. Pseudo-Riemannian manifolds

For a pseudo-Riemannian manifold, in the Cartan’s moving frame
the metric G in (2.1) generalizes to [27,28]

N

G=) 9" ®, (2.20)
a=1

where ¢, = +1, and (e, ...,ey) is the signature of the metric. The

orthonormality of the moving frame field implies that (e,.es)¢ =
84 €, (N0 summation on «). If the connection is metric compatible, one
has

@, S,p€5 + wVﬁ 8,4 €, =0 (no-summation on « or f), (2.21)
or

Wop+ g, =0. (2.22)
Thus

€05 +ep a)ﬁa =0 (no-summation on « or f), (2.23)
which is equivalent to

a)"ﬂ =—¢, €5 wﬂa (no-summation on « or f). 2.24)

The first and the second structural equations remain unchanged. The

expressions for the Riemann and Ricci curvatures remain unaltered as

well. The Ricci scalar has the following expression
N

R = Ric,; G* = )’ Ricy, €, .

a=1

(2.25)

2.5. Riemannian product spaces

Let (B;,G,), ..., (By,Gy) be Riemannian manifolds and 5B, X---XBy
be their product manifold. At any point (X,,...,Xy) € B| X -+ X By,
one has the direct sum Ty x, By X xBy) =Tx B; @ ®Ty, By,
where =~ means “isomorphic to”. The product metric G; X -+ X Gy on
By X -+ x By is defined as
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=G +-+G , VX, €B,....Xy€By.
(X1 Xn) Hx, Nlxy 1 1 N N

(2.26)

The Riemannian manifold (B, X -+ X By,G| X - X Gy) is called a
Riemannian product space [29]. If a Riemannian manifold is isometric
to a Riemannian product space, it is called reducible (decomposable).
Otherwise, it is irreducible (indecomposable). It should be noted that
for a Riemannian product space,

G Xx-xXGy

V(Ul ,,,,, Uyn)

G G
W, Wy) = (VU:WI,.,.,VUzWN). (2.27)

In particular, the Ricci curvature of the Riemannian product space is
written as

Ric (U}, ..., Up), (Wy,....,Wy)) = Ric; (U}, W)) + - + Ricy (Uy, Wy) .

(2.28)

2.6. Cartan’s curvature 2-forms of an N-dimensional pseudo-Riemannian
manifold with a diagonal metric

Consider an N-dimensional pseudo-Riemannian manifold 5 that in
a coordinate chart { X} has a diagonal metric

N N
G=)€e,G,dX"®@dX" =) ¢,1/G,dx"®/G,dXx*, (2.29)
A=1 A=1

where G, > 0 with at least one being positive. Let us define the

co-frame field

E* = {SA =4/G, dXA} (no summation on A), (2.30)

and its dual moving frame field

E = {eA = 1 6A} (no summation on A), (2.31)
VGy

which by construction 9%(ep) = (94, ep) = 64. Then, the metric in the
moving frame E is simply written as

N
G=) e, 99" (2.32)
A=
Note that
S 095G
d9A B4 _ 98 A 94 (nosummation on A). (2.33)

521 2G4\/Gp
We next calculate the Levi-Civita connection 1-forms for which 74 = 0.
Note that wp4 = —w,p and there are NV-D connection 1-forms to be
determined. Cartan’s first structural equations read d94+w% g A8 = 0.
Note that one can use (2.17). However, there is an easier approach for
calculating the connection 1-forms. Recalling that o’ 5 = w5 9C, we
have

3 Gup
B=12G,v/Gp

where G, p = 03G,. Thus

< A c GA~B
Y| otcp - —2—=
B=1 2G,/Gp

Cartan’s lemma implies that [30]

BN+ 3 9°A98 =0 (no summation on A), (2.34)

8*‘)/\193 =0 (no summation on A). (2.35)

94 = gA,-9¢  (no summation on A or B), (2.36)

where &4 5(X) = A p(X) are w arbitrary functions. Thus

A GA,B

w'p = ————
2G,1/Gp

94 + &4, 9¢  (no summation on A or B). (2.37)
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Hence

,B

G
Wup =€y 4B g4 +e,E4 e 9¢  (no summation on A or B).
2G44/Gp

(2.38)
Knowing that w,p + wp, = 0, one can guess that

Gz A Gp.a

WAp =€y 9" —ep
2G,44/Gp 2Gp+/Gy

98 (no summation on A or B).

(2.39)
Thus
op =L, 9 —e egLlps 98  (no summation on A or B), (2.40)
where
L (2.41)

Ly = —28
4 26,1/G,

It is straightforward to check that the 1-forms given in (2.40) satisfy
Cartan’s first structural equations, and hence, are the unique Levi-Civita
connection 1-forms. Note that w; = —¢, €5 ©® 4, and

do’y = Z(LAB,C +Laplac) 9€ A 94
C
- z €s€p(lppc+ LpaLlsc) 9 A9%  (no summation on A or B),
C

(2.42)

where from (2.33) the relation d94 = L, ¢ A 94 (no summation on
A) has been used.
Cartan’s second structural equations read

RAg =do’ g+ 0c A€, (2.43)

where curvature 2-forms are (pseudo) anti-symmetric, i.e., R4y +
e, ep RE 4 = 0. More explicitly,

RAB = Z(LAB,C +Laglac —Laclen) 9 A 94
C

- Z esep(Lpac+Lpalpe —Laclea) 9 A 9%
c

- Z eceplacLlpe 94 A 88 (no summation on A or B).
C

(2.44)

2.7. Curvature 2-forms of a 2-dimensional pseudo-Riemannian manifold
with a diagonal metric

Consider a two-dimensional pseudo-Riemannian manifold and a
coordinate chart U = {X!, X?}. Assume a diagonal metric in the
coordinate frame

G=¢6G dX'®dX'+¢6G,dX>®dX?, (2.45)

where G;,G, > 0, and G; + G, > 0. From (2.40), there is only one

connection 1-form !, given as
Gip Ga,1

24/G,G, 24/G,G,

where G, , = dy,G,. Alternatively,

o'y = dX' —eje, dx?, (2.46)

G G
wl _ 1,2 191 _ 2.1

=— — 9
TRV

From Cartan’s second structural equations (2.43), there is only one
curvature 2-form R!,, which reads

2. (2.47)
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G G
R12=dw12=—% [€1€2< 2 ) +(L> ]Xm/\dXz.
GIGZ 1 VGIGZ 2

(2.48)
Alternatively,
R, =K' A9, (2.49)
where the Gaussian curvature K = R!,(e;, e,) is written as
K=-—1 [elez<i> +< Giz > ] ‘ (2.50)
066 | 1\Ves ), Ve,

From (2.24) it follows that do', = —¢|¢, do?, and hence
R? =—e6, RY,. (2.51)
The Ricci tensor is calculated using (2.18), as
Ric,; = R7 ,(e,.e5) = R' ,(e],e5) + R? (e;.€p). (2.52)
In particular,
Ricj; = R? (er.e)) = 16, R'5(e1.€5) = €16, K,
Ricy, = Rly(e . e,) = K, (2.53)
and Ric|, = Ric,; = 0. The Ricci scalar is calculated as
R = ¢, Ric; +e; Ricy, = e?ezK + 6K =26K

- [q( G ) +€2< lE: > ] : (2.54)

Note that for a pseudo-Riemannian metric in the moving frame, G,; =
€,045 (no summation on «). It follows that % RG, = % R G, =0. Also,
notice that %RGI1 =e,Ke =€ ¢ K, and %RGZ2 =¢, Ke, = K. Thus,
we have shown that

. 1
Rlcaﬂ_z RG,=0,
i.e., G in (2.45) is the metric of an Einstein manifold [31].

(2.55)

3. Dynamics of (free) nonlinear elastic double rotor

In this section we study the geometric phase of a coupled elastic
double rotor, which conserves total angular momentum. A similar
problem was studied by Marsden et al. [18] to introduce the Hamil-
tonian reduction technique for mechanical systems with symmetries.
The continuous symmetry implies that the associated phase space
has the structure of a principal fiber bundle, i.e., a shape manifold
and transversal fibers attached to it. Marsden et al. [18] defined the
associated geometric phases and related them to the curvature form
of the shape manifold. Hereafter, we present a new analysis exploiting
Cartan’s structural equations with zero torsion and find the Riemannian
structure of the shape manifold, which was not investigated in [18].

Consider the elastic double rotor depicted in Fig. 1. The associated

Lagrangian is written as
1, 1,
L= 9f+5129§—17(01,92), 3.1)

where the Lagrangian coordinates 6; are the angular positions of the
two rotors with mass moments of inertia I, and I, as indicated in Fig. 1.

The potential I7(6,0,) describes conservative moments M; = —ang s
which are in equilibrium, that is
oIr oIl
M, +My=—"— —— =0. 3.2
P27 00, 00, (3.2)

Thus, the potential must be a function of the Lagrangian coordinate
difference, i.e., IT = I1(6, — 0,), which is the potential of a nonlinear
spring, see Fig. 1. Extremizing the action [ Ldt yields the following
dynamical equations

d [ oL L A oIl
DL 9L 5+ o j=12. 3.3
dt <a0j> 00, = 1% 5o, / 33
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6,(t)

T

Fig. 1. An elastic double rotor with a nonlinear spring.

From (3.2), the potential moments are in equilibrium and summing up
Egs. (3.3) yields

16, + L, =M, + M, =0. (3.4
Thus, the total angular momentum
A=1,0, + 1,0,, (3.5)

is conserved. In the following, we assume that A # 0. Such an invariant
endows the system with a continuous Lie symmetry: if the pair Z =
(6,(1), 6,(1)) is a solution of the Lagrangian equations, so is

Gy(Z) = (0,() + B.0, () + )., (3.6)

for any angle f € R. In the following, we will use this symmetry in the
Hamiltonian setting to reveal the geometric structure of the phase space
as that of a principal fiber bundle. Then, the associated Riemannian
structure follows from Cartan’s structural equations as described in
Section 2.

3.1. The Hamiltonian structure

The conjugate momenta follow from the Lagrangian (3.58) as

oL ) .
p = 07,/_:11.0/., j=12, (3.7)

and 6; = %. Then, the Legendre transform of £ gives the Hamiltonian
j

H=p b +pb,—L= +11(0,-9)) . (3.8

1

—+
21, 21,
The configuration space is a 2-torus Q = T2, which has the local
chart {6,,6,}, and the phase space is T*Q with local coordinates
{61,6,,p1,p,}, where T*Q is the cotangent bundle of Q. Let us define
the vector

0,
x=|% (3.9)
Py
)2
The dynamics is governed by
X =JVxH, (3.10)
where
9y,
9
v =%, (3.11)
%
1
9,
and J is the following 4 x 4 symplectic matrix
0 0 1 0
0, 1L 0 0 0 1
= = 12
J[—IZ 02] -1 0 0 0 3.12)
0 -1 0 O
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Fig. 2. Fiber bundle structure of the state space P = T*Q/A. B is the base (shape)
manifold and 7 is a generic fiber.

I, = [§;;] is the 2 x 2 identity matrix, O, is the 2 x 2 null matrix, and
5 is the Kronecker tensor. From (3.10),

PO S

2O o i, 3.13
T PT 7o, @13
or

. pj . oIl

b7 h=-fe =12 (3.14)

The Hamiltonian # and the total angular momentum A = p, + p,
given in (3.5) are invariants of motion. The Hamiltonian system inherits
the continuous Lie-group symmetry in (3.6), that is

GpX) = (0, + 8.0, + B.py. p2), (3.15)
for any angle g € R. The associated 1-form is

a = p;do, + p,do,, (3.16)
and the symplectic 2-form is defined as

da =dp, Ad6, +dp, A db, . (3.17)

3.2. Hamiltonian reduction and geometric phases

To reveal the geometric nature of the dynamics, we consider an-
other configuration space Q, with Lagrangian coordinates {6,,y,},
where the shape parameter y, = 6, — 6, represents the relative angular
displacement of the two rotors. Since the total angular momentum
A = p; + p, must be conserved, p; = A — p, and the motion must occur
on the subspace T*Q,/A with the coordinate chart {6, y>,p,}.

The 1-form in (3.16) reduces to

@=p, do; +p,d0, = (A —p,)dO, + py db,, (3.18)
and since y, = 6, — 6, one has

a=Ado, +p,dy,. (3.19)
The associated symplectic 2-form reads

da=dp, Ndy, . (3.20)

The reduced state space P = T*Q,/A has the geometric structure of
a principal fiber bundle characterized by the quadruplet (P, B,G,, x).
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The flow X, € TQ;, in the state space P can be decomposed as the sum
X, = X + Xz of a Hamiltonian flow
1)

X, =|”| eTn, (3.21)
")

on a two-dimensional shape, or base manifold 3 with the coordinate
chart {p,.w,}, and a drift flow X = [§;] € TF along the one-
dimensional fibers 7 with the coordinate chart {#,} as depicted in
Fig. 2. The map = : P — S projects an element X of the state space P
and all the elements of the fiber, or group orbit G,(X,), into the same
point z(X,) of the base manifold 5, viz. #(X;) = 7(Gp(X))), with g € R.
In particular,

7(X,) =Xy = [”2] A (3.22)

1%]

The reduced Hamiltonian flow X, on 5 is governed by the following
equation

X =JrVx, Hg > (3.23)
where the reduced Hamiltonian is written as
2 2
1(p—A) 1P,
Hp=-—"—+-—=+11 . 3.24
R=S— 1 Tan, " (v2) (3.24)
Jr is the canonical symplectic matrix
0 1 9,
= = 2] . 2
[0 ] s [] o

The flow X on the shape manifold 3 is independent from the flow X
along the fiber. Indeed, from (3.23)

1 1 A oIl
¥ = —+—)P——, pp=— (3.26)
: <11 L)™ Rz
On the contrary, X, depends on X, since
. A—
6, =12 (3.27)
I

In simple words, the flow X, in the state space P decouples in a
symmetry-free Hamiltonian flow X on the shape manifold B, which
induces a rotation drift X, along the fibers. Physically, the reduced flow
on B is the shape-changing evolution of the connected rotors induced
by the internal elastic moments. Such a shape dynamics makes the two
rotors to rigidly rotate together by the time-dependent angle 6,. Thus,
it gives a symmetry-free motion Xz on 5. The full motion in P follows
by shifting X3 along the fibers by 6, that is X, = Gy, (Xp), as depicted
in Fig. 2. To evaluate such a rotation drift, from (3.19), we define the
1-form

=5 =do+ ’%

Then the total rotation drift 9, along the fiber follows by integrating
the form d6, =@ - 2dy,, ie,

t
91=/d91=/5d’—l/1’2d%,
0 A y

where y is a closed trajectory of the motion up to time ¢ in the shape
manifold B. Thus,

dy, . (3.28)

(3.29)

01 = Gdyn + Ggeom s (3.30)

where the dynamical and geometric rotation drifts are defined as

1
~ 1
den(t)='/O adt, Bgeom=_x'/71’2d‘/’2~

Here, the dynamical rotation drift Oyn(®) depends on the inertia of the
two rotors. Using (3.26) and (3.27) it can written as

2 2
2 [ 1(P P

Ogyn(®) = — K(?)dt, K== —=+=),
ayn(t) A/O © 2<11+12

(3.31)

(3.32)
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Fig. 3. (Left) Fiber bundle structure of the state space P = T*Q/A of an elastic double rotor with parameters I, = I, = 1 mass x length?, A = 1 mass xlength’time™!, and the potential
II(y) = w*. The full path X () (black curve) and the reduced path Xy(f) on the base manifold B (green curve) are shown. The lifted path Gy, X) by the dynamical rotation

drift 4y, (red curve) does not coincide with the path X because the total rotation drift 6, = 64y, + 0geom includes also the geometric component 6,

drift 6, and the drifts 6,

geom and Oy, as functions of time.

where K is the total kinetic energy and A is the non-zero total angular
momentum, which is conserved. If the two rotors are rigidly connected
and cannot change their ‘shape’, i.e., y, = 0 (no flow on the base
manifold /3), then the rotation drift 4y, is simply the manifestation
of the inertia of the entire system treated as a whole with the angular
momentum A and the total kinetic energy K.

The two rotors can also undergo a change in shape due to the
internal elastic moments. As a result, the angle y, varies over time and
the flow on B induces also the geometric rotation drift, which from
(3.31) can be written as

~ 1
Ggeom:/ da:—;/ dpy Ndy, .
S) S

Thus, the geometric rotation drift is proportional to the area S(y)
enclosed by the trajectory of the motion y in the shape manifold B.
Such a rotation drift is purely geometric since it does not depend on
the time it takes for the two rotors to undergo a cyclic shape change.

One can define an effective moment of inertia I ¢ for an equivalent
system with the total angular momentum A = p; + p, as

(3.33)

0 Ogyn + 0 ;
1 L _ JdynTPgeom 2K _ P2V (3.34)
Ig  pitp P +p2 A2 A2
Using (3.26),

2
1 2K Py )23

— == =y 2 3.35
Ig A2 A2 AL (3.35)

Thus, the shape-changing motion of the two rotors can slow down or
speed up the rotation drift. In particular, if the two rotors tend to rotate
in opposite directions (y, > 0) the effective moment of inertia increases
slowing down the rotation as the angular speed 6, reduces. On the
contrary, if the two rotors tend to rotate in the same direction (y, < 0)
the angular speed increases as I reduces. This is the analogue of
spinning dancers that can increase their spinning rate by pulling their
arms close to their bodies, and to decrease it by letting their arms
out. Thus, the geometric phase component in (3.35) can be interpreted
as the moment of inertia of an added mass in analogy with the fish
self-propulsion [12,13]. See also [32] for a discussion on the effective
dynamic mass, including the concept of added mass, in mechanical
lattices.

As an example, consider the elastic double rotor with parameters
I, = I, = 1 mass x length?, A = %mass x length’time™!, and the potential
I(y) = w*. The total angular momentum is assumed to be positive

(Right) The total rotation

geom*

and the initial conditions are chosen so that both rotors have positive
(counter-clockwise) rotational speed. The left panel of Fig. 3 depicts
the fiber bundle structure of the state space P = T*Q/A of the elastic
double rotor, the full path X (r) (black curve) and the reduced path
Xj (green curve) on the base manifold B are shown. The lifted path
Gy ism (X,) by the positive dynamical rotation drift 04,,, (red curve) does
not coincide with the path X; (black curve). This is because the total
rotational drift 6, = Ogyy + Ogeom includes also a negative geometric
component fge,m, as is seen in the right panel of the same figure.
The positive dynamical rotation drift is induced by the inertia of the
system that has a positive angular momentum. However, the two rotors
undergo changes in shape inducing a clockwise rotation that balances
the counter-clockwise dynamical drift rotation.

Remark 3.1. Given the total angular momentum A, the associated
dynamical variables {6,(r),y,(?), p,(t)} satisfy (3.26) and (3.27). Let
{0,(1), W,(1), p,(1)} be the dynamical variables that correspond to —A,
where , = 0, — 0,. Then, these satisfy

s —A-p, . (1 1>_ A . oIl

g =_2"P —(2+2)p+2, =-2= . (3.36)
1 1, v2 L' L P2 1, P2 o,

Assume the initial conditions 8,(0) = —6,(0), ¥,(0) = —y,(0), and

P>(0) = —p,(0). Then, from Egs. (3.26) and (3.27) we have

{91 (I),ll'/z(t),ﬁz(f)} = {—91 ®), =y, (1), —Pz(t)} s (3.37)

is a solution of the above system of first-order ODEs. The associated
symplectic form follows from (3.19) as

a=-Ad0, +p,dy,, da=dp, Nd,. (3.38)
Moreover,

~ a ~

A= — =—q. 3.39
@=_—r=-0 (3.39)
Therefore

1
5 = 5 1 o
Gdyn(t) = / adt = —Gd},n(t), Ogeom = Z /pz dy, = —Ogeom . (3.40)
0 14

Thus, when changing the sign of the angular momentum (and the
initial conditions), both the dynamic and geometric phases change
sign. This implies that one has the freedom to set a clockwise angular
momentum as either positive or negative by simply flipping the frame,
or coordinate chart. Similarly, the same thing can be done for counter-
clockwise angular momenta. For example, consider the rotor system
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with a clockwise angular momentum A > 0 defined as positive in
the frame {6,, p,,y,}. In the flipped frame {-6,, —p,, —y,}, the angular
momentum bears the opposite sign, A < 0, but it still preserves its
clockwise orientation. The orientation of the flipped frame changes be-
cause the Jacobian determinant of the transformation {6, — —6,,p, —
-py. Wy, — —y,} is negative reflecting the change in sign of A. This
suggests that one can define a given angular momentum to be either
positive or negative without lose of generality.

3.3. Curvature and intrinsic metric of the shape manifold

One can interpret the geometric drift as the curvature of the shape
manifold B equipped with a specific metric. As a matter of fact,
drawing on Cartan’s structural equations the 2-form d @ in (3.33) can
be interpreted as the curvature form of a connection on 3. We further
require that the symplectic form be compatible with the volume 2-form
volg of the metric G as is shown next.

The geometric drift Ogeoy, given in (3.33) is associated to the sym-
plectic 1-form

i=-2ay,, (3.41)

A
since Ogeom = [ d@. The 1-form @ can be interpreted as the connec-
tion 1-form w!, of a 2-manifold represented by the coordinate charts
{X!, X%} = {p,,w,} and with the metric

ds®> =€, G, dp§+ezG2dq/22. (3.42)
We want to find the metric coefficients G, and G, so that®
o',=7. (3.43)
From (2.46) we then have

G1,2 Gz,l p
— _dpy— €16 ————dy, = — =2 dy, . (3.44)
24/G,G, 24/G,G, A
This implies that

G G

Ly, 2py, D2 ) (3.45)

—— =0, €16 ———— = —
21/G,G, 266 A
The first equation implies that G, ,, = 0, and hence G; = G;(p,). The
Gaussian curvature is calculated from (2.50) as

Ke_o_ L (3.46)

AVG .G,

Thus, the curvature depends on the sign of A. This is a consequence of
matching the symplectic and curvature forms in (3.43). In Remark 3.1
it was shown that by flipping the coordinate chart, one can consistently
define the rotation sign of the angular momentum A to be either pos-
itive or negative, e.g., counterclockwise or clockwise, respectively, or
viceversa. Consequently, the base manifold of the elastic rotor system
can be endowed with two distinct metrics, depending on the convention
used to define the sign of the total angular momentum.

Egs. (3.45) also imply that the symplectic 2-form d @ is equal to the
curvature 2-form dw!,, that is d @ = dw',, or explicitly

da:—%dpzl\dulz:K\/G]szpz/\dwz. (3.47)
We now further require that the symplectic 2-form d@ be compat-
ible with the (pseudo) Riemannian volume (area) 2-form volg =
1/GG, dp, A dy, in the sense that the absolute value of the geometric

3 We can add to ', an arbitrary closed 1-form ¢, i.e., d¢ = 0. This form
can be neglected because it does not contribute to the geometric phase as its
integral over any closed curve vanishes. Thus, the freedom to add an arbitrary
closed form is physically inconsequential.
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rotational drift over a closed trajectory y in the shape manifold is equal
to the volume (area) of the region .S(y) it encloses using volg, that is,

1
mdpz/\du/2=\/GlG2dp2/\dv/2, (3.48)
which is equivalent to
1
VGG, = —, (3.49)
ERTY

or A2G; G, = L. This, in particular, implies that G, = G,(p,). We can
now solve for G,. Substituting (3.49) into (3.45), yields

2p,
Gop, = €162 AAL (3.50)
and hence
2
P+ G
Gz = €16 W N (3.51)

where C, is an arbitrary constant, and G, follows from (3.49). Since
G, > 0, we set C, = %, u € R, and sgn(ee,) = sgn(A). We choose
€, = sgn(A) and ¢, = 1 so that

2, 2
1 p,t+Hu

G=5—. , = 22 , (3.53)
pytH A

and the family of metrics (3.42) is simplified to read

)

sgn(A p,tu

G="% ( )zdp2®dp2+2—2dx//2®dy/2. (3.54)
ptu A

From (3.46) and (3.49), one obtains the corresponding Gaussian curva-
ture K = —sgn(A), and the Ricci scalar R = 2K = —2sign(A). The metric
G and the corresponding curvatures depend on the sign of A. Notably,
as highlighted in Remark 3.1, one has the freedom to define the sign of
the angular momentum to be either positive or negative. This implies
the existence of two distinct metrics, mirroring the convention used to
define the rotation sign. In the subsequent sections, we demonstrate
that choosing A < 0 endows the shape manifold B with the pseudo-
Riemannian structure of an Einstein metric [31] of the sectional plane
of an expanding 4D spacetime with positive curvature, equipped with
the Robertson-Walker metric [33,34]. Conversely, opting for A > 0 the
shape manifold is endowed with the structure of the hyperbolic plane
with negative curvature. For both cases, the geometric phase is evalu-
ated by the same 2-form, derived from the sectional curvature form of 13
in (3.33). The two metrics are compatible with the geometric phase,
except for its sign, mirroring the sign convention used. Moreover, the
two metrics have different curvatures and cannot be isometric.

Remark 3.2 (Metric Uniqueness). The metric depends on the sign of
A because we matched the symplectic 1-form @ = -2 dy, in (3.41)
with the curvature form of the base manifold B in (3.43). In doing so,
the intent is to have curvature equal to the geometric phase in (3.33).
This depends on the sign of A and curvature inherits it. Alternatively,
a unique metric can be defined by matching the symplectic form g =
—Ad = p, dy, of the reduced dynamics on B with the curvature form
in (3.43). In this case the curvature is set to be equal to the area
spanned by the Hamiltonian flow on the base manifold. As a result,
the geometric phase is proportional to curvature, with constant of
proportionalit; —%, see (3.31). Such a matching equips B with the

4 Another choice would be ¢; = 1 and ¢, = sgn(A), which gives the following
metric

P+t

A2

%

(3.52)

1
== dp, ®dp, +sgn(A)
Prtu

dy, @ dy,,
and G* = sgn(A)G. The two metrics have the same curvature K. They are
identical for A > 0 and Riemannian in character. For A < 0, we have G* = -G

and the two metrics are pseudo-Riemannian.
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following pseudo-Riemannian metric

(3.55)

1
G=-=——dp, ®dp, + (15 + 1) dy, ®dy, .,
112+Il

which is an Einstein metric [31]. In particular, this is a disguised

metric of the 2D section of a 4D Robertson-Walker expanding spacetime
universe for any real number y, as hereafter shown.

Remark 3.3. Hernandez-Gardufio and Shashikanth [35] studied the
geometric phases of three inviscid point vortices and found that the
curvature of the associated shape manifold depends on the sign of a
parameter related to the strengths and circulations of the three vortices.
In particular, their shape manifold is a sphere, for example if the three
vortices spin in the same direction forming a vortex cluster. It is instead
a hyperbolic plane, for example when one of the vortex spins opposite
to the other two vortices. Thus, the change in character of the manifold
signals different vortex interactions (see also [36]). We note that in
their system each vortex interacts with the other two, allowing for
non-trivial dynamical configurations.

Remark 3.4 (Physical Significance of The Metric). The metric (3.54) de-
fined on the shape, or base manifold 3 characterizes the kinematically
admissible shape deformations of the elastic double rotor. An orbit on
B is a succession of infinitesimal changes in the shape of the elastic
double rotor from an initial configuration to another. If the elastic
double rotor returns to its initial shape, the orbit is closed and the
area (or curvature) spanned by it measures the induced rotation drift.
Any curve, or orbit on the base manifold is a kinematically admissible
shape evolution, i.e., a sequence of changing shapes. The orbit is
also dynamically admissible if it is consistent with the Hamiltonian
flow (3.26). The metric allows quantifying the similarity of a shape
S| to another shape §,, by measuring the intrinsic distance between
the corresponding points in the shape manifold /3. Other non-intrinsic
distances would be misleading as they do not account for the curvature,
or induced geometric drift. The important point is that different shapes
must be compared using the same metric chosen based on the sign
of the angular momentum A. In the following sections we will show
for A > 0 the distance between two shapes with different momenta p,
appear red-shifted and their distance is larger than the corresponding
Euclidean distance. Similarly, for A < 0 the two shapes appear distant
in the hyperbolic plane in comparison to what one would observe in the
Euclidean plane. So, the two metrics qualitatively describe the intrinsic
differences in shapes, which is misled as shorter through the Euclidean
lens.

3.4. Geodesics of the metric

3.4.1. Negative angular momentum: 2D Robertson-Walker spacetime
Choosing A < 0, the shape manifold has positive Gaussian curvature
K = 1 and the metric in (3.54) is pseudo-Riemannian with p, as a
time-like coordinate and y, as space-like:
2,2
Py, tu 5
v (dy)”.

ds®>=— (3.56)

(dpy)’ +
P+l

The geodesic equations follow by minimizing the action [ ds?>= [ LdA
with Lagrangian density

@)

L (p(A), wr (1)) = — + (3.57)
(P2 (D), w2 (D) P%+M2 v

Wy,

where (.) denotes derivative with respect to A, which parameterizes
the geodesics. Trivial geodesics are the straight lines y, = const and
p, = const for which L is stationary. A family of non-trivial geodesics
can be easily found by choosing the parametrization A = p,. Then,

1 Ptw (d ¥ )2

Lyr(py)) = ——5—— +
pg + u? A? dp,

(3.58)
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¥, (space-like)

Fig. 4. Geodesics of the pseudo Riemannian metric 7ﬁ dp, ®dp, + "5:4 dy, @dy,.
P u’ g
Null-geodesics are the thin black curves and geodesics are the bold blue curves.

Variational differentiation gives

2., 2
P, tH d
U T o B (3.59)
dp, A2 dp,
from which
d A2C
& —L, (3.60)
dp, py+ 1
where C, is an arbitrary constant. Thus
AZC
v, = B (&) 4Gy, (3.61)
H H

where C, is another arbitrary constant, which together with C, pa-
rameterize the family of geodesics. The Lagrangian density in (3.58)
simplifies to read

—1+AXC?
L=——1 - (3.62)
pytH

and the null-geodesics are given by (3.61) with C;, = i since L = 0.
Fig. 4 depicts the null-geodesics (thin black curves) and a few geodesics

(bold blue curves) for the metric with A = =5, u = 2.

Remark 3.5. Drawing on General Relativity [33,34], p, is a time-
like coordinate and y, is space-like, and the metric G represents the
analogue of a space-time where null-geodesics (thin curves of Fig. 4)
are the trajectories of massless light photons. The associated light cones
tend to close up as p, - +oo and light slows down. In the same figure,
the depicted geodesics (bold curves) are always inside the light cones
they intersect along their path. Thus, they are the ‘time-like’ trajectories
of a massive particle traveling at a speed less than the speed of light.
Moreover, geodesics tend to converge in as an indication of the positive
Gaussian curvature.

Remark 3.6. The metric (3.56) describes the analogue of a disguised
sectional plane of a 4D spacetime of an expanding universe [33,34]. As
a matter of fact, for 4 # 0, one can define the following new coordinate
chart

r=tanh” | —2 | x=uy,. (3.63)
\/P+
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dpy

VP2

2 2
u*(cosht) a2
A2
which is the induced metric on the 2D section (¢, x) of the 4-dimensional
Robertson-Walker (RW) spacetime in General Relativity [33,34]. The
RW metric

Then one has dt = , dx = dy,, and the metric (3.56) transforms

to

ds* = —di* + , (3.64)

u%(cosh1)?

A2
describes an expanding universe with scale factor a(f) = coshz and
Hubble constant H = g = tanht [34]. For u = 0, the new coordinates
are

ds* = —di* + (dx? +dy* +dz*) , (3.65)

t=e, X=y,, (3.66)
where dt = % and dx = dy,, and the metric transforms to

2 2, ¥
ds® = —dt* + ﬁdx , (3.67)

which is still the induced metric on the section (x, ) of the Robertson-
Walker spacetime with the scale factor a(r) = ¢’ and Hubble constant
H = 5 = 1 [34]. In the following, the metrics (3.56), (3.64) will be
referred to as the metrics of a 2D Robertson-Walker spacetime universe.

Remark 3.7. The analogy of the shape manifold B being like an
expanding universe implies that a point in B, or shape S, appears
‘red-shifted’ by another point, or shape .S,, as the momentum p, (time-
like coordinate) increases. Thus, the low-momentum shapes with small
geometric rotation drift are far apart from the high-momentum shapes
with large geometric drift. So the analogy with the expanding universe
implies that different shapes, or points, can be very far away from each
other in the shape manifold and correspond to very different geometric
rotation drifts. The extrinsic Euclidean metric would give a smaller
distance between the two points misleading them as similar shapes.

3.4.2. Positive angular momentum: The hyperbolic plane TH?
Choosing A > 0, the shape manifold has negative Gaussian curvature
K = —1 and the metric in (3.54) is Riemannian:
2,2

1 pytu 5
2 (dyr)”.

(dp)* +
P+ u?

ds? = (3.68)

To reveal the nature of the geodesics, we can still use the coordinate
transformations (3.63) and (3.66). As an example, for 4 = 0 the
metric (3.68) transforms to ds? = dr? + R(t)dx2, where R(t) = i—zzr.
This is a disguised metric of the hyperbolic plane as the change of

. - - _ . d%2+di2
coordinates ¥ = x and j = Ae™ transforms it to ds*> = %

Remark 3.8. A point in B, or shape S, appears far away from
another point, or shape S,, as the momentum p, reduces because
of the hyperbolic character of the metric. Thus, the low-momentum
shapes with small geometric rotation drift are far apart from the high-
momentum shapes with large geometric drift. If one uses the Euclidean
metric instead, the two points would appear closer than they are. The
Euclidean metric is misleading in the sense that far away shapes appear
as similar shapes when looking at them through a Euclidean lens.

3.4.3. The set of all geodesics

More generally, let us assume that the geodesics of the metric in
(3.54) are parameterized by A. Minimizing the action [ds?> = [ LdA
with Lagrangian density

P2+ u?
A2

/2
@)
P+

L(py (), w1 (A)) = sgn(A) w3, (3.69)

10
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gives

7
P+ w2

where (.)' denotes derivative with respect to 4 and ¢, is a constant.
Then, the first equation for p, can be written as

4 ’
pop AZ¢
FsmnA 2yt - =m0, yh=
A Pty pyt+H

(3.70)

—sgn(A)AZCf + 1

1
=N (3.71)
: Py + 2
This ODE can be solved for by using the substitution p, = F(p,). Notice
n_ dF gy _ dar
that = h=Fa and

—sgn(A)AZ¢? + F
F = p22—21 N (3.72)
ps+u

dr
dp,

which can be easily integrated to solve for F:

py=F(p) = i\/cz (0% + 12) + sgn(A)A2 2, (3.73)

where ¢, is another constant. Thus, the geodesic equations (3.70) are
reduced to the following first order system

Al
=t/ @+ i) bW, gy =
p; tHu

3.74)

Integrating the first equation one obtains

Lo

Ve
which is valid in the range of the values of A for which the argument
under the square root is non-negative, 4, is a constant, and ¢, > 0.
Thus, the geodesics are parameterized by

<—p2 G+ o+ + sgn(A)A%f) =+i+iy. (3.75)

e~ Ve2(xA+dg) [_1 + (62”2 +sgn(A) A2c12) 62\/5(1“/10)]
pa(A) = ,

2v/e;

(3.76)

and

2A pcpq/cr ezﬁ(tlh{o)

1+(A2 £]2+Cz Mz)ez‘/a(ﬂﬂo) :| ’

V2 (xA+A
Acy _1 Acl+(A2012+cz yz)e ealxi+io)
=1 tanh
H Ve H

. AC]_<A2L.12+L.2 ”2)e\/5(¢/1+10)
— tanh , A>0.

A% tanh! [
U

v (4) =

Ve
(3.77)

4. Dynamics of (free) nonlinear elastic N-rotors

We next generalize the elastic double rotor system described above
to an elastic N-rotor with N rotors with mass moments of inertia
(Iy, I, ..., I y). The Lagrangian coordinates 6; are the angular positions
of the rigid rotors as depicted in Fig. 5. For the specific problem we
consider the action of N —1 nonlinear springs on the rotors as depicted
in Fig. 5. The associated potential depends on the angle differences of
adjacent rotors, i.e,

(0, —01,03— 05, ...,08 —Ox_;) = (0, —0) + -+ MOy —0x_)),

“4.1)
and describes the internal conservative moments M; = —0p, 1T acting
on the rotors, which are in equilibrium, that is

< oIl
M{+My+ - +My=- — =0 (4.2)
j=1 691
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nonlinear torsional spring

N
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In_2,0Nn—2(t), My _5(t)

]’§ 9'&(0 Mf}(”
I, 05(t), M5(t)
I, 6:(t), M1 (t)

Fig. 5. The side view of an elastic N-rotor with N — 1 nonlinear springs. The applied time-dependent moments are self equilibrated, i.e., Z,N: M@ =0.

The associated Lagrangian is written as
£= Z
Minimizing the action / Ldt yields the following dynamical equations

o)

From (4.2), the potential moments are in equilibrium and summing up
Egs. (4.4) yields

1,6%—

L8 —0,.0,— 0y, ... 4.3)

Oy —0n_1) -

oL -1 é
09 4

o

=0,
69

j=1.. (4.4)

N

d .

= (Z 1,~9j(0> =0 (4.5)
=1

Thus, the total angular momentum of the elastic N-rotor

16,0 + Loy (1) + -+ + IyOy () = A (4.6)

is conserved over time and A = 1,6,(0) + -~ + Iy60y(0) is the initial
momentum imparted by the angular velocities 6; at time 1 = 0. We
can associate a Hamiltonian system on the cotangent space T*Q of the
configuration space Q = TV, that is the N-torus with a coordinate
chart {6,,60,,...,0y}. The conjugate momenta of the angles 0; are
pj = 09/_5 =1 jé ;. Thus, the phase space T7*Q has the coordinate chart

{0,,0,,....05,p1, P2, ..., py } and the Hamiltonian is given by
1w
=-yZ _ - —
H= 2,21 7 +11 (0~ 61,05 =60y, ....0q —Oy_y) . 4.7)

The dynamical equations follow from the Hamiltonian and read X =
JVxH, where

0,
6
x=|],

Py
%]

(4.8)

LPN |
and J is the following symplectic matrix
[0y Iy
|-In Oy
Iy = [§;;] is the N X N identity matrix, Oy is the N x N null matrix,

J= (4.9)

and ¢;; is the Kronecker tensor. In particular,
. pj o 17
6, =L, p = — i=1,...N, 4.10
=T b; a6, J (4.10)
and from (5.5) the conserved angular momentum is written as
N
A= ij(z). (4.11)
j=1
The associated symplectic 1 and 2-forms are written as
N N
a=Y pdo, da= dp Ado;. (4.12)
j=1 j=1

11

The total kinetic energy of the elastic N-rotor is given by integrating
the 1-form a:

E(t)=/ adr=2/ pJ(T)G(T)dr_Z
0 i=

To reveal the geometric nature of the dynamics, we consider the shape
configuration space Q,, which has the coordinate chart {6,,y,, s, ...
wy 1, where the shape parameters y; = 6; — 0, represent the relative
angular displacement of the N — 1 rotors with respect to the first rotor.
Since the total angular momentum p; +p,+---+py = A is known a priori,
then p; = A—p,—p;—---—py and the motion must occur on the subspace
T*Q/A, which has the coordinate chart {6, y,,ps.w3,p3.....WN, PN }>
where (pj.w;) are a pair of conjugate variables. The 1-form in (4.12)
reduces to read

1.6%().

510 (4.13)

N
a=Ado + Y pdy;, (4.14)
j=2
and the associated symplectic 2-form is written as
N
da =) dp; Ady;. (4.15)
j=2

The reduced phase space P = T*Q/A has the geometric structure of a
principal fiber bundle: the 2(N — 1)-dimensional shape manifold B with
a coordinate chart {y,, p,, ..., wy,py } and transversal one-dimensional
fibers 7 with coordinate chart {6, }.

The vector field X, = X5+ X can be decomposed as the sum of the
flow

Xp=|:|. (4.16)

on the shape manifold 3 and the flow X = 6§, along the fiber 7. Note
that the motion on the shape manifold B is independent from that along
the fiber. As a matter of fact, X; does not depend on 4,:

N N
1 1 1 oll
vi=» +_>__ A=Yy ). 5= 4.17)
I<Il 1; Il< ,;2 k> I oy
and the associated reduced Hamiltonian is given by
N 2 N 2
Hy(y, YN, D PN) = L A—Zp + i/
RW s WNs Pos o PN) = 50 k 257,
k=2 Jj=2 J
+ H(Wz,ll/yw-,lI/N) s (4.18)

where the potential is now given by

n (ll/z,lllym’WN) = I (yp)+ 5(yy —wy)++ My (wy —wy_y). (4.19)

On the contrary, the motion along the fiber depends on X since

1 N
0, =—<A—Zpk>.
I, k=2

(4.20)
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The motion in the reduced state space P = T*Q/A decouples in a
reduced motion X5 on the shape manifold B and a drift X along the
fibers. The reduced motion on 73 is the shape-changing evolution of the
connected rotors. Such a shape dynamics induces the rotors to rigidly
rotate together by the varying angle #,. From (4.14), we define the 1-
form @ = % and the total drift 6, along the fiber follows by integrating
the 1-form

N
~ Px
o, =7 - ) = ~ v, (4.21)
k=2
that is
0, = /dG] / adt— /—dy/k, (4.22)
k=2

where y is a closed trajectory of the motion up to time ¢ in the shape
manifold B. Thus,

01(t) = Oayn(t) + Ogeom D). (4.23)

where the dynamical and geometric rotation drifts are defined as

13
Gdyn(t) =/ adr, geOm(t) =— /—dwk
0 k=2

Here, the dynamical rotation drift 64, depends on the inertia of the
rotors and can be written as

' N p?
9dyn(f)=2/0 %dr, K(t):%zl—’
where K(r) is the total kinetic energy and A is the total angular mo-
mentum. If all the rotors are rigidly connected and cannot change their
shape, i.e., y; = 0 and so no motion on the base manifold 5, then the
rotation drift is solely due to the inertia of the system measured by
the total angular momentum. If the rotors undergo changes in shape,
i.e., the angles y; vary over time, then the motion on 53 induces the
geometric rotation drift, which from (4.24) can be written as

N
1

—dv/k— / —dpg A dyy. .
/ Zﬂ s A

Such a rotation drift is proportional to the area .S(y) enclosed by the
path y spanned by the motion on the shape manifold B. Thus, it is
purely geometric since it does not depend on the time it takes for the
rotors to undergo a cyclic shape change, or to span the closed path y
on B. The part of kinetic energy that arises from the same cyclic shape
change

N
Egeom(®) = —/ Abgeom() d7 = 2 /pk dy, = 2/
Y k=275

(4.24)

(4.25)

(4.26)

geom =

dpg A dyy,
2}

(4.27)
does not depend on the duration of the cyclic change either. Note that
the energy difference

t
E(t)—Egeom(t)=/0 Ab,dr, (4.28)

is that relative to the total rotation drift #;. In the following, we
will show that the base manifold can be endowed with a Riemannian
structure.

4.1. Curvature and intrinsic metric of the shape manifold

The geometric rotation drift can be interpreted as the curvature of
the shape manifold B equipped with a pseudo-Riemannian diagonal
metric of the form

N
i =y) [e G, (dp,’ +¢,
Jj=2

Gy, @w)?] (4.29)

12
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where the 2(N — 1) non-negative metric coefficients (at least one being
positive) depend on the coordinates {p,,y»,...,py.¥n}, in general,
and (€pys Eyys -+ €py» Eyry) is the signature of the metric. The metric
coefficients will be calculated using Cartan’s structural equations as
follows. From (4.26) the geometric drift follows by integrating the

2-form

™=

da= da,, (4.30)
Jj=2

where

~ pj ~ 1 .

aj=—Xdy/J, daj=—xdpj/\du/j s j=2,....,N. (4.31)

Drawing on Cartan’s second structural equations (2.43), the collection
of the (N — 1) 2-forms d ?ij are interpreted as the non-zero curvature 2-
forms of a 2(N —1)-dimensional manifold, and the associated connection
1-forms are @;. For a metric-compatible connection on the M = 2(N-1)-
dimensional shape manifold there are w (N — D@2N = 3)
connection 1-forms and as many curvature 2-forms. In particular,

Py s @Yy, (4.32)

(N-D(N-2)

j<k=2,...,N

are 2 X = (N = 1)(N - 2) connection 1-forms. The remaining
(N - 1)? connection 1-forms are

%, jok=2,...,N. (4.33)

Therefore, in total we have (N — )(N —2)+ (N — 1)2 = (N — )(2N - 3)

connection 1-forms and as many curvature 2-forms given by

Rp/l’k:RW/ll/k:O’ j<k=2,...,N

R¥, =0, j#k, (4.39)
) ~ 1 .

R"’!pl,=daj=—xdpj/\dy/j, j=2,....,N.

The unknown connection 1-forms satisfy Cartan’s second structural
equations (2.43):

R”/Pk:O:da)”fpk+a)”/y/\a)Vpk, j<k=2,...,N
R"’!W=0=da)"’f'v,k+a)"’!y/\a)7w, j<k=2,...,N
R“"‘pj=0=dw"’kp]+co“”<y/\w7pj, j#k,
1
Vi o — _ = v, Vi 4 i =
R/p/— Adpj/\dy/j—dw/pj+co/y/\a)pj, j=2,....,N.

(4.35)

These are more explicitly written as
N N

P, P v, P o —
dw’m"'zw/w,/\a) 'Pk+zw/p,/\a)’m =0,
e} p

N
v, 7
do v +Zw ",

j<k=2,...,N

N
Aw“"wk+2a)"’1p’/\w"'w=0, j<k=2,...,N
N N
dm“’kp] + me% /\w‘/"p/ + Zm“’kp’ An)”'p/ =
v .
dw"’lpj+2a)“’/w,/\w"" +Zw"’1p’Aw”’pj=—%dp//\dwj,
i=2 i=2

j#k,

j=2..,N.

b

(4.36)

The case N = 2 is trivial as there is a unique solution w%2, =
% dp, + & given in (3.43), where ¢ is any closed 1-form, which can be
neglected as it does not contribute to the geometric phase. For N > 2
we have a system of nonlinear equations to solve for the connection 1-
forms, and there may be more than one solution. If we require the only
non-zero connection forms to be a a, j=2,...N in (4.31) then we have

a solution,® that follows from (4.32) and (4.33) as w¥i y = —%’ dy;,

5 One can add arbitrary closed 1-forms to each connection 1-form, but these
do not correspond to new solutions since the difference is a closed 1-form.
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j=2,...,N, and a)l’ku,/ = a)l’kpj = co"’ku,j = 0. From (4.30) it follows
that the non-zero curvature 2-forms are the exterior derivatives of the
1-forms Ej

RV, =da¥i, =d%, j=2,..,N. (4.37)
From (2.40) we then have
ad, G 7, G
v, b, 1 .
w"k%:—kdpk—epke%k—dy/jzo, j#k,
2 GPkGV’, 2 H GPkGV’/
J, G aJ, G
Wiy Vi~V .
¥, = — dy, — ¢, €, —— dy; =0, j<k=2,..,N,
2 GV’kGW, 2 GWkG'V
ad,G d, G
PP, P Op; .
o, = “— dp; — €, €, — p; =0, j<k=2....N,
2 GPkGF, 2 Gl’kGP
v, O, 2w, Pj
w”/w!— dp; 2, Ew, du//——de//j, j=2,...,N.
2,/6,6,, 2,/6,6,,
(4.38)
Thus, we must have
9,6, =0, 9,G, =0, 9,G, =0, 9,G, =0, k#j,
(4.39)
and
d,G :
pj oW P
9, G, =0, — = (4.40)
J J

—€, €, ———— = .
Pj v A
21/Gijwj

The above relations imply that Gp/ = Gp/(pj) and GW/ = ij(l//j,pj).
Thus, the metric coefficients G,,j and Gw,- depend only on the coor-
dinates {y;,p;} of the submanifold (hyper-plane) B;. The curvature
2-forms RVYi p, in (4.37) are now expressed in terms of the metric
coefficients using (2.48) as

ijp, = dwwjp/ = K(pjst)\/GﬂjGW/ dp; Ady;,

where Ko is the Gaussian curvature of the hyper-plane B; with
coordinates {v;.p;} (see (2.50)). Then, (4.37) imposes the equality of
the 2-forms d @; = dw"/ o that is

(4.41)

1
- dej/\dll/j =K(p,,w/)‘/Gijw,- dp; Ndy;, (4.42)
and it follows that
1/G5,Gy,
Ky == (4.43)

Similar to the elastic double rotor, we further require that the sym-
plectic 2-form d @; be compatible with the (pseudo) Riemannian vol-
ume (area) 2-form voIB/ = /Giju,j dp; A dy; of the submanifold 5,

that is

1
mdpj/\dy/j = ,/Gijwj dp; Ady; . (4.44)
This implies that

1
A= /G,,Gy, (4.45)
which together with (4.40), gives us

pj

€p€; 9 Cv; = 2 RjA] (4.46)

They can be neglected as they are not physically relevant. As a matter of fact,
they do not contribute to the geometric phase as their integrals over any closed
curve vanish. Thus, the freedom to add an arbitrary closed 1-form is physically
inconsequential and it does not give any new solutions.
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Solving for Gy, s and using (4.45) to solve for G p, We get

1 sz- + lljz-
= = sgn(A), e, =1, (4.47)

G =—— €
Pj Vi A2 Pj Vi

P
where we have imposed that both metric coefficients are positive and
u; are arbitrary constants. The shape manifold 5 is thus the product
manifold of N -1 shape submanifolds B; with local coordinate charts
{pj.w;}, or B= B, x -+ x By (see Section 2.5).

Each submanifold is the shape space of two adjacent rotors, or
double rotor. Thus, the intrinsic metric of each submanifold follows
from (4.47), (or from (3.54)) as

2, 2
sgn(A) p;+ oy
Gj= > dej®dpj+%dy/j®dy/j. (4.48)
Then the metric of B is the product of these metrics, i.e.,
N 2, 2
sgn(A) it H;
G=Gyx.xGy=) S dp; ®dp; + = dv; ® d;
j=2 LPj TH;
(4.49)

From (4.30) the geometric drift follows by integrating the 2-form

N
di= ) RV, (e,.¢,). (4.50)
j=2

This is the sum of the curvature 2-forms of each submanifold B s that
is

N N
1
Ooom = — R (e, e, )=— / —dp; A dy; (4.51)
geom j;z SG) WiNTpi Y 1;2 S(J/)A J J

where each term is both the oriented area and curvature of the pro-
jected path y on the hyper-plane B; with coordinates {y;,p;}. The
geodesics of the product manifold B are the Cartesian product of the
geodesics of each submanifold 5;, which follow from (3.61).

Without lose of generality, one has the freedom to define the sign of
the total angular momentum as either positive or negative, e.g., coun-
terclockwise or clockwise, and viceversa. The base manifold B can
then be endowed with two distinct metrics both compatible with the
geometric phase. In the following, we will show that B is the product
manifold of N — 1 hyperbolic planes H? (A > 0), or Robertson-Walker
2D spacetimes (A < 0) depending on the convection used to define the
rotation sign of the total angular momentum A.

Remark 4.1 (Metric Uniqueness). Similarly to the double rotor prob-
lem (see Remark 3.2), a unique metric can be defined by matching
the symplectic forms f; = —ATij = p;dy; of the reduced dynamics
on B (see (4.31)) with the connection 1-forms Ej in (4.32). As a
result, the geometric phase is directly linked to curvature, and the
constant of proportionality in this relationship is given by —1 as
indicated by (4.26). Such a matching equips B with the following
pseudo-Riemannian metric

< 1
G=G,X...xGy =2 —ﬁdpj®dpj+(pjz.+y?)dwj®du/j s

=L Pt

(4.52)

which is a disguised metric of a multi-universe of 2D Robertson-Walker
spacetimes, Vu; € R, j=2,...,N as shown in the following.

4.2. Negative angular momentum: Multi-universe

Choosing A < 0, the metric (4.49) describes a multi-universe of
expanding 2D Robertson-Walker spacetime universes [33,34]. Indeed,
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for u ; # 0 we use the coordinate transformation (3.63)

N
tj=tanh_l —t |, X; =y, j=2,...,N. (4.53)
2, 2
pj+H;
d . .
Then dt; = q,,/ =5 dx; = dy;, and the metric (4.49) transforms into
Pt

the sum of (N — 2) 2-dimensional Robertson-Walker metrics of each
submanifold B :

N 2 2
u:(cosht;)
ds = Z;dsf, ds? = —di’ + ’A—z’ dx?, (4.54)
=

with the scale factor a(t; ) ~ cosht;. The associated Hubble constants

of each spacetime is H; —_ = tanh(t)), indicating a matter-dominated
universe for small 1 and vacuum-dominated for large 1 [34]. Similarly,

if u. ;=0 we use the coordinate transformation (3.66):

tj:e”J, X; =y, j=2,....,N, (4.55)
d .
where dt; = p—’ and dx; = dy;, and the metric transforms to
J
45 = —di? + Sl ax? j=2.....N 4.56
s/.——tj+F X5 j=2,....,N, (4.56)

which is still a Robertson- Walker metric with the scale factor a(t )~ eli
and Hubble constant H = ;= =1 [34].

4.3. Positive angular momentum: The hyperbolic product space TT*N-D

Choosing A > 0, each submanifold B; is a hyperbolic plane H?
and the shape manifold is the Cartesian product of N — 1 hyperbolic
planes H?, each with negative Gaussian curvature K ; = —1. S0, Bis
the hyperbolic product space H*N~D, As an example, for u = 0 we
use the coordinate transformations (3.63), (3.66) and the metric (4.49)
transforms into the sum of the following N — 2 metrics

N
ds? = Z dsjz.,
=)
1

where R;(t) = A2e 'j. The metrics ds? of the submanifolds B; are
disguised metrics of the hyperbolic plane as the change of coordinates

% =x;and y; = Ae~"i transform each of them into

ds§ = dzj. + Rf.(z)dxf. ., j=2,..,N, (4.57)

<2 )

e dxj + dyj
i~ 2 ’
Yj

j=2..,N. (4.58)

5. Dynamics of nonlinear elastic N-rotors under self-equilibrated
external moments

We next generalize the elastic N-rotor system described above by
assuming that time-dependent external moments Mj(t), j=1,....,N act
on the rigid rotors (see Fig. 5). In order to preserve the invariance of
the total angular momentum we assume that

N
Z ME() =0
j=1

The associated Lagrangian is written as.®

L= Z

(5.1)

N
Oy —On_1) + X M0, (5.2)
j=1

~1,0% -

10 ~0,,0;

—0,, ...

6 The external moments appear in the Lagrange d’Alembert principle.
Equivalently, one can use Hamilton’s principle using the modified Lagrangian
given in (5.2).
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and the associated dynamical equations follow by extremizing the
action [ L£dt as

= 1,0, +£—Me(1)—

,N.
00,

ji=1,... (5.3)

dt 90,

From (4.2), the potential moments are in equilibrium and summing up
Egs. (5.3) yields

d N N
FULICED NGO
j=1 j=1

From (5.1) the sum of the external moments on the right-hand side is
null and the total angular momentum is conserved, i.e.,

5.4

16,(0) + Ly(0) + - + IOy () = A (5.5)

5.1. Extended autonomous Hamiltonian system

The elastic N-rotor is a non-autonomous system since the La-
grangian is explicitly time-dependent. We can associate an extended
autonomous Hamiltonian system on the cotangent bundle T*Q, of
the extended configuration space Q, = R x TV, i.e., the Cartesian
product of the real line R and the N-torus. Q, has the coordinate
chart {7,0,,0,,...,0y5}. The conjugate momentum of time ¢ is the
energy E and p; = I;6; are the conjugate momenta of the angles 6.
Thus, the phase space T*Q, is the cotangent space of Q,, and has the
coordinate chart {t,6,,6,,...,0y, E,p|.ps....,pyn }. A generic trajectory
in the extended phase space is parameterized by the parameter A. The
Hamiltonian is given by
. (5.6)

H=E+~ Z—+n = 0,,05—0,,....0y

ZW

The dynamical equations follow from the Hamiltonian by X’ = JVxH
where X' = % denotes differentiation with respect to 4, and

_eNl

5.7)

PN ]
and J is the symplectic matrix

(5.8)

J= [On 41 IN+1] ]
,_IN+1 0N+1

Iny = [6;] is the (N + 1) x (N + 1) identity matrix, Oy, is the

(N+1)x(N+1) null matrix, and §;; is the Kronecker tensor. In particular,

N
g M _ oo _g M,
0E ~ oo A dr
p on
/ J ’ e P =
Hj—z, pj —aTOJ'FM/-(I), J—l, ..N. (59)

From (5.5) the conserved total angular momentum is A = ZJN= | Dj- The
associated symplectic 1 and 2-forms are
N N
a=Edi+ ) p;do, da=dEAdt+ ) dp, Ado,.
Jj=1 Jj=1

(5.10)

We now consider the shape configuration space Q,, which has the
coordinate chart {7, 0, y,, s, ... vy}, where the shape parameters v =
0; — 0, represent the relative angular displacements of the N — 1 rigid
rotors with respect to the first bar. Since the total angular momentum
p1+p+--+py = Aisknown a priori, then p; = A—p,—p;—---—py and the
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motion must occur on the subspace T*Q,/A, which has the coordinate

chart (t,E,60,,y,,p,¥3,p3,.... ¥y, PN}, Where (1, E) and (p;,y;) are
pairs of conjugate variables. The 1-form in (4.12) reduces to

N
a=Ado +Edt+ Y pdy;, (5.11)
j=2
and the associated symplectic 2-form is written as
N
da:dE/\dt+de/-/\d1//j. (5.12)
j=2

The reduced phase space P = T*Q/A has the geometric structure of a
principal fiber bundle: the 2 N-dimensional shape manifold B with co-
ordinate chart {t, E, y,, p, ..., Wy, py } and transversal one-dimensional
fibers 7 with coordinate {6, }. The Hamiltonian vector field X/ in P =
T*Q/A can be decomposed as the sum of the flow

]

(5.13)

on the shape manifold B and the flow X} = 6] along the fiber 7.

The dynamics on the shape manifold B is governed by the reduced
(time-varying) Hamiltonian
2

E+ -

,II/NsPN)— 2]]

Hg(t, E,y,,py, ...

+ Z [— - M (t)w,] +1T (yy.ys..wy) . (5.14)
and the components of the Hamiltonian vector field X}, are
N e
=1, E'= 0HR=Z%W
o &~ dr 7/
1 1 1 < on
v =p +_>__ A-Yo ). p=H omo. 615
! /<11 I [1< ,Z; k) oy,
Notice that the motion along the fiber depends on X, since
| N
=—|A- . 5.16
7 < kzz‘;pk> (5.16)

From (4.14), we define the 1-form @ = % and the total drift 0, along
the fiber follows by integrating the form
~ FE < Pk
do, =@~ 2di - > S v, (5.17)
k=2
that is

Glz/delz/)AEdI—A< dt+2—du/k>

where y is a closed trajectory of the motion on the shape manifold B
parameterized by A. Thus,

(5.18)

91 = edyn + egeom s (5.19)

where the dynamical and geometric rotation drifts are defined as

i
adynu)=/ ad, 9geom(/1)=—/< dt+2—dwk> (5.20)
0

Here, the dynamical rotation drift 64, depends on the inertia of the
elastic N-rotor and can be written as
A (T 7 N p?
K()+EWQ) ~ _Ix?
gD =2 | =247, -1y
dyn( ) A A ) Z Ij

=l

(5.21)

.
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where K and A are the total kinetic energy and the total angular
momentum, respectively. If the rotors of the elastic N-rotor are rigidly
connected and cannot change their shape, i.e., no motion on the shape
manifold as y’ = 0, then the rotation drift is solely due to the inertia of
the system measured by the total angular momentum and it is measured
by Ogyn. If the elastic N-rotor changes its shape, i.e., the angles y; vary
over time, then the motion on B induces also the geometric rotation
drift Qgeom. From (5.20), and using Stokes’ theorem

N
1 1

[4 = —/ —dE A dt + —dpi A dyy | . (5.22)

geom St <A ;ZE A

The geometric drift is thus proportional to the area S(y) enclosed by
the path y spanned by the motion on the shape manifold 5. The 2-form
dE A dt encodes the effects of the time-dependent external moments
on the geometric drift. The remaining 2-forms are the same as those
of a free elastic N-rotor given in (4.51) and measure the effects of the
N-rotor shape changes. In the following, we will show that the base
manifold B can be endowed with a Riemannian structure.

5.2. Curvature and intrinsic metric of the shape manifold

One can interpret the geometric rotation drift in (5.22) as the
curvature of the 2N-dimensional shape manifold B equipped with a
pseudo-Riemannian metric of the following form

N
d5* = €,G,d’* + ey Gp dE* + Y |e, G, (dp) + ¢, G, (dw)?] . (5.23)
=2

where the 2N non-negative metric coefficients (at least one being
positive) depend on the coordinates {#, E, p,, y, ..., py. ¥y }. The signa-
ture of the metric is (¢, €, €pyr €y ve s Epps ). The metric coefficients
will be calculated using Cartan’s structural equations as follows. From
(5.22) the geometric drift follows by integrating the 2-form

N

dF=da + Y dF, (5.24)
j=2

where da, = —%dE A dt, and d@; = —%dpj A dy;. The associated

1-forms are

~ E ~ pj ;

a,:—th, O‘j:_xd‘l’p j=2,...,N. (5.25)

Drawing on Cartan’s structural equations, the 2-forms d @, and d@;
are interpreted as the only non-zero curvature 2-forms of the 2N-
dimensional shape manifold 3. We relabel the pair (#, E) as (p;,y,) so
that d @ is written as

N
¥=)da
j=1

where we set @, = @,. Comparing with (4.30) and (4.31), @ and da a; can
be interpreted as the connection and curvature forms of a free (N +1)-
rotor. Thus, we can use the results we obtained in Section 4.1. For the
forced elastic N-rotor, the shape manifold B has dimension 2N. It is
reducible since it is the product manifold of N submanifolds (hyper-
planes) B; with coordinate charts {y;.p;},j = 1,...N. From (4.49),
the metric of B is written as

(5.26)

S [ s jtH
G=G;x..xGy =) | S——dp;®dp; + Z’dw,.@dwj ,
=R A
(5.27)
where y; are arbitrary parameters. Since p; = t and y; = E, then

G, =G, and G, = G and the intrinsic metric of each submanifold

B; follows from (4.48) as

A E? + 2
G, = S8 ~dE®dE + Ldr@dt,

(5.28)
E? + ui?
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and
2 2
son(A p;+ u
G, = A ®dp + gy @dy,. j=2...N. (5.29)
2 2 J J 2 J J
Pt A
Then
sgn(A) P sgn(A)
G=ﬁdE®dE+—2dz®dz+2 —— dp; ® dp;
ES+m A j=2 Py
P+
+ ye dy; @ dy; . (5.30)

Similar to that of the free elastic N-rotor the shape manifold is the
product manifold of Robertson-Walker spacetime universes (A < 0) or
hyperbolic planes (A > 0).

The geometric drift follows by integrating the 2-form

N
da=RE(eg.e)+ z R, (e, e (5.31)

Jj=2

v)

which is the sum of the curvature 2-forms of each submanifold B s that
is

N
) =/ da:/ REe.e)+ Y RY (e, e, )
geom = [ S(y)[ t t 2 v vy

Jj=2

N
1 1
= - —dE A dt + —dp; Ndy; |,
/S(y) |:A ;A ! J:|

where each term is both the oriented area and curvature of the pro-
jected path y on the hyper-planes B; and B, with coordinates {w;,p;}
and {t, E}, respectively.

(5.32)

Remark 5.1 (Metric Uniqueness). Similarly to the N-rotor problem (see
Remark 4.1), a unique metric can be defined by matching the sym-
plectic forms f, = —-A% = Edt and f; = —-Aq; = p;dy; from
(5.25) of the reduced dynamics on B with the connection 1-forms
of the base manifold. Such a matching equips B with the following
pseudo-Riemannian metric

1

G=-———dEQdE+(E*+ ) dt®dt
E2+/4f
ul 1
+ 2 | A ®dpy + () + i) dw; @y | (5.33)
= L Pyt

which is a disguised metric of a multi-universe of 2D Robertson-Walker
spacetimes, Vu; € R, j = L,..., N. As a result, the geometric phase is
directly proportional to curvature, with a constant of proportionality
equal to —%, see (5.22).

6. Conclusions

We studied the geometric phases of nonlinear elastic N-rotors with
continuous rotational symmetry in the Hamiltonian framework. The
geometric structure of the phase space is a principal fiber bundle, i.e., a
base, or shape manifold B, and fibers 7 along the symmetry direc-
tion attached to it. The connection and curvature forms of the shape
manifold are defined by the symplectic structure of the Hamiltonian
dynamics. Then, Cartan’s moving frames provide the means to derive
an intrinsic metric structure for B. This characterizes the kinematically
admissible shape deformations of the N-rotors. An orbit on B is a
succession of infinitesimal changes in the shape of the mechanical
system from an initial configuration to another. If the mechanical
system returns to its initial shape, the orbit is closed and the area (or
curvature) spanned by it measures the induced geometric rotation drift.
We first studied the geometric phase of a nonlinear elastic double rotor
that conserves the total angular momentum A. The shape manifold
is endowed with two distinct metrics that are compatible with the
geometric phase, which depends on the convention used to define the
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sign of the total angular momentum as either positive or negative,
e.g., counterclockwise or clockwise, respectively, or viceversa. If A <0
is chosen, we found that the metric is pseudo-Riemannian and the
shape manifold is a 2D section of a 4D expanding spacetime universe
described by the Robertson-Walker metric with positive curvature, and
referred to as a 2D Robertson-Walker spacetime. If one chooses A > 0,
the shape manifold is the hyperbolic plane H? with negative curvature.
A unique metric can be defined by matching the symplectic form of the
reduced dynamics with the curvature form of the shape manifold 5.

We next generalized these results to nonlinear elastic N-rotors.
We found that the associated shape manifold B is reducible since it
is the product manifold of N — 1 hyperbolic planes > (A > 0), or
2D Robertson-Walker spacetimes (A < 0), depending on the conven-
tion used to define the rotation sign of the total angular momentum.
We then considered elastic N-rotors subject to time-dependent self-
equilibrated moments. The geometric phase is studied in the extended
autonomous Hamiltonian framework. The (N + 1)-dimensional shape
manifold of the extended autonomous system has a structure similar
to that of the N-dimensional shape manifold of free elastic rotors.
Similarly to the double rotor, a unique metric for the N-rotors can be
defined.

The two metrics depend on the sign of A and are both compatible
with the geometric phase, which is evaluated by the same 2-form given
by the sum of the sectional curvature forms of 5. The intrinsic metric
allows one to quantify the similarity of a shape S|, or point in 5, to
another point, or shape S,, by measuring the intrinsic geodesic distance
between the two points in terms of curvature, or induced geometric
phase. The Euclidean metric would give misleading shorter distances
between the two shapes. This is because it is not an intrinsic structure
that follows from the dynamics. Thus, low-momentum shapes are far
apart from high-momentum shapes. If A < 0, the shape manifold is a
2D expanding spacetime universe and the two different shapes are red-
shifted and are far apart from each other. If A > 0, the shape manifold
has the character of the hyperbolic plane and the two shapes appear far
apart as the difference of their momenta becomes larger. The intrinsic
distance between shapes is relevant for measuring how close an orbit
is to the stable/unstable submanifolds of fixed points of the dynamics
on the shape manifold.

In future work, we will use Cartan’s moving frames to derive an
intrinsic metric for the shape manifold of the Navier-Stokes turbu-
lence with continuous translational symmetry, or turbulent channel
flows [17]. To unveil the shape of turbulence one needs to quotient out
the translation symmetry of the Navier-Stokes equations. This can be
achieved, for example, by means of a physically meaningful slice or
chart representation of the quotient space or shape manifold [17,37,
38]. To measure how close one vortical shape is to another, the stan-
dard Euclidean metric is typically used. An important conclusion of our
present study is that the similarities of shapes should be measured by
a metric intrinsic to the shape manifold. Other non-intrinsic distances
are misleading as they do not account for the curvature, or induced
geometric phase.
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